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Abstract In Internet environment, traffic flow to a link is typically modeled by superposition of ON/OFF

based sources. During each ON-period for a particular source, packets arrive according to a Poisson process and

packet sizes (hence service times) can be generally distributed. In this paper, we establish heavy traffic limit

theorems to provide suitable approximations for the system under first-in first-out (FIFO) and work-conserving

service discipline, which state that, when the lengths of both ON- and OFF-periods are lightly tailed, the

sequences of the scaled queue length and workload processes converge weakly to short-range dependent reflecting

Gaussian processes, and when the lengths of ON- and/or OFF-periods are heavily tailed with infinite variance,

the sequences converge weakly to either reflecting fractional Brownian motions (FBMs) or certain type of long-

range dependent reflecting Gaussian processes depending on the choice of scaling as the number of superposed

sources tends to infinity. Moreover, the sequences exhibit a state space collapse-like property when the number

of sources is large enough, which is a kind of extension of the well-known Little’s law for M/M/1 queueing

system. Theory to justify the approximations is based on appropriate heavy traffic conditions which essentially

mean that the service rate closely approaches the arrival rate when the number of input sources tends to infinity.

Keywords reflecting fractional Brownian motion, reflecting Gaussian process, long-range dependence,

queueing process, weak convergence
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1 Introduction

ON/OFF sources are widely used to model voice, video and data traffics in telecommunication
systems (see, e.g., [16, 19, 23, 26, 28]). In particular, stochastic modeling of queueing systems
with ON/OFF long-range dependent data has become an active area of research. In contrast to
most of the existing achievements in this field, which are based on fluid models whose outputs
are deterministic with constant (service) rates and whose inputs are certain types of long-range
dependent fluid sources (e.g. [10, 11, 21, 24]), we will model our queueing system with general
service time distribution and the input as a superposition of Poisson ON/OFF point processes
to better capture the variation of packet sizes and the behavior of real packet traffic. Concretely,
for a particular source, packets arrive according to a Poisson process during each ON-period.
For such a source, the corresponding traffic exhibits long-range dependence (see, for instance,
[27]) when the lengths of ON- and/or OFF-periods are heavily tailed with infinite variance.
Besides the assumption on the service time distribution, our system is further supposed to
operate under FIFO and work-conserving discipline.

A special case of the above queueing model is discussed in [3], where the distributions of
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ON- and OFF-periods are assumed to be Pareto and exponential respectively and packet sizes
are supposed to be constant. They show that the sequence of probabilities that steady state un-
finished works exceed a threshold tend to the corresponding probability assuming Poisson input
process when the number of input sources tends to infinity. Currently, it is not clear whether
their result can be extended to the more general model as presented above. Furthermore, the
dependence of the convergence rates on various parameters of the system is not shown in their
result, e.g., the relationship between ρN (traffic intensity, utilization level) and N (the number
of sources).

Due to the above reasons, we will study our queueing system by employing some other
method. Under heavy traffic conditions (suitable relationships between ρ and N such that
the service rate closely approaches the arrival rate when N tends to infinity), we will show
that, when the lengths of both ON- and OFF-periods are lightly tailed, the sequences of the
scaled queue length and workload processes converge weakly to short-range dependent reflecting
Gaussian processes, and when the lengths of ON- and/or OFF-periods are heavily tailed with
infinite variance, the sequences converge weakly to either reflecting fractional Brownian motions
(FBMs) or certain type of long-range dependent reflecting Gaussian processes depending on
the choice of scaling as the number of input sources tends to infinity. Moreover, the sequences
exhibit a state space collapse-like property when N is large enough, which is a kind of extension
of the well-known Little’s law for M/M/1 queueing system.

Our heavy traffic limits set up certain connection between the above physical queueing sys-
tems and some existing fluid queueing models. For example, for a fluid model with constant
output rate and FBM input, the stationary queue content distribution is asymptotically Weibul-
lian (e.g., [15, 21, 24], and more generally, as summarized in [29]), namely, the probability of
exceeding buffer level b is roughly of the form exp(−b2(1−H)) if FBM is characterized by Hurst
parameter H. The result can be applied to derive corresponding probability for our reflecting
FBM after properly managing parameters.

Concerning heavy traffic limit theorems for queueing systems with long-range dependent in-
puts, there are only a few achievements until now besides the one mentioned above in [3]. In [10]
and [11], authors studied a fluid queueing system with constant output rate and a superposition
of ON/OFF fluid input sources. In [18] and [20], instead of discussing superposition problem,
authors considered a single class and feedforward multiclass queueing networks with long-range
dependent interarrival and service time sequences respectively. The current limit theorems are
the supplements of these existing results. In justifying our reflecting FBM approximation, we
will adopt the simultaneous limit regime related to FBM in [22], in which both N (the number
of sources) and T (the time-scaling parameter) go to infinity at the same time. This procedure
provides us some convenience in employing some ingredient developed in [22] to establish the
weak convergence for our scaled queue length and workload processes.

One last point we wish to mention is that we have employed our theorem on reflecting
Gaussian processes in the current paper to provide a reasonable interpretation (in [9]) to some
well-known large-scale computer and statistical experiments conducted by Cao et al[2], Cao and
Ramanan[3], which reveal some gap between their simulation findings and the existing theory
on heavy-tail and long range dependence. In [9], the author finds out that all the ‘heavy-tail’
random variables used in computer and network simulations are truncated versions of their real
heavy-tail counterparts due to the limitations of computer hardware and softwares, and hence
they are not heavily tailed ones. So, by combining the findings in [9] and the theorem in the
current paper, we claim in [9] that the findings in [2, 3] are more close to practice but not to the
mathematical assumptions imposed in their models since their simulations are computer-based
ones.

To be convenient for readers, here we summarize some frequently used notations and ter-
minologies throughout the paper. First, we recall the definition of u.o.c. convergence. For a
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function f : [0,∞) → R and t ≥ 0, put

‖f‖t ≡ sup
0≤s≤t

|f(s)|,

then a sequence of functions fn : [0,∞) → R is said to converge uniformly on compact sets
(u.o.c.) to f if for each t ≥ 0, ‖fn−f‖t → 0 as n →∞. Second, we use Cb(R) to denote the set
of all bounded and continuous functions f and C(R) to denote the set of all continuous functions
over the real number space R, which are endowed with the uniform topology. Third, we use
DE [0,∞) to denote the Skorohod topological space, i.e., the space of E-valued functions that
are right continuous and have left-hand limits, which is endowed with the Skorohod topology
(see, e.g., [1, 12]). Fourth, we use i.i.d to denote independent and identically distributed, use a.s.
to denote almost surely, use ‘⇒’ to denote ‘converge in distribution’ or equivalently ‘converge
weakly’, and use ‘∼’ to denote ‘equals approximately’.

The rest of this paper is organized as follows. In Section 2, we formulate our model, and in
Section 3, we present our main theorems and they are proved in Section 4.

2 Queueing Model Formulation

In this section, we consider a queueing system with general service time distribution and with
N i.i.d. Poisson ON/OFF input sources. Concretely, a Poisson ON/OFF source n ∈ {1, .., N}
consists of independent strictly alternating ON- and OFF-periods, moreover, it transmits pack-
ets to a server according to a Poisson process with interarrival time sequence {un(i), i ≥ 1} and
rate λ if it is ON and remains silent if it is OFF. The lengths of the ON-periods are identically
distributed and so are the lengths of OFF-periods, and furthermore, both of their distributions
can be heavily tailed with infinite variance. Specifically, for any distribution F , we denote by
F = 1−F the complementary (or right tail) distribution, and by F1 and F2 the distributions for
ON- and OFF-periods with probability density functions f1 and f2 respectively. Their means
and variances are denoted by µi and σ2

i for i = 1, 2. In what follows, we assume that as x →∞,

either F i(x) ∼ x−αiLi(x) with 1 < αi < 2 or σ2
i < ∞, (2.1)

where Li > 0 is a slowly varying function at infinity, that is,

lim
x→∞

Li(tx)
Li(x)

= 1 for any t > 0.

Note that the mean µi is always finite but the variance σ2
i is infinite when αi < 2, and fur-

thermore, one distribution may have finite variance and the other has an infinite variance since
F1 and F2 are allowed to be different. The sizes of transmitted packets (service times) form
an i.i.d. random sequence {vN (i) = v(i)/µN , i ≥ 1}, where µN is the rate of transmission
corresponding to each N and {v(i) : i ≥ 1} is an i.i.d. random sequence with mean 1 and
variance σ2

v , moreover, {v(i) : i ≥ 1} is independent of the arrival processes.
To derive our queueing dynamical equation, we introduce more notations. For a single

source n ∈ {1, · · · , N}, it follows from the explanation in [22] that the alternating ON/OFF
periods can be described by a stationary binary process Wn = {Wn(t), t ≥ 0}: Wn(t) = 1
means that input traffic is in an ON-period at time t and Wn(t) = 0 means that input traffic
is in an OFF-period, and moreover, the mean of Wn is given by

γ = EWn(t) = P (Wn(t) = 1) = µ1/(µ1 + µ2). (2.2)

Let Tn(t) denote the cumulative amount of time which the nth source is ON during time interval
[0, t], that is,

Tn(t) =
∫ t

0

Wn(s)ds. (2.3)
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Let An(t) be the total number of packets arrived at the server from the nth source during [0, t],
namely,

An(t) = sup
{

m,

m∑

i=1

un(i) ≤ Tn(t)
}

, (2.4)

which exhibits long range dependence if σ1 and σ2 are not finite simultaneously (see, for instance,
[27]). Moreover, let AN (t) be the total number of packets transmitted to the server by time t
summed over all N sources, that is,

AN (t) =
N∑

n=1

An(t), (2.5)

and let SN (t) be the total number of packets that finished service at the server if her keep busy
in [0, t], that is,

SN (t) = sup{m,V N (m) ≤ t}, (2.6)

where

V N (m) =
m∑

i=1

vN (i). (2.7)

Then the queue length process QN (t) which is the number of packets including the one being
served at the server at time t can be represented by

QN (t) = AN (t)− SN (BN (t)), (2.8)

where we assume that the initial queue length is zero for convenience, BN (t) is the cumulative
amount of time that the server is busy by time t. In the following analysis, we will employ FIFO
and non-idling service discipline under which the server is never idle when there are packets
waiting to be served. Hence the total busy time can be represented as

BN (t) =
∫ t

0

I{QN (s) > 0}ds,

where I{·} is the indicator function. Finally, we introduce the below workload process which
measures the delay of a packet staying in the system,

LN (t) = V N (AN (t))−BN (t). (2.9)

3 Heavy Traffic Limit Theorems

We are interested in the behaviors of the queueing process QN (·) and the workload process LN (·)
under suitable scaling and under the condition that the load of the server closely approaches
the service capacity when the source number N gets large enough. In order to state our main
theorems, we introduce the below notations for convenience, which are adapted from [28]. When
1 < αi < 2, set ai = (Γ(2 − αi))/(αi − 1). When σ2

i < ∞, set αi = 2, Li ≡ 1 and ai = σ2
i /2.

Moreover, let

b = lim
x→∞

tα2−α1
L1(x)
L2(x)

.

If 0 < b < ∞ (implying α1 = α2 and b = lim
x→∞

L1(x)/L2(x)), set αmin = α1,

π2 =
2(µ2

2a1b + µ2
1a2)

(µ1 + µ2)3Γ(4− αmin)
and L = L2; (3.1)
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if, on the other hand, b = 0 or b = ∞,

π2 =
2µ2

maxamin

(µ1 + µ2)3Γ(4− αmin)
and L = Lmin, (3.2)

where min is the index 1 if b = ∞ (e.g. if α1 < α2) and is the index 2 if b = 0, max denoting
the other index.

3.1 Reflecting Gaussian Process as the Limit

Condition 3.1 (heavy traffic condition). For each N , let the service rate µN be given
by

µN = Nλγ + θ
√

N, (3.3)

where θ is some positive constant.

In addition, we need the below conditions on the distributions of F1 and F2:

Fi(x) (i = 1, 2) is absolutely continuous in terms of x; (3.4)
The density fi(x) (i = 1, 2) of Fi satisfies lim

x→0+
fi(x) < ∞. (3.5)

Before we state our main theorems, we define the scaling processes for each N as follows,

Q̃N (·) ≡ 1√
N

QN (·), L̃N (·) ≡ µN

√
N

LN (·). (3.6)

Theorem 3.1. Under conditions (3.3)–(3.5) and as N →∞, both Q̃N (·) and L̃N (·) converge
in distribution under Skorohod topology to a reflecting Gaussian process Q̃(·) given by

Q̃(·) = Ã(γ·) + λT̃ (·)− S̃(λγ·)− θ ·+Ĩ(·) ≥ 0, (3.7)

where the three processes Ã(γ·), S̃(λγ·) and T̃ (·) are independent each other, and furthermore,
Ã(γ·) is a Brownian motion with mean zero and variance function λγ·, S̃(λγ·) is also a Brow-
nian motion with mean zero and variance function λγσ2

v · , T̃ (·) is a Gaussian process with a.s.
continuous sample paths, mean zero and stationary increments, whose covariance and variance
functions satisfy

Cov(T̃ (t), T̃ (s)) =
1
2
(
Var(T̃ (t)) + Var(T̃ (s))−Var(T̃ (t− s))

)
, (3.8)

Var(T̃ (t)) ∼
{

π2t2HL(t) as t →∞ for 1 < αmin < 2,

π2t as t →∞ and αmin = 2,
(3.9)

where H is the Hurst parameter given by H = (3 − αmin)/2. Moreover, Ĩ(·) in (3.7) is a
non-decreasing process with Ĩ(0) = 0 and satisfies

∫ ∞

0

Q̃(s)dĨ(s) = 0.

Remark 3.1. More discussions about reflected Gaussian processes, readers are referred to
[29]. From the theorem, we have the following observations. When 1 < αmin < 2, we have
that 1/2 < H < 1 which implies that the process T̃ (·) exhibits long range dependence. When
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αi = 2 for i = 1, 2, the ON- and OFF-periods both have finite variance and hence we have
that H = 1/2 and L = 1, which imply that T̃ (·) exhibits short range dependence. Finally, the
results given in the theorem can be considered as a kind of extension of Little’s formula for
M/M/1 queueing model or considered as satisfying certain state space collapse property.

3.2 Reflecting Fractional Brownian Motion as the Limit

In this subsection, we suppose that at least one of σ2
i (i = 1, 2) is infinite. To further discussion,

we need to introduce another time-scaling parameter R and assume that N = N(R) goes to
infinite as R → ∞. Moreover, we assume that N is taken to satisfy the below fast growth
condition (and see more discussion in [22])

NRFL(R) →∞ as R →∞, (3.10)

where FL = F i if L = Li and L is defined in (3.1) and (3.2). Notice that (3.10) implies
NR1−αminL(R) →∞.

Condition 3.2 (heavy traffic condition). For each N and R, let the service rate µR be
given by

µR = Nλγ + θ
(
NR1−αminL(R)

)1/2
, (3.11)

where θ is some positive constant.
Next, let dR be the normalization sequence given by

dR = (NR3−αminL(R))1/2, (3.12)

and define

Q̃R(·) ≡ 1
dR

QN (R·), L̃R(·) ≡ µR

dR
LN (R·). (3.13)

Theorem 3.2. Assuming that conditions (3.10) and (3.11) hold, then as R →∞, both Q̃R(·)
and L̃R(·) converge in distribution under Skorohod topology to a process Q̃H(·) given by

Q̃H(·) = λπBH(·)− θ ·+ĨH(·) ≥ 0, (3.14)

where BH(·) is a standard FBM, and ĨH(·) is a non-decreasing process with Ĩ(0) = 0 and
satisfies ∫ ∞

0

Q̃H(s)dĨH(s) = 0.

Remark 3.2. Standard FBM is a mean zero Gaussian process with a.s. continuous sample
paths and whose covariance structure is as follows

Cov(BH(t), BH(s)) =
1
2
(|t|2H + |s|2H − |t− s|2H

)
.

4 Proof of Main Theorems

Let TN (t) be the total cumulative amount of ON time summed over all N sources, that is,

TN (t) ≡
N∑

n=1

Tn(t) =
∫ t

0

WN (s)ds, (4.1)
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where WN (·) is the superposition of Wn(·) for n = 1, · · · , N , that is, for each t ∈ [0,∞),

WN (t) =
N∑

n=1

Wn(t). (4.2)

Moreover, let A(t) denote the cumulative number of arrival packets to the server during the
time interval [0, t], that is,

A(t) = sup
{

m :
m∑

i=1

u(i) ≤ t
}

, (4.3)

where {u(i), i = 1, 2, · · ·} is an exponentially distributed random sequence with mean value 1/λ,
which is independent of all processes mentioned before. Then we have the below lemma.

Lemma 4.1. The stochastic processes AN (·) in (2.5) and A(TN (·)) in (4.3) have the same
distribution.

Proof. To show that AN (·) and A(TN (·)) have the same distribution, it suffices to show
that they have the same finite-dimensional distribution for an arbitrary positive integer k and
arbitrary numbers t1, · · · , tk ∈ [0,∞) according to Proposition 2.2 in [17].

Notice that the process WN (·) in (4.2) takes values in the set N = {0, 1, · · · , N} and has
the piecewise constant sample paths given by

x(t) =
M∑

i=1

ni−1I{si−1 ≤ t < si}, ni−1 ∈ N , ni−1 6= ni, (4.4)

where s0, s1, · · · , sM with s0 = 0 and sM = ∞ is a partition of the interval [0,∞) and M is a
positive integer or infinite. Then we use DN [0,∞) to denote the set of all of these functions
defined in (4.4). Obviously, it is a subset of the Skorohod topological space DE [0,∞). Under the
same topology, DN [0,∞) becomes a measurable space in its own right when endowed with the
Borel σ-field A∩B = {A∩B, B ∈ B} where B is the Borel σ-field in DE [0,∞) (see, for example,
[17]). Then there is a probability distribution FN (·) on DN [0,∞) for the process WN (·) in
(4.2), which is uniquely determined by the length distributions of ON- and OFF-periods and
the source number N (here, for our purpose, we will not derive the explicit expression of FN (·)).

Basing on the above observation, we first consider the one-dimensional case. For each t ≥ 0
and each nonnegative number m, it follows from the independent and stationary increment
properties of Poisson process that

P{AN (t) = m} =
∫

DN [0,∞)

{ c∑

i=1

Nniλ(∆si) = m|WN (·) = x(·)
}

FN (dx),

where x(·) is a sample path as defined in (4.4), Nniλ(∆si) is the number of arrival packets for the
Poisson process with arrival rate niλ during the time interval ∆si = min{si, t}−min{si−1, t} for
i ∈ {1, · · · ,M}, and the integer c is given by c = 1 + sup{i : si < t}. Then by the independent
and stationary increment properties again, we have,

P{AN (t) = m}

=
∫

DN [0,∞)

P
{ N∑

i=0

Niλ(∆si) = m|WN (·) = x(·)
}
FN (dx)

=
∫

DN [0,∞)

P
{ N∑

i=1

Nλ(i∆si) = m|WN (·) = x(·)
}

FN (dx)
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=
∫

DN [0,∞)

P
{
Nλ(τN (t)) = m|WN (·) = x(·)}FN (dx)

=P{A(TN (t)) = m},
where ∆si is the summation of time intervals during which the arrival rate for the associated
Poisson process is iλ, and τN (t) is the total cumulative amount of ON time from all N sources
up to time t along the sample path x(·).

Secondly, we consider the two-dimensional case (we will omit the discussion for more higher-
dimensional cases since they are similar). For any t1, t2 ∈ [0,∞) with t1 < t2, and nonnegative
integers m1 and m2, it follows from the independent and stationary increment properties and
the definition of conditional probability that

P{AN (t1) = m1, A
N (t2) = m2}

=
∫

DN [0,∞)

P{AN (t1) = m1|WN (·) = x(·)}

· P{AN (t2 − t1) = m2 −m1|WN (·) = x(·)}FN (dx)

=
∫

DN [0,∞)

P{Nλ(τ(t1)) = m1|WN (·) = x(·)}

· P{Nλ(τ(t2 − t1)) = m2 −m1|WN (·) = x(·)}FN (dx)
=P{A(TN (t1)) = m1, A(TN (t2)) = m2},

where τ(t2 − t1) is the total cumulative amount of ON time from all N sources during time
interval [t1, t2) along the path x(·). Hence we have proved that AN (·) and A(TN (·)) have the
same distribution. 2

4.1 Proof of Theorem 3.1

First of all, we define some scaled and centered processes. For each t ≥ 0 and N ≥ 1, let

Ã
N

(t) ≡ 1√
N

(A(Nt)− λNt), (4.5)

S̃N (t) ≡ 1√
N

(SN (t)− µN t), (4.6)

T̃N (t) ≡ 1√
N

(TN (t)− γNt) =
∫ t

0

1√
N

N∑
n=1

(Wn(s)− γN)ds. (4.7)

Then we have the following lemma.

Lemma 4.2. There exist three independent processes Ã(·), S̃(λγ·) and T̃ (·) such that

(Ã
N

(·), S̃N (·), T̃N (·)) ⇒ (Ã(·), S̃(λγ·), T̃ (·)) as N →∞, (4.8)

where Ã(·) is a Brownian motion with mean 0 and variance function λ·, S̃(λγ·) is a Brownian
motion with mean zero and variance function λγσ2

v ·, T̃ (·) is a Gaussian process with stationary
increments, mean 0, stationary increments, whose covariance and variance functions are as
given in (3.8)–(3.9).

Proof. First of all, it follows from Functional Central Limit Theorem (e.g., [5]) that

Ã
N

(·) ≡ 1√
N

(A(N ·)− λN ·) ⇒ Ã(·), (4.9)
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where Ã(·) is a Brownian motion with mean zero and variance λ·.
Secondly, for each t ≥ 0, we have,

S̃N (t) =
1√
N

(sup{k : vN (1) + · · ·+ vN (k) ≤ t} − µN t)

=
1√
N

(sup{k : v(1) + · · ·+ v(k) ≤ µN t} − µN t)

=
1√
N

(SN
1 (NµN

1 t)−NµN
1 t),

where in the last equation, µN
1 is given by

µN
1 = λγ +

θ√
N

,

and SN
1 (·) is the counting process corresponding to the i.i.d. normalized random sequence

{v(i), i ≥ 1} with mean 1 and variance σ2
v . It is obvious that µN

1 → λγ as N → ∞. Then by
Functional Central Limit Theorem (e.g., [5]), we have

S̃N (·) ⇒ S̃(λγ·) as N →∞,

where S̃(λγ·) is a Brownian motion with mean zero and variance function λγσ2
v ·.

Thirdly, it follows from conditions (3.4)–(3.5) and Corollary 3.1 in [11] that the below
convergence in distribution is true

W̃N (·) ≡ 1√
N

N∑
n=1

(Wn(·)− γN) ⇒ W̃ (·), (4.10)

where W̃ (·) is a stationary centered Gaussian process with a.s. continuous sample paths (by
[14] since Wn(t) is stochastically continuous) and covariance function η(·) which satisfies (see
the proof of Theorem 1 in [28] for details),

Var
(∫ t

0

W̃ (u)du
)

= 2
∫ t

0

∫ v

0

η(u)dudv, (4.11)

which has the expression as in (3.9). By Skorohod representation theorem (see, for example,
[12]), we can assume that the convergence in (4.10) is u.o.c. Then we have

T̃N (·) =
∫ ·

0

W̃N (s)ds →
∫ ·

0

W̃ (s)ds ≡ T̃ (·) u.o.c. as N →∞.

Thus by the definition of weak convergence on C[0,∞) (see, for example, [29]), Skorohod
representation theorem and Proposition 14.6 in [17], the above u.o.c. convergence implies weak
convergence. Now, we show that T̃ (·) is a Gaussian process. Due to (4.11) and Theorem 7
in [13, p.128], W̃ (·) is mean square integrable in any given finite interval [0, T ], and therefore
it follows from Theorem 3 in [13, p.142] that T̃ (·) is a Gaussian process in [0, T ]. Since for
any given n ∈ {1, 2, · · · , } and any given t1, · · · , tn ∈ [0,∞), we can find an T1 < ∞ such that
t1, · · · , tn belong to the common interval [0, T1]. Hence the joint distribution of T̃ (t1), · · · , T̃ (tn)
is normal. Thus we can conclude that T̃ (·) is a Gaussian process in [0,∞), whose variance
function is as shown in (4.11). Since W̃ (·) is stationary, T̃ (·) has stationary increments and its
covariance function is given by the expression in (3.8) due to Proposition 1(b) in [6].



816 W.Y. DAI

Finally, by the independence assumptions and definitions of related processes, we know that

the three processes Ã
N

(·), S̃N (·) and T̃N (·) are independent each other for each N . Thus we
can conclude that Ã(·), S̃(λγ·) and T̃ (·) are independent each other. Hence we finish the proof
of the lemma. 2

To complete the proof of the theorem, for each t ≥ 0, we rewrite (2.8) as the summation of
centered processes and regulated non-decreasing process as follows,

QN (t) = XN (t) + IN (t), (4.12)

where

XN (t) = (AN (t)− λγNt)− (SN (BN (t))− µNBN (t))−
√

Nθt,

IN (t) = µN

∫ t

0

I{QN (s) = 0}ds.

The process IN (·) is non-decreasing process and can increase only when the queue length process
QN (·) reaches zero due to the non-idling service discipline and the fact that QN (t) ≥ 0 for all
t ≥ 0.

Lemma 4.3.

X̃N (·) ≡ 1√
N

XN (·) ⇒ X̃(·) = Ã(γ·) + λT̃ (·)− S̃(λγ·)− θ · as N →∞,

where Ã(γ·) is a Brownian motion with mean 0 and variance function λγ·.
Proof. First of all, we prove the following claim to be true

ẼN (·) ≡ 1√
N

(AN (·)− λγN ·) ⇒ Ã(γ·) + λT̃ (·) as N →∞.

In fact, by Lemma 4.1, it suffices to prove the following claim,

1√
N

(A(TN (·))− λγN ·) ⇒ Ã(γ·) + λT̃ (·) as N →∞,

and it is a direct conclusion of Lemma 4.2 and Corollary 13.3.2 of [29]. Thus, by Lemma 4.2
and the independence assumption, we have the below joint weak convergence

(ẼN (·), S̃N (·)) ⇒ (Ã(γ·) + λT̃ (·), S̃(λγ·)). (4.13)

Moreover, by Skorohod representation theorem, we can assume that the above convergence is
u.o.c. a.s. Thus it follows from (4.13) that

( 1
N

AN (·), 1
N

SN (·)
)
→ (λγ·, λγ·) u.o.c. a.s. (4.14)

Then, due to (4.14), the conditions stated in Theorem 6.5 of [5] are satisfied. So, by the same
theorem of [5], we know that, for each t ≥ 0 and as N →∞,

max
0≤s≤t

|BN (s)− s| → 0. (4.15)
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Therefore, by the above discussions and the fact that the associated limiting processes have a.s.
continuous sample paths, we have

∥∥X̃N (·)− X̃(·)
∥∥

t

≤
∥∥ẼN (·)− Ã(γ·) + λT̃ (·)

∥∥
t
+

∥∥S̃N (BN (·))− S̃(λγBN (·))
∥∥

t

+
∥∥S̃(BN (·))− S̃(λγ·)∥∥

t

≤∥∥ẼN (·)− Ã(γ·) + λT̃ (·)∥∥
t
+

∥∥S̃N (·)− S̃(λγ·)∥∥
t

+
∥∥S̃(BN (·))− S̃(λγ·)∥∥

t

→0 a.s. as N →∞,

where in the second inequality, we used the fact that BN (t) ≤ t for each t ≥ 0 and in the last
claim, we also used the fact that S̃(·) is continuous. Thus

X̃N (·) → X̃(·) u.o.c. a.s. as N →∞.

Hence by Proposition 5.3 in Chapter 3 of [12], the lemma is proved. 2

Next, similar to the discussion as in (4.12), let

Ṽ N (t) =
1√
N

(µNV N (t)− t), (4.16)

and rewrite (2.9) as the summation of centered processes and regulated non-decreasing process
as follows,

µNLN (t) = ZN (t) + IN (t), (4.17)

where
ZN (t) = (µNV N (AN (t))−AN (t)) + (AN (t)−Nλγt)−

√
Nθt.

Then we have the following lemma.

Lemma 4.4.

(Ṽ N (·), Ã
N

(·), T̃N (·)) ⇒ (Ṽ (·), Ã(λγ·), T̃ (·)) as N →∞, (4.18)

where Ṽ (·), Ã(·) and T̃ (·) are independent Brownian motions, moreover, Ṽ (·) is of mean zero
and variance function σ2

v ·, Ã(·) and T̃ (·) are given as before. Moreover,

Z̃N (·) ≡ 1√
N

ZN (·) ⇒ X̃(·) = Ã(γ·) + λT̃ (·)− S̃(λγ·)− θ · as N →∞. (4.19)

Proof. By applying Functional Central Limit Theorem and the same explanation as in Lemma
4.2, one can prove the convergence stated in (4.18). Then it follows from (4.18), Lemma 4.1
and random time change theorem that

Z̃N (·) ≡ 1√
N

ZN (·) ⇒ Ṽ (λγ·) + Ã(γ·) + λT̃ (·)− θ · as N →∞.

Notice that Ṽ (λγ·) and −S̃(λγ·) have the same distribution, we can conclude that the claim
stated in (4.19) is true. 2

Proof of Theorem 3.1 Once the above lemmas are obtained, we can go over the following
standard procedure to finish the proof of the theorem. By Skorohod representation theorem,
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we suppose that the convergence in Lemma 4.3 is u.o.c. Then, by (4.12) and according to
Theorem 6.1 in [5], there uniquely exist a pair of regulated mappings φ and ψ, which are
continuous, such that for each t ≥ 0,

ĨN (t) =
1√
N

IN (t) = φ(X̃N (t)) = sup
0≤s≤t

(X̃N (s))−,

Q̃N (t) =
1√
N

QN (t) = ψ(X̃N (t)) = X̃N (t) + φ(X̃N (t)) ≥ 0,

where x−(s) = max{−x(s), 0}. Then by continuous mapping theorem and Lemma 4.3, we have,
as N →∞,

IN (·) → Ĩ(·) ≡ φ(X̃(·)) a.s. u.o.c., (4.20)

Q̃N (·) → Q̃(·) ≡ ψ(X̃(·)) ≥ 0 a.s. u.o.c. (4.21)

Obviously, Ĩ(·) and Q̃(·) have a.s. continuous sample paths, and moreover, Ĩ(·) is non-decreasing
with Ĩ(0) = 0. Since Q̃N (t) ≥ 0 and IN (t) increases only at times t such that Q̃N (t) = 0, we
have for each T > 0, ∫ T

0

Q̃N (t) ∧ 1dĨN (t) = 0. (4.22)

Define
f : x ∈ R → f(x) = x ∧ 1.

Clearly, we have f ∈ Cb(R). Then by (4.20), (4.21), (4.22) and Lemma 8.3 in [8], we have

∫ T

0

Q̃(t) ∧ 1dĨ(t) = 0 for all T > 0.

Hence Ĩ(·) increases only at times t such that Q̃(t) = 0.
Finally, by Lemma 4.4 and the same procedure as above, one can prove the weak convergence

for the processes of L̃N (·) as N →∞. 2

4.2 Proof of Theorem 3.2

Lemma 4.5 Let β = 1− αmin/2. Then, as T →∞, we have,

U(T ) ≡ T βL(T )1/2 →∞, (4.23)

V (T ) ≡ Tαmin/2−1/2/L(T )1/2 →∞. (4.24)

Proof. Since L(T ) is a slowly varying function and 1 < αmin < 2, we know that U(T ) is a
regularly varying function with index 0 < β < 1/2, that is, for x > 0,

lim
T→∞

U(Tx)
U(T )

= xβ .

Then, take 0 < ε < β, it follows from Proposition 0.8 in [25] that there is a fixed T0 such that
for x ≥ 1 and T ≥ T0, we have

U(Tx) > (1− ε)xβ−εU(T ).
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Let x →∞ in the above inequality, we know that (4.23) is true.
Similarly, V (T ) is a regularly varying function with index 0 < αmin/2− 1/2 < 1/2, then by

the same reason as above, we know that (4.24) holds. 2 2

Now for each t ≥ 0, we rewrite (3.13) as the summation of centered processes and regulated
non-decreasing process as follows,

Q̃R(t) = XR(t) + IR(t), (4.25)

where

XR(t) =
1

dR
(AN (Rt)− λγNRt)− 1

dR
(SN (BN (Rt))− µRBN (Rt))− θt,

IR(t) =
µR

dR
Y N (Rt) =

RµR

dR

∫ t

0

I{Q̃R(s) = 0}ds.

The process IR(·) is non-decreasing process and can increase only when the queue length process
Q̃R(·) reaches zero due to the non-idling service discipline.

Lemma 4.6. For each N and R and under conditions (3.10) and (3.11), we have, as R →∞,
XR(·) converges weakly to a process X̃(·), that is,

XR(·) ⇒ X̃(·) = λπBH(·)− θ· (4.26)

where π and BH(·) are given in Theorem 3.2.

Proof. Due to Lemma 4.1, it suffices to prove the below facts, as R →∞,

1
dR

A(TN (R·))− 1
dR

µRR·

=
1

dR
(A(TN (R·))− λTN (R·)) +

1
dR

λ(TN (R·)− γNR·)− θ·
⇒λπBH(·)− θ·, (4.27)

and
1

dR

(
SN (BN (R·))− µRBN (R·)) ⇒ 0. (4.28)

As a matter of fact, notice that from the proof of Theorem 1 in [28], we know that the
process Tn(·) defined in (2.3) has variance

Var(Tn(t)) ∼ π2t3−αminL(t) as t →∞.

Then it follows from condition (3.10) and a similar proof as used in justifying Theorem 4 in
[22] that the below weak convergence in the space C[0,∞) is true,

T̃R(·) ≡ 1
dR

(TN (R·)− γNR·) ⇒ πBH(·) as R →∞, (4.29)

where BH is standard fractional Brownian motion with H = (3 − αmin)/2 and π is given in
(3.1) and (3.2).

Next, by Functional Central Limit Theorem (see, for example, [5]), we have that

Ã
R

(·) ≡ 1
(NR)1/2

(A(NR·)− λNR·) ⇒ ξa(·) as R →∞, (4.30)
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where the weak convergence is in the Skorohod topology and ξa(·) is a Brownian motion with
mean zero and variance λ.

Moreover, for each t ≥ 0, we have,

S̃R(t) ≡ 1
(NR)1/2

(SN (Rt)− µRRt)

=
1

(NR)1/2
(sup{k : v(1) + · · ·+ v(k) ≤ µRRt} − µRRt)

=
1

(NR)1/2
(SN

1 (NRµR
1 t)−NRµR

1 t),

where in the last equation, µR
1 is given by

µR
1 = λγ + (R1−αminL(R))1/2θ,

and SN
1 (·) is the counting process corresponding to the i.i.d. normalized random sequence

{v(i), i ≥ 1} with mean 1. Moreover, by Lemma 4.5, we have that

µR
1 → λγ as R →∞.

Then by Functional Central Limit Theorem, we have

S̃R(·) ⇒ ξs(λγ·) as R →∞, (4.31)

where ξs(λγ·) is a Brownian motion with mean zero and variance λγσ2
v .

Now notice the independent assumption among the processes Ã
R

(·), S̃R(·) and T̃R(·), and
the properties that Brownian motion and fractional Brownian motion have a.s. continuous
sample paths, then by Skorohod representation theorem (see, for example, [12]), we can and
will assume that the convergence in (4.29)–(4.31) is u.o.c. Thus, by Lemma 4.5 and for each
t ≥ 0, as R →∞,

∥∥∥ 1
NR

(TN (R·)− γNR·)
∥∥∥

t

=
1

N1/2V (R)

∥∥∥ 1
dR

(TN (R·)− γNR·)
∥∥∥

t
→ 0 a.s.,

which implies that as R →∞,

TR
1 (·) ≡ 1

NR
TN (R·) → γ · a.s. u.o.c. (4.32)

Therefore, by (4.30), (4.32), Random Change of Time Theorem in [1] and Lemma 4.5, we have

1
dR

(A(TN (R·))− λTN (R·))

=
1

U(R)(NR)1/2
(A

N
(NRTR

1 (·))− λNRTR
1 (·)) → 0 a.s. u.o.c. (4.33)

Next, notice that, for each t ≥ 0,

BR
1 (t) ≡ BN (Rt)

R
≤ t.
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Then, it follows from (4.31) and Lemma 4.5 that

∥∥∥ 1
dR

(SN (BN (Rt))− µRBN (Rt))
∥∥∥

t

=
1

U(R)

∥∥∥ 1
(NR)1/2

(SN (RBN
1 (·))− µRRBN

1 (·))
∥∥∥

t

≤ 1
U(R)

∥∥∥ 1
(NR)1/2

(SN (R·)− µRR·)
∥∥∥

t
→ 0 a.s.

Thus, we have, as R →∞,

1
dR

(SN (B
N

(R·))− µRB
N

(R·)) → 0 a.s. u.o.c. (4.34)

Hence by (4.29), (4.33) and (4.34), as R → ∞, the convergence stated in (4.27) and (4.28) is
true. 2

The remaining proof of Theorem 3.2 is similar to that used in justifying Theorem 3.1. Hence
we omit it here.
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