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7.1 Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary.
Let R be a ring andM a rightR-module. Recall thatM is calledcotorsion[7] if Ext1

R(F, M) = 0
for any flat rightR-moduleF . The class of cotorsion modules contains all pure-injective (hence, in-
jective) modules. A homomorphismφ : M → C with C cotorsion is called acotorsion preenvelope
of M [6, 27] if for any homomorphismf : M → C

′
whereC

′
is cotorsion, there is a homomorphism

g : C→ C
′
such thatgφ = f . Moreover if the only suchg are automorphisms ofC whenC

′ = C
and f = φ, the cotorsion preenvelopeφ is called acotorsion envelopeof M. A homomorphism
φ : F → M with F flat is called aflat coverof M if for any homomorphismf : F

′ → M where
F
′
is flat, there is a homomorphismg : F

′ → F such thatφg = f , moreover whenF
′ = F and

f = φ, the only suchg are automorphisms ofF . It is now well known that allR-modules have flat
covers for any ringR [2], and it has been proven that everyR-module has a cotorsion envelope if
and only if everyR-module has a flat cover [27]. Thus allR-modules have cotorsion envelopes for
arbitrary ringR. Note that cotorsion envelopes or flat covers are unique up to isomorphism.

In what follows, for anR-moduleM, E(M), C(M) and F(M) stand for the injective envelope,
cotorsion envelope and flat cover respectively. We writeMR to indicate a rightR-module. The
projective (resp. injective) dimension ofM is denoted by pd(M) (resp. id(M)). We denote by
rD(R) (resp. wD(R)) the right (resp. the weak) global dimension of a ringR. General background
material can be found in [1], [9], [23], [27].

We are going to define a dimension, called the cotorsion dimension, for modules and rings. It
measures how far away a module is from being cortorsion, and how far away a ring is from being
perfect.

Let R be a ring. For any rightR-moduleM, thecotorsion dimensioncd(M) of M is defined to
be the smallest integern ≥ 0 such that Extn+1

R (F, M) = 0 for any flat rightR-moduleF . If there is
no suchn, set cd(M) = ∞. The rightglobal cotorsion dimensionr.cot.D(R) of R is defined as the
supremum of the cotorsion dimensions of rightR-modules. The aim of this paper is to investigate
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these dimensions.
In Section 2, we give the definition and show some of the general results. LetR be a ring. First

we prove that r.cot.D(R) = sup{pd(F): F is a flat rightR-module} = sup{cd(F): F is a flat right
R-module} (part of Theorem 7.2.5), which gives rise to some characterizations of right perfect rings
(Corollary 7.2.7) and extends [27, Proposition 3.3.1]. Then it is shown that r.cot.D(R) ≤ 1 if and
only if every quotient module of any cotorsion (or injective) rightR-module is cotorsion if and
only if every pure submodule of any projective rightR-module is projective (Theorem 7.2.8). This
removes the unnecessary hypothesis thatR is a commutative domain from [15, Theorem 3.2]. For a
ring R such that the cotorsion envelope of any projective rightR-module is projective, we have that
r.cot.D(R) ≤ 1 if and only if the projectivity ofC(M) implies the projectivity ofM for any right
R-moduleM (Theorem 7.2.10). The relation rD(R) ≤ wD(R)+ r.cot.D(R) is proven to be true for
any ringR (Theorem 7.2.11). Finally, for a left coherent ringR, it is shown thatR is right perfect if
and only if every flat cotorsion rightR-module is projective (Proposition 7.2.16).

Section 3 is devoted to the cotorsion dimension under change of rings. We first get that ifϕ : R→
S is a surjective ring homomorphism andSR a flat right R-module, then r.cot.D(S) ≤ r.cot.D(R)
(Corollary 7.3.2). Then we prove that ifS is an almost excellent extension ofR, then r.cot.D(S) ≤
r.cot.D(R), and the equality holds in case r.cot.D(R) <∞ (Corollary 7.3.4 and Theorem 7.3.5).

In Section 4, some applications in commutative rings are discussed. We start by showing that for
a ring R with cot.D(R) ≤ 1, Ext1R(F, M) is cotorsion for any flatR-moduleF and anyR-module
M (Proposition 7.4.3), which is motivated by [11, Problem 48, p.462]. Then, for a surjective ring
homomorphismϕ : R→ Swith K = Ker(ϕ) andSR projective, it is shown that, for anyR-module
M, either cd(MR) ≤ sup{pd(R/ I )R : I ⊆ K }, or cd(MR) = cd(HomR(S, M)), where HomR(S, M)
may be regarded as anR-module orS-module (Theorem 7.4.5). As a corollary, we get that a ring
R is perfect if and only if there is a quotient ringS = R/K of R such thatS is a perfect ring and
R/ I is a projectiveR-module for anyI ⊆ K (Corollary 7.4.7). In the last part of this section, we
prove that a ringR is von Neumann regular if and only if HomR(A, B) is injective (or flat) for all
cotorsionR-modulesA andB (Proposition 7.4.10).

7.2 General results

We start with the following

Proposition 7.2.1 For any right R-module M and integer n≥ 0, the following are equivalent:

1. cd(M) ≤ n.

2. Extn+1
R (F, M) = 0 for any flat right R-module F.

3. Extn+ j
R (F, M) = 0 for any flat right R-module F and j≥ 1.

4. If the sequence0→ M → C0→ C1→ · · · → Cn−1 → Cn → 0 is exact with C0, C1,. . .,
Cn−1 cotorsion, then Cn is also cotorsion.

5. cd(F(M)) ≤ n.

Proof The proof of (1)⇔ (2)⇔ (3)⇔ (4) is standard homological algebra fare.
(1)⇔ (5). Let K be the kernel of the flat coverF(M) → M, then we have the exact sequence

0→ K → F(M) → M → 0 with K cotorsion. Note that Extn
R(F, K ) = 0 for all n ≥ 1 and flat

modulesF by the proof of [27, Proposition 3.1.2], so the result follows. �
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Corollary 7.2.2 Let M be any right R-module. Then the following are identical:

1. cd(M).

2. inf {k: there exists an exact sequence0→ M → C0 → C1→ · · · → Ck → 0, where each
Ci is a cotorsion right R-module, i= 0, 1, . . . , k}.

3. The integer n such that M admits a minimal cotorsion resolution, i.e., an exact sequence
0 → M → C0 → C1 → · · · → Cn−1 → Cn → 0, where each Ci is cotorsion, Li

= Coker(Ci−2 → Ci−1) → Ci is a cotorsion envelope of Li , Ci 6= 0, i = 0, 1, . . . , n,
C−2 = 0, C−1 = M.

Proof (1) = (2) is straightforward.
(1) ≤ (3) is trivial. Assume(1) < (3) = n. Let (1) = k < ∞. By Proposition 7.2.1,Lk

is a cotorsion rightR-module. Consider the exact sequence 0→ Lk → Ck → Lk+1 → 0,
sinceLk → Ck is a cotorsion envelope ofLk, it follows that Lk+1 = 0, and henceCk+1 = 0, a
contradiction. Therefore(1) = (3). �

Proposition 7.2.3 Let R be a ring,0→ A→ B→ C→ 0 an exact sequence of right R-modules.
If two of cd(A), cd(B), cd(C) are finite, so is the third. Moreover

1. cd(B) ≤ sup{cd(A), cd(C)}.
2. cd(A) ≤ sup{cd(B), cd(C) + 1}.
3. cd(C) ≤ sup{cd(B), cd(A) − 1}.

Proof It is a routine exercise. �
The next corollary is an immediate consequence of Proposition 7.2.3.

Corollary 7.2.4 Let R be a ring,0→ A→ B→ C → 0 an exact sequence of right R-modules.
If B is cotorsion, cd(A) > 0, then cd(A) = cd(C) + 1.

Theorem 7.2.5 Let R be a ring. Then

1. r.cot.D(R)
= sup{pd(F): F is a flat right R-module}
= sup{cd(F): F is a flat right R-module}.

2. r.cot.D(R)
≤ sup{pd(M): pd(M) <∞}
≤ sup{id(P): P is a projective right R-module}
≤ rD(R).
All equalities hold if R is a von Neumann regular ring.

3. If r.cot.D(R) <∞, then
r.cot.D(R)
= sup{pd(F): F is a flat cotorsion right R-module}
= sup{pd(C(F)): F is a flat right R-module}
= sup{pd(F(M)): M is a cotorsion right R-module}
= sup{cd(P): P is a projective right R-module}.
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Proof (1). First, we show that r.cot.D(R) ≤ sup{pd(F): F is a flat rightR-module}. We may
assume sup{pd(F): F is a flat rightR-module} = m<∞. Let M be any rightR-module. It follows
that Extm+1

R (F, M) = 0 for any flat rightR-moduleF since pd(F) ≤ m, so cd(M) ≤ m. Thus
r.cot.D(R) ≤ m.

It is clear that sup{cd(F): F is a flat rightR-module} ≤ r.cot.D(R). Next we shall show that
sup{pd(F): F is a flat rightR-module} ≤ sup{cd(F): F is a flat rightR-module}. In fact, we may
assume that sup{cd(F): F is a flat rightR-module} = n <∞. Let M be any flat rightR-module,N
any rightR-module. There exists an exact sequence 0→ K → F(N)→ N → 0. By [27, Lemma
2.1.1],K is cotorsion. We have the following exact sequence

Extn+1
R (M, F(N))→ Extn+1

R (M, N)→ Extn+2
R (M, K ) = 0.

Note that Extn+1
R (M, F(N)) = 0 since cd(F(N)) ≤ n. So Extn+1

R (M, N) = 0, which implies
pd(M) ≤ n, as desired.

(2). By (1), r.cot.D(R) ≤ sup{pd(M): pd(M) < ∞} follows from [13, Proposition 6]. The
last inequality is obvious. Next we shall show sup{pd(M): pd(M) < ∞} ≤ sup{id(P): P is a
projective rightR-module}. In fact, we may assume sup{id(P): P is a projective rightR-module}
= m<∞. Let M be any rightR-module with pd(M) = n <∞. We claim thatn ≤ m. Otherwise,
let n > m. For any rightR-moduleN, there exists an exact sequence 0→ K → P → N → 0
with P projective, which induces the exact sequence

ExtnR(M, P)→ ExtnR(M, N)→ Extn+1
R (M, K ).

Note that ExtnR(M, P) = 0 since id(P) ≤ m< n, and Extn+1
R (M, K ) = 0 since pd(M) = n. Thus

ExtnR(M, N) = 0, and hence pd(M) ≤ n− 1, this is a contradiction. Son ≤ m, as required.
The last statement is obvious.
(3). The inequalities r.cot.D(R) ≥ sup{pd(F): F is a flat cotorsion rightR-module}
≥ sup{pd(C(F)): F is a flat rightR-module} are clear since cotorsion envelopes of flat modules
are always flat. Next we shall show that r.cot.D(R) ≤ sup{pd(C(F)): F is a flat rightR-module}.
Assume sup{pd(C(F)): F is a flat rightR-module} = m < ∞. For any flat rightR-moduleF ,
cd(F) = t < ∞ since r.cot.D(R) < ∞. Thus, by Corollary 7.2.2,M admits a minimal cotorsion
resolution

0→ F → C0→ C1→ · · · → Ct−1→ Ct → 0.

Note that eachCi is a cotorsion envelope of the flat rightR-moduleLi , i = 0, 1, . . . , t . By hypoth-
esis, pd(Ci ) ≤ m, i = 0, 1, . . . , t . Therefore pd(F) ≤ m. So r.cot.D(R) = sup{pd(F): F is a flat
right R-module} ≤ m. Thus r.cot.D(R) = sup{pd(M): M is flat} ≥ sup{pd(F(M)): M is cotorsion}
≥ sup{pd(M): M is flat cotorsion} = r.cot.D(R), and hence r.cot.D(R) = sup{pd(F(M)): M is a
cotorsion rightR-module} follows.

Now we prove that r.cot.D(R) = sup{cd(P): P is a projective rightR-module}. Let sup{cd(P):
P is a projective rightR-module} = n < ∞. For any flat rightR-moduleF , pd(F) = m < ∞
since r.cot.D(R) <∞. Thus there exists an exact sequence

0→ Pm→ Pm−1→ · · · → P1→ P0→ F → 0,

wherePi is projective,i = 0, 1, . . . ,m. Thus cd(F) ≤ n by hypothesis and Proposition 7.2.3. This
completes the proof. �

Remark Note that pure injective modules are cotorsion, so [14, Proposition 1.1(a)] (that asserts
sup{pd(F): F is a flat rightR-module} ≤ right pure global dimension of the ringR) is an immediate
consequence of Theorem 7.2.5 (1).

Corollary 7.2.6 Let R be a ring, then the following are equivalent for an integer n≥ 0.
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1. r.cot.D(R) ≤ n.

2. All flat right R-modules are of projective dimension≤ n.

3. All flat right R-modules are of cotorsion dimension≤ n.

4. r.cot.D(R) <∞, and all flat cotorsion right R-modules are of projective dimension≤ n.

5. r.cot.D(R) <∞, and all projective right R-modules are of cotorsion dimension≤ n.

6. Extn+1
R (M, N) = 0 for all flat right R-modules M and N.

7. Extn+ j
R (M, N) = 0 for all flat right R-modules M, N and j≥ 1.

Remark The equivalences of (2), (6) and (7) of Corollary 7.2.6 appeared in [9, Theorem 8.4.12]
under the hypothesis thatR is left coherent.

By [12, Corollary 10], if every projective rightR-module is cotorsion, thenR is right perfect. So
we obtain some characterizations of right perfect rings by specializing Corollary 7.2.6 to the case
n = 0. The equivalences of (2) through (4) in the following corollary are due to Xu [27, Proposition
3.3.1].

Corollary 7.2.7 The following are equivalent for any ring R:

1. r.cot.D(R) = 0.

2. Every right R-module is cotorsion.

3. R is right perfect.

4. Every flat right R-module is cotorsion.

5. Every projective right R-module is cotorsion.

6. r.cot.D(R) <∞, and every flat cotorsion right R-module is projective.

7. Ext1R(M, N) = 0 for all flat right R-modules M and N.

Remark By Corollary 7.2.7, r.cot.D(R) measures how far away a ring is from being right perfect.
It is well known that right perfect rings need not be left perfect (see [1, p.322]), so r.cot.D(R) 6=
l.cot.D(R) in general.

Let R be a ring. It is well known that rD(R) ≤ 1 if and only if every quotient module of any
injective rightR-module is injective. Here we prove that r.cot.D(R) ≤ 1 if and only if every quotient
module of any cotorsion rightR-module is cotorsion as shown in the following theorem.

Theorem 7.2.8 Let R be a ring, then the following are equivalent:

1. r.cot.D(R) ≤ 1.

2. All flat right R-modules are of projective dimension≤ 1.

3. All flat right R-modules are of cotorsion dimension≤ 1.

4. Every quotient module of any injective right R-module is cotorsion.

5. Every quotient module of any cotorsion right R-module is cotorsion.
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6. Every pure submodule module of any projective right R-module is projective.

Proof (1)⇒ (4). Let E be any injective rightR-module andK a submodule ofE. The exactness
of the sequence 0→ K → E→ E/K → 0 induces the exact sequence

0= Ext1R(F, E)→ Ext1R(F, E/K )→ Ext2R(F, K ),

where F is a flat right R-module. Note that Ext2
R(F, K ) = 0 by (1) and Proposition 7.2.1, so

Ext1R(F, E/K ) = 0, as required.
(4)⇒ (1). Let M be any rightR-module. Then there exists an exact sequence 0→ M → E→

E/M → 0 with E injective. Thus cd(M) ≤ 1 sinceE/M is cotorsion, and hence r.cot.D(R) ≤ 1.
(1)⇔ (2)⇔ (3) follow from Corollary 7.2.6.
(2)⇒ (6). Let M be a projective rightR-module andN a pure submodule ofM. Then 0→

N → M → M/N → 0 is exact. Note thatM/N is flat and hence pd(M/N) ≤ 1 by (2). ThusN is
projective.

(6)⇒ (2). Let M be any flat rightR-module. There exists an exact sequence 0→ N → P →
M → 0 with P projective. Note thatN is a pure submodule ofP, soN is projective. It follows that
pd(M) ≤ 1.

(5)⇒ (4) is clear.
(4)⇒ (5). Let M be any cotorsion rightR-module andN any submodule ofM. There exists an

exact sequence 0→ N → E(N)→ L → 0. Consider the following pushout diagram

0

��

0

��
0 // N //

��

M

��

// M/N // 0

0 // E(N) //

��

H //

��

M/N // 0

L

��

L

��
0 0

By (4), L is cotorsion. SinceM is cotorsion,H is cotorsion by [27, Proposition 3.1.2]. Note that
E(N) is cotorsion, it follows thatM/N is cotorsion by [27, Proposition 3.1.2] again. �

We note that the equivalences of (2), (4), (5) and (6) in the previous theorem have recently been
proven for commutative domains ([15, Theorem 3.2]).

By [27, Theorem 3.3.2], a ringR is von Neumann regular if and only if every cotorsion right
R-module is flat. Replacing “flat” with “projective”, we have the following

Proposition 7.2.9 Let R be a ring. Then the following are equivalent:

1. R is a semisimple Artinian ring.

2. Every cotorsion right R-module is projective.

3. r.cot.D(R) ≤ 1 and the cotorsion envelope of every simple right R-module is projective.

Proof (1)⇒ (2) and (1)⇒ (3) are clear.
(2)⇒ (1). It is easy to see thatR is quasi-Frobenius and von Neumann regular, and hence (1)

follows.
(3)⇒ (1). By (3), every simple rightR-module M is a pure submodule of a projective right

R-module, and henceM is projective by Theorem 7.2.8. So (1) follows. �
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We know that the cotorsion envelope of any flat rightR-module is always flat. Rothmaler [22]
has discussed when the pure-injective envelope of any flat rightR-module is flat. It is natural to
consider the condition that the cotorsion (pure-injective) envelope of any projective rightR-module
is projective. For a ring with this condition, we have the following

Theorem 7.2.10Let R be a ring such that the cotorsion envelope of any projective right R-module
is projective. Then the following are equivalent:

1. r.cot.D(R) ≤ 1.

2. The projectivity of C(M) implies the projectivity of M for any right R-module M.

If “cotorsion envelope” is replaced with “pure-injective envelope”, the result still holds.

Proof (1)⇒ (2). AssumeM is a rightR-module such thatC(M) is projective. Note thatM is a
pure submodule ofC(M), so M is projective by Theorem 7.2.8.

(2)⇒ (1). Let M be a pure submodule of a projective rightR-moduleP, it is enough to show
that M is projective by Theorem 7.2.8. In fact, there is an exact sequence

0 // M
f // P // L // 0 ,

whereL is flat. By the defining property of cotorsion envelope, there existsg : C(M) → C(P)
such that the diagram

M
f //

φ

��

P

ψ

��
C(M) g

// C(P)

commutes, i.e.,gφ = ψ f . Consider the pushout diagram off andφ:

0 // M
f //

φ

��

P

γ

��

// L // 0

0 // C(M)
α

// K // L // 0

Note that the second row is split, so there isβ : K → C(M) such thatβα = 1. It follows that
βγ : P→ C(M) factors throughψ . Hence there isσ : C(P)→ C(M) such that the diagram

P
ψ //

γ

��

C(P)

σ

��
K

β
// C(M)

commutes, i.e.,σψ = βγ . Thenσgφ = σψ f = βγ f = βαφ = φ. The defining property of co-
torsion envelope now implies thatσg is an automorphism ofC(M). ThereforeC(M) is isomorphic
to a direct summand ofC(P). SinceC(P) is projective by hypothesis,C(M) is projective. SoM is
projective by (2), as required.

The last statement can be proven similarly. �
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It is well known that rD(R) = wD(R) when R is right perfect; rD(R) = r.cot.D(R) when R is
von Neumann regular by Theorem 7.2.5 (2). In general, we have the following inequality.

Theorem 7.2.11Let R be a ring, then rD(R) ≤ r.cot.D(R) + wD(R).

Proof We may assume that both r.cot.D(R) and wD(R) are finite. Let r.cot.D(R) = m < ∞ and
wD(R) = n <∞. SupposeM is a rightR-module, thenM admits a flat resolution

0→ Fn→ Fn−1→ · · · → F1→ F0→ M → 0.

Let Ki = Ker(Fi → Fi−1), i = 0, 1, 2, . . . , n − 1, F−1 = M, Fn = Kn−1. Then we have the
following short exact sequences

0→ Fn→ Fn−1→ Kn−2→ 0,

0→ Kn−2→ Fn−2→ Kn−3→ 0,

· · · · · · ,
0→ K0→ F0→ M → 0.

Note that pd(Kn−2) ≤ 1 + sup{pd(Fn), pd(Fn−1)} by [23, Lemma 9.26]. Since pd(Fi ) ≤ m,
i = 0, 1, . . . , n, it follows that pd(Kn−2) ≤ 1+m, pd(Kn−3) ≤ 2+m, · · · , pd(M) ≤ n+m. This
completes the proof. �

Remark In general, the inequality in Theorem 7.2.11 may be strict. Indeed, ifR is right Noetherian,
but not right perfect (e.g. the integer ringZ), then rD(R) = wD(R) (see [23, Theorem 9.22]) and
r.cot.D(R) 6= 0. In this case, the inequality is strict. It is easy to verify that, ifR is right Noetherian,
then rD(R) = r.cot.D(R) + wD(R) if and only if R is right Artinian.

Recall that a ring R is called ann-Gorenstein ringif R is a left and right Noetherian ring with
id(RR) ≤ n and id(RR) ≤ n for an integern ≥ 0. For this ring, we have the following

Proposition 7.2.12 If R is an n-Gorenstein ring, then r.cot.D(R) ≤ n and l.cot.D(R) ≤ n.

Proof Recall that a rightR-moduleM is calledF P-injective if Ext1R(N, M) = 0 for all finitely
presented rightR-modulesN. Note that a rightR-moduleM is F P-injective if and only if M is
injective whenR is right Noetherian. It follows that r.cot.D(R) = sup{cd(M): M is a flat right
R-module} ≤ sup{id(M): M is a flat rightR-module} = id(RR) ≤ n by [5, Theorem 3.8]. The
inequality l.cot.D(R) ≤ n can be proven similarly. �

Corollary 7.2.13 [8, Corollary 3.4]. If R is a 1-Gorenstein ring, then every quotient module of
each injective right (left) R-module is cotorsion.

Proof It follows from Proposition 7.2.12 and Theorem 7.2.8. �
For an exact sequence 0→ A → B → C → 0 of right R-modules, ifB and C are both

cotorsion, we know cd(A) ≤ 1 by Proposition 7.2.3 (2). HoweverA need not be cotorsion in
general (see [27, p.75]). Next we discuss whenA is cotorsion ifB andC are.

Proposition 7.2.14 Let R be a ring. Then the following are equivalent:

1. The cotorsion envelope of every flat right R-module is projective.

2. The flat cover of every cotorsion right R-module is projective.

3. Every flat cotorsion right R-module is projective.
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4. Every flat right R-module is a pure submodule of some projective right R-module.

Proof (1)⇒ (4). Let F be a flat rightR-module. There exists an exact sequence 0→ F →
C(F)→ L → 0. By (1), C(F) is projective. Note thatL is flat, so the exact sequence is pure, and
(4) follows.

(4)⇒ (3). Let F be a flat cotorsion rightR-module. By (4), there exists a projective rightR-
moduleP and a pure exact sequence 0→ F → P → L → 0. Note thatL is flat. It follows that
the exact sequence is split. ThusF is projective.

(2)⇔ (3)⇒ (1) are easy. �

Proposition 7.2.15 Let R be a ring satisfying the equivalent conditions in Proposition 7.2.14.

1. Assume0→ A→ B→ C → 0 is an exact sequence of right R-modules, then if two of A,
B, C are cotorsion, so is the third.

2. r.cot.D(R) = 0 or r.cot.D(R) = ∞.

Proof It is clear that (1) implies (2). We now prove (1).
It is enough to show thatA is cotorsion ifB andC are cotorsion by [27, Proposition 3.1.2]. Let

F be any flat rightR-module. By Proposition 7.2.14, there exists a pure exact sequence 0→ F →
P → L → 0 with P projective. Note thatL is flat. The exact sequence 0→ A→ B→ C → 0
gives rise to the following exact sequence

Ext1R(L ,C)→ Ext2R(L , A)→ Ext2R(L , B),

which implies Ext2R(L , A) = 0 since the first term and the last term are both zero by hypothesis. In
addition, the exact sequence 0→ F → P→ L → 0 yields the following exact sequence

Ext1R(P, A)→ Ext1R(F, A)→ Ext2R(L , A).

Note that the first term and the last term are both zero, so Ext1
R(F , A) = 0. This completes the

proof. �
We end this section with the following result which is of independent interest.
Recall that a ringR is calledleft coherentif every finitely generated left ideal is finitely presented.

Proposition 7.2.16 Let R be a left coherent ring, then the following are equivalent:

1. R is right perfect.

2. R is a ring satisfying the equivalent conditions in Proposition 7.2.14.

Proof (1)⇒ (2) is trivial.
(2)⇒ (1). For any family{Ri }i∈I , where eachRi ∼= R is a rightR-module,

∏
i∈I

Ri is a flat right

R-module sinceR is left coherent. Hence we have an exact sequence

0→
∏
i∈I

Ri → C(
∏
i∈I

Ri )→ L → 0,

whereC(
∏
i∈I

Ri ) andL are flat by [27, Theorem 3.4.2]. By hypothesis,C(
∏
i∈I

Ri ) is projective. Thus∏
i∈I

Ri is a pure submodule of a projective rightR-module, and hence it is a pure submodule of a

free rightR-module. It follows thatR is a right perfect ring by [4, Theorem 3.1]. �
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7.3 Cotorsion dimension under change of rings

We begin with the following

Proposition 7.3.1 Letϕ : R→ S be a surjective ring homomorphism.

1. If MS is a right S-module, then cd(MR) ≤ cd(MS). Moreover, if SR is a flat right R-module,
then cd(MS) = cd(MR).

2. If SR is a flat right R-module, and MR is a cotorsion right R-module, thenHomR(S, M) is a
cotorsion right S-module, and hence a cotorsion right R-module.

Proof (1). We may assume cd(MS) = n <∞. Then there exists an exact sequence

0→ M → C0→ C1→ · · · → Cn−1→ Cn → 0,

where eachCi is a cotorsion rightS-module,i = 0, 1, . . . , n. By [27, Proposition 3.3.3],eachCi

is also cotorsion as a rightR-module. So cd(MR) ≤ n.
If SR is a flat rightR-module, we claim cd(MS) ≤ cd(MR). In fact, we may assume cd(MR) =

n < ∞. Let F be a flat rightS-module, thenF is a flat rightR-module. Thus Extn+1
S (FS, MS) =

Extn+1
R (FR, MR) = 0 by [23, Theorem 11.65]. Therefore cd(MS) ≤ n, and hence cd(MS) =

cd(MR).
(2). By hypothesis, Ext1

R(S, M) = 0. Let X be a flat rightS-module, thenX is a flat right
R-module. Thus

Ext1S(X,HomR(S, M)) = Ext1R(X, M) = 0

by [24, Lemma 3.1]. Therefore HomR(S, M) is a cotorsion rightS-module, and hence a cotorsion
right R-module by [27, Proposition 3.3.3]. �

Corollary 7.3.2 Letϕ : R→ S be a surjective ring homomorphism and SR a flat right R-module,
then r.cot.D(S) ≤ r.cot.D(R).

Recall that a ringS is said to be analmost excellent extensionof a ringR [28, 29] if the following
conditions are satisfied:

1. S is a finitenormalizing extensionof a ring R [25], that is,R and S have the same identity
and there are elementss1, · · · , sn ∈ S such thatS= Rs1 + · · · + Rsn andRsi = si R for all
i = 1, · · · , n.

2. RS is flat andSR is projective.

3. S is right R-projective, that is, ifMS is a submodule ofNS and MR is a direct summand of
NR, thenMS is a direct summand ofNS.

Further,S is anexcellent extensionof R if S is an almost excellent extension ofR andS is free
with basiss1, · · · , sn as both a right and a leftR-module withs1 = 1R. The concept of excellent
extension was introduced by Passman [18] and named by Bonami [3]. Examples of excellent ex-
tensions include finite matrix rings [18], and crossed productR ∗ G whereG is a finite group with
|G|−1 ∈ R [19]. The notion of almost excellent extensions was introduced and studied in [28] as a
non-trivial generalization of excellent extensions.

Let S be a finite normalizing extension (in particular, an (almost) excellent extension) of a ring
R. It is well known thatR is right perfect if and only ifS is right perfect [21, Corollary 7]. It seems
natural to generalize descent of right perfectness to cotorsion dimension in the case whenS is an
(almost) excellent extension of a ringR and this is the main goal of the rest of this section.
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Theorem 7.3.3 Let S be an almost excellent extension of a ring R and MS a right S-module. Then

1. cd(MS) = cd(MR) = cd(HomR(S, M)).

2. MS is cotorsion if and only if MR is cotorsion if and only ifHomR(S, M) is a cotorsion right
S-module.

Proof (1). We first prove that cd(MS) ≤ cd(MR). We may assume that cd(MR) = n < ∞.
Let NS be a flat rightS-module. ThenNR is a flat rightR-module by [29, Lemma 1.2 (3)]. Note
that Extn+1

R (N, M) ∼= Extn+1
S (N ⊗R S, M) by [23, Theorem 11.65]. Since Extn+1

R (N, M) = 0,

Extn+1
S (N ⊗R S, M) = 0. Thus Extn+1

S (N, M) = 0 by [29, Lemma 1.1 (1)], and so cd(MS) ≤ n.
Conversely, suppose cd(MS) = n < ∞. Let NR be a flat rightR-module. ThenN ⊗R S is a

flat right S-module, and so Extn+1
R (N ⊗R S, M) = 0. Thus, by the above isomorphism, we get

Extn+1
R (N, M) = 0, and hence cd(MR) ≤ n.

By [16, Lemma 2.16], ifER is a cotorsion rightR-module, then HomR(S, E) is a cotorsion right
S-module. Hence cd(HomR(S, M)) ≤ cd(MR) by Corollary 7.2.2. SinceMS is isomorphic to a
direct summand of HomR(S, M) by [29, Lemma 1.1 (2)], cd(MS) ≤ cd(HomR(S, M)). So (1)
holds.

(2) follows from (1). �

Corollary 7.3.4 Let R and S be rings.

1. If S is an almost excellent extension of R, then r.cot.D(S) ≤ r.cot.D(R).

2. If S is an excellent extension of R, then r.cot.D(S) = r.cot.D(R).

Proof (1) follows from Theorem 7.3.3.
(2). SinceS is an excellent extension ofR, R is an R-bimodule direct summand ofS. Let

RSR = R⊕ T , andMR be any rightR-module. Observe that HomR(S, M) ∼= HomR(R, M) ⊕
HomR(T, M). Therefore

cd(MR) ≤ cd(HomR(S, M)) ≤ r.cot.D(S)

by Theorem 7.3.3 (1), and hence r.cot.D(R) ≤ r.cot.D(S). So (2) follows from (1). �

Theorem 7.3.5 Let S be an almost excellent extension of a ring R. If r.cot.D(R) < ∞, then
r.cot.D(S) = r.cot.D(R).

Proof It is enough to show that r.cot.D(R) ≤ r.cot.D(S) by Corollary 7.3.4. Suppose r.cot.D(R) =
n < ∞. Then there exists a rightR-module M such that cd(MR) = n. Define a rightR-
homomorphismα : HomR(S, M)→ M via α( f ) = f (1) for any f ∈ HomR(S, M). SinceSR is
projective, the epimorphismπ : M → M/im(α) induces the epimorphismπ∗ : HomR(S, M) →
HomR(S, M/im(α)). Let f ∈ HomR(S, M) ands ∈ S. Thenπ∗( f )(s) = π( f (s)) = π(( f s)(1)) =
π(α( f s)) = 0, and so ker(π∗) = HomR(S, M). It follows that HomR(S, M/im(α)) = 0, and
henceM/im(α) = 0 by [25, Proposition 2.1]. Thusα is epic, and so we have a rightR-module
exact sequence 0→ K → HomR(S, M) → M → 0. By Propositon 7.2.3 (3), we haven =
cd(MR) ≤ sup{cd(HomR(S, M)), cd(K R) − 1} ≤ r.cot.D(R) = n. Since cd(K R) − 1 ≤ n − 1,
then cd(HomR(S, M)) = n. On the other hand, cd(HomR(S, M)) ≤ r.cot.D(S) by Theorem 7.3.3.
Therefore r.cot.D(R) ≤ r.cot.D(S), as desired. �



68 The Cotorsion Dimension of Modules and Rings

7.4 Applications in commutative rings

In this section, all rings are assumed to be commutative. We need the following lemma which
will be frequently used in the sequel.

Lemma 7.4.1 Let R be a ring and M an R-module, then the following are equivalent:

1. M is cotorsion.

2. HomR(F, M) is a cotorsion R-module for any flat R-module F.

3. HomR(P, M) is a cotorsion R-module for any projective R-module P.

Moreover, if the class of cotorsion R-modules is closed under direct sums, then the above
conditions are also equivalent to

4. P⊗R M is a cotorsion R-module for any projective R-module P.

Proof (1)⇒ (2). Let N, F be two flatR-modules. There exists an exact sequence 0→ K →
G → N → 0 with G projective, which yields the exactness of the sequence 0→ K ⊗R F →
G⊗R F → N ⊗R F → 0. Note thatN ⊗R F is flat. We have the following exact sequence

HomR(G⊗R F, M)→ HomR(K ⊗R F, M)→ Ext1R(N ⊗R F, M) = 0,

which gives rise to the exactness of the sequence

HomR(G,HomR(F, M))→ HomR(K ,HomR(F, M))→ 0.

On the other hand, the following sequence

HomR(G,HomR(F, M))→ HomR(K ,HomR(F, M))→
Ext1R(N,HomR(F, M))→ Ext1R(G,HomR(F, M)) = 0

is exact. Thus Ext1
R(N,HomR(F, M)) = 0, and (2) follows.

(2)⇒ (3) is trivial.
(3)⇒ (1) follows by lettingP = R.
The last statement is easy to verify. �

Corollary 7.4.2 Let R be a ring such that the class of cotorsion R-modules is closed under direct
sums. Then the following are equivalent:

1. The cotorsion envelope of any projective R-module is always projective.

2. C(RR) is projective.

Proof (1)⇒ (2) is trivial.
(2)⇒ (1). Consider the exact sequence 0→ R→ C(RR)→ N → 0. Let M be any projective

R-module, then 0→ R ⊗R M → C(RR) ⊗R M → N ⊗R M → 0 is also exact. Note that
C(RR)⊗R M is projective, and cotorsion by Lemma 7.4.1. It follows thatM → C(RR)⊗R M is
a cotorsion preenvelope ofM sinceN ⊗R M is flat. HenceC(M) is projective since it is a direct
summand ofC(RR)⊗R M by [9, Proposition 6.1.2]. �
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The next proposition shows that ifR is a Dedekind domain, then Ext1
R(B,C) is cotorsion for all

R-modulesB andC, which may be viewed as an answer to [11, Problem 48, p.462].

Proposition 7.4.3 Let R be a ring.

1. If D(R) ≤ 1 (i.e., R is a hereditary ring), thenExt1R(B,C) is cotorsion for all R-modules B
and C.

2. If cot.D(R) ≤ 1, thenExt1R(F, M) is cotorsion for any flat R-module F and any R-module
M.

Proof (1) follows from the isomorphism

Ext1R(TorR
1 (A, B),C) ∼= Ext1R(A,Ext1R(B,C))

for all R-modulesA, B andC (see [23, p.343]).
(2). Let M be anyR-module. By hypothesis, there exists an exact sequence 0→ M → C0 →

C1 → 0, whereC0 andC1 are cotorsion. So the sequence HomR(F,C1) → Ext1R(F, M) →
Ext1R(F,C

0) = 0 is exact for any flatR-moduleF . By Lemma 7.4.1, HomR(F,C1) is cotorsion,
and hence Ext1

R(F, M) is cotorsion by Theorem 7.2.8. �
We omit the proof of the next proposition which can be deduced easily from Lemma 7.4.1.

Proposition 7.4.4 Let R be a ring and M an R-module. Then the following are equivalent:

1. cd(M) ≤ n.

2. cd(HomR(P, M)) ≤ n for any projective R-module P.

We are now in a position to prove the following

Theorem 7.4.5 Let ϕ : R → S be a surjective ring homomorphism with K = Ker(ϕ). If SR is
projective, then, for any R-module M, either cd(MR) ≤ sup{pd(R/ I )R : I ⊆ K }, or cd(MR) =
cd(HomR(S, M)), whereHomR(S, M) may be regarded as an R-module or S-module.

Proof Let sup{pd(R/ I )R : I ⊆ K } = n. We may assumen <∞.
Suppose cd(MR) > n. We shall show that cd(MR) = cd(HomR(S, M)).
In fact, there exists an exact sequence

0→ M → C0→ C1→ · · · → Cn−1→ Cn → 0,

where eachCi is a cotorsionR-module,i = 1, 2, . . . , n− 1. Thus

cd(MR) = cd(Cn)+ n

by Corollary 7.2.4, and
Ext j

R(R/ I ,Cn) ∼= Extn+ j
R (R/ I , M) = 0

for all j > 0, and allI ⊆ K .
We claim that cd(Cn) = cd(HomR(S,Cn)).
In fact, cd(HomR(S,Cn)) ≤ cd(Cn) by Proposition 7.4.4. We only need to show that cd(Cn) ≤

cd(HomR(S,Cn)). Note thatCn ∼= HomR(R,Cn) and the exactness of 0→ K → R→ S→ 0
induces an exact sequence 0→ HomR(S,Cn) → HomR(R,Cn) → HomR(K ,Cn) → 0. It is
enough to show that HomR(K ,Cn) is an injectiveR-module by Proposition 7.2.3 (1).

Let L be any ideal ofR. The exactness of 0→ K/L K → R/L K → R/K → 0 gives an exact
sequence

Ext1R(R/L K ,Cn)→ Ext1R(K/L K ,Cn)→ Ext2R(R/K ,Cn).
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Since Ext1R(R/L K ,Cn) = Ext2R(R/K ,Cn) = 0 by the first part of the proof, Ext1
R(K/L K ,Cn) =

0. Hence the exact sequence 0→ L K → K → K/L K → 0 yields the exactness of

HomR(K ,C
n)→ HomR(L K ,Cn)→ 0.

Note that
HomR(R,HomR(K ,Cn)) ∼= HomR(K ,Cn),
HomR(L ,HomR(K ,Cn)) ∼= HomR(L ⊗ K ,Cn) ∼= HomR(L K ,Cn).

The last isomorphism holds by the flatness ofK . Thus the sequence

HomR(R,HomR(K ,C
n))→ HomR(L ,HomR(K ,C

n))→ 0

is exact, and so HomR(K ,Cn) is R-injective, as required.
On the other hand, sinceSR is projective, we have the following exact sequence

0→ HomR(S, M)→ HomR(S,C0)→
HomR(S,C1)→ · · · → HomR(S,Cn−1)→ HomR(S,Cn)→ 0,

where each HomR(S,Ci ), i = 1, 2, . . . , n − 1, is a cotorsionR-module by Proposition 7.3.1 (2).
Note that

cd(HomR(S,C
n)) = cd(Cn) = cd(MR)− n > 0.

Thus cd(HomR(S, M)) > n, and so

cd(HomR(S, M)) = cd(HomR(S,C
n)) + n

by Corollary 7.2.4. It follows that cd(MR) = cd(HomR(S, M)), where HomR(S, M) may be
regarded as anR-module orS-module by Proposition 7.3.1 (1). �

Corollary 7.4.6 Let ϕ : R → S be a surjective ring homomorphism with K = Ker(ϕ). If SR is
projective, then either cot.D(R) ≤ sup{pd(R/ I )R : I ⊆ K }, or cot.D(R) = cot.D(S).

Proof Let sup{pd(R/ I )R : I ⊆ K } = n. If cd(MR) ≤ n for everyR-moduleMR, then cot.D(R) ≤
n. If there isMR such that cd(MR) > n, then cd(MR) = cd(HomR(S, M)) ≤ cot.D(S) by Theorem
7.4.5, and so cot.D(R) ≤ cot.D(S). Note that cot.D(S) ≤ cot.D(R) by Corollary 7.3.2. So cot.D(R)
= cot.D(S). �

Corollary 7.4.7 A ring R is perfect if and only if there is a quotient ring S= R/K of R such that
S is a perfect ring and R/ I is a projective R-module for any I⊆ K.

Corollary 7.4.8 Let K be a maximal ideal of a ring R such that R/K is a projective R-module,
then cot.D(R) ≤ sup{pd(R/ I )R : I ⊆ K }.
Proposition 7.4.9 Let P be any prime ideal of a ring R, then cot.D(RP) ≤ cot.D(R), where RP is
the localization of R at P.

Proof We may assume cot.D(R) = n < ∞. Let M be any flatRP-module. SinceRP is a flat
R-module, thenM is a flat R-module. Thus pd(MR) ≤ n. There exists a projective resolution of
MR

0→ Fn→ Fn−1→ · · · → F1→ F0→ M → 0,

which induces anRP-module exact sequence

0→ (Fn)P → (Fn−1)P → · · · → (F1)P → (F0)P → MP → 0.

Note that each(Fi )P is a projectiveRP-module,i = 0, 1, . . . , n, it follows that pd(MP)RP ≤ n.
Since(MP)RP

∼= MRP , pd(MRP) ≤ n. Thus cot.D(RP ) ≤ n, as required. �
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It is well known thatR is a coherent ring if and only if HomR(A, B) is flat for all injective
R-modulesA and B ([17]). By [5, Corollary 3.22],R is an I F ring (the ring for which every
injectiveR-module is flat) if and only if HomR(A, B) is injective for all injectiveR-modulesA and
B. Continuing this style of charactering rings by properties of homormophism modules of certain
specialR-modules, we conclude this paper with the following easy results for completeness.

Proposition 7.4.10 Let R be a ring, then the following are equivalent:

1. R is a von Neumann regular ring.

2. For each cotorsion R-module A,HomR(A, B) is injective for all cotorsion (or injective) R-
modules B.

3. For each cotorsion R-module A,HomR(A, B) is flat for all cotorsion (or injective) R-
modules B.

Proof (1)⇒ (2). Let A and B be cotorsion, then HomR(A, B) is cotorsion by Lemma 7.4.1 (for
A is flat by (1)). Thus HomR(A, B) is injective by [27, Theorem 3.3.2].

(2)⇒ (1). Let A be a cotorsionR-module. (2) implies that HomR(A,−) preserves injectives.
ThusA is flat by [10, Proposition 11.35], and (1) follows from [27, Theorem 3.3.2].

(1)⇒ (3) is trivial.
(3)⇒ (1). Let S be any simpleR-module. ThenS is cotorsion by [16, Lemma 2.14]. Let

E = E(⊕i∈I Si ), where{Si }i∈I is an irredundant set of representatives of the simpleR-modules.
ThenE is an injective cogenerator by [1, Corollary 18.19]. Note that HomR(S, E) is flat by (3) and
HomR(S, E) ∼= S by the proof of [26, Lemma 2.6]. ThusS is flat, and henceR is regular by [20,
3.3]. �

Proposition 7.4.11 Let R be a ring, then the following are equivalent:

1. R is a semisimple Artinian ring.

2. For each cotorsion R-module A,HomR(A, B) is projective for all cotorsion (or injective)
R-modules B.

Proof (1)⇒ (2) is trivial.
(2)⇒ (1). Let S be any simpleR-module. By (2) and the proof of (3)⇒ (1) in Proposition

7.4.10,S is projective. SoR is semisimple Artinian. �

Remark We wonder what kind of commutative rings is characterized by the condition that every
homomorphism module of cotorsion modules is cotorsion. This kind of rings, of course, contains
perfect rings and von Neumann regular rings. It is easy to verify that a ringR is of this kind if and
only if HomR(A, B) is cotorsion for allR-modulesA and all cotorsionR-modulesB.
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