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We study the stochastic optimal control for an assemble-to-order system with
multiple products and components that arrive at the system in random batches and
according to renewal reward processes. Our purpose is to maximize expected
infinite-horizon discounted profit by selecting product prices, component
production rates, and a dynamic sequencing rule for assembly. We refine the
solution of some static planning problem and a discrete review policy to batch
arrival environment and develop an asymptotically optimal policy for the system
operating under heavy traffic, which indicates that the system can be approximated
by a diffusion process and exhibits a state space collapse property.

1. INTRODUCTION

An assemble-to-order (ATO) system is a system to hold inventories of components
that can be rapidly assembled into a wide variety of end products in response to cus-
tomer orders. With the rapid development of global supply chains, such systems
become widely accepted models in the manufacturing industry and lead to an
active area of research (readers are referred to Song and Zipkin [12] and Plambeck
and Ward [8] for a review of the literature on ATO systems). In an ATO system,
pricing, capacity management, and dynamic execution are very challenging.
Authors such as Kushner [7] and Plambeck and Ward [8] proposed resolving
these stochastic control and optimal control problems in an integrated fashion
through diffusion approximations for the systems under heavy traffic, which is in
contrast to most of the research in this area, by assuming that the inventory of each
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component is managed independently without regard for the inventory positions of
other components.

The current article deals with a more practical and general ATO system, which
incorporates batch demand and supply into the framework of [8]. The main objective
of the article is to show how to set product prices, component production capacities,
the dynamically sequencing rule for assembly and to manage component inventory, in
order to asymptotically maximize expected infinite-horizon discounted profit in the
batch demand and supply environment. Our asymptotically optimal policy is
designed by refining a static planning problem and a discrete review scheduling
rule developed in [8] to the system with batch arrivals. In showing that our policy
is asymptotically optimal, we need to refine functional limit theorems and justify a
uniformly integrable property related to certain extreme value processes for a
sequence of scaled and centered renewal reward processes. Then, by employing
these results, we can establish a state space collapse property, a heavy-traffic limit
theorem, and, finally, prove the asymptotical optimality of our proposed policy
along the line of [8].

The rest of the article is organized as follows. In Section 2, we describe our model.
In Section 3, we design our asymptotically optimal policy and present our main
theorem, which are justified in Section 4. Finally, in the Appendix, we provide the
proof of a lemma.

2. THE MODEL

In our ATO system, there are J different components that are assembled into K
different products. Product k [ f1, . . . , Kg requires a positive, integer amount of
type j [ f1, . . . , Jg components equal to akj (akj . 0 for at least one j ).
Assembly is instantaneous, given the necessary components. At time t ¼ 0, the
product price vector p ¼ ( p1, . . . , pK)0 and the component production capacity
vector g ¼ (g1, . . . , gJ)0 are chosen. Then, for the given p, orders for product k
arrive in the system in random batches and follow a renewal reward process; that
is, the cumulative number of orders for product k that arrive before time t can be
denoted by

Ok(t) ¼
XNo

k (t)

i¼1

j k
i ; k ¼ 1; . . . ;K; (2:1)

where Nk
o(t) is a renewal process with rate lk ; lk( p),

No
k (t) ¼ maxfm � 0; xk(m) � lktg; xk(m) ¼

Xm

i¼1

xk(i); (2:2)

and fxk(i), i ¼ 1, 2, . . .g (k ¼ 1, . . . , K ) are K independent i.i.d. (independent and
identically distributed) sequences of mean 1 nonnegative random variables
having Var(xk(1)) ¼ s2

No;k. The distributions of xk(1) (k ¼ 1, . . . , K ) are all
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assumed to have an increasing failure rate (IFR), which implies that the nth moment
of any of the random variables is finite. ji

k in (2.1) denotes the size of the ith arrival
batch. For each k, the integer-valued random sequence fji

k, i ¼ 1, 2, . . . g is i.i.d.,
with mean ek

o and variance vo,k
2 . We further assume that 1 � ji

k � uk
o and the batch

sizes are independent among different products.
For components of type j, there is an associated unit production cost cj . 0 paid

upon the delivery of the component and a physical holding cost hj . 0 per unit
time (we assume that component inventory incurs a linear physical holding cost).
Components of type j arrive in the system also in random batches and obey a
renewal reward process; that is, the cumulative number of components of type j
that arrive before time t can be denoted by

Cj(t) ¼
XNc

j (t)

i¼1

h
j
i; j ¼ 1; . . . ; J; (2:3)

where Nj
c(t) is a renewal process with rate gj; that is,

Nc
j (t) ¼ maxfm � 0;Yj(m) � gjtg; Yj(m) ¼

Xm

i¼1

yj(i); (2:4)

and fyj(i), i ¼ 1, 2, . . . g ( j ¼ 1, . . . , J ) are J independent i.i.d. sequences of mean 1
nonnegative random variables having Var( yj(1)) ¼ s2

Nc, j; the distributions of yj(1)
( j ¼ 1, . . . , J ) are all assumed to have an IFR. h i

j in (2.3) is the size of the ith
arrival batch. For each j, the integer-valued random sequence fh i

j, i ¼ 1, 2, . . . g is
i.i.d., with mean ej

c and variance v2
c,j. We further assume that 1 � h i

j � uj
c and that

the batch sizes are independent of the arrivals of orders and other components.
Now, we will dynamically determine when and in what sequence to assemble out-

standing product orders (where we assume that orders leave the system not in batch,
but in product). For orders of different products, we will adopt some priority sequen-
cing rule for assembly that will be elaborate later, and for orders of the same product,
they will be filled on the basis of first-in first-out (FIFO). Thus, if Ak(t) denotes the
cumulative number of type k orders assembled in [0, t], the order queue lengths at
time t is given by

Qk(t) ; Ok(t)� Ak(t); k ¼ 1; . . . ;K; (2:5)

and the component inventory levels at time t are

Ij(t) ; Cj(t)�
XK

k¼1

akjAk(t); j ¼ 1; . . . ; J: (2:6)

The objective for the above system is to maximize the below expected infinite-horizon
discounted profit by choosing an admissible policy u ¼ ( pu, gu, Au) under the
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condition of high production volume:

P ;
XK

k¼1

ð1

0
pke�dt dAk(t)�

XJ

j¼1

ð1

0
e�dt(cj dCj(t)þ hjIj(t) dt); (2:7)

where an admissible policy u ¼ ( pu, gu, Au) specifies the product prices, component
production capacity, and the sequencing rule for assembly. We require that pu and gu

be nonnegative vectors. Also, the process Au is integer-valued, nondecreasing, and
nonanticipating and has Au(2t) ¼ 0 for all t . 0.

A high-volume condition is defined according to a sequence of systems that are
indexed by n [ f1, 2, . . .g: Batch arrival rates tend to infinity in a manner that pre-
serves the structure of the batch demand functions; that is,

ln
k (p) ; nlk(p); k ¼ 1; . . . ;K:

In the sequel, when we wish to refer to any process or other quantity associated with
the ATO system having batch arrival rate function ln, we superscript the proper
symbol by n, such as Pn. An admissible policy refers to an entire sequence, u ¼
(pu

n, g u
n, Au

n) (with lu,k
n ; lk

n( pu
n)) that specifies an admissible policy for each n.

Therefore, our objective is to find such a policy that maximizes the expected P

defined in (2.7) asymptotically in a certain sense as n!1.

3. THE ASYMPTOTICALLY OPTIMAL POLICY AND MAIN THEOREM

Our asymptotically optimal policy can be proposed through two stages: solving a
static planning problem to yield a first-order approximation to the optimal prices
and production capacities, and designing a discrete review policy that minimizes
instantaneous financial holding costs at each review point by distributing components
to product orders.

3.1. The Static Planning Problem

In our proposed policy, optimal prices and production capacities are determined based
on the solution of the following static programming problem:

�p(u) ; max
p�0;g�0

XK

k¼1

pklk(p)eo
k �

XJ

j¼1

cjgje
c
j ; (3:1)

subject to

XK

k¼1

akjlk(p)eo
k � (gj þ uj)e

c
j ; j ¼ 1; . . . ; J; (3:2)

for a fixed u [ R J.
To discuss the existence and uniqueness of the solution of the problem described by

(3.1) and (3.2), we need a few standard assumptions on the batch demand function l.
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First, l( p) is a continuously differentiable function, and the Jacobian matrix [@lk( p)/
@pm]k,m¼1, . . . ,K is nonsingular everywhere. Second, batch demand for any one
product is strictly decreasing in the price of that product but is nondecreasing in
the price of any other product; so, @lk( p)/@pk , 0 and @lk( p)/@pm � 0, m = k.
Third, batch demand for each product decreases when all products’ prices increase
by the same amount; so

P
m¼1
K @lk( p)/@pm , 0, k ¼ 1, . . . , K. Hence, we can

further assume that the revenue rate

r(l) ;
XK

m¼1

lkpk(l)eo
k (3:3)

is strictly concave, where p is the unique inverse function of l by Lemma 1 in [8].

LEMMA 3.1: If u ¼ 0, there is a unique solution (p*, g*) to the static programming
problem (3.1)–(3.2), which satisfies

p�k .
XJ

j¼1

akjcj . 0 for every k ¼ 1; . . . ;K and g� . 0:

If uj � gj
* for j ¼ 1, . . . , J, the perturbed problem (3.1)–(3.2) has a unique optimal

solution ( p*(u), g*(u)) such that

p�(u) ¼ p�; g�(u) ¼ g� � u; and �p(u)� �p ¼
XJ

j¼1

cjuje
c
j ;

where p̄ ¼ p̄(0).

Lemma 3.1 is a generalization of Lemma 2 in [8] and its proof is provided in the
Appendix.

3.2. The Discrete-Review Policy for Assembly

The discrete-review policy employed for assembly release orders at review time
points l, 2l, 3l, . . . and does nothing at all other times, which can be described as
follows: Given the number of orders assembled by time (i 2 1)l, A*((i 2 1)l ) with
A*(0) ¼ 0, and the shortage of each component Sj(il) with the corresponding shortage
process defined as

Sj(t) ;
XK

k¼1

akjOk(t)� Cj(t) ¼
XK

k¼1

akjQk(t)� Ij(t); j ¼ 1; 2; . . . ; J: (3:4)

Then at each review time point il for i [ f1, 2, . . .g, we allocate available inventory to
product orders in order to minimize instantaneous holding costs, where we assume
that assembly is instantaneous. Concretely, at time point t ¼ il, we solve the following
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linear program:

min
Q(t)�0;I(t)�0

d
XK

k¼1

p�kQk(t)þ
XJ

j¼1

hjIj(t) (3:5)

subject to

Ij(t) ;
XK

k¼1

akjQk(t)� Sj(t) � 0; j ¼ 1; 2; . . . ; J; (3:6)

O(t)� Q(t) � A�((i� 1)l) (3:7)

to get a suitable optimal solution (Q*(t), I*(t)), as explained in [8]. Then, the assembly
policy at time point il can be proposed recursively as follows:

A�(il) ¼ O(il)� Q�(S(il);O(il);A�((i� 1)l); i ¼ 1; 2; . . . (3:8)

In the sequel, we assume that the vector ( p1
* þ

P
j¼1
J hja1j, . . . , pk

* þ
P

j¼1
J hjaKj) is

not parallel to the vector (a1j, . . . , aKj) for any j ¼ 1, . . . , J; hence, there is a unique
solution (q*(S ), i*(S)) to the linear program (3.5)–(3.6) for every feasible S (see [8]
for more discussions).

3.3. The Proposed Asymptotically Optimal Policy and Main Result

Let Bu be a J-dimensional Brownian motion with drift u and covariance matrix G

whose (i, j)th entry is given by

Gi;j ;
XK

k¼1

akiakj(s
o
k )2 þ (s c

j )2Ifi¼jg; (3:9)

where s o
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�kv

2
o;k þ (eo

k)2(l�k )3s 2
No;k;

q
s o

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �j v2

c;j þ (ec
j )2(g �j )3s 2

Nc;j

q
, and l* ¼

l(p*). Define the limiting cost of queuing and holding inventory as follows:

H(u) ; E

ð1

0
e�dt

XK

k¼1

p�kdq�k (Bu(t))þ
XJ

j¼1

hji
�
j (Bu(t))

 !
dt

" #
(3:10)

and find a maximizer

u� ¼ argmax d�1
XJ

j¼1

cjuj �H(u)

 !
: (3:11)

The existence of such a maximizer is guaranteed due to Lemmas 5 and 6 in [8].
Under the high-volume condition and in the nth system, if prices are exactly p*,

component production capacities are g* 2 n21/2u*, and the discrete-review policy
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A*
n corresponds to the review period length

ln ¼ (1=jnl�j)2=3; (3:12)

with j.j being the Euclidean norm, then the policy * ¼ ( p*, g* 2 n21/2u*, A*
n) is

asymptotically optimal in high volume, which can be described in the following
theorem.

THEOREM 3.1: For a policy u, define

~Pn
u ;

Pn
u � d�1n�pffiffiffi

n
p : (3:13)

Then the policy * having

E ( ~Pn
�)! d�1

XJ

j¼1

cju
�
j �H(u�) (3:14)

is asymptotically optimal under the high-volume condition in the sense that

lim inf
n!1

E( ~Pn
�) � lim sup

n!1

E( ~Pn
u) (3:15)

for any other admissible policy u.

4. DEMONSTRATING THEOREM 3.1

Under the high-volume condition and a policy u ¼ ( pu
n, g u

n, Au
n), we recall

the definitions of product and component cumulative arrival processes for
the nth system—that is, Ou,k

n (.) and Cu,j
n (.) with associated renewal processes as

follows:

No;n
u;k (t) ¼ maxfm � 0; xk(m) � ln

u;ktg;

Nc;n
u;j (t) ¼ maxfm � 0; yj(m) � ng n

u; jtg:
(4:1)

Moreover, we define the following scaled and centered processes:

~On
u; k(t) ;

On
u; k(t)� neo

klk( pn
u)tffiffiffi

n
p ¼

ffiffiffi
n
p

(n�1On
u;k(t)� eo

klk( pn
u)t); (4:2)

~Cn
u; j(t) ;

Cn
u; j(t)� nec

j g
n
u; jtffiffiffi

n
p ¼

ffiffiffi
n
p

(n�1Cn
u; j(t)� ec

j g
n
u; jt): (4:3)
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4.1. A Uniformly Integrable Property

For a policy u with pn
u ! p*, define l* ; limn!1 l( pn) since l( p) is continuous

in p.

LEMMA 4.1: For a policy u with pn
u ! p* and g u

n ! g* as n ! 1, we have

~On
u;k(t))s o

k Bo
k ;

~Cn
u;j(t))s c

j Bc
j ; (4:4)

On
u;k(t)

n
�! eo

kl
�
k t;

Cn
u;j(t)

n
�! ec

j g
�
j t; u:o:c: a:s: (4:5)

where Bo
k (k ¼ 1, . . . , K ) and Bo

j ( j ¼ 1, . . . , J ) are K þ J independent standard
Brownian motions,) denotes weak convergence, and sk

o and sj
o are defined in (3.9).

PROOF: The weak convergence claimed in (4.4) can be proved by applying the
renewal reward Functional Central Limit Theorem (see, e.g., Whitt [13,
Thm. 7.4.1]) and the Random Change of Time Theorem (see, e.g., Billingsley [1,
Sect. 17]). For the convergence stated in (4.5), due to (4.4), it follows from the
Skorohod representation theorem (Whitt [13] or Ethier and Kurtz [5]) that there
exists a common supporting probability space such that Õn

u,k(t) ! so
kBo

k, u.o.c. a.s.
Since Brownian motion almost surely has continuous sample paths, we conclude
that On

u,k(t)/n ! ek
olk

*t, u.o.c. a.s. The second part of (4.5) can be explained in the
same way. Hence, we finish the proof of the lemma. B

PROPOSITION 4.1: For a policy u with pn
u ! p* and gn

u ! g* as n ! 1, we have thatð1

0
e�dt sup

0�s�t
j~On

u;k(s)j dt; n � 1

� �
and

ð1

0
e�dt sup

0�s�t
j~Cn

u;j(s)j dt; n � 1

� �

are uniformly integrable families for each k ¼ 1, . . . , K and j ¼ 1, . . . , J.
Furthermore, as n ! 1, we have

E

ð1

0
e�dt ~On

u;k(t) dt �! 0 and E

ð1

0
e�dt ~Cn

u;j(t) dt �! 0: (4:6)

PROOF: We only establish that the conclusions for Õn
k(t) and the arguments for C̃n

j (t)
are similar. To simplify, we suppress the subscript indicating the policy u. For any
k ¼ 1, . . . , K and t � 0, let

In
1;k(No;n

k (t)) ;
1ffiffiffi
n
p

XNo;n
k (t)

i¼1

(j k
i � eo

k ); In
2;k(t) ;

1ffiffiffi
n
p eo

k(No;n
k (t)� nln

k t):
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Then we have

~On
k (t) ¼ In

1;k(No;n
k (t))þ In

2;k(t): (4:7)

To prove the uniform integrability, it suffices to prove (see, e.g., the explanation in
Billingsley [1, p. 1])

sup
n�1

E

ð1

0
e�dt sup

0�s�t
j~On

k (s)j dt

� �2

, 1: (4:8)

Moreover, note that

E

ð1

0
e�dt sup

0�s�t
j~On

k (s)j dt

� �2

� 2E

ð1

0
e�dt sup

0�s�t
jIn

1;k(N o;n
k (s))j dt

� �2

þ 2E

ð1

0
e�dt sup

0�s�t
jIn

2;k(s)j dt

� �2

:

Therefore, we only need to prove that

E

ð1

0
e�dt sup

0�s�t
jIn

1;k(No;n
k (s)) dt

� �2

and E

ð1

0
e�dt sup

0�s�t
jIn

2;k(s)j dt

� �2

(4:9)

are uniformly bounded in n. It follows from Lemma 4 in [8] that the claim for the
second part in (4.9) is true. For the first part in (4.9), note that

sup
0�s�t

jIn
1;k(No;n

k (s))j � 3 sup
0�s�t

jIn
1;k(No;n

k (s)þ 1)j: (4:10)

Since Jk(m) ;
P

i¼1
m (j i

k 2 eo
k) is a square integrable martingale in terms of the mul-

tiparameter filtration F ¼ fFm ¼ s(j 1
k, . . . , j m

k ; xk(1), . . . , xk(m)), m ¼ 1, 2, . . . g
and N k

o,n(t) þ 1 is a Fm-stopping time (see, e.g., Dai and Dai [4] or Williams
[14]), it follows from the Lp maximum inequality (obtained from Doob’s
Submartingale Inequality (Theorem 70.1) and Lemma 52.3 in Volume 1 of

STOCHASTIC OPTIMAL CONTROL OF ATO SYSTEMS 485



Rogers and Williams [10]) that

E sup
0�s�t

jIn
1;k(No;n

k (s)þ 1)j
� �2

(4:11)

� 4
n

EjJk(No;n
k (t)þ 1)j2 (4:12)

¼ 4
n

E(j k
1 � eo

k)2E(No;n
k (t)þ 1) (4:13)

¼ 4
n

E(j k
1 � eo

k)2E(xk(No;n
k (t)þ 1)) (4:14)

¼ 4
n

E(j k
1 � eo

k)2E(nlk(pn)t þ xk(No;n
k (t)þ 1)� nlk(pn)t)

� 4
n

E(j k
1 � eo

k)2(nlk(pn)t þ E(xk(1))2); (4:15)

where we have used the Lp maximal inequality in (4.12), Wald’s second moment
identity in (4.13) (see, e.g., Chow and Teicher [3, Thm. 3]), Wald’s first moment iden-
tity in (4.14), and Lorden’s inequality in (4.15) (see, e.g., Gut [6, pp. 99–100]).
Notice that l( pn)! l( p*) ¼ l* as n! 1; thus, by (4.10)–(4.15), we conclude that

E sup
0�s�t

jIn
1;k(s)j

� �2

� c1t þ c2 (4:16)

for large enough n, where c1 and c2 are some positive finite constants that are inde-
pendent of n and t.

Now by the Functional Law of the Iterative Logarithm (see, e.g., Chen and Yao
[2, Thm. 5.13]), we can conclude that, for each n and almost surely,

sup
0�s�t

jIn
1;k(s)j � c3(v; n)t

for large enough t, where c3 is some positive constant that is independent of t but
might depend on n and sample path v. Thus, for each n, we almost surely haveð1

0
e�dt sup

0�s�t
jIn

1;k(s)j dt , 1: (4:17)

Hence, by (4.16) and (4.17), it follows from Jensen’s inequality and the Tonelli
theorem (see, e.g., Royden [9]) that

E

ð1

0
e�dt sup

0�s�t
jIn

1;k(s)j dt

� �2

�
ð1

0
e�2d(c1t þ c2) dt

is uniformly bounded in n. Therefore, the uniformly integrable property claimed in
the lemma is true.
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Finally, as to the convergence property (4.6) stated in Proposition 4.1, it can
be proved by employing the previous Lemma 4.1 and a similar proof used in
[8, Lemma 4.1]. Hence, we finish the proof of the proposition. B

4.2. State Space Collapse

In this subsection, we show that the employed assembly policy exhibits a certain state
space collapse property that reduces the problem dimension from K þ J to J since
queue lengths and inventory levels are, with a very high probability, deterministic
functions of the shortage process. Here we remark that the assumption having
bounded batch sizes is only required by the following lemma.

LEMMA 4.2: Under any policy u with pn
u ! p* and g u

n ! g* as n ! 1, and for any
finite constant a, there exists a constant b such that

P max
i¼0;...;In�1

max
k¼1;...;K

jOn
k ((iþ 1)ln)� On

k (iln)� eo
klk(pn

u)nlnj , an1=3

� �
� 1� bn�1=6

(4:18)

P max
i¼0;...;In�1

max
j¼1;...;J

jCn
j ((iþ 1)ln)� Cn

j (iln)� ec
j g

n
u;jnlnj , an1=3

� �
� 1� bn�1=6;

(4:19)

where In ¼ b1/lnc.

PROOF: It is sufficient only to establish (4.18), similar arguments yield (4.19). First,
notice that for every n,

P max
i¼0;...;In�1

max
k¼1;...;K

jOn
k ((iþ 1)ln)� On

k (iln)� eo
klk(pn

u)nlnj . an1=3

� �

�
XK

k¼1

XIn�1

i¼0

P On
k ((iþ 1)ln)� On

k (iln) � D
n;þ
k

� �

þ
XK

k¼1

XIn�1

i¼0

P On
k((iþ 1)ln)� On

k(iln) , D
n;�
k

� �
;

where Dk
n,þ ¼ bek

olk( pu
n)nln þ an1/3c and Dk

n,2 ¼ dek
olk( pu

n)nln 2 an1/3e. Moreover,
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let D̄k
n,þ ; bDk

n,þ/uk
oc; then we have

P On
k ((iþ 1)ln)� On

k (iln) � D
n;þ
k

� �
¼ P

XNo;n
k ((iþ1)ln)

m¼No;n
k (iln)þ1

j k
m � D

n;þ
k

0
@

1
A

� P No;n
k ((iþ 1)ln)� No;n

k (iln) � D
n;þ
k =uo

k

� �
� P No;n

k ((iþ 1)ln)� No;n
k (iln) � �Dn;þ

k

� �
¼ P xk(�Dn;þ

k ) � nlk(pn
u)ln

� �
: (4:20)

The last equation in (4.20) is obtained from basic renewal theory (more explanations
can be found in [8]). Note that ek

o � 1; then the right-hand side of (4.20) is bounded by

P(xk(�Dn;þ
k )=uo

k � �Dn;þ
k � nlk(pn

u)ln=uo
k � �Dn;þ

k )

� P xk(�Dn;þ
k )=uo

k � �Dn;þ
k � 2� an1=3=uo

k

	 

� P jxk(�Dn;þ

k )=uo
k � �Dn;þ

k j . an1=3=uo
k � 2

	 


�

E
X�Dn;þ

k

m¼1

(xk(m)=uo
k � 1)

������
������
5

an1=3=uo
k � 2

� �5

� 90

ffiffiffi
5
4

r !5
E
X�Dn;þ

k

m¼1

(xk(m)=uo
k � 1)2

������
������
5=2

(an1=3=uo
k � 2)5

� 90

ffiffiffi
5
4

r !5
(eo

klk(pn
u)=(uo

k jl�k j
2=3þ

a=uo
k )5=2Ejxk(1)=uo

k � 1j5n�5=6

(a=uo
k � 2n�1=3)5 ; (4:21)

where we used Markov’s inequality to get the third inequality in (4.21),
used Burkholder’s inequality to get the fourth inequality, and used the following fact
for the fifth inequality: for zk(m) ; (xk(m)/uo

k) 2 1, any 11 . 0, and any integer M .

0, Ej
P

m¼1
M z2

k(m)jð1þ11Þ� M1þ11(Ejzk(1)j(2þ211)), which is proved in Lemma 3 of [8].
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Similarly, due to the assumption that the interarrival time distribution is IFR, we have

P On
k((iþ 1)ln)� On

k(iln) , D
n;�
k

� �
� P No;n

k ((iþ 1)ln)� No;n
k (iln) , D

n;�
k

� �
¼ P eo

kxk(Dn;�
k þ 1) . neo

klk(pn
u)ln

� �

� 90

ffiffiffi
5
4

r !5
(eo

klk(pn
u)=jl�k j

2=3 � a)5=2Ejeo
kxk(1)� 1j5n�5=6

(a� 2n�1=3)5 (4:22)

Then, it follows from (4.20)–(4.22) that

P max
i¼0;...;In�1

max
k¼1;...;K

jOn
k((iþ 1)ln)� On

k(iln)� eo
klk(pn

u)nlnj . an1=3

� �

� In
XK

k¼1

P(xk(�Dn;þ
k ) � nlk(pn

u)ln)þ P(xk(Dn;�
k þ 1) . nlk(pn

u)ln)
� 

� bn�1=6;

where we used the fact that In ¼ O(n2/3) andb is a positive constant that depends only on
l1

* , . . . , l1
*, a, Ejxk(1)/uk

o 2 1j5, and Ejeo
kxk(1) 2 1j5. Hence, we finish the proof. B

PROPOSITION 4.2: Under any policy u with pu
n ! p* and gn

u ! g* as n ! 1, there
exists a constant b such that under the proposed assembly policy,

P(Qn(iln) ¼ q�(Sn(iln)) for all i ¼ 1; 2; . . . ; In) � 1� bn�1=6:

PROOF: Note that q* is a Lipschitz continuous function (see, e.g., Schrijver [11, Thm.
10.5] and more explanations in [8]) and there exists some positive constant k such that
for any S1, S2 [ RJ,

max
k¼1;...;K

jq�k (S1)� q�k (S2)j � k max
j¼1;...;J

jS1
j � S2

j j:

Next, for each fixed n, define

a ; min
k¼1;...;K

eo
kl
�
k

2jl�j2=3 1þ k max
j¼1;...;J

1þ
XK

k¼1

akj

 ! ! ;
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furthermore, let A and B denote the sets

A ; v: max
i¼0;...;In�1

max
k¼1;...;K

jOn
k((iþ 1)ln)� Ok(iln)� eo

klk(pn
u)nlnj , an1=3

� �
;

B ; v: max
i¼0;...;In�1

max
j¼1;...;J

jCn
j ((iþ 1)ln)� Cj(il

n)� ec
j g

n
u;jnlnj , an1=3

� �
:

Then, for a sample path v [ A < B, each k ¼ 1, . . . , K, and each i ¼ 1, . . . , In, we
have

On
k (iln)� q�k(Sn(iln)) � An

k ((i� 1)ln);

which can be proved by mathematical induction similar to the procedure used in [8,
Prop. 1], and only need to replace lk( pn

u)/jl*j2/3 by eo
klk( pn

u)/jl*j2/3 in related steps of
their proof. Thus, constraint (3.7) is not violated at qk

*(Sn(iln)). Then we have

Qn(iln) ¼ Q�(Sn(iln)) ¼ q�(Sn(iln)):

Therefore, it follows from Lemma 4.2 that the claim in the proposition is true. Hence,
we finish the proof. B

4.3. A Heavy-Traffic Limit Theorem

Define the capacity imbalance of the nth system under a given policy u as follows:

u n
u; j ;

XK

k¼1

akjlk(pn
u)eo

k � g n
u; je

c
j ; j ¼ 1; . . . ; J:

PROPOSITION 4.3: Let Bu be a Brownian motion with drift u and covariance matrix G

defined in (3.9). Under a policy u ¼ ( pn
u, gn

u, An
*) satisfyingffiffiffi

n
p

u n
u; j �! uj; j ¼ 1; . . . ; J; (4:23)

as n ! 1, and pn
u ¼ p*(un

u ) and g n
u ¼ g*(un

u ) so that pn
u and g n

u solve the perturbed
static planning problem in (3.1)–(3.2), and An

* is defined in (3.12), then as n ! 1,

(Sn;Qn; In)ffiffiffi
n
p ) (Bu; q

�(Bu); i�(Bu)); (4:24)

E( ~Pn
u) �! d�1

XJ

j¼1

cjuj �H(u); (4:25)

where P̃n
u is defined in (3.13) and H(u) is given in (3.10).
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PROOF: We first prove (4.24). Note that

Sn
u;j(t)ffiffiffi

n
p ¼

XK

k¼1

akj ~O
n
k (t)� ~Cn

j (t)þ
ffiffiffi
n
p

u n
u; jt: (4:26)

By condition (4.23), un
u,j , g*

j when n is large enough. It follows from Lemma 3.1
that, for large enough n, p*(un

u,j) ¼ p* and g*(un
u,j) ¼ g* 2 un

u, j. Therefore,

pn
u �! p�; g n �! g�; l(pn

u) �! l�: (4:27)

Thus, by Lemma 4.1, the continuous mapping theorem, and the Cramer–Wold device
(Billingsley [1]), we have

Snffiffiffi
n
p )Bu (4:28)

as n! 1, where Bu is a J-dimensional Brownian motion with drift u and covariance
matrix G defined in (3.9).

Due to the discrete-review policy, we adopt arguments analogous to those in the
proof of Proposition 2 in [8]; we have that

sup
0�t�1

n�1=2Qn
k (t)� q�kðSn(t)=

ffiffiffi
n
p
Þ

�� ��
� max

i¼0;...;b1=lnc
n�1=2Qn

k(iln)� q�k
Sn(iln)ffiffiffi

n
p

� �����
����

þ sup
0�t�1

q�k
Sn(½ðt=lnÞln�)ffiffiffi

n
p

� �
� q�k

Sn(t)ffiffiffi
n
p

� �����
����

þ 1ffiffiffi
n
p max

i¼0;...;b1=lnc
On

k((iþ 1)ln)� On
k(iln)� eo

knl�k ln
�� ��þ 1

n1=6

l�keo
k

lkj j2=3

converges to zero in probability as n!1 by Lemma 4.2, Proposition 4.2,
the observation that for any S [ R J, q*(n21/2S ) ¼ n21/2q*(S ), and the fact that iln,
i ¼ 0, 1, . . . , (ln)21, becomes dense in (0, 1). Then it follows from the continuous
mapping theorem that

Qnffiffiffi
n
p ) q�(Bu):

Moreover, by (3.6) and the continuous mapping theorem, we get

Inffiffiffi
n
p ) i�(Bu):

Since q* and i* are deterministic functions, we get (Sn, Qn, In)/
ffiffiffi
n
p
) (Bu, q*(Bu),

i*(Bu)).
Now we proceed to prove (4.25). It follows from the integration by parts theorem
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for the Riemann–Stieltjes integral that

~Pn
u ¼

ð1

0
de�dt

XK

k¼1

pn
u;k

~On
u;k(t)�

XJ

j¼1

cj
~Cn

u;j(t)

 !
dt

�
ð1

0
e�dt d

XK

k¼1

pn
u;k

Qn
u;k(t)ffiffiffi

n
p þ

XJ

j¼1

hj

In
u;j(t)ffiffiffi

n
p

 !
dt

þ d�1 ffiffiffi
n
p XK

k¼1

pn
u;klk(pn

u)eo
k �

XJ

j¼1

cjg
n
u;je

c
j � �p

 !
: (4:29)

By (4.23) and Lemma 3.1 (one can always decompose un
u,j into (un

u,j/ec
j )ec

j to be
consistent with the lemma), as n ! 1,

ffiffiffi
n
p XK

k¼1

pn
u;klk(pn

u)eo
k �

XJ

j¼1

cjg
n
u;je

c
j � �p

 !
¼

ffiffiffi
n
p XJ

j¼1

cju
n
u;j

 !
!
XJ

j¼1

cjuj: (4:30)

Due to the discrete-review policy, one can use a procedure similar to that in the proof
of Proposition 2 in [8] to get

Qn
k(t) �

XJ

j¼1

XK

k¼1

akj sup
0�s�t

jOn
k (s)� neo

klk(pn
u)sj þ jCn

j (s)� nec
j g

n
u;jsj

( )

þ nt
XJ

j¼1

u n
u;j þ 2 sup

0�s�t
jOn

k (s)� neo
klk(pn

u)sj þ n1=3 eo
klk(pn

u)

jl�j2=3
:

Thus, it follows from Proposition 4.1 and (4.23) that f
Ð

1
0 e2dtn21/2Qn

k(t) dt, n � 1g
forms a uniformly integrable family for each j ¼ 1, . . . , J. Also, because

In
j (t) �

XK

k¼1

akjQ
n
k

t

ln

j k
ln

	 

� Sn

j

t

ln

j k
ln

	 


þ 2 sup
0�s�t

jCn
j (s)� nec

j g
�
j sj þ n1=3

ec
j g

n
j

jl�j2=3
;

Sn
j (t) ¼

ffiffiffi
n
p XK

k¼1

akj ~Q
n
k(t)� ~Cn

j (t)

 !
þ ntu n

u;j;

we conclude that f
Ð

1
0 e2dtn21/2In

j (t) dt, n � 1g is a uniformly integrable family for
each j ¼ 1, . . . , J. Thus, it follows from (4.24), the continuous mapping theorem,
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and the now proved interchange of mean and limit that

E

ð1

0
e�dt Qn

k(t)ffiffiffi
n
p dt

� �
�! E

ð1

0
e�dtq�k (Bu(t)) dt

� �
; k ¼ 1; . . . ;K; (4:31)

E

ð1

0
e�dt

In
j (t)ffiffiffi

n
p dt

� �
�! E

ð1

0
e�dt i�j (Bu(t)) dt

� �
; i¼ 1; . . . ; J; (4:32)

as n!1. Hence, by Proposition 4.1, (4.27), and (4.30)–(4.32), we have

E( ~Pn
u)! d�1

XJ

j¼1

cjuj�H(u):

Thus, the proof of the proposition is completed. B

4.4. Proof of Theorem 3.1

There are two stages involved: obtaining an upper bound on limiting expected
infinite-horizon discounted profit, centered and scaled, under any admissible policy
u, and showing that the policy * achieves this upper bound. For an admissible
policy, note that ~Pn

u can be expressed in the form of (4.29), and by Lemma 3.1, the
following inequality is true:

XK

k¼1

pn
u;klk(pn

u)eo
k �

XJ

j¼1

cjg
n
u;je

c
j � �p � �p(~u

n
u)� �p ¼

XJ

j¼1

cju
n
u; j; (4:33)

where the vector ũu
n has component ũu,j

n ¼ uu,j
n /ej

c. Then it follows from (4.29), (4.33),
and Proposition 4.1 that

lim sup
n!1

E ~Pn
u

h i
� lim sup

n!1

ffiffiffi
n
p

d

XJ

j¼1

cju
n
u;j � E

 

�
ð1

0
e�dt d

XK

k¼1

pn
u;k

Qn
u;kffiffiffi
n
p þ

XJ

j¼1

hj

In
u;jffiffiffi
n
p

 !
dt

" #!
:

Then, by applying Lemma 3.1 and the same procedure as in the proof of Theorem 1 in
[8], we conclude that

lim sup
n!1

E ~Pn
u

h i
� sup

u[<J

d�1
XJ

j¼1

cjuj �H(u)

 !

¼ d�1
XJ

j¼1

cju
�
j �H(u�):
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Finally, it follows from Proposition 4.3 that the policy * achieves the upper
bound in (4.34); therefore, * is an asymptotically optimal policy. Hence, we finish
the proof. B

APPENDIX
Proof of Lemma 3.1

Note that the static problem (3.1)–(3.2) is equivalent to the following maximization
problem:

p (u) ¼ max
l.0;g.0

r(l)�
XJ

j¼1

gjcje
c
j (A:1)

subject to the constraint (3.2). Since r(l) is assumed to be strictly concave, the above
maximization problem is equivalent to a minimization convex program and, hence,
has a unique optimal solution ( p*(u), g*(u)) for all u [ RJ . The Lagrangian function
for the above problem, when equivalently considered as a minimization problem, is

L(l; g; u) ¼ �r(l)þ
XJ

j¼1

cjgje
c
j �

XJ

j¼1

uj ec
j (gj þ uj)�

XK

k¼1

akjlkeo
k

 !
: (A:2)

Then it follows from the Karush–Kuhn–Tucker (KKT) conditions that

@L

@lm
¼ � @r(l)

@lm
þ
XJ

j¼1

amjuje
o
m ¼ 0; m ¼ 1; . . . ;K; (A:3)

@L

@gj
¼ (cj � uj)e

c
j ¼ 0; j ¼ 1; . . . ; J; (A:4)

XK

k¼1

akjlkeo
k � (gj þ uj)e

c
j � 0; j ¼ 1; . . . ; J; (A:5)

uj

XK

k¼1

akjlkeo
k � (gj þ uj)e

c
j

 !
¼ 0; j ¼ 1; . . . ; J; (A:6)

u � 0: (A:7)

From (A.4), we have that uj ¼ cj . 0. Then it follows from (A.3) that

0 ,
XJ

j¼1

amjcje
o
m ¼

@r(l)
@lm

¼
XK

k¼1

lk
@pk(l)
@lm

eo
k þ pm(l)eo

m;

and, moreover, by Lemma 1 in [8], (@pk(l)/@lm) � 0. Hence, pm(l) .
P

j¼1
J amjcj . 0
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(m ¼ 1, . . . , K ). If u ¼ 0, it follows from (A.5) that

g�j ¼
XK

k¼1

akjl
�
keo

k

 !
=ec

j . 0;

because p(l) . 0 implies l( p) . 0. If u . 0, conditions (A.3)–(A.7) are satisfied
when l*(u) ¼ l* and gj

*(u) ¼ gj
* 2 uj, j ¼ 1, . . . , J. Thus, it follows from the KKT

theorem that (l*(u), g*(u) ¼ (l*, g* 2 u)) is a global maximizing point for (A.1)
and (3.2), which implies that ( p*(u) ¼ p(l*(u)), g*(u)) is a global maximizing
point for (3.1)–(3.2) and that

�p(u)� �p ¼
XJ

j¼1

cjuje
c
j :

Thus, we complete the proof.
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