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7.1 Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary.

Let Rbe aringandV a rightR-module. Recall thatM is calledcotorsion[7] if Exth(F, M)=0
for any flat rightR-moduleF. The class of cotorsion modules contains all pure-injective (hence, in-
jective) modules. A homomorphisgn: M — C with C cotorsion is called aotorsion preenvelope
of M [6, 27] if for any homomorphisni: M — C' whereC' is cotorsion, there is a homomorphism
g:C — C suchthagg = f. Moreover if the only sucly are automorphisms & whenC' = C
and f = ¢, the cotorsion preenvelopgis called acotorsion envelopef M. A homomorphism
¢ : F — M with F flatis called alat coverof M if for any homomorphismf : F — M where
F'is flat, there is a homomorphisg: F' — F such thatpg = f, moreover wherF = F and
f = ¢, the only suchy are automorphisms d¥. It is now well known that alR-modules have flat
covers for any ringR [2], and it has been proven that eveRymodule has a cotorsion envelope if
and only if everyR-module has a flat cover [27]. Thus &tmodules have cotorsion envelopes for
arbitrary ringR. Note that cotorsion envelopes or flat covers are unique up to isomorphism.

In what follows, for anR-moduleM, E(M), C(M) and F (M) stand for the injective envelope,
cotorsion envelope and flat cover respectively. We wiitg to indicate a rightR-module. The
projective (resp. injective) dimension & is denoted by paM) (resp. idM)). We denote by
rD(R) (resp. wOR)) the right (resp. the weak) global dimension of a riRgGeneral background
material can be found in [1], [9], [23], [27].

We are going to define a dimension, called the cotorsion dimension, for modules and rings. It
measures how far away a module is from being cortorsion, and how far away a ring is from being
perfect.

Let R be a ring. For any righR-moduleM, the cotorsion dimensioed(M) of M is defined to
be the smallest integer> 0 such that E)&”(F, M) = 0 for any flat rightR-moduleF. If there is
no suchn, set cdM) = oo. The rightglobal cotorsion dimensioncot.[(R) of R is defined as the
supremum of the cotorsion dimensions of rigtitmodules. The aim of this paper is to investigate
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58 The Cotorsion Dimension of Modules and Rings

these dimensions.

In Section 2, we give the definition and show some of the general resultf beta ring. First
we prove that r.cot.CR) = sudpd(F): F is a flat rightR-modulg = sugcd(F): F is a flat right
R-modulég (part of Theorem 7.2.5), which gives rise to some characterizations of right perfect rings
(Corollary 7.2.7) and extends [27, Proposition 3.3.1]. Then it is shown that r@t.B 1 if and
only if every quotient module of any cotorsion (or injective) rigRtmodule is cotorsion if and
only if every pure submodule of any projective rigRimodule is projective (Theorem 7.2.8). This
removes the unnecessary hypothesiskhata commutative domain from [15, Theorem 3.2]. For a
ring R such that the cotorsion envelope of any projective rigimhodule is projective, we have that
r.cot.D(R) < 1 if and only if the projectivity ofC(M) implies the projectivity oM for any right
R-moduleM (Theorem 7.2.10). The relation (R) < wD(R)+ r.cot.D(R) is proven to be true for
any ringR (Theorem 7.2.11). Finally, for a left coherent riRgit is shown thaR is right perfect if
and only if every flat cotorsion righR-module is projective (Proposition 7.2.16).

Section 3 is devoted to the cotorsion dimension under change of rings. We first gepth&® if>
Sis a surjective ring homomorphism a8 a flat right R-module, then r.cot.(5) < r.cot.D(R)
(Corollary 7.3.2). Then we prove that¥is an almost excellent extension Bf then r.cot.RS) <
r.cot.(R), and the equality holds in case r.cot®) < oo (Corollary 7.3.4 and Theorem 7.3.5).

In Section 4, some applications in commutative rings are discussed. We start by showing that for
a ring R with cot.D(R) < 1, Exth(F, M) is cotorsion for any flaR-moduleF and anyR-module
M (Proposition 7.4.3), which is motivated by [11, Problem 48, p.462]. Then, for a surjective ring
homomorphisny : R — Swith K = Ker(p) and Sr projective, it is shown that, for anR-module
M, either cdMR) < sugpd(R/1)r : | € K}, orcdMR) = cd(Homg(S, M)), where Hong(S, M)
may be regarded as @&module orS-module (Theorem 7.4.5). As a corollary, we get that a ring
R is perfect if and only if there is a quotient rirf§j= R/K of R such thatSis a perfect ring and
R/I is a projectiveR-module for anyl € K (Corollary 7.4.7). In the last part of this section, we
prove that a ringR is von Neumann regular if and only if HagdA, B) is injective (or flat) for all
cotorsionR-modulesA andB (Proposition 7.4.10).

7.2 General results

We start with the following

Proposition 7.2.1 For any right R-module M and integer=a 0, the following are equivalent:

1. cdM) <n.

2. Exty1(F, M) = 0for any flat right R-module F.

3. Ext%“' (F, M) = Ofor any flat right R-module F and } 1.

4. Ifthe sequenc@ - M —- C% - C! - ... - C"1 - C" - Oisexactwith &, C1,.. .,

C"1 cotorsion, then & is also cotorsion.

5. cdF(M)) <n.

Proof The proof of (1) (2) < (3) < (4) is standard homological algebra fare.

(1) & (5). LetK be the kernel of the flat covdf (M) — M, then we have the exact sequence
0— K - F(M) - M — 0 with K cotorsion. Note that E}(F, K) = 0 for alln > 1 and flat
modulesF by the proof of [27, Proposition 3.1.2], so the result follows. O
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Corollary 7.2.2 Let M be any right R-module. Then the following are identical:
1. cdM).

2. inf{k: there exists an exact sequerce> M — C% — C! — ... — Ck — 0, where each
C' is a cotorsion right R-module,+ 0, 1, ..., k}.

3. The integer n such that M admits a minimal cotorsion resolution, i.e., an exact sequence
0> M-—>C"—-cl-> ... cvl - C" - 0 where each €is cotorsion, L
= CokerC'-2 — Ci-1) - C! is a cotorsion envelope of LC' # 0,i = 0,1,...,n,
c?2=0Cl=mMm.
Proof (1) = (2) is straightforward.
(1) < (3) is trivial. Assume(l) < (3) = n. Let (1) = k < co. By Proposition 7.2.11K
is a cotorsion rightR-module. Consider the exact sequences0 LK — CcX — Lkl — 0,
sinceLk — CK is a cotorsion envelope df¥, it follows thatL**1 = 0, and henc&€kt! = 0, a
contradiction. Therefor€l) = (3). O

Proposition 7.2.3 Let R be aringD —- A — B — C — 0 an exact sequence of right R-modules.
If two of cd A), cd(B), cd(C) are finite, so is the third. Moreover

1. cdB) < supcd(A), cd(C)}.
2. cdA) <supcd(B), cdC) + 1}.

3. cdC) < supcd(B), cd(A) — 1}.
Proof Itis a routine exercise. d
The next corollary is an immediate consequence of Proposition 7.2.3.

Corollary 7.2.4 Let R bearingD - A — B — C — 0an exact sequence of right R-modules.
If B is cotorsion, cdA) > O, then cdA) = cd(C) + 1.

Theorem 7.2.5Let R be aring. Then

1. rcot.O(R)
=sup{pd(F): F is a flat right R-modulg
=sup{cd(F): Fisa flatright R-modulg

2. rcot.D(R)
< sup{pd(M): pd(M) < oo}
< supid(P): P is a projective right R-modulje
<rD(R).
All equalities hold if R is a von Neumann regular ring.

3. Ifrcot.D(R) < oo, then
r.cot.D(R)
=sup{pd(F): F is a flat cotorsion right R-module
=sup{pd(C(F)): F is aflat right R-modulg
= sup{pd(F(M)): M is a cotorsion right R-module
=sup{cd(P): P is a projective right R-module
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Proof (1). First, we show that r.cot@®) < suppd(F): F is a flat rightR-modulg. We may
assume sujpd(F): F is a flat rightR-modulg = m < oo. Let M be any rightR-module. It follows
that EXQH(F, M) = 0 for any flat rightR-moduleF since pdF) < m, so cdM) < m. Thus
r.cot.D(R) < m.

It is clear that sufcd(F): F is a flat rightR-modulg < r.cot.D(R). Next we shall show that
suppd(F): F is a flat rightR-modulé < sugcd(F): F is a flat rightR-modulg. In fact, we may
assume that sypd(F): F is a flat rightR-modulg =n < co. Let M be any flat righiR-module,N
any rightR-module. There exists an exact sequenee X — F(N) - N — 0. By [27, Lemma
2.1.1],K is cotorsion. We have the following exact sequence

Exty (M, F(N)) — Exty 1 (M, N) — Ext}2(M, K) = 0.

Note that E)@fl(M, F(N)) = 0 since cdF(N)) < n. So Exf,‘jl(M, N) = 0, which implies
pd(M) < n, as desired.

(2). By (1), r.cot.iR) < suppd(M): pd(M) < oo} follows from [13, Proposition 6]. The
last inequality is obvious. Next we shall show §pg(M): pd(M) < oo} < sugid(P): Pis a
projective rightR-modulg. In fact, we may assume sfig(P): P is a projective righiR-modulg
=m < oo. Let M be any rightR-module with pdM) = n < co. We claim thaih < m. Otherwise,
letn > m. For any rightR-moduleN, there exists an exact sequenceX0K —- P —- N — 0
with P projective, which induces the exact sequence

EXth(M, P) — Exth(M, N) — Ext (M, K).

Note that E)@(M, P) = 0 sinceidP) < m < n, and EXE{“(M, K) = 0 since pdM) = n. Thus
Extk(M, N) = 0, and hence pdM) < n — 1, this is a contradiction. S < m, as required.

The last statement is obvious.

(3). The inequalities r.cot.0r) > supgpd(F): F is a flat cotorsion righR-modulg
> sugpd(C(F)): F is a flat rightR-modulg are clear since cotorsion envelopes of flat modules
are always flat. Next we shall show that r.cat®) < suppd(C(F)): F is a flat rightR-modulg.
Assume sufpd(C(F)): F is a flat rightR-modulg = m < oco. For any flat rightR-moduleF,
cd(F) =t < oo since r.cot.R) < oco. Thus, by Corollary 7.2.2M admits a minimal cotorsion
resolution

0OoF->C'5cls ...t ctoo.

Note that_eaclti:i is a cotorsion envelope of the flat rigRtmoduleL’,i = 0, 1, ..., t. By hypoth-
esis, pdC') <m,i =0,1,...,t. Therefore pdF) < m. Sor.cot.OR) = supgpd(F): F is a flat
right R-modulg < m. Thus r.cot.DR) = sugpd(M): M is flat} > sugpd(F(M)): M is cotorsion
> sugpd(M): M is flat cotorsion = r.cot.D(R), and hence r.cot.0r) = sup{pd(F(M)): M is a
cotorsion rightR-modulg follows.

Now we prove that r.cot.0R) = sugcd(P): P is a projective righR-modulg. Let sugcd(P):
P is a projective rightR-modulg = n < oco. For any flat rightR-moduleF, pd(F) = m < oo
since r.cot.R) < oco. Thus there exists an exact sequence

O-Phn—>Pn1—>-—>P—>Ph—>F—=0,

wherePR, is projectivej =0, 1, ..., m. Thus cdF) < n by hypothesis and Proposition 7.2.3. This
completes the proof. O

Remark Note that pure injective modules are cotorsion, so [14, Proposition 1.1(a)] (that asserts
suppd(F): F is aflat rightR-modulg < right pure global dimension of the rirfg) is an immediate
consequence of Theorem 7.2.5 (1).

Corollary 7.2.6 Let R be aring, then the following are equivalent for an integer f.
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rcot.0(R) < n.

All flat right R-modules are of projective dimensiem.

All flat right R-modules are of cotorsion dimensigm.

r.cot.D(R) < oo, and all flat cotorsion right R-modules are of projective dimensiom.

r.cot.D(R) < oo, and all projective right R-modules are of cotorsion dimension.

o g c» w0 nhoE

Ext’&*l(M, N) = 0 for all flat right R-modules M and N.
7. Extrgfj (M, N) = Ofor all flat right R-modules M, N and } 1.

Remark The equivalences of (2), (6) and (7) of Corollary 7.2.6 appeared in [9, Theorem 8.4.12]
under the hypothesis th&is left coherent.

By [12, Corollary 10], if every projective righR-module is cotorsion, theR is right perfect. So
we obtain some characterizations of right perfect rings by specializing Corollary 7.2.6 to the case
n = 0. The equivalences of (2) through (4) in the following corollary are due to Xu [27, Proposition
3.3.1].

Corollary 7.2.7 The following are equivalent for any ring R:
1. rcot.D(R) = 0.
. Every right R-module is cotorsion.

. R is right perfect.

2

3

4. Every flat right R-module is cotorsion.

5. Every projective right R-module is cotorsion.

6. r.cot.D(R) < oo, and every flat cotorsion right R-module is projective.
7.

ExtL(M, N) = Ofor all flat right R-modules M and N.

Remark By Corollary 7.2.7, r.cot.DR) measures how far away a ring is from being right perfect.
It is well known that right perfect rings need not be left perfect (see [1, p.322]), so r(Eyt.2
l.cot.D(R) in general.

Let R be aring. It is well known that rfR) < 1 if and only if every quotient module of any
injective rightR-module is injective. Here we prove thatr.cot® < 1 ifand only if every quotient
module of any cotorsion righR-module is cotorsion as shown in the following theorem.

Theorem 7.2.8 Let R be aring, then the following are equivalent:
1. rcot.O(R) < 1.
2. Allflat right R-modules are of projective dimensigri.
3. Allflat right R-modules are of cotorsion dimensigri.
4. Every quotient module of any injective right R-module is cotorsion.
5

. Every quotient module of any cotorsion right R-module is cotorsion.
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6. Every pure submodule module of any projective right R-module is projective.

Proof (1) = (4). LetE be any injective righR-module andK a submodule oE. The exactness
of the sequence 6> K - E — E/K — 0 induces the exact sequence

0 = Exth(F, E) — Ext,(F, E/K) — Ex&(F, K),

where F is a flat rightR-module. Note that E)ﬁ(F, K) = 0 by (1) and Proposition 7.2.1, so
ExtL(F, E/K) = 0, as required.

(4)= (1). Let M be any rightR-module. Then there exists an exact sequence 1 — E —
E/M — 0 with E injective. Thus cdM) < 1 sinceE/M is cotorsion, and hence r.cotR) < 1.

(1) & (2) < (3) follow from Corollary 7.2.6.

(2) = (6). Let M be a projective righR-module andN a pure submodule df1. Then 0—
N —- M — M/N — 0Ois exact. Note that1/N is flat and hence gd1/N) < 1 by (2). ThusN is
projective.

(6) = (2). Let M be any flat rightR-module. There exists an exact sequence N — P —
M — 0 with P projective. Note thaN is a pure submodule d?, soN is projective. It follows that
pd(M) < 1.

(5)= (4) is clear.

(4) = (5). Let M be any cotorsion righR-module andN any submodule oM. There exists an
exact sequence®& N — E(N) — L — 0. Consider the following pushout diagram

0 0
0 N M M/N ——=0
0 E(N) H M/N ——=0
L L
0 0
By (4), L is cotorsion. SincéM is cotorsion,H is cotorsion by [27, Proposition 3.1.2]. Note that
E(N) is cotorsion, it follows thatvl /N is cotorsion by [27, Proposition 3.1.2] again. O

We note that the equivalences of (2), (4), (5) and (6) in the previous theorem have recently been
proven for commutative domains ([15, Theorem 3.2]).

By [27, Theorem 3.3.2], a rin®R is von Neumann regular if and only if every cotorsion right
R-module is flat. Replacing “flat” with “projective”, we have the following

Proposition 7.2.9 Let R be a ring. Then the following are equivalent:
1. R is asemisimple Artinian ring.

2. Every cotorsion right R-module is projective.

3. rcot.D(R) < 1 and the cotorsion envelope of every simple right R-module is projective.
Proof (1)= (2) and (1)= (3) are clear.

(2) = (2). Itis easy to see tha is quasi-Frobenius and von Neumann regular, and hence (1)
follows.

(3) = (1). By (3), every simple righR-module M is a pure submodule of a projective right
R-module, and hench! is projective by Theorem 7.2.8. So (1) follows. O
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We know that the cotorsion envelope of any flat righitmodule is always flat. Rothmaler [22]
has discussed when the pure-injective envelope of any flat Rghbdule is flat. It is natural to
consider the condition that the cotorsion (pure-injective) envelope of any projectivérigiodule
is projective. For a ring with this condition, we have the following

Theorem 7.2.10Let R be a ring such that the cotorsion envelope of any projective right R-module
is projective. Then the following are equivalent:

1. rcot.O(R) < 1.
2. The projectivity of €M) implies the projectivity of M for any right R-module M.

If “cotorsion envelope” is replaced with “pure-injective envelope”, the result still holds.
Proof (1) = (2). AssumeM is a rightR-module such that (M) is projective. Note thaM is a
pure submodule oE(M), soM is projective by Theorem 7.2.8.

(2) = (1). Let M be a pure submodule of a projective rigkimodule P, it is enough to show
thatM is projective by Theorem 7.2.8. In fact, there is an exact sequence

f
0 M P L 0,

wherel is flat. By the defining property of cotorsion envelope, there exjstsC(M) — C(P)
such that the diagram
f

M——P
o |¥
C(M) —5—= C(P)

commutes, i.eg¢ = ¢ f. Consider the pushout diagram bfand¢:

0 M P L 0
.
0 C(M) K L 0

o

Note that the second row is split, so therggis K — C(M) such thatBa = 1. It follows that
By : P — C(M) factors through. Hence there is : C(P) — C(M) such that the diagram

p—L-c(P)

yl |

K —ﬂ>C(M)

commutes, i.egyy = By. Thenogp = oy f = By f = Bagp = ¢. The defining property of co-
torsion envelope now implies thag) is an automorphism a2 (M). ThereforeC(M) is isomorphic
to a direct summand & (P). SinceC(P) is projective by hypothesi§€ (M) is projective. SaM is
projective by (2), as required.

The last statement can be proven similarly. O
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It is well known that riR) = wD(R) when R is right perfect; rBR) = r.cot.D(R) whenR is
von Neumann regular by Theorem 7.2.5 (2). In general, we have the following inequality.

Theorem 7.2.11Let R be aring, then rDR) < r.cot.D(R) + wD(R).

Proof We may assume that both r.cot®) and wD(R) are finite. Let r.cot.DR) = m < oo and
WD(R) = n < oco. SupposeM is a rightR-module, therM admits a flat resolution

O Fh—>F.1—> - —>F—>F—>M-=0.

LetKi =Ker(FF - F_1),i =0,1,2,...,n—1,F_1 = M, F, = Kn_1. Then we have the
following short exact sequences

O0—- Fy— Fo1 = Kh2 = 0,

0— Kn2— Fho — Kn_3— 0,

0—- Kg— Fp— M —=0.

Note that pdK,_2) < 1 + supgpd(Fn), pd(Fn-1)} by [23, Lemma 9.26]. Since p#;) < m,
i=0,1,...,n,itfollowsthat pdKn_2) <14+ m, pdKn_3) <2+ m,---, pdM) <n-+m. This
completes the proof. O

Remark Ingeneral, the inequality in Theorem 7.2.11 may be strict. Inde&lisfight Noetherian,
but not right perfect (e.g. the integer rifdg, then r0(R) = wD(R) (see [23, Theorem 9.22]) and
r.cot.D(R) # 0. In this case, the inequality is strict. It is easy to verify thaR i right Noetherian,
then rO(R) =r.cot.D(R) + wD(R) if and only if R is right Artinian.

Recall that a ring R is called amGorenstein ringf R is a left and right Noetherian ring with
id(rRR) < nandidRR) < n for an integem > 0. For this ring, we have the following

Proposition 7.2.12 If R is an n-Gorenstein ring, then r.cot(B) < n and l.cot.dR) < n.

Proof Recall that a righR-moduleM is calledF P-injective if Exth(N, M) = 0 for all finitely
presented righR-modulesN. Note that a righR-moduleM is F P-injective if and only ifM is
injective whenR is right Noetherian. It follows that r.cot@®) = sugcd(M): M is a flat right
R-modulé < sugid(M): M is a flat rightR-modulg = id(Rr) < n by [5, Theorem 3.8]. The
inequality I.cot.0dR) < n can be proven similarly. d

Corollary 7.2.13 [8, Corollary 3.4]. If R is a 1-Gorenstein ring, then every quotient module of
each injective right (left) R-module is cotorsion.

Proof It follows from Proposition 7.2.12 and Theorem 7.2.8. O

For an exact sequence & A — B — C — 0 of right R-modules, ifB andC are both
cotorsion, we know cd®) < 1 by Proposition 7.2.3 (2). Howevek need not be cotorsion in
general (see [27, p.75]). Next we discuss whieis cotorsion ifB andC are.

Proposition 7.2.14 Let R be a ring. Then the following are equivalent:
1. The cotorsion envelope of every flat right R-module is projective.
2. The flat cover of every cotorsion right R-module is projective.

3. Every flat cotorsion right R-module is projective.
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4. Every flat right R-module is a pure submodule of some projective right R-module.

Proof (1) = (4). Let F be a flat rightR-module. There exists an exact sequence>OF —
C(F) - L — 0.By (1), C(F) is projective. Note thatt is flat, so the exact sequence is pure, and
(4) follows.

(4) = (3). Let F be a flat cotorsion righR-module. By (4), there exists a projective right
moduleP and a pure exact sequencef F —- P — L — 0. Note thatL is flat. It follows that
the exact sequence is split. Thiags projective.

(2) < (3)= (1) are easy. O

Proposition 7.2.15 Let R be a ring satisfying the equivalent conditions in Proposition 7.2.14.

1. Assum® —- A - B — C — 0is an exact sequence of right R-modules, then if two of A,
B, C are cotorsion, so is the third.

2. rcot.D(R) = Oorr.cot.D(R) = oc.

Proof Itis clear that (1) implies (2). We now prove (1).

Itis enough to show thaA is cotorsion ifB andC are cotorsion by [27, Proposition 3.1.2]. Let
F be any flat rightR-module. By Proposition 7.2.14, there exists a pure exact sequercé-0—
P — L — 0 with P projective. Note thak is flat. The exact sequence® A—- B - C — 0
gives rise to the following exact sequence

Exth(L, C) — Exta(L, A) — Exi(L, B),

which implies Exﬁ(L, A) = 0 since the first term and the last term are both zero by hypothesis. In
addition, the exact sequence® F —- P — L — 0 yields the following exact sequence

Exth(P, A) — Exth(F, A) — Exti(L, A).

Note that the first term and the last term are both zero, sé(ExtA) = 0. This completes the
proof. O

We end this section with the following result which is of independent interest.
Recall that a ringr is calledleft coherentf every finitely generated left ideal is finitely presented.

Proposition 7.2.16 Let R be a left coherent ring, then the following are equivalent:
1. R isright perfect.

2. R is aring satisfying the equivalent conditions in Proposition 7.2.14.

Proof (1) = (2) is trivial.
(2) = (1). For any family{R, }ic|, where eactlR, = Ris a rightR-module,[] R is a flat right
iel
R-module sinceR is left coherent. Hence we have an exact sequence

0—>[[rR—=>c]]rR)>L—0
iel iel
whereC(]] R) andL are flat by [27, Theorem 3.4.2]. By hypothe€ig]| Ri) is projective. Thus
iel iel
I1 R is a pure submodule of a projective rigRtmodule, and hence it is a pure submodule of a
iel

free rightR-module. It follows thaR is a right perfect ring by [4, Theorem 3.1]. O
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7.3 Cotorsion dimension under change of rings
We begin with the following

Proposition 7.3.1 Lety : R — S be a surjective ring homomorphism.

1. If Msis aright S-module, then ¢MR) < cd(Ms). Moreovery, if & is a flat right R-module,
then cdMs) = cd(MR).

2. If Sgis aflat right R-module, and Klis a cotorsion right R-module, thétiomg(S, M) is a
cotorsion right S-module, and hence a cotorsion right R-module.

Proof (1). We may assume ¢Ms) = n < co. Then there exists an exact sequence
0O>M->Clscls ...l e,

where eactC! is a cotorsion righ&-module,i = 0, 1, ..., n. By [27, Proposition 3.3.3achC!
is also cotorsion as a rigfR-module. So cdMR) < n.

If Sgris a flat rightR-module, we claim céMg) < cd(MR). In fact, we may assume (§lR) =
n < oo. Let F be a flat rightS-module, therF is a flat rightR-module. Thus E>§+1(Fs, Mg) =
Extrgjl(FR, Mgr) = 0 by [23, Theorem 11.65]. Therefore @dds) < n, and hence ddMs) =
cd(MR).

(2). By hypothesis, E)}g(S, M) = 0. Let X be a flat rightS-module, thenX is a flat right
R-module. Thus

EXty(X, HOmR(S, M)) = Exth(X, M) =0

by [24, Lemma 3.1]. Therefore HogiS, M) is a cotorsion righ-module, and hence a cotorsion
right R-module by [27, Proposition 3.3.3]. O

Corollary 7.3.2 Letgp : R — S be a surjective ring homomorphism ang &flat right R-module,
then r.cot.dS) < r.cot.D(R).

Recall that aringsis said to be amlmost excellent extensiafia ring R [28, 29] if the following
conditions are satisfied:

1. Sis a finitenormalizing extensionf a ring R [25], that is, R and S have the same identity
and there are elemerds, - - - , s, € Ssuch thatS= Rg + --- + Rs, andRs = s R for all
i=1---,n.

2. rSis flat andSg is projective.

3. Sisright R-projective, that is, ifMs is a submodule oNs and Mg is a direct summand of
NR, thenMg s a direct summand dfls.

Further,Sis anexcellent extensioof R if Sis an almost excellent extension BfandSis free
with basissy, - - - , sy as both a right and a lefR-module withs; = 1g. The concept of excellent
extension was introduced by Passman [18] and named by Bonami [3]. Examples of excellent ex-
tensions include finite matrix rings [18], and crossed prodRietG whereG is a finite group with
|G|~1 € R[19]. The notion of aimost excellent extensions was introduced and studied in [28] as a
non-trivial generalization of excellent extensions.

Let S be a finite normalizing extension (in particular, an (almost) excellent extension) of a ring
R. Itis well known thatR is right perfect if and only ifSis right perfect [21, Corollary 7]. It seems
natural to generalize descent of right perfectness to cotorsion dimension in the cas8 istem
(almost) excellent extension of a rifRjand this is the main goal of the rest of this section.
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Theorem 7.3.3 Let S be an almost excellent extension of a ring R archivight S-module. Then
1. cdMg) = cd(MR) = cd(HOomg(S, M)).

2. Mgis cotorsion if and only if M is cotorsion if and only iHomg(S, M) is a cotorsion right
S-module.

Proof (1). We first prove that adMs) < cd(MRr). We may assume that flgr) = n < oo.
Let Ns be a flat rightS-module. ThenNR is a flat rightR-module by [29, Lemma 1.2 (3)]. Note
that Exfy (N, M) = Ext™(N ®r S, M) by [23, Theorem 11.65]. Since EXt'(N, M) = 0,
ExtZ™(N ®r S, M) = 0. Thus EXE"1(N, M) = 0 by [29, Lemma 1.1 (1)], and so @d's) < n.

Conversely, suppose @dls) = n < oco. Let Nr be a flat rightR-module. TherN ®gr Sis a
flat right S-module, and so E%l*l(N ®Rr S, M) = 0. Thus, by the above isomorphism, we get
ExtX (N, M) = 0, and hence adg) < n.

By [16, Lemma 2.16], ifER is a cotorsion righR-module, then Hom(S, E) is a cotorsion right
S-module. Hence agHomg(S, M)) < cd(MR) by Corollary 7.2.2. SincéMs is isomorphic to a
direct summand of Hog(S, M) by [29, Lemma 1.1 (2)], ctMs) < cd(Homg(S, M)). So (1)
holds.

(2) follows from (1). O

Corollary 7.3.4 Let R and S be rings.

1. If S is an almost excellent extension of R, theatrD(S) < r.cot.D(R).

2. If S is an excellent extension of R, tharot.D(S) =r.cot.D(R).

Proof (1) follows from Theorem 7.3.3.

(2). SinceS is an excellent extension d®, R is an R-bimodule direct summand d. Let
rRSR = R® T, and Mg be any rightR-module. Observe that HogiS, M) = Homg(R, M) &
Homg(T, M). Therefore

cd(MR) < cd(Homg(S, M)) < r.cotD(S)

by Theorem 7.3.3 (1), and hence r.catf®) < r.cot.[XS). So (2) follows from (1). d

Theorem 7.3.5Let S be an almost excellent extension of a ring R..cbttD(R) < oo, then
r.cot.D(S) =r.cot.D(R).

Proof Itis enough to show that r.cot(R) < r.cot..(S) by Corollary 7.3.4. Suppose r.co{R) =
n < oo. Then there exists a righR-module M such that cdMgr) = n. Define a rightR-
homomorphism : Homg(S, M) — M viaa(f) = f(1) forany f € Homg(S, M). SinceSr is
projective, the epimorphism : M — M/im(«) induces the epimorphism, : Homg(S, M) —
Homg(S, M/im(a)). Let f € HOmg(S, M) ands € S. Thenr,.(f)(s) =z (f(s)) = 7 ((fs)(1)) =
m(a(fs)) = 0, and so ketr,) = HOmg(S, M). It follows that Honkr(S, M/im(«x)) = 0, and
henceM/im(«) = 0 by [25, Proposition 2.1]. Thus is epic, and so we have a rigRtmodule
exact sequence 8 K — Homgr(S,M) - M — 0. By Propositon 7.2.3 (3), we have=
cd(MR) < suplcd(HOmg(S, M)), cd(Kr) — 1} <r.cot.D(R) = n. Since cdKr) — 1 < n—1,
then cdHomg(S, M)) = n. On the other hand, ¢Hlomg(S, M)) < r.cotD(S) by Theorem 7.3.3.
Therefore r.cot.DR) < r.cot.[XS), as desired. O
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7.4 Applications in commutative rings

In this section, all rings are assumed to be commutative. We need the following lemma which
will be frequently used in the sequel.

Lemma7.4.1 Let R be aringand M an R-module, then the following are equivalent:
1. M is cotorsion.
2. Homg(F, M) is a cotorsion R-module for any flat R-module F.

3. Homg(P, M) is a cotorsion R-module for any projective R-module P.

Moreover, if the class of cotorsion R-modules is closed under direct sums, then the above
conditions are also equivalent to

4. P®R M is a cotorsion R-module for any projective R-module P.

Proof (1) = (2). Let N, F be two flatR-modules. There exists an exact sequence K —
G — N — 0 with G projective, which yields the exactness of the sequenee K ®r F —
G®rF - N®rF — 0. Note thatN ®Rr F is flat. We have the following exact sequence

Homgr(G ®r F, M) > HOmgr(K ®r F, M) — Ext}q(N ®rF, M) =0,
which gives rise to the exactness of the sequence
Homg(G, Homg(F, M)) - Homr(K, Homgr(F, M)) — O.
On the other hand, the following sequence

Homg(G, Homgr(F, M)) — Homr(K, Homr(F, M)) —
Exth(N, Homg(F, M)) — Extk(G, Homg(F, M)) = 0

is exact. Thus E}(N, Homg(F, M)) = 0, and (2) follows.
(2) = (3) is trivial.
(3)= (1) follows by lettingP = R.
The last statement is easy to verify. d

Corollary 7.4.2 Let R be a ring such that the class of cotorsion R-modules is closed under direct
sums. Then the following are equivalent:

1. The cotorsion envelope of any projective R-module is always projective.

2. C(RR) is projective.

Proof (1) = (2) is trivial.

(2) = (1). Consider the exact sequenceOR — C(Rr) — N — 0. Let M be any projective
R-module, then 0+ R®r M — C(RR) k' M — N ®r M — 0 is also exact. Note that
C(Rr) ®Rr M is projective, and cotorsion by Lemma 7.4.1. It follows that—> C(Rr) ®r M is
a cotorsion preenvelope & sinceN ®r M is flat. HenceC(M) is projective since it is a direct
summand ofC(Rr) ®r M by [9, Proposition 6.1.2]. d
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The next proposition shows thatf is a Dedekind domain, then ExtB, C) is cotorsion for all
R-modulesB andC, which may be viewed as an answer to [11, Problem 48, p.462].

Proposition 7.4.3 Let R be aring.

1. If D(R) < 1(i.e., R is a hereditary ring), theBxtk(B, C) is cotorsion for all R-modules B
andC.

2. IfcotD(R) < 1, thenExth(F, M) is cotorsion for any flat R-module F and any R-module
M.

Proof (1) follows from the isomorphism
Exth(TorR(A, B), C) = Extk(A, Exth(B, C))

for all R-modulesA, B andC (see [23, p.343)).

(2). Let M be anyR-module. By hypothesis, there exists an exact sequeneed — C0 —
C! — 0, whereC® andC? are cotorsion. So the sequence Hgif, C!) — ExtL(F, M) —
ExtL(F, C% = 0is exact for any flaR-moduleF. By Lemma 7.4.1, Hom(F, C?) is cotorsion,
and hence E)%@(F, M) is cotorsion by Theorem 7.2.8. O

We omit the proof of the next proposition which can be deduced easily from Lemma 7.4.1.

Proposition 7.4.4 Let R be aring and M an R-module. Then the following are equivalent:
1. cd(M) <n.
2. cd(Homg(P, M)) < n for any projective R-module P.

We are now in a position to prove the following

Theorem 7.45Letyp : R — S be a surjective ring homomorphism with K = Kegx( If Sg is
projective, then, for any R-module M, either(dtir) < sugpd(R/I)r : | € K}, or cdMR) =
cd(Homg(S, M)), whereHomg(S, M) may be regarded as an R-module or S-module.
Proof Letsudpd(R/I)r: | € K} =n. We may assume < oo.

Suppose ctMR) > n. We shall show that ¢dMr) = cd(Homg(S, M)).

In fact, there exists an exact sequence

0O>M->Clscls ...l e,
where eaclC' is a cotorsiorR-module,i = 1,2,...,n — 1. Thus
cd(MR) = cd(C") +n

by Corollary 7.2.4, and _ _
Exth(R/I,C") = Exty ' (R/I, M) =0

forall j > 0,and alll C K.

We claim that cdC") = cd(Homg(S, CM)).

In fact, cdHomg(S, C™)) < cd(C") by Proposition 7.4.4. We only need to show that@¥) <
cd(Homg(S, CM). Note thatC" = Homgr(R, C") and the exactness of& K - R— S— 0
induces an exact sequence-® Homg(S, C") — Homg(R,C") — Homgr(K,C") — 0. ltis
enough to show that HogtK, C") is an injectiveR-module by Proposition 7.2.3 (1).

Let L be any ideal oR. The exactness of & K/LK — R/LK — R/K — 0 gives an exact
sequence

Exth(R/LK, C") — Exth(K /LK, C") — Ext4(R/K,C").
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Since Exk(R/LK, C") = Ext4(R/K, C") = 0 by the first part of the proof, Ex{tK /LK, C") =
0. Hence the exact sequences0LK — K — K /LK — 0 yields the exactness of

Homg(K, C") - Homgr(LK, C") — 0.

Note that
Homgr(R, Homr(K, C™)) = Homr(K, C™),
Homg(L, Homgr(K, C")) = Homr(L ® K, C") = Homgr(LK, C").
The last isomorphism holds by the flatnesofThus the sequence

Homgr(R, Homg(K, C") — Homg(L, Homgr(K,C™) — 0

is exact, and so Hop(K, C") is R-injective, as required.
On the other hand, sincgx is projective, we have the following exact sequence

0 — Homg(S, M) — Homg(S, C% —
Homg(S, C) — - - Homg(S, C" 1) — Homg(S,C") — 0,

where each Hom(S, C'),i = 1,2,...,n — 1, is a cotorsionR-module by Proposition 7.3.1 (2).
Note that
cd(Homg(S, C™)) = cd(C") = cd(MRr) — n > 0.

Thus cd(Hong(S, M)) > n, and so
cd(Homg(S, M)) = cd(Homg(S, C")) +n

by Corollary 7.2.4. It follows that adMr) = cd(Homg(S, M)), where Honk(S, M) may be
regarded as aR-module orS-module by Proposition 7.3.1 (1). O

Corollary 7.4.6 Lety : R — S be a surjective ring homomorphism with K = Kgy( If Sr is
projective, then either cot.@R) < suplpd(R/I)r : | € K}, or cot.D(R) = cot.D(S).

Proof Letsudpd(R/I)r: | € K} =n. Ifcd(MR) < nforeveryR-moduleMg, then cot.OR) <

n. If there isMg such that cdMR) > n, then cdMR) = cd(Homg(S, M)) < cotD(S) by Theorem
7.4.5, and so cot.(R) < cot.XS). Note that cot.DS) < cot.D(R) by Corollary 7.3.2. So cot.0R)

= cot.(S). O

Corollary 7.4.7 Aring R is perfect if and only if there is a quotient ring=SR/K of R such that
S is a perfect ring and R is a projective R-module forany € K.

Corollary 7.4.8 Let K be a maximal ideal of a ring R such thaf R is a projective R-module,
then cot.R) < sugpd(R/I)r: | € K}.

Proposition 7.4.9 Let P be any prime ideal of a ring R, then cotRp) < cot.D(R), where B is
the localizationof R at P.

Proof We may assume cot(R) = n < oco. Let M be any flatRp-module. SinceRp is a flat
R-module, thenM is a flatR-module. Thus pMR) < n. There exists a projective resolution of
MR

O Fh—>F.1—> - - —>F—>F—>M-=0,

which induces afRp-module exact sequence
0— (Fo)p > (F-1)p — -+ = (F)p — (Fo)p > Mp — 0.

Note that eacl{F)p is a projectiveRp-module,i = 0,1, ..., n, it follows that pdMp)r, < n.
Since(Mp)Rr, = MRy, PA(MR,) < n. Thus cot.Rp) < n, as required. O
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It is well known thatR is a coherent ring if and only if HoOg(A, B) is flat for all injective
R-modulesA and B ([17]). By [5, Corollary 3.22],R is an | F ring (the ring for which every
injective R-module is flat) if and only if Hom (A, B) is injective for all injectiveR-modulesA and
B. Continuing this style of charactering rings by properties of homormophism modules of certain
specialR-modules, we conclude this paper with the following easy results for completeness.

Proposition 7.4.10 Let R be a ring, then the following are equivalent:
1. R is avon Neumann regular ring.

2. For each cotorsion R-module Momg(A, B) is injective for all cotorsion (or injective) R-
modules B.

3. For each cotorsion R-module AJomg(A, B) is flat for all cotorsion (or injective) R-
modules B.

Proof (1) = (2). Let A andB be cotorsion, then Hog(A, B) is cotorsion by Lemma 7.4.1 (for
Alis flat by (1)). Thus Hom(A, B) is injective by [27, Theorem 3.3.2].

(2) = (1). Let A be a cotorsiorR-module. (2) implies that Hom(A, —) preserves injectives.
ThusAis flat by [10, Proposition 11.35], and (1) follows from [27, Theorem 3.3.2].

(1) = (3) is trivial.

(3) = (). LetS be any simpleR-module. ThenS is cotorsion by [16, Lemma 2.14]. Let
E = E®ic1 S), where{S}ic| is an irredundant set of representatives of the siniplaodules.
ThenE is an injective cogenerator by [1, Corollary 18.19]. Note that K08 E) is flat by (3) and
Homg(S, E) = Sby the proof of [26, Lemma 2.6]. ThuSis flat, and hence is regular by [20,
3.3l O

Proposition 7.4.11 Let R be a ring, then the following are equivalent:
1. R is asemisimple Artinian ring.

2. For each cotorsion R-module Alomgr(A, B) is projective for all cotorsion (or injective)
R-modules B.

Proof (1) = (2)is trivial.
(2) = (1). Let She any simpleR-module. By (2) and the proof of (3} (1) in Proposition
7.4.10,Sis projective. SR is semisimple Artinian. O

Remark We wonder what kind of commutative rings is characterized by the condition that every
homomorphism module of cotorsion modules is cotorsion. This kind of rings, of course, contains
perfect rings and von Neumann regular rings. It is easy to verify that aRiisgpf this kind if and

only if Homr(A, B) is cotorsion for allR-modulesA and all cotorsiorR-modulesB.
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