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Abstract

Let R be a ring. A rightR-moduleC is called a cotorsion module if Ext1
R.F;C/ = 0 for any flat right

R-moduleF . In this paper, we first characterize those rings satisfying the condition that every cotorsion
right (left) module is injective with respect to a certain class of right (left) ideals. Then we study relative
pure-injective modules and their relations with cotorsion modules.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are
unitary.

Let R be a ring. A right R-module C is called acotorsion module [9] if
Ext1R.F;C/ = 0 for any flat rightR-module F . The ring R is called rightcotor-
sion if RR is cotorsion [2]. The class of cotorsion modules contains all pure-injective
(and hence all injective) modules, and is closed under finite direct sums and direct
summands.

LetC be a class of rightR-modules andM a rightR-module. Following [10], aC -
precoverof M is a homomorphism� : F → M with F ∈ C such that Hom.F ′; F/ →
Hom.F ′;M/ is surjective for allF ′ ∈ C . TheC -precover� is said to be aC -cover
if any endomorphismh : F → F , such that�h = �, is an isomorphism. ForC
some familiar class of modules, say the class of flat modules,C -covers will simply
be called flat covers.C -envelopes ofM can be defined dually. The existence of
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a flat cover and a cotorsion envelope for any module over any associative ring has
been recently proven [6]. An important feature of flat covers (respectively cotorsion
envelopes) is that their kernels (respectively cokernels) are cotorsion (respectively flat)
by Wakamatsu’s Lemmas [25, Section 2.1].

In what follows, we writeMR to indicate a rightR-module. M .I / denotes the
direct sum of copies of a moduleM indexed by a setI . As usual,J.M/, Z.M/ and
Soc.M/ stand for the Jacobson radical, the singular submodule and the socle ofM ,
respectively. For a subsetX of R, the left (right) annihilator ofX in R is denoted
by l .X/ (respectivelyr .X/). If X = {a}, we usually abbreviate it tol .a/ (or r .a/).
We useK ≤e N and K ≤⊕ N to mean thatK is an essential submodule and a
direct summand ofN respectively. For a rightR-moduleM , "M : F.M/ → M and
¦M : M → C.M/ denote a flat cover and a cotorsion envelope ofM respectively.
We frequently identifyM with its image inC.M/ and think ofM as a submodule of
C.M/. For other definitions and notations, we refer the reader to [1, 10, 21, 25] as
background references.

In Section2, we study rings such that every cotorsion right (left) module is injective
with respect to a certain class of right (left) ideals. For example, we show thatR is a
von Neumann regular ring if and only if every cotorsion rightR-module isP-injective
if and only if every non-zero rightR-module contains a non-zero flat submodule;R is
a left P Sring if and only if every cotorsion rightR-module is Soc.RR/-injective if and
only if every leftR-moduleM has a monicMI -cover, whereMI denotes the class
of all mininjective leftR-modules;R is a left universally mininjective ring if and only
if every cotorsion leftR-module is Soc.RR/-injective if and only if every cotorsion
left R-module is mininjective if and only if every quotient of any flat cotorsion left
R-module is Soc.RR/-injective.

In Section3, we study relative pure-injective modules and their relations with
cotorsion modules. LetM and N be right R-modules. Recall thatN is calledM-
pure-injectiveif every homomorphism from a pure submodule ofM to N can be
extended to a homomorphism fromM to N. M is said to bequasi-pure-injectiveif
M is M-pure-injective. Some useful properties are presented. For instance, letMR be
a right R-module with endomorphism ringS. It is shown that, ifMR is quasi-pure-
injective, thenSS is a quasi-pure-injective rightS-module; ifMR is M .I /

R -pure-injective
for any index setI , then S is a right cotorsion ring. We also prove that for a right
cotorsion ringR, the class ofR-pure-injective rightR-modules is closed under direct
sums if and only ifR is a semiperfect ring; a ringR is right perfect if and only if
every rightR-module has a cotorsion (pre)cover. As a byproduct, we find that every
quotient module of any cotorsion (or injective) rightR-module is cotorsion if and only
if every pure submodule of any projective rightR-module is projective if and only
if all flat right R-modules are of projective dimension at most 1. This removes the
unnecessary hypothesis thatR is a commutative domain from [15, Theorem 3.2].
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Section4 is devoted to a new generalization ofV-rings. A ring R is called a
right pureV-ring if every simple rightR-module isR-pure-injective. This new class
of rings contains rightV-rings, right perfect rings, commutative rings and semilocal
rings. LetI be a right ideal of a ringR. Following [17], I ∗ stands for the intersection
of all maximal right ideals ofR containingI . It is shown thatR is a right pure-V-ring
if and only if K ∗ 6= P∗ for any maximal submoduleK of a pure right idealP of R.

2. Some properties of cotorsion modules

Let A be a nonempty collection of right ideals of a ringR. Following [23], a
right R-module X is said to beA -injective provided that eachR-homomorphism
f : A → X with A ∈ A extends toR, or equivalently, Ext1R.R=A; X/ = 0 for any
A ∈ A . In particular,X is calledP-injective(respectively,mininjective) [19] if X is
A -injective withA = {all principal right ideals ofR} (respectively,{all simple right
ideals ofR}), andX is said to be Soc.RR/-injective(respectively, Soc.RR/-injective)
if A = {Soc.RR/} (respectively,A = {Soc.RR/}/.

LEMMA 2.1 ([16, Proposition 2.10]).Let R be a ring andA a nonempty collection
of right ideals ofR. Then the following are equivalent:

(1) Every cotorsion rightR-module isA -injective.
(2) Every pure-injective rightR-module isA -injective.
(3) R=A is a flat right R-module for anyA ∈ A .

PROPOSITION2.2. LetA be a nonempty collection of right ideals of a ringR such
that A is projective for anyA ∈ A . If RR isA -injective, then every cotorsion right
R-module isA -injective. The converse holds ifR is right cotorsion.

PROOF. It is enough to show that every right idealA inA is a pure submodule ofR
by Lemma2.1. Consider the equations

aj =
∑

i

bi si j

with aj ∈ A; bi ∈ R; si j ∈ R for all 1 ≤ j ≤ n; 1 ≤ i ≤ m: SinceA is projective,
by the Dual Basis Lemma (see [14, 2B2.9, page 23]), there exist a family of elements
{ck : k ∈ I } ⊆ A and linear functionals{ fk : k ∈ I } ⊆ HomR.A; R/ such that for
anyc ∈ A; fk.c/ = 0 for almost allk, andc = ∑

k ck fk.c/. SinceRR isA -injective,
there aregk ∈ HomR.R; R/ such that

fk.aj / = gk.aj / = gk

(∑
i

bi si j

)
=
∑

i

gk.bi /si j :
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Therefore

aj =
∑

k

ck fk.aj / =
∑

k

ck

∑
i

gk.bi /si j =
∑

i

(∑
k

ckgk.bi /

)
si j :

It follows that A is a pure submodule ofR by [14, Theorem 4.89].
The last statement is clear.

A ring R is calledright P P if every principal right ideal is projective.R is said
to be aright SF ring (respectively,right V-ring) if every simple rightR-module is
flat (respectively, injective).R is calledright semi-artinianif every nonzero right
R-module contains a nonzero simple submodule.

In [8], it was proved that a ringR is a right semi-artinian rightV-ring if and only
if every nonzero rightR-module contains a nonzero injective submodule. Motivated
by this, we have the following result.

THEOREM2.3. Let R be a ring. Then the following are equivalent:

(1) R is a von Neumann regular ring.
(2) Every cotorsion rightR-module is flat.
(3) Every cotorsion rightR-module is injective.
(4) Every cotorsion rightR-module isP-injective.
(5) R is a right P P right P-injective ring.
(6) Every non-zero rightR-module contains a non-zero flat submodule.

In particular, if R is a right semi-artinian rightSF ring, then the above conditions
hold.

PROOF. (1) if and only if (3) holds by Lemma2.1. (1) imples (2), (1) imples (5)
and (1) imples (6) are clear.

(5) imples (4) follows from Proposition2.2.
(2) imples (1). LetM be any rightR-module. Then there is an exact sequence

0 // M
¦M // C.M/ // L // 0;

whereL is flat. ThusM is flat by (2), and (1) follows.
(4) imples (1). Note thatR=A is flat for any principal right idealA by (4) and

Lemma2.1. ThusR=A is projective sinceR=A is finitely presented. It follows thatA
is a direct summand ofR, which implies thatR is von Neumann regular.

(6) imples (3). Assume that 0→ A → B → C → 0 is any exact sequence. To
simplify the notation, we think ofA as a submodule ofB. Let M be a cotorsion right
R-module andf : A → M be any homomorphism. By a simple application of Zorn’s
Lemma, we can find someg : D → M whereA ⊆ D ⊆ B, andg|A = f , such that
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g cannot be extended to any submodule ofB properly containingD. We claim that
D = B. Indeed, ifD 6= B, thenB=D 6= 0. By (6), there exists a non-zero submodule
N=D of B=D such thatN=D is flat. SinceM is cotorsion, there existsh : N → M
such thath|D = g. It is obvious thath extendsg; this yields the desired contradiction,
and soM is injective.

Finally, suppose thatR is a right semi-artinian rightSF ring. Then every cotorsion
right R-module isA -injective by Lemma2.1, whereA = {all maximal right ideals
of R}. On the other hand, everyA -injective right R-module is injective by [23,
Lemma 4]. It follows that every cotorsion rightR-module is injective, as desired.

The equivalences of (1) through (3) in Theorem2.3 have been shown by Xu (see
[25, Theorem 3.3.2]) in a different way.

The following easy observation is given for completeness.

PROPOSITION2.4. Let R be a ring. Then the following are equivalent:

(1) R is a semisimple Artinian ring.
(2) Every cotorsion rightR-module is projective.
(3) Every non-zero rightR-module contains a non-zero projective submodule.

PROOF. (1) implies (2) and (1) implies (3) are clear.
(2) implies (1). R is quasi-Frobenius, since every injective rightR-module is

projective, andR is von Neumann regular by Theorem2.3, since every cotorsion right
R-module is flat. So (1) follows.

(3) implies (1). By the proof of (6) implies (3) in Theorem2.3, every rightR-module
is injective. ThusR is semisimple Artinian.

A ring R is calledleft P S[18] if every simple left ideal is projective. It is obvious
that R is a left P Sring if and only if Soc.RR/ is projective.

THEOREM2.5. Let R be a ring. Then the following are equivalent:

(1) R is a left P Sring.
(2) Every cotorsion rightR-module isSoc.RR/-injective.
(3) Every quotient of any (min)injective leftR-module is mininjective.
(4) Every quotient of any(Soc.RR/-)injective leftR-module isSoc.RR/-injective.
(5) Every leftR-moduleM has a monicMI -cover, whereMI denotes the class

of all mininjective leftR-modules.
(6) R=Soc.RR/ is a flat right R-module.
(7) .Soc.RR//2 = Soc.RR/.

PROOF. (2) if and only if (6) if and only if (7) follow from Lemma2.1 and [5,
Proposition 1.4].
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(3) implies (1). LetN be a submodule of an injective leftR-module E and
³ : E → E=N the canonical map. Suppose thatK is a simple left ideal ofR, and
f : K → E=N is any homomorphism. SinceE=N is mininjective by (3), there
exists g : R → E=N such that f = g� where � : K → R is the inclusion. It
follows that there existsh : R → E such thatg = ³h, sinceR is projective. Hence
f = .³h/� = ³.h�/ andK is projective by [21, Lemma 4.22].

(1) implies (3). LetX be any mininjective leftR-module andN any submodule
of X. We show thatX=N is mininjective. To this end, letK be a simple left ideal
of R, i : K → R the inclusion and³ : X → X=N the canonical map. For any
f : K → X=N, there existsg : K → X such that³g = f , sinceK is projective
by (1). Hence there existsh : R → X such thathi = g, sinceX is mininjective. It
follows that.³h/i = f , and (3) holds.

The proof of (1) if and only if (4) is similar to that of (1) if and only if (3).
(1) implies (7). It is clear that.Soc.RR//2⊆ Soc.RR/. We claim that Soc.RR/I 6= 0

for any simple left idealI . If not, then there exists a simple left idealRa such that
Soc.RR/Ra= 0. SinceR is a leftP Sring, we haveR = l R.a/⊕ K with K a left ideal
of R, and soRa = K a. On the other hand,K ∼= R= l R.a/ is simple. ThusK a = 0,
and henceRa = 0, a contradiction. Therefore,I = Soc.RR/I for any simple left
ideal I . It follows that Soc.RR/ ⊆ .Soc.RR//2, and hence.Soc.RR//2 = Soc.RR/.

(7) implies (1) follows from [5, Proposition 1.10 (b)].
(3) implies (5). LetM be any leftR-module. WriteF = ∑{N ≤ M : N ∈MI }

andG = ⊕{N ≤ M : N ∈ MI }. Then there exists an exact sequence 0→ K →
G → F → 0. Note thatG ∈ MI , so F ∈ MI by (3). Next we prove that the
inclusioni : F → M is anMI -cover ofM . Let : F ′ → M , with F ′ ∈MI , be
an arbitrary leftR-homomorphism. Note that .F ′/ ≤ F by (3). Define� : F ′ → F
via �.x/ =  .x/ for x ∈ F ′. Theni � =  , and soi : F → M is anMI -precover
of M . In addition, it is clear that the identity mapI F of F is the only homomorphism
g : F → F such thatig = i , and hence (5) follows.

(5) implies (3). LetM be any mininjective leftR-module andN any submodule
of M . We show thatM=N is mininjective. Indeed, there exists an exact sequence
0 → N → E → L → 0 with E injective. SinceL has a monicMI -cover
� : F → L by (5), there existsÞ : E → F such that the following exact diagram is
commutative:

0

��
F

�

��
0 // N // E

Þ

??~~~~~~~
// L // 0:
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Thus� is epic, and hence it is an isomorphism. ThereforeL is mininjective. For any
K = R=A with A a simple left ideal, we have

0 = Ext1R.K ; L/ → Ext2R.K ; N/ → Ext2R.K ; E/ = 0:

Therefore, Ext2R.K ; N/ = 0. On the other hand, the short exact sequence 0→ N →
M → M=N → 0 induces the exactness of the sequence

0 = Ext1R.K ;M/ → Ext1R.K ;M=N/ → Ext2R.K ; N/ = 0:

Therefore, Ext1R.K ;M=N/ = 0, as desired.

Following [19], a ring R is called left universally mininjectiveif every left R-
module is mininjective. Recall that aC -envelopeÞ : M → L has theunique
mapping property[7] if for any homomorphismf : M → N with N ∈ C , there
exists a uniqueg : L → N such thatgÞ = f .

THEOREM2.6. Let R be a ring. Then the following are equivalent:

(1) R is a left universally mininjective ring.
(2) Every simple left ideal is generated by an idempotent.
(3) Every cotorsion leftR-module isSoc.RR/-injective.
(4) Every cotorsion leftR-module is mininjective.
(5) Every quotient of any cotorsion leftR-module isSoc.RR/-injective.
(6) Every quotient of any flat cotorsion leftR-module isSoc.RR/-injective.
(7) Every cotorsion leftR-module has anMI -envelope with the unique mapping

property.
(8) R=Soc.RR/ is a flat leftR-module.
(9) R is a left P S left mininjective ring.

Moreover, ifR is a left cotorsion ring withSoc.RR/ ≤e RR, then the above conditions
are also equivalent to:
(10) R is a left P S left Soc.RR/-injective ring.
(11) R is a left mininjective left nonsingular ring.
(12) R is a left mininjective ring withJ.R/ = 0.
(13) R is a von Neumann regular ring.

PROOF. (1) implies (7), (2) implies (9) and (5) implies (6) are trivial.
(2) if and only if (8) if and only if (3) hold by [5, Proposition 2.1] and Lemma2.1.
(9) implies (4) follows from Proposition2.2.
(1) implies (2). LetS be a simple left ideal. ThenS is mininjective, and soS is a

direct summand ofR. Thus (2) holds.
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(7) implies (4). LetM be any cotorsion leftR-module. There is the following
exact commutative diagram

0

��
0 // M

0
''PPPPPPPPPPPPPP

Þ // N
�

��@
@@

@@
@@

@
 // L

�

��

// 0;

X

whereÞ and� areMI -envelopes with the unique mapping property. Note that
�Þ = 0 = 0Þ, so� = 0 by (7). ThereforeL = im. / ⊆ ker.�/ = 0, and soM is
mininjective. Hence (4) follows.

(4) implies (1). Note thatR=A is flat for any simple left idealA by (4) and
Lemma2.1. ThusR=A is projective sinceR=A is finitely presented. It follows thatA
is a direct summand ofR, which implies thatR is left universally mininjective.

(3) implies (5). Note that (3) if and only if (9) holds by the preceding proof. Let
M be any cotorsion leftR-module andN any submodule ofM . We show thatM=N
is Soc.RR/-injective. To this end, let³ : M → M=N be the canonical map and
i : Soc.RR/ → RR the inclusion. For anyf ∈ HomR.Soc.RR/;M=N/, there exists
g : Soc.RR/ → M such that³g = f , since Soc.RR/ is projective by (9). Hence there
existsh : RR → M such thathi = g, sinceM is Soc.RR/-injective by (3). It follows
that.³h/i = f , and so (5) holds.

(6) implies (3). LetM be any cotorsion leftR-module. ThenM has a flat cover
"M : F.M/ → M . Since ker."M/ is cotorsion, by Wakamatsu’s Lemma,F.M/ is
both flat and cotorsion. SoM is Soc.RR/-injective by (6).

(3) if and only if (10) holds by Proposition2.2.
(9) implies (11). Note thatZl .Soc.RR// = Zl .R/∩Soc.RR/ andZl .Soc.RR// = 0

by [14, Exercise 12A (c), page 269] and (9), soZl .R/ ∩ Soc.RR/ = 0, and hence
Zl .R/ = 0 since Soc.RR/ ≤e RR.

(11) implies (9) follows from [18, Example 2.5 (3)].
(11) if and only if (12). For a left cotorsion ring with Soc.RR/ ≤e RR, we can

prove a more general result:Zl .R/ = J.R/ = r R.Soc.RR//. In fact, sinceR is
left mininjective ring, Soc.RR/ ⊆ Soc.RR/ by [19, Theorem 2.21(c)]. It follows
that J.R/ ≤ r R.Soc.RR// ≤ r R.Soc.RR//. In addition, Zl .R/ ≤ J.R/ by [19,
Theorem B.58] or the remark just before [2, Theorem 6], andr R.Soc.RR// ≤ Zl .R/
by Soc.RR/ ≤e RR. Thus (11) if and only if (12) follows.

(13) implies (12) is obvious.
(12) implies (13). Note thatR=J.R/ is von Neumann regular by [2, Theorem 6].

The proof is complete.
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REMARK 2.7. It is obvious that a left universally mininjective ring is leftP S by
Theorem2.6. However, the converse is not true as shown by the following example.

Let

R =
(
Z2 0
Z2 Z2

)
=
{(

a 0
b c

)
: a; b; c ∈ Z2

}

andx = (
0 0
1 0

) ∈ R. It is easy to see thatRx is a simple left ideal, andRx can not
be generated by an idempotent, soRx is not mininjective. However,R is a left P P,
and hence a leftP S ring. In fact, it is easily checked that every element ofR is
either nilpotent or idempotent or invertible. Note thatx = (

0 0
1 0

)
is the only non-zero

nilpotent element andl .x/ = R
(

1 0
0 0

)
is a summand ofRR, and soRx is projective, as

required.

COROLLARY 2.8. Let R be a commutative ring, then the following are equiva-
lent:

(1) R is a P Sring.
(2) R is a universally mininjective ring.
(3) Every cotorsionR-module isSoc.R/-injective.
(4) Every cotorsionR-module is mininjective.

PROOF. The result follows from Theorem2.5and Theorem2.6.

3. Relative pure-injective modules

In this section, we investigate the pure injectivity relative to a module and discuss
its relationship with cotorsion modules. We first recall the following definition (see,
for example, [24]).

DEFINITION 3.1. Let M andN be right R-modules.N is calledM-pure-injective
if every homomorphismf : K → N, whereK is a pure submodule ofM , can be
extended to a homomorphismg : M → N.

M is calledquasi-pure-injectiveif M is M-pure-injective.

Clearly, if N is M-injective, thenN is M-pure-injective. The next proposition is
easy to verify.

PROPOSITION3.2. Let M and N be right R-modules. Then

(1) N is pure-injective if and only ifN is M-pure-injective for all rightR-modulesM .
(2) N is cotorsion if and only ifN is M-pure-injective for all free(respectively,

projective, flat) right R-modulesM .
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It is obvious that the ringZ of integers (more generally, any domain) has no non-
trivial pure ideal, so everyZ-module isZ-pure-injective. However,Z is not cotorsion.

PROPOSITION3.3. For a right R-moduleM , the following are equivalent:

(1) Every pure submodule ofM is a direct summand ofM .
(2) Every rightR-module isM-pure-injective.
(3) Every pure submodule ofM is M-pure-injective.

In particular, if M is a finitely generated projective rightR-module, then the above
conditions are equivalent to:
(4) Every pure submodule ofM is finitely generated.
(5) Every flat quotient module ofM is projective.

PROOF. The proof is straightforward and hence omitted.

Some general properties of this kind of relative pure-injectivity follow below.

PROPOSITION3.4. Let M andN be rightR-modules. IfN is M-pure-injective, then
for every pure submoduleK of M , N is K -pure-injective andM=K -pure-injective.

PROOF. Every pure submodule ofK is also a pure submodule ofM sinceK is a
pure submodule ofM . Therefore it is clear thatN is K -pure-injective.

Now let us prove thatN is M=K -pure-injective. LetL=K be any pure submodule
of M=K and f : L=K → N any homomorphism. By [14, Exercise 30, page 162],
L is a pure submodule ofM . Let ³1 : M → M=K and³2 : L → L=K be the
canonical maps. SinceN is M-pure-injective, there is a homomorphismg : M → N
that extendsf ³2. Note thatK ≤ ker.g/, hence there existsh : M=K → N such that
h³1 = g. For anyl ∈ L, h.l + K / = h³1.l / = g.l / = f ³2.l / = f .l + K /. Thush
extendsf , and soN is M=K -pure-injective.

The next lemma is easy to verify.

LEMMA 3.5. Let M be a right R-module and{Ni : i ∈ I } a family of right R-
modules. Then

∏
i ∈I Ni is M-pure-injective if and only ifNi is M-pure-injective for

everyi ∈ I .
In particular, a direct summand of anM-pure-injective rightR-module isM-pure-

injective.

REMARK 3.6. In general, the class ofM-pure-injective modules is not closed under
direct sums. For example, letR be a von Neumann regular ring, but not right
Noetherian. Then the class ofR-pure-injective right modules is not closed under
direct sums.
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It is well-known thatM1 ⊕ M2 is quasi-injective if and only ifMi is M j -injective
for all i; j = 1; 2.

PROPOSITION3.7. Let M1 and M2 be right R-modules. IfM1 ⊕ M2 is quasi-pure-
injective, thenMi is M j -pure-injective for alli; j = 1; 2.

PROOF. This follows from Proposition3.4and Lemma3.5.

PROPOSITION3.8. Suppose thatN is M-pure-injective. IfK is a pure submodule
of M with K ∼= L and L ≤⊕ N, thenK ≤⊕ M .

PROOF. Let i : K → M and � : L → N be the inclusions,³ : N → L the
canonical projection andf : K → L the isomorphism. SinceN is M-pure-injective,
there existsg : M → N such thatgi = � f . Let Þ = f −1³g : M → K . For
anyk ∈ K , Þi .k/ = f −1³gi.k/ = f −1 f .k/ = k. SoÞi = 1K , which implies that
K ≤⊕ M .

COROLLARY 3.9. If M is a quasi-pure-injective rightR-module, thenM is pure-C2,
that is, assume thatK is a pure submodule ofM with K ∼= L and L ≤⊕ M , then
K ≤⊕ M .

PROPOSITION3.10. Let M be a flat cotorsion rightR-module. Then

(1) M is pure-C2.
(2) (pure-C3) If K and L are submodules ofM with K ∩ L = 0, K ≤⊕ M and

L ≤⊕ M , thenK ⊕ L is a pure submodule ofM if and only if K ⊕ L ≤⊕ M .

PROOF. (1) SinceM is flat and cotorsion, thenM is quasi-pure-injective by Propo-
sition 3.2. So (1) follows from Corollary3.9.

(2) Let K = eM, e2 = e ∈ End.MR/, so thatK ⊕ L = eM ⊕ .1 − e/L. Thus
.1−e/L ∼= L ≤⊕ M . If K ⊕ L is a pure submodule ofM , then.1−e/L is also a pure
submodule ofM . By (1), .1 − e/L ≤⊕ M , and so there existsf 2 = f ∈ End.MR/

such that.1− e/L = f M . Thusef = 0, and henceh = e+ f − f e is an idempotent
andK ⊕ L = hM ≤⊕ M . The converse is clear.

COROLLARY 3.11. If R is a right cotorsion ring, thenRR is pure-C2 and pure-C3.

PROPOSITION3.12. Let M be a flat right R-module andN a right R-module. If
Þ.M/ ⊆ N for all Þ : C.M/ → C.N/, thenN is M-pure-injective.

PROOF. Let K be a pure submodule ofM and i : K → M the inclusion. Note
that M is a pure submodule ofC.M/, soK is also a pure submodule ofC.M/. Since
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M is flat, so isC.M/. Consequently, for any homomorphismf : K → N, there
existsg : C.M/ → C.N/ such thatg¦Mi = ¦N f . By hypothesis,g.M/ ⊆ N. So
g|M : M → N extendsf , as desired.

COROLLARY 3.13. Let M be a flat right R-module. If M is a fully invariant
submodule ofC.M/, thenM is quasi-pure-injective.

REMARK 3.14. From the proof of Proposition3.12, Corollary3.13can be extended
to a more general result, that is, a fully invariant pure submodule of a quasi-pure-
injective rightR-module is quasi-pure-injective. On the other hand, it is well known
that a moduleM is quasi-injective if and only ifM is a fully invariant submodule of its
injective envelope. However, we do not know whether the converse of Corollary3.13
is true.

PROPOSITION3.15. Let SFR be a bimodule andMR a right R-module.

(1) If MR is FR-pure-injective, thenHomR.SFR;MR/ is an S-pure-injective right
S-module.
(2) If MR is F .I /

R -pure-injective for any index setI , then HomR.SFR;MR/ is a
cotorsion rightS-module.

PROOF. (1) Let KS be a pure submodule ofSS. We can consider the rightR-
moduleK ⊗S F as a pure submodule in the rightR-moduleS⊗S F . SinceMR is
FR-pure-injective andS⊗S F ∼= FR, we obtain the exact sequence

HomR.S⊗S FR;MR/ → HomR.K ⊗S FR;MR/ → 0;

which gives rise to the exactness of the sequence

HomS.SS;HomR.SFR;MR// → HomS.KS;HomR.SFR;MR// → 0:

Thus HomR.SFR;MR/ is anS-pure-injective rightS-module.
(2) If MR is F .I /

R -pure-injective for any index setI , then, by the proof of (1),
HomR.SFR;MR/ is anS.I /-pure-injective rightS-module for any index setI . So (2)
follows from Proposition3.2.

COROLLARY 3.16. Let MR be a rightR-module with endomorphism ringS.

(1) If MR is quasi-pure-injective, thenSS is a quasi-pure-injective rightS-module.
(2) If MR is M .I /

R -pure-injective for any index setI , thenS is a right cotorsion ring.
In particular, S = End.MR/ is a right cotorsion ring for any flat cotorsion right
R-moduleM .
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Recall that a ringR is said to beI -finite [19] if R has no infinite set of nonzero
orthogonal idempotents.

LEMMA 3.17. Let R be a ring. If the class ofR-pure-injective rightR-modules is
closed under direct sums, then

(1) for any ascending chainI1 ⊆ I2 ⊆ I3 ⊆ · · · of right ideals with
⋃∞

k=1 Ik pure in
R, there is ann with In+i = In, i = 1; 2; : : : ;
(2) R is I -finite.

PROOF. (1) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of right ideals with
I = ⋃∞

k=1 Ik pure inR. Define a homomorphism

f : I →
∞⊕

k=1

C.R=Ik/

a 7→ .a + Ik/
∞
k=1

for a ∈ I . By hypothesis,⊕∞
k=1C.R=Ik/ is R-pure-injective. So there existsx ∈

⊕∞
k=1C.R=Ik/ such thatf .a/ = xa = .a + Ik/

∞
k=1 for anya ∈ I .

Let x = .x1; x2; : : : ; xn; 0; : : :/. Thena + In+k = 0 for anya ∈ I andk ≥ 1. Thus
I = In+1 = In+2 = · · · , as desired.

(2) By (1) and [1, Exercise 19.11(1)],R satisfies ACC (ascending chain condition)
on pure right ideals. ThusR satisfies ACC on right direct summands, and henceR is
I -finite by [14, Proposition 6.59].

For any ringR, it is easy to see that every cyclic flat rightR-module is projective
if and only if every rightR-module isR-pure-injective (see Proposition3.3). So we
have the following result (see, for example, [20, Lemma 4.5]).

COROLLARY 3.18. If every cyclic flat rightR-module is projective, thenR is I -finite.
The converse holds whenR is a right or left PP ring.

PROOF. The result follows from Lemma3.17, [14, Proposition 6.59 and Theo-
rem 7.55], and [26, Proposition 9].

THEOREM 3.19. If R is a right cotorsion ring, then the following are equiva-
lent:

(1) The class ofR-pure-injective rightR-modules is closed under direct sums.
(2) Every rightR-module isR-pure-injective.
(3) R is a semiperfect ring.
(4) R is I -finite.
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PROOF. (2) implies (1) is trivial. (1) implies (4) follows from Lemma3.17.
(3) implies (2). SinceR is semiperfect, every cyclic flat rightR-module is projective

by [14, Exercise 21, page 161] or [20, Example 3.7]. Hence (2) follows.
(4) implies (3). SinceR is I -finite, RR = I1 ⊕ I2 ⊕ · · · ⊕ In such thatI i is

indecomposable andI i = ei R, e2
i = ei , i = 1; : : : ; n, by [14, Proposition 6.60].

Let Si = End.I i /. ThenSi is a right cotorsion ring by Corollary3.16, since eachI i

is a flat cotorsion rightR-module,i = 1; : : : ; n. In addition, 0 and 1 are the only
idempotents inSi since I i is indecomposable. It follows thatSi is local by [2,
Corollary 7]. Eachei Rei

∼= Si , i = 1; : : : ; n. Consequently,R is a semiperfect ring
by [1, Theorem 27.6].

Recall that a ringR is a right perfect ring if and only if every rightR-module is
cotorsion, by [25, Proposition 3.3.1]. Thus we have the following result.

THEOREM3.20. Let R be a ring. Then the following are equivalent:

(1) R is a right perfect ring.
(2) R is a right cotorsion ring withJ.R/ right T-nilpotent, and the class ofR-pure-

injective rightR-modules is closed under direct sums.
(3) The class of cotorsion rightR-modules is closed under direct sums.
(4) Every rightR-module has a cotorsion(pre)cover.

Moreover, ifR satisfiesSoc.RR/ ≤eRR, then the above conditions are also equivalent
to:
(5) R is a right cotorsion ring and satisfies ACC for chains of annihilators of the

form r R.a1/ ⊆ r R.a2a1/ ⊆ r R.a3a2a1/ ⊆ · · · .

PROOF. (1) if and only if (2) follows from Theorem3.19.
(1) implies (4) is trivial, (4) implies (3) follows from [22, Proposition 1], and (3)

implies (1) holds by [3, Theorem 19].
(1) implies (5) follows from [4, Corollary 25].
(5) implies (1). By [26, Proposition 9], every cyclic flat rightR-module is projective.

ThereforeR is a semiperfect ring by Corollary3.18and Theorem3.19. So it is enough
to show thatJ.R/ is right T-nilpotent.

Now let a1; a2; a3; : : : be an infinite sequence inJ.R/. Then we get a chain

r R.a1/ ⊆ r R.a2a1/ ⊆ r R.a3a2a1/ ⊆ · · · :

Thus there existsn ∈ N such thatr R.anan−1 · · · a1/ = r R.an+1an · · · a1/ by (4), and
hence.anan−1 · · · a1/R ∩ r R.an+1/ = 0. On the other hand, noting that

J.R/ ≤ l R.Soc.RR/ ≤ Zr .R/
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by Soc.RR/ ≤e RR, we havean+1 ∈ Zr .R/. Thus r R.an+1/ ≤e RR, and so
an · · · a1 = 0, which implies thatJ.R/ is right T-nilpotent. This completes the
proof.

COROLLARY 3.21. Let R be a commutative ring. Then the following are equiva-
lent:

(1) R is a perfect ring.
(2) R is a cotorsion ring with essential socle and satisfies ACC for chains of anni-

hilators of the formannR.a1/ ⊆ annR.a2a1/ ⊆ annR.a3a2a1/ ⊆ · · · .

PROOF. This follows from [1, Theorem 28.4] and Theorem3.20.

LEMMA 3.22. Let M be a projective rightR-module. Then the following are
equivalent:

(1) Every quotient module of any injectiveR-module isM-pure-injective.
(2) Every quotient module of anyM-pure-injective right R-module isM-pure-

injective.
(3) Every pure submodule ofM is projective.

PROOF. (2) implies (1) is trivial.
The proof of (1) implies (3) implies (2) is similar to that of (1) if and only if (3) in

Theorem2.5.

THEOREM3.23. Let R be a ring. Then the following are equivalent:

(1) Every quotient module of any injective rightR-module is cotorsion.
(2) Every quotient module of any cotorsion rightR-module is cotorsion.
(3) Every pure submodule module of any projective rightR-module is projective.
(4) All flat right R-modules are of projective dimension at most1.
(5) Ext2R.M; N/ = 0 for all flat right R-modulesM and N.
(6) ExtjR.M; N/ = 0 for all flat right R-modulesM , N and j ≥ 2.

PROOF. (1) if and only if (2) if and only if (3) follow from Lemma3.22.
(4) implies (3). LetM be a projective rightR-module andN a pure submodule of

M . Then 0→ N → M → M=N → 0 is exact. Note thatM=N is flat, and hence the
projective dimension ofM=N is less than or equal to 1, by (4). ThusN is projective.

(3) implies (4). LetM be any flat rightR-module. There exists an exact sequence
0 → N → P → M → 0 with P projective. Note thatN is a pure submodule ofP,
so N is projective. It follows that the projective dimension ofM is at most 1.

(4) implies (5) implies (6) are trivial.



240 Lixin Mao and Nanqing Ding [16]

(6) implies (4). LetM be any flat rightR-module andN any rightR-module. Then
there is an exact sequence

0 // K // F.N/
"N // N // 0;

with K cotorsion, which induces the exactness of sequence

Ext2R.M; F.N// → Ext2R.M; N/ → Ext3R.M; K /:

Note that Ext2R.M; F.N// = 0, by (6), and Ext3R.M; K / = 0, by the proof of [25,
Proposition 3.1.2]. So Ext2

R.M; N/ = 0 and (4) follows.

REMARK 3.24. The equivalences of (1) through (4) in the previous theorem have
recently been proven for commutative domains ([15, Theorem 3.2]).

4. A new generalization ofV -rings

We start with the following definition.

DEFINITION 4.1. A ring R is called aright pure-V-ring if every simple rightR-
module isR-pure-injective.

REMARK 4.2. (1) It is obvious that the class of right pure-V-rings contains right
V-rings and right perfect rings. In general, a right pure-V-ring need not be a right
V-ring (for example,Z). If R is a von Neumann regular ring, thenR is a rightV-ring
if and only if R is a right pure-V -ring if and only if every simple rightR-module is
cotorsion.
(2) [16, Lemma 2.14] shows that every simpleR-module over a commutative ring
R is cotorsion. So commutative rings are pure-V-rings. However, simpleR-modules
over a noncommutative ringR need not be cotorsion. For example, we can chooseR
to be a von Neumann regular ring, which is not a rightV-ring (see [11]).

A ring is calledsemilocalif R=J.R/ is a semisimple Artinian ring.

PROPOSITION4.3. Any semilocal ringR is a left and right pure-V-ring.

PROOF. By the Wedderburn-Artin Theorem and [12, Proposition 9.3.4], for any
simple right R-module M with endomorphism ringS, SM is a finite dimensional
vector space. ThusM is6-pure-injective by [13, Lemma 4.3] and therefore cotorsion.
So R is a right pure-V-ring. Similarly, R is a left pure-V-ring.
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Let I be a right ideal ofR. Following [17], I ∗ stands for the intersection of all
maximal right ideals ofR containingI . Yue Chi Ming proved thatR is a rightV-ring
if and only if, for any maximal submoduleK of an essential right idealP, K ∗ 6= P∗

(see [17, Theorem 3]). Next we give a corresponding characterization of a right
pure-V-ring.

THEOREM4.4. Let R be a ring. Then the following are equivalent:

(1) R is a right pure-V-ring.
(2) If K is a maximal submodule of a pure right idealP of R, thenK ∗ 6= P∗.

PROOF. (1) implies (2). Suppose that there exist a pure right idealP and a maximal
submoduleK of P such thatK ∗ = P∗. Then P=K is simple. By (1), there exists
f : R → P=K , which extends the canonical projection³ : P → P=K . Letg = f |P∗ .
ThenK ⊆ ker.g/ ⊆ P∗ = K ∗. Therefore.ker.g//∗ = P∗ = K ∗ (for K ∗∗ = K ∗). On
the other hand, ker. f / is a maximal right ideal ofR with ker. f /∩ P∗ = ker.g/. Thus
.ker.g//∗ ⊆ ker. f /; and henceP∗ = .ker.g//∗ = ker.g/, which implies thatg = 0;
and soP=K = 0, a contradiction.

(2) implies (1). Suppose thatM is any simple rightR-module. LetI be any pure
right ideal, andÞ : I → M any homomorphism. We show thatÞ can be extended
to R.

If Þ = 0, this is trivial.
If Þ 6= 0, then ker.Þ/ is a maximal submodule ofI , and so.ker.Þ//∗ 6= I ∗ by (2).

Thus there exists a maximal right idealK of R such that ker.Þ/ ⊆ K and I * K . So
R = K + I . Let r ∈ R. Then there existk ∈ K andt ∈ I such thatr = k + t . Now
we defineþ : R → M via r 7→ Þ.t/. Note thatK ∩ I = ker.Þ/. It is easy to verify
thatþ is well-defined. Clearly,þ extendsÞ.

COROLLARY 4.5. Let R be a right pure-V-ring and I ∗ ≤⊕ RR. ThenI = I ∗.

PROOF. Suppose thatI 6= I ∗. Since I ∗ is finitely generated,I is contained in a
maximal submoduleM of I ∗, by [1, Theorem 2.8]. ThusM∗ 6= I ∗ by Theorem4.4.
However,I ∗ ⊆ M∗ ⊆ I ∗, a contradiction.

PROPOSITION4.6. Let R be a rightSF ring.

(1) If J.M/ = 0 for any flat right R-moduleM , then every simple rightR-module
is cotorsion.
(2) If J.M/ = 0 for any cyclic flat rightR-moduleM , thenR is a right pure-V-ring.

PROOF. (1). LetK be any pure submodule of any flat rightR-moduleN, andSany
simple rightR-module. It is enough to show that every homomorphismf : K → S
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can be extended toM . This is trivial if f = 0. So we may assumef 6= 0. Since
S∼= K= ker. f / andS is flat, ker. f / is a pure submodule ofK . Thus ker. f / is a pure
submodule ofN since K is pure in N. By hypothesis,J.N= ker. f // = 0, which
implies that ker. f / is an intersection of maximal submodules ofN. Let x ∈ K and
x 6∈ ker. f /. Then there exists a maximal submoduleH of N such that ker. f / ⊆ H
andx 6∈ H . ThereforeN = H + K . Note thatH ∩ K = ker. f /, so we can extendf
to g : N → Sby definingg.h + k/ = f .k/ for anyh ∈ H and anyk ∈ K .

(2) follows from the proof of (1).
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