
Communications in Algebra®, 33: 1587–1602, 2005
Copyright © Taylor & Francis, Inc.
ISSN: 0092-7872 print/1532-4125 online
DOI: 10.1081/AGB-200061047

RELATIVE FP-PROJECTIVE MODULES#

Lixin Mao
Department of Basic Courses, Nanjing Institute of Technology, and
Department of Mathematics, Nanjing University, Nanjing, P.R. China

Nanqing Ding
Department of Mathematics, Nanjing University, Nanjing, P.R. China

Let R be a ring and M a right R-module. M is called n-FP-projective if
Ext1�M�N � = 0 for any right R-module N of FP-injective dimension ≤n, where n is a
nonnegative integer or n = �. �R�M� is defined as sup�n � M is n-FP-projective� and
�R�M� = −1 if Ext1�M�N � �= 0 for some FP-injective right R-module N. The right
�-dimension r��-dim�R� of R is defined to be the least nonnegative integer n such that
�R�M� ≥ n implies �R�M� = � for any right R-module M. If no such n exists, set
r��-dim�R� = �. The aim of this paper is to investigate n-FP-projective modules and
the �-dimension of rings.
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1. NOTATION

In this section, we shall recall some known notions and definitions which we
need in the later sections.

Throughout this paper, R is an associative ring with identity and all modules
are unitary R-modules. We write MR (RM) to indicate a right (left) R-module. If
· · · → P1 → P0 → M → 0 is a projective resolution of an R-module M , let K0 =
M�K1 = ker�P0 → M��Ki = ker�Pi−1 → Pi−2� for i ≥ 2. The nth kernel Kn �n ≥ 0� is
called the nth syzygy of M . As usual, wD�R� stands for the weak global dimension
of R. pd�M�, id�M� and fd�M� denote the projective, injective and flat dimensions
of M respectively. Hom�M�N� �Extn�M�N�) means HomR�M�N� �ExtnR�M�N�) for
an integer n ≥ 1, and similarly Torn�M�N� denotes TorRn �M�N� unless otherwise
specified. For other concepts and notations, we refer the reader to Anderson and
Fuller (1974), Enochs and Jenda (2000), Wisbauer (1991), and Xu (1996).

Let R be a ring and M a right R-module.
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1588 MAO AND DING

M is called FP-injective (or absolutely pure) (Madox, 1967 and Stenström,
1970) if Ext1�N�M� = 0 for all finitely presented right R-modules N . Following
Stenström (1970), the FP-injective dimension of M , denoted by FP-id�M�, is defined
to be the smallest integer n ≥ 0 such that Extn+1�F�M� = 0 for every finitely
presented right R-module F (if no such n exists, set FP-id�M� = �), and r�FP-
dim�R� is defined as sup�FP-id�M� � M is a right R-module}.

In Mao and Ding (2005), the FP-projective dimension fpd�M� of M is defined
to be the smallest integer n ≥ 0 such that Extn+1�M�N� = 0 for any FP-injective
right R-module N . If no such n exists, set fpd�M� = �. The right FP-projective
dimension rfpD�R� of a ring R is defined as sup{fpd�M� � M is a finitely generated
right R-module}. M is called FP-projective if fpd�M� = 0. Clearly, fpd�M� measures
how far away a right R-module M is from being FP-projective. Enochs (1976)
proved that a finitely generated right R-module M is finitely presented if and only if
Ext1�M�N� = 0 for any FP-injective right R-module N , and so a finitely generated
FP-projective right R-module is finitely presented. It follows that rfpD�R� measures
how far away a ring R is from being right Noetherian.

A ring R is called right coherent if every finitely generated right ideal of R is
finitely presented.

A pair �� ��� of classes of right R-modules is called a cotorsion theory
(Enochs and Jenda, 2000) if �⊥ = � and ⊥� = � , where �⊥ = �C � Ext1�F� C� =
0 for all F ∈ � �, and ⊥� = �F � Ext1�F� C� = 0 for all C ∈ ��.

Let � be a class of right R-modules and M a right R-module. A homo-
morphism 	 � M → F with F ∈ � is called a �-preenvelope of M (Enochs and
Jenda, 2000) if for any homomorphism f : M → F

′
with F

′ ∈ �, there is a
homomorphism g � F → F

′
such that g	 = f . Moreover, if the only such g are

automorphisms of F when F
′ = F and f = 	, the �-preenvelope 	 is called a

�-envelope of M . A �-envelope 	 � M → F is said to have the unique mapping
property (Ding, 1996) if for any homomorphism f : M → F

′
with F

′ ∈ �, there is a
unique homomorphism g � F → F

′
such that g	 = f . Following Enochs and Jenda

(2000), Definition 7.1.6, a monomorphism 
 � M → C with C ∈ � is said to be a
special �-preenvelope of M if coker�
� ∈ ⊥�. Dually we have the definitions of a
(special) �-precover and a �-cover (with the unique mapping property). Special �-
preenvelopes (respectively special �-precovers) are obviously �-preenvelopes (resp.
�-precovers).

2. INTRODUCTION

The FP-projective dimension of modules was introduced in Mao and Ding
(2005) to measure how far away a module is from being FP-projective. In this paper,
we approach FP-projective modules from another point of view and introduce the
concepts of n-FP-projective modules and �-dimensions of modules and rings. A right
R-module M is called n-FP-projective if Ext1�M�N� = 0 for all right R-modules N
of FP-injective dimension ≤n, where n is a nonnegative integer or n = �. We define
�R�M� = sup�n � M is n-FP-projective} and �R�M� = −1 if Ext1�M�N� �= 0 for some
FP-injective right R-module N . The right �-dimension r · �-dim�R� of a ring R is
defined to be the least nonnegative integer n such that �R�M� ≥ n implies �R�M� = �
for any right R-module M . If no such n exists, set r · �-dim�R� = �. The purpose of
this paper is to investigate these new notions.
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Let R be a right coherent ring and n a fixed nonnegative integer.
In Section 3, we prove that (��n���n� is a cotorsion theory, moreover,

every right R-module has a special ��n-preenvelope, and every right R-module
has a special ��n-precover, where ��n (��n) denotes the class of all right
modules of FP-injective dimension ≤n (all n-FP-projective right R-modules) (see
Theorem 3.8). Some characterizations of n-FP-projective right R-modules are given
in Proposition 3.11.

Section 4 is devoted to rings whose every n-FP-projective module is projective.
It is shown that wD�R� ≤ n if and only if every n-FP-projective right R-module
is projective if and only if every 0-FP-projective right R-module is of projective
dimension ≤n if and only if every n-FP-projective right R-module has an ��n-
envelope with the unique mapping property (see Theorem 4.1). In particular, R is
a right semi-hereditary ring if and only if every 0-FP-projective right R-module has
a monic ��0-cover (see Corollary 4.2), and r��-dim�R� = wD�R� if wD�R� < � (see
Corollary 4.3).

In Section 5, we characterize rings with the finite right �-dimension. It is shown
that r · �-dim�R� ≤ n if and only if every n-FP-projective right R-module is �n+ 1�-
FP-projective if and only if every right R-module with finite FP-injective dimension
has FP-injective dimension ≤n (see Theorem 5.1).

Section 6 studies how are the rings satisfying that every module is
n-FP-projective. It is proven that every right R-module is n-FP-projective if and only
if every right R-module with FP-injective dimension ≤n has an ��n-cover with the
unique mapping property (see Theorem 6.1). We conclude this paper by proving
that rfpD�R� ≤ 1 and ��0 is closed under direct products if and only if every right
R-module has an epic ��0-envelope (see Theorem 6.3).

3. DEFINITION AND GENERAL RESULTS

We start with the following definition.

Definition 3.1. Let R be a ring and n a nonnegative integer or �. A right R-
module M is called n-FP-projective provided that Ext1�M�N� = 0 for any right
R-module N with FP-id�N� ≤ n.

For a right R-module M , let �R�M� = sup�n � M is n-FP-projective}. We define
�R�M� = −1 if Ext1�M�N� �= 0 for some FP-injective right R-module N .

The right �-dimension of a ring R, denoted by r��-dim�R�, is defined to be the
least nonnegative integer n such that �R�M� ≥ n implies �R�M� = � for any right
R-module M . If no such n exists, set r��-dim�R� = �.

Remark 3.2. (1) 0-FP-projective modules were called FP-projective modules in
Mao and Ding (2005) and finitely covered modules in Trlifaj (2000). Clearly, finitely
presented R-modules are always 0-FP-projective, and projective modules are exactly
�-FP-projective modules.

(2) It is clear that �R�M� ≥ n if and only if M is n-FP-projective for an integer
n ≥ 0, and �R�M� = � if and only if M is m-FP-projective for any integer m ≥ 0 if
and only if Ext1�M�N� = 0 for all right R-modules N with FP-id�N� < �.

(3) If r�FP-dim�R� ≤ n, then the class of all n-FP-projective right R-modules
and the class of all projective right R-modules are the same. Therefore it is always
true that r��-dim�R� ≤ r�FP-dim�R�.
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(4) Let R be an n-FC ring, i.e., R is a two-sided coherent ring with FP-
id�RR� ≤ n and FP-id�RR� ≤ n for some nonnegative integer n (see Ding and Chen,
1996). If M is an n-FP-projective right (or left) R-module, then �R�M� = �. Indeed,
this follows from the fact that FP-id�N� ≤ n if and only if FP-id�N� < � for any
right (or left) R-module N (see Ding and Chen, 1993, Proposition 3.16).

(5) If R is right coherent and FP-id�M� = m, then Extm+k�F�M� = 0 for each
finitely presented right R-module F and each k ≥ 1.

Lemma 3.3. Let R be a right coherent ring. If M is an n-FP-projective right R-
module for some integer n ≥ 0, then Extj�M�N� = 0 for any integer j ≥ 2 and any right
R-module N with FP-id�N� ≤ n+ 1.

Proof. For every right R-module N of FP-injective dimension ≤n+ 1, there is
a short exact sequence 0 → N → E → L → 0 with E injective and FP-id�L� ≤ n.
Therefore Ext2�M�N� 	 Ext1�M�L� = 0 and the result follows by induction. �

Remark 3.4. Lemma 3.3 shows that, if R is a right coherent ring and M an n-FP-
projective right R-module, then Extj�M�N� = 0 for any integer j ≥ 1 and any right
R-module N with FP-id�N� ≤ n.

Proposition 3.5. Let R be a right coherent ring and 0 → A → B → C → 0 an exact
sequence of right R-modules.

(1) If �R�C� ≥ 0, then �R�A� ≥ inf��R�B�� �R�C�+ 1�.
(2) �R�B� ≥ inf��R�A�� �R�C��.

(3) If B = A⊕ C, then �R�A⊕ C� = inf��R�A�� �R�C��.

Proof. The exact sequence 0 → A → B → C → 0 gives rise to the exactness of
the sequence Ext1�C�N� → Ext1�B�N� → Ext1�A�N� → Ext2�C�N� for any right R-
module N . Now the result follows from Lemma 3.3 by a standard homological
algebra argument. �

Corollary 3.6. Let R be a right coherent ring.

(1) The nth syzygy Kn of every finitely presented right R-module is n-FP-projective.
(2) Every finitely generated submodule of any finitely generated 1-FP-projective right

R-module is 1-FP-projective. In particular, each finitely generated right ideal of R
is 1-FP-projective.

(3) For any right R-module homomorphism 
: M → N with M and N finitely generated
1-FP-projective, ker�
� is 1-FP-projective. Furthermore, if M is 2-FP-projective,
then ker�
� is 2-FP-projective.

(4) The dual module M∗ = Hom�M�R� of any finitely presented left R-module M is
2-FP-projective.

Proof. (1) Let M be a finitely presented right R-module. There is an exact
sequence

0 → Kn → Pn−1 → Pn−2 → · · · → P1 → P0 → M → 0
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with each Pi projective �0 ≤ i ≤ n− 1�. Let K1 = ker�P0 → M�, Ki = ker�Pi−1 →
Pi−2�, 2 ≤ i ≤ n. Then 0 → K1 → P0 → M → 0 is exact. Since �R�M� ≥ 0, �R�P0� =
� (for P0 is projective), we have �R�K1� ≥ �R�M�+ 1 ≥ 1 by Proposition 3.5 (1).
Thus (1) follows by induction.

(2) Let N be a finitely generated submodule of any finitely generated 1-FP-
projective right R-module M . Then we have a short exact sequence 0 → N → M →
M/N → 0. Note that M/N is finitely presented (for every finitely generated 1-FP-
projective module is FP-projective, and hence finitely presented), so �R�M/N� ≥ 0.
Hence �R�N� ≥ 1 by Proposition 3.5 (1), i.e., N is 1-FP-projective. The rest is clear.

(3) Note that im�
� ≤ N , and im�
� is finitely generated, so M/ ker�
� 	
im�
� is 1-FP-projective by (2). Consider the exact sequence 0 → ker�
� → M →
M/ ker�
� → 0. Then (3) follows from Proposition 3.5 (1).

(4) Let M be a finitely presented left R-module. Then there exists an
exact sequence F1 → F0 → M → 0 with F1 and F0 finitely generated free, which
gives rise to the exactness of the sequence 0 → M∗ → F ∗

0 → F ∗
1 . Therefore (4)

holds by (3). �

Recall that a right R-module M is called Gorenstein projective if there is an
exact sequence

P̃ = · · · → P1 → P0 → P0 → P1 → · · ·

of projective right R-modules such that M = ker�P0 → P1�, and Hom�P̃� Q� is exact
for any projective right R-module Q (see Enochs and Jenda, 2000, Definition 10.2.1).
A ring R is called a Gorenstein ring if R is a left and right noetherian ring,
id�RR� < � and id�RR� < �. Furthermore, if id�RR� ≤ n and id�RR� ≤ n for an
integer n ≥ 0, then R is called an n-Gorenstein ring.

We observe that, if R is a Gorenstein ring, then each Gorenstein projective
module is m-FP-projective for any integer m with 0 ≤ m < �, furthermore, if R is
an n-Gorenstein ring, then a right (or left) R-module M is m-FP-projective (n ≤ m <
�) if and only if M is Gorenstein projective by Enochs and Jenda (2000, Theorem
9.1.10 and Corollary 11.5.3).

Remark 3.7. Obviously, if M is a projective right R-module, then �R�M� = �.
However, the converse is false in general because �R�M� = � for every Gorenstein
projective module M over a Gorenstein ring as shown by the preceding observation.

It is well known that (the class of Gorenstein projective R-modules, the class of
R-modules of finite projective dimension) is a cotorsion theory over any Gorenstein
ring R (see Enochs and Jenda, 2000, Remark 11.5.10). Denote by ��n (��n) the
class of all right modules of FP-injective dimension ≤n (all n-FP-projective right
R-modules). Then we have:

Theorem 3.8. Let R be a right coherent ring and n ≥ 0. Then (��n���n� is a
cotorsion theory. Moreover, every right R-module has a special ��n-preenvelope, and
every right R-module has a special ��n-precover.
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Proof. Let M be a right R-module. M admits an injective resolution

0 → M → E0 → E1 → · · · → En−1 → En → · · · �

Write Ln = im�En−1 → En�� L0 = M . Then M ∈ ��n if and only if Ln is FP-injective.
Note that the latter is equivalent to Ext1�R/I� Ln� = 0 for all finitely generated right
ideals I of R by Stenström (1970, Lemma 3.1). This means that Extn+1�R/I�M� =
0 by dimension shifting. Denote by KI the nth syzygy module of the cyclic
finitely presented right R-module R/I . Then Extn+1�R/I�M� = 0 if and only if
Ext1�KI�M� = 0. Thus ��n =

(⊕
KI

)⊥
, where the sum is over all finitely generated

right ideals I in R, and so the result follows from Eklof and Trlifaj (2001, Theorem
10) and Enochs and Jenda (2000, Definition 7.1.5). �

Remark 3.9. (1) Let m and n be nonnegative integers such that m < n. If M is
n-FP-projective, then M is m-FP-projective. However, the converse is not true in
general. In fact, take R to be a right coherent ring with wD�R� = r�FP-dim�R� = n,
for example, let R = S�X1� X2� � � � � Xn�, the ring of polynomials in n indeterminates
over a von Neumann regular ring S (see Glaz, 1989). Then the class of all right R-
modules = ��n �= ��m, so there exists an m-FP-projective right R-module which is
not n-FP-projective by Theorem 3.8.

(2) It is known that ��n-envelopes may not exist in general (see Trlifaj,
2000, Theorem 4.9). However, if ��n is closed under direct limits, then every right
R-module has an ��n-envelope and every right R-module has an ��n-cover by
Theorem 3.8 and Enochs and Jenda (2000, Theorem 7.2.6).

Corollary 3.10. Let R be a right coherent ring. Suppose a right R-module M is the
union of a continuous chain �M
�
< of submodules. If M0 = 0, M
+1/M
 is projective
relative to each epimorphism A → B, where A and B are FP-injective, whenever

+ 1 < , then M is 1-FP-projective.

Proof. Let X be a right R-module with FP-id�X� ≤ 1. Consider an exact sequence
0 → X → E → Y → 0 with E injective. Then Y and E are FP-injective. Applying
the functor Hom�M
+1/M
�−� to the sequence, one gets Ext1�M
+1/M
�X� = 0
whenever 
+ 1 < . So the result follows from Theorem 3.8 and Enochs and Jenda
(2000, Corollary 7.3.5). �

We end this section with the following characterizations of n-FP-projective
R-modules.

Proposition 3.11. Let R be a right coherent ring with FP-id�RR� ≤ n for an integer
n ≥ 0. Then the following are equivalent for a right R-module M:

(1) M is n-FP-projective;
(2) M is projective with respect to every exact sequence 0 → A → B → C → 0 with

A ∈ ��n;
(3) For every exact sequence 0 → K → F → M → 0 with F ∈ ��n, K → F is an

��n-preenvelope of K;
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(4) M is a cokernel of an ��n-preenvelope K → F with F projective;
(5) There exists a right R-module exact sequence

Ẽ = · · · → E1 → E0 → E0 → E1 → · · ·

with M = ker�E0 → E1�, FP-id�Ei� ≤ n, FP-id�Ei� ≤ n and Ei projective,
i = 0� 1� 2� � � � , such that Hom�Ẽ� N� is exact for all right R-modules N with FP-
id�N� ≤ n;

(6) There exists a projective resolution Ẽ = · · · → E1 → E0 → M → 0 such that
Hom�Ẽ� N� is exact for all right R-modules N with FP-id�N� ≤ n.

Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (1) For every N ∈ ��n, consider a short exact sequence 0 → N →
E → L → 0 with E injective.

(1) ⇒ (3) is clear.

(3) ⇒ (4) Let 0 → K → P → M → 0 be an exact sequence with P projective.
Note that FP-id�P� ≤ n since FP-id�RR� ≤ n, thus K → P is an ��n-preenvelope.

(4) ⇒ (1) By (4), there is an exact sequence 0 → K → P → M → 0, where
K → P is an ��n-preenvelope with P projective. Hence there is an exact seq-
uence Hom�P� N� → Hom�K�N� → Ext1�M�N� → 0 for each N ∈ ��n. Note that
Hom�P� N� → Hom�K�N� → 0 is exact by (4). Hence Ext1�M�N� = 0, as desired.

(1) ⇒ (5) Let · · · → E1 → E0 → M → 0 be a projective resolution of M .
By hypothesis, FP-id�Ei� ≤ n, i = 0� 1� 2� � � � . Let N be any right R-module with
FP-id�N� ≤ n. Since M is n-FP-projective, Extj�M�N� = 0 for any integer j ≥ 1 by
Remark 3.4. Therefore the sequence

0 → Hom�M�N� → Hom�E0� N� → Hom�E1� N� → · · ·

is exact. On the other hand, we can construct an exact sequence

0 → M → E0 → E1 → · · · �

where M → E0, coker�M → E0� → E1, coker�En−1 → En� → En+1 for n ≥ 1 are
��n-preenvelopes by Theorem 3.8. Thus we have the following exact sequence

· · · → Hom�E1� N� → Hom�E0� N� → Hom�M�N� → 0�

Let

Ẽ = · · · → E1 → E0 → E0 → E1 → · · · �

Then Hom�Ẽ� N� is exact.

(5) ⇒ (6) is obvious.



1594 MAO AND DING

(6) ⇒ (1) It follows since

· · · → E1 → E0 → M → 0

is a projective resolution of M and Hom�E0� N� → Hom�E1� N� → Hom�E2� N� is
exact for all right R-modules N with FP-id�N� ≤ n. �

4. RINGS WHOSE EVERY n-FP-PROJECTIVE MODULE IS PROJECTIVE

It is well–known that a ring R is von Neumann regular if and only if every
right R-module is FP-injective if and only if every finitely presented right R-module
is projective (flat). So R is von Neumann regular if and only if every 0-FP-projective
right R-module is projective (flat). In addition, if R is a right coherent ring, then
R is von Neumann regular if and only if every 0-FP-projective right R-module is
FP-injective (see Mao and Ding, 2005, Corollary 4.3).

In what follows, let �M � M → ��n�M� (�M � ��n�M� → M) denote the ��n-
envelope (��n-cover) of a right R-module M . Now we have:

Theorem 4.1. Let R be a right coherent ring and n a fixed nonnegative integer. Then
the following are equivalent:

(1) r�FP-dim�R� ≤ n�
(2) wD�R� ≤ n�
(3) Every n-FP-projective right R-module is projective;
(4) Every n-FP-projective right R-module is flat;
(5) pd�M� ≤ n for every 0-FP-projective right R-module M;
(6) FP-id�M� ≤ n for every n-FP-projective right R-module M;
(7) Every (n-FP-projective) right R-module has an ��n-envelope with the unique

mapping property.

Moreover if n ≥ 1, then the above conditions are also equivalent to

(8) pd�M� ≤ 1 (fd�M� ≤ 1) for every �n− 1�-FP-projective right R-module M;
(9) Every (�n− 1�-FP-projective) right R-module M has a monic ��n−1-cover

	 � F → M .

Proof. (1) ⇔ (2) ⇐ (5) hold by Stenström (1970, Theorem 3.3), (1) ⇒ �3� ⇒ (4)
and (1) ⇒ (7) are trivial.

(3) ⇒ (1) Since r · FP-dim�R� ≤ n is equivalent to FP-id�M� ≤ n for every
right R-module M , the result follows from Theorem 3.8.

(4) ⇒ (2) Let M be any finitely presented right R-module. By Corollary 3.6
(1), the nth syzygy of M is n-FP-projective, and so it is flat by (4). Thus fd�M� ≤ n,
which implies that wD�R� ≤ n by Enochs and Jenda (2000, Theorem 8.4.20).

(6) ⇒ (1) Let M be a right R-module. By Theorem 3.8, M has a special ��n-
precover, and hence there is a short exact sequence 0 → K → N → M → 0, where
FP-id�K� ≤ n and N is n-FP-projective. Since FP-id�N� ≤ n by (6), FP-id�M� ≤ n.
So (1) follows.
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(7) ⇒ (6) Let M be an n-FP-projective right R-module. There is the following
exact commutative diagram

0�
0 −−−−→ M

�M−−−−→ ��n�M�
�−−−−→ L −−−−→ 0��L

��n�L��

�
�
��

����������
0

�L�

where L is n-FP-projective by Wakamatsu’s Lemma in Xu (1996, Lemma 2.1.2).
Note that �L��M = 0 = 0�M , so �L� = 0 by (7). Therefore L = im��� ⊆ ker��L� = 0,
and hence M ∈ ��n. Thus (6) follows.

(1) ⇒ (5) The proof has appeared in Mao and Ding (2005, Theorem 4.2),
and here we include it for completeness. Let M be a 0-FP-projective right R-module.
Then M admits a projective resolution

· · · → Pn → Pn−1 → · · ·P1 → P0 → M → 0�

Let N be any right R-module. Since FP-id�N� ≤ n, by Stenström (1970, Lemma 3.1),
there is an exact sequence

0 → N → E0 → E1 → · · ·En−1 → En → 0�

where E0� E1� � � � � En are FP-injective. Therefore we form the following double
complex

0 0 0
↑ ↑ ↑

0 → Hom�M�En� → Hom�P0� E
n� → · · · → Hom�Pn� E

n� → · · ·
↑ ↑ ↑
���

���
���

↑ ↑ ↑
0 → Hom�M�E1� → Hom�P0� E

1� → · · · → Hom�Pn� E
1� → · · ·

↑ ↑ ↑
0 → Hom�M�E0� → Hom�P0� E

0� → · · · → Hom�Pn� E
0� → · · ·

↑ ↑ ↑
0 → Hom�P0� N� → · · · → Hom�Pn� N� → · · ·

↑ ↑
0 0

Note that all rows are exact, except for the bottom row since M is 0-FP-projective
and all Ei are FP-injective. Also note that all columns are exact except for the left
column since all Pi are projective.

Using a spectral sequence argument, we know that the following two
complexes

0 → Hom�P0� N� → Hom�P1� N� → · · · → Hom�Pn� N� → · · ·
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and

0 → Hom�M�E0� → Hom�M�E1� → · · · → Hom�M�En� → 0

have isomorphic homology groups. Thus Extn+j�M�N� = 0 for all integers j ≥ 1,
and hence pd�M� ≤ n.

(1) ⇒ (8) Let M be an �n− 1�-FP-projective right R-module and N any right
R-module. Since FP-id�N� ≤ n, Ext2�M�N� = 0 by Lemma 3.3. Thus pd�M� ≤ 1.

(8) ⇒ (2) The proof is similar to that of (4) ⇒ (2).

(1) ⇒ (9) Let M be any right R-module. Write F = ∑
�N ≤ M � FP-id�N� ≤

n− 1� and G = ⊕
�N ≤ M � FP-id�N� ≤ n− 1�. Then there exists an exact sequence

0 → K → G → F → 0. Since FP-id�K� ≤ n by (1) and FP-id�G� ≤ n− 1, we have
FP-id�F� ≤ n− 1. Next, we prove that the inclusion i � F → M is an ��n−1-cover of
M . Let � � F

′ → M with F
′ ∈ ��n−1 be an arbitrary right R-homomorphism. Note

that ��F
′
� ≤ F by the proof above. Define � � F

′ → F via ��x� = ��x� for x ∈ F
′
.

Then i� = �, and so i � F → M is an ��n−1-precover of M . In addition, it is clear
that the identity map IF of F is the only homomorphism g � F → F such that ig = i,
and hence (9) follows.

(9) ⇒ (6) Let M be any n-FP-projective right R-module. We shall show that
FP-id�M� ≤ n. Indeed, by Theorem 3.8, there exists an exact sequence 0 → M →
E → L → 0 with FP-id�E� ≤ n− 1 and L ∈ ��n−1. Since L has a monic ��n−1-
cover 	 � F → L, there is 
 � E → F such that the following exact diagram is
commutative.

0�
F�	

0 −−−−→ M −−−−→ E −−−−→ L −−−−→ 0
�

�
��


Thus 	 is epic, and hence it is an isomorphism. Therefore FP-id�L� = FP-id�F� ≤
n− 1, and so FP-id�M� ≤ n, as desired. �

It is well known that a right coherent ring R is right semi-hereditary if and
only if wD�R� ≤ 1.

By specializing Theorem 4.1 to the case n = 1, we have

Corollary 4.2. Let R be a right coherent ring. Then the following are equivalent:

(1) R is right semi-hereditary;
(2) Every 1-FP-projective right R-module is projective (flat);
(3) Every 0-FP-projective right R-module is of projective (flat) dimension ≤ 1;
(4) Every 1-FP-projective right R-module is of FP-injective dimension ≤ 1;
(5) Every (0-FP-projective) right R-module has a monic ��0-cover.
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Corollary 4.3. Let R be a right coherent ring with wD�R� < �. Then wD�R� = r�FP-
dim�R� = r��-dim�R�.

Proof. Stenström (1970, Theorem 3.3) shows that r�FP-dim�R� = wD�R�. By
Remark 3.2 (3), r��-dim�R� ≤ r�FP-dim�R�. Conversely, let r��-dim�R� = n < �. For
any n-FP-projective right R-module M , we have �R�M� = �, and so Ext1�M�N� = 0
for any right R-module N with FP-id�N� < �, which implies that M is projective
since r�FP-dim�R� < �. Therefore r�FP-dim�R� ≤ n by Theorem 4.1 (3). This
completes the proof. �

5. RINGS WITH FINITE RIGHT �-DIMENSION

In this section we characterize rings with finite right �-dimension.

Theorem 5.1. Let R be a right coherent ring and n a fixed nonnegative integer. Then
the following are equivalent:

(1) r��-dim�R� ≤ n;
(2) Every n-FP-projective right R-module is �n+ 1�-FP-projective;
(3) Every nth syzygy of any finitely presented right R-module is projective relative to

each epimorphism B → C, where B is FP-injective and FP-id�C� ≤ n;
(4) Every right R-module M with FP-id�M� ≤ n+ 1 has FP-injective dimension ≤n;
(5) Every right R-module with finite FP-injective dimension has FP-injective

dimension ≤n;
(6) Every nth syzygy of any finitely presented right R-module is �n+ 1�-FP-projective;
(7) Every nth syzygy of any finitely presented right R-module is m-FP-projective for any

integer m ≥ n+ 1;
(8) fd�M+� ≤ n for any right R-module M with FP-id�M� ≤ n+ 1, where M+ =

Hom��M��/��;
(9) For any pure submodule N of every right R-module M with FP-id�M� ≤ n+ 1, FP-

id�M/N� ≤ n.

Proof. (1) ⇒ (2), (4) ⇒ (5) and (7) ⇒ (6) are clear.

(2) ⇒ (4) holds by Theorem 3.8.

(5) ⇒ (1) Let M be a right R-module with �R�M� ≥ n, i.e., M is n-FP-
projective. For any right R-module N with FP-id�N� < �, we have Ext1�M�N� = 0
since FP-id�N� ≤ n by (5). So �R�M� = �, as desired.

(1) ⇒ (7) follows from Corollary 3.6 (1).

(6) ⇒ (9) Let N be a pure submodule of a right R-module M with FP-
id�M� ≤ n+ 1. Then the pure exact sequence 0 → N → M → M/N → 0 gives rise
to the split exact sequence 0 → �M/N�+ → M+ → N+ → 0. Therefore �M/N�+ is
a direct summand of M+. By Fieldhouse (1972, Theorem 2.2), we have fd�M+� =
FP-id�M� ≤ n+ 1. So fd��M/N)+� ≤ n+ 1, and hence FP-id�M/N� ≤ n+ 1� Let
K be any finitely presented right R-module and Kn an nth syzygy of K. Then
Ext1�Kn�M/N� = 0 by (6), and so Extn+1�K�M/N� = 0, which implies that FP-
id�M/N� ≤ n.
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(9) ⇒ (4) holds by letting N = 0.

(6) ⇔ (8) Let N be a finitely presented right R-module and Nn an nth
syzygy of N . By Rotman (1979, Theorem 9.51) and the remark following it,
Torn+1�N�M

+� 	 �Extn+1�N�M��+ for any right R-module M . Since Extn+1�N�M� 	
Ext1�Nn�M�, the equivalence follows.

(3) ⇒ (4) Let M be a right R-module with FP-id�M� ≤ n+ 1. There exists
an exact sequence 0 → M → E → N → 0 with E injective and FP-id�N� ≤ n.
Suppose that K is a finitely presented right R-module and Kn an nth syzygy of
K. Then Ext1�Kn�M� = 0 by (3), and hence Extn+1�K�M� = 0, which means FP-
id�M� ≤ n.

(4) ⇒ (3) Let f � B → C be an epimorphism and A = ker�f�, where B is FP-
injective and FP-id�C� ≤ n. The exactness of 0 → A → B → C → 0 shows that FP-
id�A� ≤ n+ 1, and so FP-id�A� ≤ n by (4). Let Nn be an nth syzygy of a finitely
presented right R-module N . Then Nn is n-FP-projective by Corollary 3.6 (1), and
so Ext1�Nn� A� = 0. Thus (3) follows. �

Let n = 0 in Theorem 5.1. One gets

Corollary 5.2. Let R be a right coherent ring. Then the following are equivalent:

(1) r��-dim�R� = 0;
(2) Every 0-FP-projective right R-module is 1-FP-projective;
(3) Every finitely presented right R-module is projective relative to each epimorphism

B → C, where B and C are FP-injective;
(4) For any short exact sequence 0 → A → B → C → 0 of right R-modules, if B and

C are FP-injective, then A is FP-injective;
(5) Every right R-module with finite FP-injective dimension is FP-injective;
(6) Every finitely presented right R-module is 1-FP-projective;
(7) Every finitely presented right R-module is m-FP-projective for any integer m ≥ 1;
(8) M+ is flat for any right R-module M with FP-id�M� ≤ 1;
(9) For any pure submodule N of every right R-module M with FP-id�M� ≤ 1, the

quotient M/N is FP-injective.

Remark 5.3. (1) Recall that a ring R is said to be right IF if every injective right
R-module is flat (see Colby, 1975). A right coherent and right IF ring R satisfies
the equivalent conditions in Corollary 5.2. In fact, every finitely presented right R-
module M is a submodule of a finitely generated free right R-module by Colby
(1975, Theorem 1), so M is n-FP-projective for any n ≥ 1 by Corollary 3.6 (1).

(2) By Remark 3.2 (3), r��-dim�R� ≤ r�FP-dim�R�. The inequality may be
strict. In fact, let R = �4. Then R is a QF ring with wD�R� = � by Rotman
(1979, Exercise 9.2 and Theorem 9.22), and so FP-dim�R� = � by Stenström
(1970, Theorem 3.3). On the other hand, since the class of (FP-)injective modules
over a QF ring coincides with the class of projective modules, r��-dim�R� = 0 by
Corollary 5.2 (4). This example also shows that Corollary 4.3 does not hold for a
right coherent ring R with wD�R� = �.
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(3) Let R be a commutative ring. The -dimension R�M� of an R-module
M and the -dimension -dim�R� of the ring R have been widely studied (see
Couchot, 2003 and Vasconcelos, 1976). It is well known that R is noetherian if and
only if -dim�R� = 0, and R is coherent if and only if -dim�R� ≤ 1. However the
-dimension is completely different from the �-dimension defined here. In fact, let
R = �, the ring of integers. Then -dim�R� = 0. It is easy to see that �-dim�R� ≤
1. However, in the exact sequence 0 → � → � → �/� → 0, both � and �/�
are injective, but � is not injective, so �-dim�R� �= 0 by Corollary 5.2 (4). Thus �-
dim�R� = 1. On the other hand, there is a finitely generated R-module M which is
not 1-FP-projective by Corollary 5.2 (6). Thus �R�M� = 0 while R�M� = �.

6. RINGS SATISFYING EVERY MODULE IS n-FP-PROJECTIVE

It is easy to see that a ring R is right noetherian if and only if every right R-
module is 0-FP-projective if and only if �R�M� ≥ 0 for every right R-module M , and
R is semisimple artinian if and only if every right R-module is �-projective.

Next we shall give characterizations of those rings satisfying every right R-
module is n-FP-projective for a fixed nonnegative integer n.

Theorem 6.1. Let R be a right coherent ring and n a fixed nonnegative integer. Then
the following are equivalent:

(1) Every right R-module is n-FP-projective;
(2) Every finitely generated right R-module is n-FP-projective;
(3) Every cyclic right R-module is n-FP-projective;
(4) Every right R-module of FP-injective dimension ≤ n is n-FP-projective;
(5) Every right R-module of FP-injective dimension ≤ n is injective;
(6) Ext1�M�N� = 0 for all right R-modules M and N with FP-id�M� ≤ n and FP-

id�N� ≤ n;
(7) Exti�M�N� = 0 for all i ≥ 1 and all right R-modules M and N with FP-id�M� ≤ n

and FP-id�N� ≤ n;
(8) Every right R-module M (with FP-id�M� ≤ n) has an ��n-cover with the unique

mapping property.

Proof. (1) ⇒ (2) ⇒ (3), (1) ⇒ (8) and (1) ⇒ (4) ⇔ (6) ⇔ (7) are obvious.
(1) ⇔ (5) follows from Theorem 3.8.

(8) ⇒ (4) Let M be any right R-module with FP-id�M� ≤ n. There is the
following exact commutative diagram

�K

�
0 −−−−→ K −−−−→



��n�M� −−−−→

�M
M −−−−→ 0

�
0

��n�K�

�
���

����������

�K

0
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with K ∈ ��n. Note that �M
�K = 0 = �M0, so 
�K = 0 by (8). Therefore K =
im��K� ⊆ ker�
� = 0, and so M is n-FP-projective, as required.

(4) ⇒ (1) For any right R-module M , by Theorem 3.8, there is a short exact
sequence 0 → M → N → L → 0, where FP-id�N� ≤ n and L is n-FP-projective.
Since N is n-FP-projective by (4), M is n-FP-projective by Proposition 3.5 (1). Hence
(1) follows.

(3) ⇒ (5) Let M be any right R-module with FP-id�M� ≤ n and I any right
ideal of R. Then Ext1�R/I�M� = 0 by (3). Thus M is injective, as desired. �

Remark 6.2. By Theorem 6.1, if n ≥ 1, then every right R-module is n-FP-
projective if and only if every right R-module is 1-FP-projective if and only if every
right R-module with finite FP-injective dimension is injective if and only if �R�M� =
� for every right R-module M . Thus, right noetherian rings can be classified into
three mutually exclusive types: (a) semisimple artinian rings; (b) rings R such that
wD�R� �= 0 and every right R-module is 1-FP-projective; (c) rings R for which there
is a right R-module N with �R�N� = 0.

Recall that the right FP-projective dimension rfpD�R� of a ring R is defined as
sup{fpd�M� � M is a finitely generated right R-module} (see Mao and Ding, 2005).
We conclude this paper with the following result which is of independent interest.

Theorem 6.3. Let R be a right coherent ring. Then the following are equivalent:

(1) rfpD�R� ≤ 1 and ��0 is closed under direct products;
(2) Every right R-module has an epic ��0-envelope.

Proof. (1) ⇒ (2) Let M be any right R-module and �Mi�i∈I the set of all the
submodules of M with M/Mi ∈ ��0. The index set in the following statements
is I . Let � � M → M/ ∩Mi be the natural map. It is clear that 
 � M/ ∩Mi →
M/Mi defined by x + ∩Mi �→ x +Mi induces a monomorphism � � M/ ∩Mi →∏

M/Mi. Note that
∏

M/Mi ∈ ��0, and so M/ ∩Mi ∈ ��0 by Mao and Ding (2005,
Proposition 3.7).

Now let N ∈ ��0 and � � M → N be any homomorphism. Since M/ ker��� 	
im��� ≤ N ∈ ��0� M/ ker��� ∈ ��0. Thus ∩Mi ≤ ker���, and so there is � � M/ ∩
Mi → N such that �� = �. Thus � is an ��0-preenvelope of M . Since � is epic, � is
an ��0-envelope of M .

(2) ⇒ (1) For any family �Mi�i∈I ⊆ ��0,
∏

Mi has an epic ��0-envelope 
 �∏
Mi → M by (2). Let �i �

∏
Mi → Mi be the canonical projection. Then there is

�i � M → Mi such that �i
 = �i. On the other hand, there is � � M → ∏
Mi such that

�i� = �i. Therefore �i�
 = �i
 = �i, and so �
 = I∏Mi
. Thus 
 is monic, and hence∏

Mi 	 M ∈ ��0.

Now let M be any right R-module. Then, by Theorem 3.8, there exists an
exact sequence 0 −→ K

�−→ N −→ M −→ 0, where K is FP-injective and N ∈ ��0.
By (2), K has an epic ��0-envelope � � K → L. Since N ∈ ��0, there is � � L → N
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such that the following exact diagram is commutative

0 −−−−→ K
�−−−−→ N −−−−→ M −−−−→ 0��

L�
0

�
�

��
�

It follows that � is monic since � is monic. Therefore � is an isomorphism, and
so K 	 L ∈ ��0. Thus fpd�M� ≤ 1 by Mao and Ding (2005, Proposition 3.1), and
hence rfpD�R� ≤ 1. This completes the proof. �

Remark 6.4. The proof of Theorem 6.3 shows that, if R is a right coherent ring
such that ��0 is closed under direct products, then rfpD�R� ≤ 1 if and only if every
FP-injective right R-module has an epic ��0-envelope.
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