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Let R be a ring, M a right R-module, and n a fixed non-negative integer. M is called
n-cotorsion if Extn+1

R �N�M� = 0 for any flat right R-module N . M is said to be n-flat
if Ext1R�M�N� = 0 for any n-cotorsion right R-module N . We prove that (��� n����n� is
a complete hereditary cotorsion theory, where ��� n (resp. ���n) denotes the class of all
n-flat (resp. n-cotorsion) right R-modules. Several applications are given.

Key Words: Cotorsion theory; n-cotorsion module; n-flat module.

2000 Mathematics Subject Classification: 16D40; 16D50; 16E10.

1. NOTATION

In this section, we shall recall some known notions and definitions which we
need in the later sections.

Throughout this article, R is an associative ring with identity and all modules
are unitary R-modules. rD�R� stands for the right global dimension of R. For a right
R-module M , pd�M� and id�M� denote the projective and injective dimensions of M ,
respectively. If · · · → P1 → P0 → M → 0 is a projective resolution of M , let K0 =M�
K1 = ker�P0 → M��Ki = ker�Pi−1 → Pi−2� for i ≥ 2. The nth kernel Kn �n ≥ 0� is
called the nth syzygy of M . Dually, we have the nth cosyzygy Ln of M using an
injective resolution of M . For two right R-modules M�N , Hom�M�N� �Extn�M�N�)
means HomR�M�N� �ExtnR�M�N�) for an integer n ≥ 1.

Given a class � of right R-modules, we denote by �⊥ = �C �
Ext1�L� C�= 0 for all L∈�� the right orthogonal class of �, and by ⊥� = �C �
Ext1�C� L� = 0 for all L ∈ �� the left orthogonal class of �.

Let � be a class of right R-modules and M a right R-module. A
homomorphism � � M → F with F ∈ � is called a �-preenvelope of M (Enochs,
1981) if for any homomorphism f : M → F ′ with F ′ ∈ �, there is a homomorphism
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g � F → F ′ such that g� = f . Moreover, if the only such g are automorphisms of F
when F ′ = F and f = �, the �-preenvelope � is called a �-envelope of M .

A �-envelope � � M → F is said to have the unique mapping property
(Ding, 1996) if for any homomorphism f : M → F ′ with F ′ ∈ �, there is a unique
homomorphism g � F → F ′ such that g� = f .

Following Enochs and Jenda (2000, Definition 7.1.6), a monomorphism
� � M → C with C ∈ � is said to be a special �-preenvelope of M if coker��� ∈ ⊥�.
Dually, we have the definitions of a (special) �-precover and a �-cover (with the
unique mapping property). Special �-preenvelopes (resp. special �-precovers) are
obviously �-preenvelopes (resp. �-precovers). �-envelopes (�-covers) may not exist
in general, but if they exist, they are unique up to isomorphism.

A pair (� , �) of classes of right R-modules is called a cotorsion theory (Enochs
and Jenda, 2000) if �⊥ = � and ⊥� = � . A cotorsion theory (� , �) is called
complete (Trlifaj, 2000) if every right R-module has a special �-preenvelope, and
every right R-module has a special � -precover. A cotorsion theory (� , �) is said to
be hereditary (Enochs et al., 2004) if whenever 0 → L′ → L → L′′ → 0 is exact with
L�L′′ ∈ � , then L′ is also in � .

For further concepts and notations, we refer the reader to (Anderson and
Fuller, 1974; Enochs and Jenda, 2000; Rotman, 1979; Xu, 1996).

2. INTRODUCTION

Recall that a right R-module C is called cotorsion (Enochs, 1984) provided that
Ext1�F� C� = 0 for any flat right R-module F . E.E. Enochs proved that (the class of
flat right R-modules, the class of cotorsion right R-modules) is a complete cotorsion
theory over any ring R, thus proving the celebrated Flat Cover Conjecture (FCC):
Every module over any ring has a flat cover (Bican et al., 2001) (and hence every
module has a cotorsion envelope). The main purpose of this article is to extend the
flat cotorsion theory to a more general setting. Some applications are given.

In Section 3, we introduce the concepts of n-cotorsion modules, n-flat modules,
and 	-dimensions of modules and rings. Let M be a right R-module and n a
fixed non-negative integer. M is called n-cotorsion if Extn+1�N�M� = 0 for any flat
right R-module N . M is said to be n-flat if Ext1�M�N� = 0 for any n-cotorsion
right R-module N . We define 	R�M� = sup�n � M is n-flat} and 	R�M� = −1 if
Ext1�M�N� �= 0 for some cotorsion right R-module N . The right 	-dimension r.
	-dim�R� of a ring R is defined to be the least non-negative integer n such that
	R�M� ≥ n implies 	R�M� = � for any right R-module M . If no such n exists, set r.
	-dim�R� = �. We prove that (�n��n� is a complete hereditary cotorsion theory,
where �n (resp. �n) denotes the class of all n-flat (resp. n-cotorsion) right modules
(see Theorem 3.9).

Section 4 consists of some applications. Let n be a fixed non-negative integer.
It is proven that every right R-module is n-cotorsion if and only if all (n-)flat right
R-modules are n-cotorsion if and only if every n-flat right R-module is projective if
and only if all flat right R-modules are of projective dimension ≤n if and only if
every (n-flat) right R-module has a �n-envelope with the unique mapping property
if and only if pd�M� ≤ m for some m with 0 ≤ m ≤ n and any �n−m�-flat right
R-module M (see Theorem 4.1). Dually, we give characterizations of those rings such
that every right R-module is n-flat. It is shown that every right R-module is n-flat
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if and only if every cyclic right R-module is n-flat if and only if every n-cotorsion
right R-module is n-flat if and only if every n-cotorsion right R-module is injective if
and only if every (n-cotorsion) right R-module M has an �n-cover with the unique
mapping property (see Theorem 4.5). We also characterize those rings with finite
right 	-dimension. It is proven that r. 	-dim�R� ≤ n if and only if every n-flat right
R-module is �n+ 1�-flat if and only if every �n+ 1�-cotorsion right R-module is
n-cotorsion if and only if every nth syzygy of any flat right R-module is �n+ 1�-flat
(see Theorem 4.7).

3. DEFINITION AND GENERAL RESULTS

We start with the following definition.

Definition 3.1. Let M be a right R-module and n a fixed non-negative integer.
M is called n-cotorsion if Extn+1�N�M� = 0 for any flat right R-module N .
M is said to be n-flat if Ext1�M�N� = 0 for any n-cotorsion right R-module N .
	R�M� = sup�n � M is n-flat} and 	R�M� = −1 if Ext1�M�N� �= 0 for some

cotorsion right R-module N .
The right 	-dimension r. 	-dim�R� of a ring R is defined to be the least

non-negative integer n such that 	R�M� ≥ n implies 	R�M� = � for any right
R-module M . If no such n exists, set r. 	-dim�R� = �.

Remark 3.2. It is clear that a right R-module M is 0-cotorsion (resp. 0-flat)
if and only if M is cotorsion (resp. flat). Let n be a non-negative integer.
Then any cotorsion right R-module is n-cotorsion by the proof of Xu (1996,
Proposition 3.1.2), any projective right R-module is n-flat and any n-flat right
R-module is flat. But none of the converses of these implications is true in general
as shown below.

Proposition 3.3. The following are equivalent for a right R-module M and an integer
n ≥ 0:

(1) M is n-cotorsion;
(2) If the sequence 0 → M → C0 → C1 → · · · → Cn−1 → Cn → 0 is exact with C0,

C1� 
 
 
 � Cn−1 cotorsion, then Cn is also cotorsion;
(3) There exists an exact sequence 0 → M → C0 → C1 → · · · → Cn−1 → Cn → 0

with C0� C1� 
 
 
 � Cn−1� Cn cotorsion;
(4) The flat cover of M is n-cotorsion.

Proof. �1� ⇔ �2� ⇔ �3� is standard homological algebra fare.

�1� ⇔ �4� Let K be the kernel of the flat cover N → M , then we have
the exact sequence 0 → K → N → M → 0 with K cotorsion by Wakamatsu’s
Lemma (Xu, 1996, Lemma 2.1.1). Note that Extj�F�K� = 0 for all j ≥ 1 and flat
modules F by the proof of Xu (1996, Proposition 3.1.2), so �1� ⇔ �4� follows. �

Remark 3.4. Let m and n be integers with m ≥ n > 0. Proposition 3.3 shows that
any n-cotorsion right R-module is m-cotorsion. It follows that any m-flat right
R-module is n-flat.
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Lemma 3.5. Let R be a ring, m and n non-negative integers. If M is an n-flat right
R-module, then Extj+1�M�N� = 0 for any integer j ≥ m and any �m+ n�-cotorsion
right R-module N .

Proof. For every �m+ n�-cotorsion right R-module N , it is easy to verify that the
mth cosyzygy Lm of N is n-cotorsion. Therefore, Extm+1�M�N� 
 Ext1�M�Lm� = 0
since M is n-flat, and the result follows by induction. �

Proposition 3.6. Let R be a ring and 0 → A → B → C → 0 an exact sequence of
right R-modules.

(1) If 	R�C� ≥ 0, then 	R�A� ≥ inf�	R�B�� 	R�C�+ 1�.
(2) 	R�B� ≥ inf�	R�A�� 	R�C��.
(3) If B = A⊕ C, then 	R�A⊕ C� = inf�	R�A�� 	R�C��.

Proof. The exact sequence 0 → A → B → C → 0 gives rise to the exactness of
the sequence Ext1�C�N� → Ext1�B�N� → Ext1�A�N� → Ext2�C�N� for any right
R-module N . Now the result follows from Lemma 3.5 by a standard homological
algebra argument. �

Let �n be the class of all n-cotorsion right R-modules. We have the following
proposition.

Proposition 3.7. Let n be a non-negative integer and R a ring such that every
projective right R-module is n-cotorsion. Then the following are equivalent for a right
R-module M:

(1) M is n-flat;
(2) M is projective with respect to every exact sequence 0 → A → B → C → 0 with

A ∈ �n;
(3) For every exact sequence 0 → K → F → M → 0 with F ∈ �n, K → F is a

�n-preenvelope of K;
(4) M is a cokernel of a �n-preenvelope K → F with F projective;
(5) For any projective resolution F̃ = · · · → F1 → F0 → M → 0, Hom�F̃ � N� is exact

for all right R-modules N with N ∈ �n.

Proof. �1� ⇒ �2� and �1� ⇒ �3� are straightforward.

�2� ⇒ �1� For every N ∈ �n, apply (2) to a short exact sequence 0 → N →
E → L → 0 with E injective.

�3� ⇒ �4� Let 0 → K → F → M → 0 be an exact sequence with F
projective. Note that F ∈ �n by hypothesis, thus K → F is a �n-preenvelope by (3),
and so (4) follows.

�4� ⇒ �1� By (4), there is an exact sequence 0 → K → F → M → 0,
where K → F is a �n-preenvelope with F projective. Hence there is an exact
sequence Hom�F� N� → Hom�K�N� → Ext1�M�N� → 0 for each N ∈ �n. Note that
Hom�F� N� → Hom�K�N� → 0 is exact by (4). Hence Ext1�M�N� = 0, as desired.
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�1� ⇒ �5� Let N ∈ �n and · · · → F1 → F0 → M → 0 be a projective
resolution of M . Since M is n-flat, Extj�M�N� = 0 for any integer j ≥ 1 by
Lemma 3.5. Therefore the sequence

0 → Hom�M�N� → Hom�F0� N� → Hom�F1� N� → · · ·

is exact.

�5� ⇒ �1� Let

· · · → F1 → F0 → M → 0

be a projective resolution of M . Since Hom�F0� N� → Hom�F1� N� → Hom�F2� N� is
exact for all N ∈ �n by (5), Ext1�M�N� = 0. �

Recall that a family �M���<� (� is an ordinal number) of submodules of a right
R-module M is called a continuous chain of submodules (Enochs and Jenda, 2000,
p. 160) if M� ≤ M� whenever � ≤ � < � and if M� =

⋃
<� M whenever � < � is a

limit ordinal.
Denote by �n the class of all n-flat right R-modules. Then �n = ⊥�n.

Motivated by the important fact that (�0��0� is a complete cotorsion theory,
we shall show that (�n��n� is also a complete cotorsion theory for any fixed
non-negative integer n. To this aim, we need the following homological lemma
which generalizes Eklof and Trlifaj (2001, Lemma 1) or Enochs and Jenda (2000,
Theorem 7.3.4).

Lemma 3.8. Let M and N be right R-modules, n a positive integer and M
the union of a continuous chain of submodules �M���<�. If Extn�M0� N� = 0 and
Extn�M�+1/M�� N� = 0 whenever �+ 1 < �, then Extn�M�N� = 0.

Proof. If n = 1, it is exactly Eklof and Trlifaj (2001, Lemma 1). So we may assume
n > 1 and the result holds for n− 1.

Put M� = M . We use the principle of transfinite induction on � ≤ �. Suppose
� < � and Extn�M�� N� = 0 for all � < �
 We shall argue that Extn�M�� N� = 0.
By hypothesis, this is true for � = 0.

If � is not a limit ordinal, we have the exact sequence

0 → M�−1 → M� → M�/M�−1 → 0�

which induces the exact sequence

0 = Extn�M�/M�−1� N� → Extn�M�� N� → Extn�M�−1� N� = 0

by assumption. Thus Extn�M�� N� = 0.
If � is a limit ordinal, then M� =

⋃
<� M. We have the exact sequence

0 → K� → F� → M� → 0�
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where F� is a free right R-module which bases on elements of M�, and K� =
ker�F� → M��. For any  < �, there exists an exact sequence

0 → K → F → M → 0�

where F is a free right R-module which bases on elements of M, and K =
ker�F → M�. It is easy to see that F� is the union of a continuous chain of
submodules �F�<�, and so K� is the union of a continuous chain of submodules
�K�<�. We claim that Extn−1�K+1/K� N� = 0 whenever + 1 < �. In fact, consider
the following commutative diagram

0 0 0�
�

�
0 −−−−→ K −−−−→ F −−−−→ M −−−−→ 0�

�
�

0 −−−−→ K+1 −−−−→ F+1 −−−−→ M+1 −−−−→ 0�
�

�
0 −−−−→ K+1/K −−−−→ F+1/F −−−−→ M+1/M −−−−→ 0�

�
�

0 0 0


By 3× 3 Lemma (Rotman, 1979, Exercise 6.16, p. 175), the bottom row is exact.
So we get the induced exact sequence

0 = Extn−1�F+1/F� N� → Extn−1�K+1/K� N� → Extn�M+1/M� N� = 0

by hypothesis since F+1/F is free. Hence Extn−1�K+1/K� N� = 0. It is clear that
Extn−1�K0� N� = 0, then Extn−1�K�� N� = 0 by hypothesis. Thus Extn�M�� N� = 0
follows from the exactness of Extn−1�K�� N� → Extn�M�� N� → Extn�F�� N�
 So
Extn�M�N� = 0 (for M = M�). �

Theorem 3.9. Let R be a ring and n ≥ 0. Then (�n��n� is a complete hereditary
cotorsion theory.

Proof. Let F be a flat right R-module. By Enochs and Jenda (2000, Lemma 5.3.12),
if Card R ≤ ℵ�, then for each x ∈ F , there is a pure submodule S of F with x ∈ S
such that Card S ≤ ℵ�. So we can write F as a union of a continuous chain �F���<�

of pure submodules of F such that Card F0 ≤ ℵ� and Card F�+1/F� ≤ ℵ� whenever
�+ 1 < �
 By Lemma 3.8, if N is a right R-module such that Extn+1�F0� N� = 0 and
Extn+1�F�+1/F�� N� = 0 whenever �+ 1 < �, then Extn+1�F� N� = 0. Denote by FI the
nth syzygy module of F . Then Extn+1�F� N� = 0 if and only if Ext1�FI� N� = 0. Let
X be the set of representatives of nth syzygy modules of all flat right R-modules G



RELATIVE COTORSION AND FLAT MODULES 2309

with Card G ≤ ℵ�. Then �n = X⊥, and so (�n��n� is complete by Enochs and Jenda
(2000, Theorem 7.4.1).

On the other hand, let 0 → A → B → C → 0 be exact with A�B ∈ �n.
Then C ∈ �n by Remark 3.4. So (�n��n� is hereditary by Enochs et al. (2004,
Proposition 1.2). �

Remark 3.10. (1) Let n and m be non-negative integers such that n < m. If M
is m-flat (resp. n-cotorsion), then M is n-flat (resp. m-cotorsion). However, the
converse is not true in general. In fact, by Pierce (1967, Corollary 5.2), there exists
a von Neumann regular ring R of right global dimension m. Then the class of all
right R-modules = �m �= �n (for cotorsion modules coincide with injective modules
by Xu, 1996, Theorem 3.3.2), and so there exists an n-flat right R-module which is
not m-flat (and hence not projective) by Theorem 3.9.

(2) We do not know whether every right R-module has an �n-cover or a �n-
envelope (n ≥ 1) although every right R-module has a flat cover and a cotorsion
envelope. Nevertheless, if �n is closed under direct limits, then every right R-module
has an �n-cover and a �n-envelope by Theorem 3.9 and Enochs and Jenda (2000,
Theorem 7.2.6).

4. APPLICATIONS

In what follows, let 	M � M → �n�M� (resp. �M � �n�M� → M) denote the
�n-envelope (resp. �n-cover) of a right R-module M . Following Trlifaj (2000,
Theorem 3.7) or Enochs and Jenda (2000, Theorem 7.4.6), ��n��

⊥
n � is a complete

cotorsion theory, where �n stands for the class of all right modules of projective
dimension ≤n. It is easy to verify that M ∈ �⊥

n �n ≥ 1� if and only if M is injective
with respect to every right R-module exact sequence 0 → A → B → C → 0 with
A ∈ �n−1 and B projective.

It is well known that a ring R is right perfect if and only if every (flat)
right R-module is cotorsion if and only if every flat right R-module is projective if
and only if every (flat) right R-module has a cotorsion envelope with the unique
mapping property (see Xu, 1996, Proposition 3.3.1 and Mao and Ding, 2005,
Proposition 2.18). Now we have the following theorem.

Theorem 4.1. Let R be a ring and n a fixed non-negative integer. Then the following
are equivalent:

(1) Every right R-module is n-cotorsion;
(2) Every (n-)flat right R-module is n-cotorsion;
(3) Every n-flat right R-module is projective;
(4) M ∈ �n for every flat right R-module M;
(5) Every right R-module M with M ∈ �⊥

n is cotorsion;
(6) Extn+1�M�N� = 0 for all flat right R-modules M and N ;
(7) Extn+j�M�N� = 0 for all flat right R-modules M , N and j ≥ 1;
(8) Every (n-flat) right R-module has a �n-envelope with the unique mapping

property;
(9) M ∈ �m for any m with 0 ≤ m ≤ n and any �n−m�-flat right R-module M;
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(10) M ∈ �m for some m with 0 ≤ m ≤ n and any �n−m�-flat right R-module M;
(11) M is �n−m�-cotorsion for any m with 0 ≤ m ≤ n and any M ∈ �⊥

m ;
(12) M is �n−m�-cotorsion for some m with 0 ≤ m ≤ n and any M ∈ �⊥

m .

Moreover if n ≥ 1 and the class of �n− 1�-cotorsion right R-modules is closed
under direct sums, then the above conditions are also equivalent to

(13) Every (�n− 1�-flat) right R-module M has a monic �n−1-cover.

Proof. �1� ⇒ �6� ⇒ �2�, �6� ⇔ �7�, �1� ⇒ �8�, and �9� ⇒ �10� are obvious.

�1� ⇔ �3� is clear since (�n��n� is a cotorsion theory by Theorem 3.9.

�4� ⇔ �5�, �9� ⇔ �11�, and �10� ⇔ �12� follow from Theorem 3.9 and the fact
that ��k��

⊥
k � is a cotorsion theory for any k ≥ 0.

�8� ⇒ �2� Let M be an n-flat right R-module. There is the following exact
commutative diagram

where L is n-flat by Wakamatsu’s Lemma (Xu, 1996, Lemma 2.1.2). Note that
	L	M = 0 = 0	M , so 	L = 0 by (8). Therefore, L = im�� ⊆ ker�	L� = 0, and hence
M ∈ �n. Thus (2) follows.

�2� ⇒ �1� Let M be a right R-module. By Theorem 3.9, M has a special �n-
precover, and hence there is a short exact sequence 0 → K → N → M → 0, where
K is n-cotorsion and N is n-flat. Since N is n-cotorsion by (2), M is n-cotorsion by
Remark 3.4. So (1) follows.

�1� ⇒ �9� Let M be an �n−m�-flat right R-module and N any right R-
module. Since N is n-cotorsion, Extm+1�M�N� = 0 by Lemma 3.5. Thus pd�M� ≤ m.

�10� ⇒ �4� Let M be a flat right R-module and Kn−m an �n−m�th syzygy
of M . Then, for any �n−m�-cotorsion right R-module N , Ext1�Kn−m� N� 

Extn−m+1�M�N� = 0, and so Kn−m is �n−m�-flat. Thus pd�Kn−m� ≤ m by (10), and
hence pd�M� ≤ n, as desired.

�4� ⇒ �1� Let M be any right R-module. It follows that Extn+1�F�M� = 0 for
any flat right R-module F since pd�F� ≤ n, so M is n-cotorsion.

�1� ⇒ �13� Let M be any right R-module. Write F = ∑
�N ≤M � N is �n− 1�-

cotorsion} and G = ⊕
�N ≤ M � N is �n− 1�-cotorsion}. Then there exists an

exact sequence 0 → K → G → F → 0. Since K is n-cotorsion by (1) and G is
�n− 1�-cotorsion by hypothesis, we have F is �n− 1�-cotorsion. Next we prove that
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the inclusion i � F → M is a �n−1-cover of M . Let � � F ′ → M with F ′ ∈ �n−1 be an
arbitrary right R-homomorphism. Note that ��F ′� ≤ F by the proof above. Define
� � F ′ → F via ��x� = ��x� for x ∈ F ′. Then i� = �, and so i � F → M is a �n−1-
precover of M . In addition, it is clear that the identity map 1F of F is the only
homomorphism g � F → F such that ig = i, and hence (13) follows.

�13� ⇒ �2� Let M be any n-flat right R-module. We shall show that M is
n-cotorsion. Indeed, by Theorem 3.9, there exists an exact sequence 0 → M → E →
L → 0 with E ∈ �n−1 and L ∈ �n−1. Since L has a monic �n−1-cover � � F → L,
there is � � E → F such that the following exact diagram is commutative

Thus � is epic, and hence it is an isomorphism. Therefore, L is �n− 1�-cotorsion,
and so M is n-cotorsion, as desired. �

By specializing Theorem 4.1 to the case n = 1, we have the following theorem.

Theorem 4.2. The following are equivalent for a ring R:

(1) Every right R-module is 1-cotorsion;
(2) Every (1-)flat right R-module is 1-cotorsion;
(3) Every 1-flat right R-module is projective;
(4) pd�M� ≤ 1 for every flat right R-module M;
(5) Every right R-module M with M ∈ �⊥

1 is cotorsion;
(6) Every quotient module of any injective right R-module is cotorsion;
(7) Every quotient module of any cotorsion right R-module is cotorsion;
(8) Every pure submodule of any projective right R-module is projective.

Proof. The equivalence of (1) through (5) follows from Theorem 4.1.

�4� ⇒ �8� Let M be a projective right R-module and N a pure submodule
of M . Then 0 → N → M → M/N → 0 is exact. Note that M/N is flat and hence
pd�M/N� ≤ 1 by (4). Thus N is projective.

�8� ⇒ �4� Let M be any flat right R-module. There exists an exact sequence
0 → N → P → M → 0 with P projective. Note that N is a pure submodule of P, so
N is projective. It follows that pd�M� ≤ 1.

�6� ⇒ �7� Let M be any cotorsion right R-module and N any submodule
of M . There exists an exact sequence 0 → N → E�N� → L → 0
 Consider the
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following pushout diagram

0 0�
�

0 −−−−→ N −−−−→ M −−−−→ M/N −−−−→ 0�
�

∥∥∥
0 −−−−→ E�N� −−−−→ H −−−−→ M/N −−−−→ 0�

�
L ===== L�

�
0 0




By (6), L is cotorsion. Since M is cotorsion, H is cotorsion by Xu (1996,
Proposition 3.1.2). Note that E�N� is cotorsion, it follows that M/N is cotorsion by
Xu (1996, Proposition 3.1.2) again.

�7� ⇒ �1� Let M be any right R-module. Then there exists an exact sequence
0 → M → E → E/M → 0 with E injective. Thus M is 1-cotorsion since E/M is
cotorsion.

�1� ⇒ �6� Let E be any injective right R-module and K a submodule of E.
The exactness of the sequence 0 → K → E → E/K → 0 induces the exact sequence

0 = Ext1�F� E� → Ext1�F� E/K� → Ext2�F�K��

where F is a flat right R-module. Since Ext2�F�K� = 0 by (1), then Ext1�F� E/K� = 0,
as required. �

Recall that R is said to be a semisimple Artinian ring (Anderson and Fuller,
1974) if it is a direct sum of a finite number of simple Artinian rings.

Corollary 4.3. The following are equivalent for a ring R:

(1) Every right R-module is 1-cotorsion and the cotorsion envelope of every simple right
R-module is projective;

(2) R is a semisimple Artinian ring.

Proof. �2� ⇒ �1� is clear.

�1� ⇒ �2� By (1) and Wakamatsu’s Lemma, every simple right R-module M
is a pure submodule of a projective right R-module, and hence M is projective by
Theorem 4.2(8). So (2) follows. �

Proposition 4.4. The following are equivalent for a ring R:

(1) Every right R-module is 2-cotorsion, and every flat right R-module has a cotorsion
cover;

(2) Every flat right R-module has a cotorsion cover with the unique mapping property.
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Proof. �1� ⇒ �2� Let M be any flat right R-module. Then M has a cotorsion cover
f � F → M by (1). It is enough to show that, for any cotorsion right R-module G and
any homomorphism g � G → F such that fg = 0, we have g = 0. In fact, there exists
� � F/im�g� → M such that �� = f since im�g� ⊆ ker�f�, where � � F → F/im�g� is
the natural map. Note that F/im�g� is cotorsion by Proposition 3.3 since ker�g� is
2-cotorsion. Thus there exists � � F/im�g� → F such that � = f�, and so we get the
following exact commutative diagram:

Thus f�� = f , and hence �� is an isomorphism since f is a cover. Therefore � is
monic, and g = 0.

�2� ⇒ �1� Let M be any right R-module. Then we have the exact sequences

0 −→ M
	M−→ C0�M� −→ C0�M�/M −→ 0�

0 −→ C0�M�/M −→ C
�−→ N −→ 0�

where C = �0��0�M�/M�, and N is flat. Thus we have an exact sequence

0 −→ M
	M−→ C0�M�

�−→ C
�−→ N −→ 0

Let � � H → N be a cotorsion cover with the unique mapping property. Then there
exists � � C → H such that � = ��. Thus ��� = �� = 0 = �0� and hence �� = 0,
which implies that ker��� = im��� ⊆ ker���. Therefore, there exists  � N → H such
that � = �, and so we get the following exact commutative diagram:

Thus �� = �, and so � = 1N since � is epic. It follows that N is isomorphic
to a direct summand of H , and hence N is cotorsion. So M is 2-cotorsion by
Proposition 3.3. �

It is well known that a ring R is von Neumann regular if and only if every
(cyclic) right R-module is flat if and only if every cotorsion right R-module is flat if
and only if every cotorsion right R-module is injective if and only if every (cotorsion)
right R-module has a flat cover with the unique mapping property (see Xu, 1996,
Theorem 3.3.2 and Mao and Ding, 2005, Proposition 2.19). Next we shall give
characterizations of those rings such that every right R-module is n-flat for a fixed
non-negative integer n.
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Theorem 4.5. Let R be a ring and n a fixed non-negative integer. Then the following
are equivalent:

(1) Every right R-module is n-flat;
(2) Every finitely generated right R-module is n-flat;
(3) Every cyclic right R-module is n-flat;
(4) Every n-cotorsion right R-module is n-flat;
(5) Every n-cotorsion right R-module is injective;
(6) Ext1�M�N� = 0 for all n-cotorsion right R-modules M , N ;
(7) Exti�M�N� = 0 for all i ≥ 1 and all n-cotorsion right R-modules M , N ;
(8) Every (n-cotorsion) right R-module M has an �n-cover with the unique mapping

property.

Proof. �1�⇒ �2�⇒ �3�, �1�⇒ �8� and �1�⇒ �4�⇔ �6�⇔ �7� are obvious. �1� ⇔ �5�
follows from Theorem 3.9.

�8� ⇒ �4� Let M be any n-cotorsion right R-module. There is the following
exact commutative diagram

with K ∈ �n. Note that �M��K = 0 = �M0, so ��K = 0 by (8). Therefore K =
im��K� ⊆ ker��� = 0, and so M is n-flat, as required.

�4� ⇒ �1� For any right R-module M , by Theorem 3.9, there is a short exact
sequence 0 → M → N → L → 0, where N is n-cotorsion and L is n-flat. Since N is
n-flat by (4), M is n-flat by Proposition 3.6(1). Hence (1) follows.

�3� ⇒ �5� Let M be any n-cotorsion right R-module and I any right ideal
of R. Then Ext1�R/I�M� = 0 by (3). Thus M is injective, as desired. �

Remark 4.6. By Theorem 4.5, if n ≥ 1, then every right R-module is n-flat if and
only if every right R-module is 1-flat if and only if for any non-negative integer
m, every m-cotorsion right R-module is injective if and only if 	R�M� = � for
every right R-module M . Thus von Neumann regular rings can be classified into
three mutually exclusive types: (a) semisimple Artinian rings; (b) rings R such that
rD�R� �= 0 and every right R-module is 1-flat; (c) rings R for which there is a right
R-module N with 	R�N� = 0.

Now, we argue when �n (resp. �n) coincides with �n+1 (resp. �n+1).

Theorem 4.7. Let R be a ring and n a fixed non-negative integer. Then the following
are equivalent:

(1) r. 	-dim�R� ≤ n;
(2) Every n-flat right R-module is �n+ 1�-flat;
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(3) Every nth syzygy of any flat right R-module is projective relative to each
epimorphism B → C, where B is cotorsion and C is n-cotorsion;

(4) Every �n+ 1�-cotorsion right R-module is n-cotorsion;
(5) For any non-negative integer m, every m-cotorsion right R-module is n-cotorsion;
(6) Every nth syzygy of any flat right R-module is �n+ 1�-flat;
(7) Every nth syzygy of any flat right R-module is m-flat for any integer m ≥ n+ 1.

Proof. �1� ⇒ �2�, �4� ⇒ �5�, and �1� ⇒ �7� ⇒ �6� are clear.

�2� ⇔ �4� holds by Theorem 3.9.

�5� ⇒ �1� Let M be a right R-module with 	R�M� ≥ n, i.e., M is n-flat.
For any non-negative integer m and any m-cotorsion right R-module N , we have
Ext1�M�N� = 0 since N is n-cotorsion by (5). So 	R�M� = �, as desired.

�3� ⇒ �4� Let M be an �n+ 1�-cotorsion right R-module. There exists an
exact sequence 0 → M → E → N → 0 with E injective and N n-cotorsion. Suppose
that K is a flat right R-module and Kn an nth syzygy of K. Then Ext1�Kn�M� = 0
by (3), and hence Extn+1�K�M� = 0, which means that M is n-cotorsion.

�4� ⇒ �3� Let f � B → C be an epimorphism and A = ker�f�, where B is
cotorsion and C is n-cotorsion. The exactness of 0 → A → B → C → 0 shows that
A is �n+ 1�-cotorsion, and so A is n-cotorsion by (4). Let Nn be an nth syzygy of a
flat right R-module N . Then Nn is n-flat, and so Ext1�Nn� A� = 0. Thus (3) follows.

�6� ⇒ �4� Let M be an �n+ 1�-cotorsion right R-module, K any flat right
R-module and Kn an nth syzygy of K. Then Ext1�Kn�M� = 0 by (6), and so
Extn+1�K�M� = 0, which implies that M is n-cotorsion. �

Let n = 0 in Theorem 4.7. One gets the following corollary.

Corollary 4.8. The following are equivalent for a ring R:

(1) r. 	-dim�R� = 0;
(2) Every flat right R-module is 1-flat;
(3) Every flat right R-module is projective relative to each epimorphism B → C, where

B and C are cotorsion;
(4) For any short exact sequence 0 → A → B → C → 0 of right R-modules, if B and

C are cotorsion, then A is cotorsion;
(5) For any non-negative integer m, every m-cotorsion right R-module is cotorsion;
(6) Every flat right R-module is m-flat for any integer m ≥ 1.

Remark 4.9. (1) Let R be a ring and n a non-negative integer. We note that, if
every right R-module is n-cotorsion, then r. 	-dim�R� ≤ n. Indeed, by Theorem 4.1,
every n-flat right R-module is projective, and hence �n+ 1�-flat. Thus r. 	-dim�R� ≤
n by Theorem 4.7.

(2) Let R = �, the ring of integers. Then every R-module is 1-cotorsion, and
so 	-dim�R� ≤ 1. However, in the exact sequence 0 → � → � → �/� → 0, both �
and �/� are cotorsion, but � is not cotorsion, so 	-dim�R� �= 0 by Corollary 4.8(4).
Thus 	-dim�R� = 1.
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We end this article with the following theorem.

Theorem 4.10. Let R be a ring with rD�R� < � and n a fixed non-negative integer.
Then the following are equivalent:

(1) r. 	-dim�R� ≤ n;
(2) Every right R-module is n-cotorsion;
(3) pd�M� ≤ n for every flat cotorsion right R-module M;
(4) pd��0�M�� ≤ n for every flat right R-module M;
(5) pd��0�M�� ≤ n for every cotorsion right R-module M;
(6) Every projective right R-module is n-cotorsion.

Proof. �2� ⇒ �1� holds by Remark 4.9(1). �2� ⇒ �6� is clear.

�2� ⇒ �3� follows from Theorem 4.1.

�4� ⇔ �3� ⇔ �5� hold since cotorsion envelopes of flat modules are always flat
and flat covers of cotorsion modules are always cotorsion.

�1� ⇒ �2� Let N be any right R-module. We may assume id�N� = m < � by
hypothesis. For any n-flat right R-module M , we have 	R�M� = � by (1), and so
Ext1�M�N� = 0 since N is m-cotorsion, which implies that M is projective. Therefore
every right R-module is n-cotorsion by Theorem 4.1.

�3� ⇒ �2� Let M be any flat right R-module, we only need to show that
pd�M� ≤ n by Theorem 4.1. Note that M is m-cotorsion for some non-negative
integer m since rD�R� < �. Consider a cotorsion resolution of M

0 → M → C0 → C1 → · · · → Cm−1 → Cm → · · · �

where each Ci is cotorsion, Li = coker�Ci−2 → Ci−1� → Ci is a cotorsion envelope
of Li, i = 0� 1� 
 
 
 � C−2 = 0, C−1 = M . Since M is flat, Ci is flat cotorsion and Li is
flat, i = 0� 1� 
 
 
 . Note that 0 → M → C0 → C1 → · · · → Cm−1 → Lm → 0 is exact,
so Lm is cotorsion by Proposition 3.3. Since pd�Lm� ≤ n and pd�Ci� ≤ n by (3),
i = 0� 1� 
 
 
 � m− 1� pd�M� ≤ n.

�6� ⇒ �2� For any flat right R-module M , pd�M� = m < � since rD�R� < �.
Thus there exists an exact sequence

0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0�

where each Pi is projective, i = 0� 1� 
 
 
 � m. Thus M is n-cotorsion by Remark 3.4
since each Pi is n-cotorsion. �

Remark 4.11. By Theorem 4.10, if r. 	-dim�R� = 0, then R is either right perfect
or rD�R� = �.
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