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Abstract  We study the stochastic optimal admission and routing controls for a system consisting of two 
parallel-server channels with zero waiting buffer capacity and multi-class customers via Markov decision 
processes moving in discrete triangles. In each channel, there are two classes of customers to be served, which 
are varying in their arrival rates, payments and penalty costs. The class of structured value functions is found 
and justified to guarantee the existence of optimal value function and optimal admission control policy. The 
policy for each class of customers is characterized by a state-dependent threshold function that is non-increasing 
in the number of the other class of customers being served in the channel and decreases at most one unit when 
the number of the other class of customers increases a unit. Between channels, some classes of customers can be 
selected to be served in either of the channels according to certain routing probabilities, which are obtained by 
combining the optimal value functions with simulation. Numerical and application examples are presented to 
illustrate the usage and efficiency of our algorithm and optimal policy.  
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1. Introduction 

Parallel-server systems have become a common tool in the studies of many communication 
networks, manufacturing and service systems, see, for examples, Dai[4] and Gans et al.[7]. 
Motivated from some practical communication project, in this paper, we consider a system that 
consists of two parallel-server channels with zero waiting buffer capacity, which differs from 
widely studied parallel-server systems with infinite waiting buffer capacity (see, e.g., Harrison[8], 
Bell and Williams[1]). In each channel, there are two classes of customers to be served, which are 
varying in their arrival rates, payments and penalty costs. Payments are random and depend on 
the lengths of service times, which are different from assumptions in existing studies such as 
Ormeci et al[12] and Ormeci and Wal[13], where constant payments are assumed. Between 
channels, some classes of customers can be selected to be served in either of the channels 
according to certain routing probabilities. Since the waiting buffer capacity is zero for both 
channels, optimal admission and routing controls for such a system are of particular interests. 
The purpose of the controller is to determine how the system should route an incoming customer 
to a particular channel and whether the channel should accept or reject the customer into service 
in order to maximize the expected infinite horizon discounted profit for the service provider. We 
will restrict our study to Markovian control policies since the optimal policy belongs to this class 
(see, e.g., Sennott[16]). Some related discussions about network optimization and control can be 
found in Cheng et al[3] , Dai and Jiang[5], Ding et al[6]  and Ma et al[11] . 

Optimal control problems for queueing systems arise in different contexts such as 
Lippman[10]. The unified approach developed in [10] allows one to transform a continuous time 
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Markov decision process into an equivalent discrete process and to establish associated 
optimality equations. Moreover, following the approach, one can investigate the structure of an 
optimal control policy by identifying a class of structured value functions that is preserved under 
certain sense and find a state-dependent threshold policy that is easy to implement, see, e.g., 
Benjaafar and ElHafsi[2], and etc. for a number of recent applications in production and 
inventory controls. However, the classes of structured value functions are varying for different 
applications and they are difficult to be identified for the corresponding decision processes 
moving in multi-dimensional domains. In addition, the justification of preservation of properties 
for each application is complicated and involves heavy calculation.  

In this paper, firstly, we adopt the approach to study the optimal admission control problem 
for the above parallel-server system in each channel. The class of structured value functions is 
found to satisfy the concave and certain submodular properties and the preservation of these 
properties under some policy related transformation is justified to guarantee the existence of 
optimal value function and optimal admission control policy. The obtained optimal policy for 
each class of customers is characterized by a state-dependent threshold function that is 
non-increasing in the number of the other class of customers being served in the channel and 
decreases at most one unit when the number of the other class of customers increases a unit. 
Because the waiting buffer capacity is zero and there are multiple classes of customers in the 
system, our Markov decision process is confined to move within a 2-dimensional discrete 
triangle that is not a good shape to our study. Due to this reason, our function class is different 
from those such as in [2] and the justification of the structure preservation for our problem is 
particular complex along the boundary of the triangle, moreover, due to the difference of model 
formulations, our admission policy and associated analysis are different from those as in [12] 
and [13]. Secondly, by combining the optimal value functions in different channels with 
simulation, we obtain the optimal routing parameters. Thirdly, we implement a number of 
numerical examples to support our theoretical findings. From these examples, we see that our 
algorithm stably converges and is efficient, and furthermore, our policy is better than some 
intuitively reasonable policy that is based on two 1-dimensional Markov decision processes and 
is designed for the purpose of comparison. 

The rest of the paper is organized as follows. In Section 2, we describe our model 
formulation. In Section 3, we derive the optimality equations and study the characterization of 
the optimal policy. Numerical examples are given in Section 4. In Section 5, we provide the 
technical and lengthy proofs for three lemmas. Concluding remarks and future research are 
presented in Section 6. 

2. Model Formulation 

We consider a communication system consisting of two channels as pictured in the 
following Figure 1. There are n independent and identical servers in Channel A and n servers in 
Channel A . Both channels have no additional buffering capability for an incoming customer 
except being served immediately. There are two classes of external arriving customers to 
Channel A and the arrival stream for each class {1, 2}i ∈  follows a Poisson process with rate 

iλ . Similarly, there are two classes of external arriving customers to Channel A  and the 

arrival stream for each class {1, 2}i ∈ follows a Poisson process with rate iλ . For each 

{1, , }i m∈ K with some given integer 1 2m≤ ≤ , the arrival streams corresponding to iλ  and 

iλ  are split from a common Poisson process with rate iβ , that is, i i iλ λ β+ = , and moreover, 

it will be discussed later about how to determine the optimal values of iλ  and iλ  for a given 

iβ  according to routing decision. For each class {1, 2}i ∈ , an arrival customer to Channel A is 
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either rejected into service with penalty cost il  or accepted into service and experiences 
exponentially distributed amount of service time with rate µ  according to some admission 
control policy, where we assume that service times among different customers are independent. 
Similarly, for each class {1, 2}i ∈ , an arrival customer to Channel A  is either rejected into 

service with penalty cost il  or accepted into service and experiences exponentially distributed 
amount of service time with rate µ . Furthermore, for each {1, , }i m∈ K , we suppose that 

i il l= . 

 
Figure 1  A communication system consisting of two channels with parallel servers is under admission and 

routing controls. 
For each {1, 2}i ∈ , let ( )iX t  denote the number of class i customers being served in 

Channel A at time t, which takes values in the state space {0,1, , }iS n= K , and moreover, let 

1 2( ) ( ( ), ( ))X t X t X t≡ , which takes values in the following 2-dimensional discrete triangle  

                    
2

1 2
1

( , ) : , , 1, 2i i i
i

S x x x n x S i
=

 
≡ ≤ ∈ = 

 
∑ .                 (1) 

Let ( ( ))h X t  denote the payment function defined on S, which satisfies certain conditions that 
will be elaborated later. Associated with Channel A, there is a fixed cost c per unit of time, and 
let ( )iN t  denote the total number of rejected class i customers at Channel A by time t. Then we 
can write the value function (expected infinite horizon discounted profit) for a given discount 
factor α , a given initial state x S∈  and a given admission control policy π  as follows, 

         
2

0 0 0
1

( ) ( ( )) ( )t t t
x i i

i
v x E e h X t dt e l dN t e cdtπ π α α α∞ ∞ ∞− − −

=

 
≡ − −  

∑∫ ∫ ∫ .     (2) 

Similarly, for each {1, 2}i ∈ , let ( )iX t  denote the number of class i customers being 

served in Channel A  at time t, which takes values in the state space {0,1, , }iS n= K , and 
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moreover, let 1 2( ) ( ( ), ( ))X t X t X t= , which takes values in the following 2-dimensional 
discrete triangle 

                     
2

1 2
1

( , ) : , , 1, 2i i i
i

S x x x n x S i
=

 
≡ ≤ ∈ = 

 
∑ .               （3） 

Let ( ( ))h X t  denote the payment function defined on S . Associated with Channel A , there 

is a fixed cost c per unit of time, and let ( )iN t  denote the total number of rejected class i 

customers at Channel A  by time t. Then we can write the value function for the given discount 
factor α , a given initial state x S∉ and a given admission control policy π as follows, 

        
2

0 0 0
1

( ) ( ( )) ( )t t t
x i i

i
v x E e h X t dt e l dN t e cdtπ π α α α∞ ∞ ∞− − −

=

 
≡ − −  

∑∫ ∫ ∫ .     （4） 

An admission control policy π  (or π ) specifies at each time instant if an arrived 
customer to Channel A (or Channel A ) is accepted into service or is rejected, and furthermore, 
we restrict our analysis to Markovian policies since the optimal policy belongs to this class (e.g., 
Sennott[16]). Our objective is to look for optimal policies π ∗  and π ∗  such that  

             ( , ) max ( , ), ( , ) max ( , )v x v x v x v xπ π π π

π π
λ λ λ λ

∗ ∗

∈Π ∈Π
= =           （5） 

where 1 1( , , ), ( , , )m mλ λ λ λ λ λ= =K K  with {1, 2}m∈ , and the sets Π  and Π of 
Markov decision policies are associated with some action spaces which will be elaborated later. 
Moreover, we are to find the optimal values λ∗  and λ ∗ , for a given vector 1( , , )mβ β β= K  
such that 

             ( )
( , )

( , ) ( , ) max ( , ) ( , )v x v x v x v xπ π π π

λ λ
λ λ λ λ

∗ ∗ ∗ ∗∗ ∗

∈Λ
+ = +           （6） 

where the set Λ  is defined to be {( , ) : , 1, , }i i i i mλ λ λ λ βΛ ≡ + = = K . Moreover, we 

remark that the determinations of λ∗  and λ ∗ are essentially the choices of the optimal routing 
probabilities to two channels for the common Poisson input streams corresponding to the rate 
vector β . 

3. The Optimality Equations and Characterization of the Optimal Policy 

We first focus our discussions on Channel A. Let ( )xπη  be the control associated with a 
Markovian policy π  when the system is in state x S∈ . It follows from Lemma 5.1 in Section 
5 that there is at most one customer arriving at the channel at a time point. Thus we take 

( ) ( )ix xπ πη η= when the arrived customer belongs to class i, where ( )i xπη  corresponds to the 
admission action such that 

0 if the action is to accept the arrived class  customer into service,
( )

1 if the action is to reject the arrived class  customer into service.i

i
x

i
πη


≡ 


 

Thus the action space can be taken as {0, 1} that is independent of state variable x. Let 

                 
2

( , ( )) {0,1}1
sup ( , ( ))i

x x Si
n x x

η
γ λ µ λ η

∈ ×=

≡ + =∑ .                    （7） 

where ( )xη  is an action and ( , ( ))x xλ η  is the rate of changing of the system when it is in 
state x. Then by the studies in Lippman[10], we can transform the continuous time decision 
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process into an equivalent discrete time decision process. Moreover, define ( ) ( )v x v xπ ∗∗ ≡  
and without loss of generality, suppose that 1α γ+ = , then we have the following lemma. 

Lemma 3.1 For each x S∈ , the following optimality equation holds 
                          ( ) ( )v x Tv x∗ ∗=                                (8) 

where the operator T is defined as follows, 
2 2 2

1 1 1
( ) ( ( ) ) ( ) ( ) ( )i i i i i

i i i
Tv x h x c T v x x v x e n x v xλ µ

= = =

  
= − + + − + −  

  
∑ ∑ ∑ , 

ei is the 2-dimensional unit vector whose ith component takes value one and all other 
components take values 0, and furthermore, 

2

1

2

1

max{ ( ), ( ) } ,
( )

( ) .

i i ii
i

i ii

v x e v x l if x n
T v x

v x l if x n
=

=

 + − <≡ 
− =

∑
∑

 

The proof of this lemma can be found in Section 5. To characterize the optimal policy, for each 
{1, 2}i ∈ , we define 

                        ( ) ( ) ( ).i iv x v x e v x∆ ≡ + −                       （9） 
Next, suppose that v(x) is a function satisfying the following conditions, that is, for each fixed 

{1, 2}i ∈  and a {1,2}j ∈ , 
    ( ) ( ) ( ) 0,i i i i iv x v x e v x∆ ∆ ≡ ∆ + − ∆ ≤                               （10） 

        ( ) ( ) ( ) 0 ,j i i j iv x v x e v x for any j i∆ ∆ ≡ ∆ + − ∆ ≤ ≠                （11） 

      ( ) ( ) ( ) 0 .ij i i i i jv x v x e v x e for any j i∆ ∆ ≡ ∆ + − ∆ + ≤ ≠            （12） 

Remark 3.1 Condition (10) indicates that iv∆ is non-increasing in the component xi or 
equivalently v is concave in xi; Condition (11) states that v is submodular in the direction of ei 
and ej ; We call that v is submodular in the direction of ei and ei－ej under condition (12) since 
this condition is equivalent to ( ) ( ) 0 0 .i i j iv x e e v x for x S∆ + − − ∆ ≤ < ∈  When 

2

1,
1jj j i

x n
= ≠

= −∑ , the concavity property of v in terms of xi is always true since there are only 

two points involved; When one dimensional problem is concerned, the only required condition is 
the concavity. 

The following examples are given to show the existence of the class of functions that satisfy 
conditions (10)-(12).  

Example 3.1 
2

1
( ) ( )i ii

v x f x for x S
=

= ∈∑ , where ( )i if x is a concave function of xi for 

each {1, 2}i ∈ . For examples, (1) v(x) is linear in x, that is,
2

1
( ) i ii

v x r x
=

= ∑ where 0ir > is a 

constant for each i; (2) 
2

1
( ) ( ( ))i i i ii

v x g xα β
=

= −∑ where iα  and iβ are positive constants, 

gi(xi) is convex in xi, e.g., ( ) i ir x
i ig x e±= for some constant ri > 0, or 2( ) ( )i i i ig x x r= − and 

etc. 

Example 3.2 Let v be a concave function on R and define 
2

1
( ) ii

f x x
=

≡ ∑ . Notice that f 
is an affine mapping from R2 to R (see, e.g., page 23 of Hiriart-Urruty and Lemarechal[9]). Then 
it is easy to check that v(f(x)) satisfies condition (12). Moreover, the conditions (10) and (11) are 
reduced to the only concavity condition (10) and this property can be easily shown by the similar 



632         Dai: Stochastic Optimal Controls for Parallel-Server Channels with Zero Waiting…… 

 

method used in Proposition 2.1.4 in page 88 of [9]. 
Here we remark that more such examples can be constructed, for example, by applying 

Proposition 2.1.7 in page 88 of [9]. So, basing on the above discussions, we can introduce the 
following set of functions 

        { ( ) : ( ) satisfies the conditions (10) (12), }.v x v x x S≡ − ∈A         （13） 
If associated with the value function of a policy, the conditions (10)-(12) imply some particular 
properties for that policy. Concretely, for each {1, 2}i ∈  and each  x S∈  with 

2

1
1ii

x n
=

≤ −∑ , let ˆ ( , )i jx x j i= ≠ , moreover let ˆix  fixed and ix  vary, then for each 

v A∈ , we can define 
                    ˆ( ) max{ : ( ) 0}i i i i ia x x v x l≡ ∆ + > .                   （14） 

From (14), we see that ˆ( )i ia x  depends only on ˆix  as long as v and li is given. In the sequel, 

we also use ai(x) to denote ˆ( )i ia x  for convenience. Then we have the following lemma. 

Lemma 3.2 If v ∈ A , then ˆ( )i i ix a x≤  if and only if ( ) 0i iv x l∆ + > . 

Proof. If ˆ( )i i ix a x≤ , then by the definition of ˆ( )i ia x  in (14), we have that 

( ) 0i iv x l∆ + > . Conversely, let ˆ( , )i ix x x S= ∈  satisfying ( ) 0i iv x l∆ + >  (here we take 
1i =  without loss of generality). Due to the concavity property (10) of v, we have that 
( ) ( ) 0i i i iv x l v x l′∆ + ≥ ∆ + > with ˆ( , )i ix x x′ ′= and i ix x′ ≤ . Then by the definition given in 

(14), we can conclude that ˆ( )i i ix a x≤ . □ 
Remark 3.2  Lemma 3.2 implies that the admission control associated with a policy π  

that has value function vπ ∈ A  can be described with 2-dimensional switching surfaces. More 
specifically, the policy can be expressed by state-dependent thresholds ai(x) for all {1, 2}i ∈  
such that it is optimal to accept a class i customer into service if ( )i ix a x≤ (which means that 
accepting one is to get the bigger profit than rejecting one) and otherwise to reject. 

Lemma 3.3 For a fixed {1, 2}i ∈ , a {1, 2} ( )j j i∈ ≠ , a v ∈ A  and a x S∈ with 
2

1
1ii

x n
=

< −∑ , we have 

( ),
( )

( ) 1.
i

i j
i

a x
a x e

a x


+ ≡  −
 

Proof. Without loss of generality, we take i = 1. Then let ( , ( ))i i jx x a x e= +% . Due to the 

submodular property (11) of v in the direction of ei and ej and the definition of ( )i ja x e+ , we 
have that 

                        ( ) ( )i i j iv x v x e l∆ ≥ ∆ + > −% %                         （15） 

Thus, by (15) and the definition of ( )ia x% , we can conclude that 

( ) ( ) ( ) ( ).i j i j i ia x e a x e a x a x+ = + ≤ =% %  

Secondly, if ai(x) = 0, it is obvious that ( ) ( ) 1i j ia x e a x+ > − . If ( ) 1ia x ≥ , we take 

( , ( ))i ix x a x=%% , then by using ix e−%%  to replace x in condition (12), we have 

( ) ( )i i j i iv x e e v x l∆ − + ≥ ∆ > −% %% % . 
Hence we have 
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( ) 1 ( ) 1 ( ) ( ).i i i j i ja x a x a x e a x e− = − ≤ + = +% %% %  
Therefore it follows from the above discussions that the lemma is true. □ 

The following lemma shows that T defined in Theorem 3.1 preserves the properties of v and 
hence preserves the switching surface structure of the associated control policy. 

Lemma 3.4 If ,h v ∈ A , then Tv∈ A , where the operator T is defined in Proposition 3.1 
and 

2

1
2

1

2

1

( ) , ( ),

( ) ( ) , ( ),

( ) .

i i i ii

i i i i ii

i ii

v x e if x n x a x

T v x v x l if x n x a x

v x l if x n

=

=

=

 + < ≤

≡ − < >


− =

∑
∑
∑

 

The lengthy proof of the above lemma will be given in Section 5. Instead, we present our main 
result as follows. 

Theorem 3.1 There is a unique optimal value function v∗ which belongs to A if h∈ A . 
Consequently, the optimal policy is a threshold admission control policy with state-dependent 
thresholds for each class. Specifically, the policy has the following properties. 

1. For each ˆ ( , )i jx x j i= ≠ , there is a corresponding threshold ˆ( )i ia x∗  such that it is 

optimal to accept a class i customer into service if ˆ( )i i ix a x∗≤  and to reject otherwise. 

2. The threshold ˆ( )i ia x∗ is non-increasing in each of the variables ( )jx j i≠ with 

( ) 1 ( ) ( )i i j ia x a x e a x∗ ∗ ∗− ≤ + ≤ where one can use the same explanation in (14) for ( )ia x∗ . 
Proof. It follows from Lemma 3.4, Theorem 5.1 of Porteus[14] and Theorem 6.10.4 of 

Puterman[15]  that lim m
mv T v∗

→∞= ∈ A  and it is the unique solution of v = Tv, where Tm 

refers to m compositions of operator T. Therefore, v∗  satisfies conditions (10)-(12). Hence the 
remain results of the theorem follow from Lemmas 3.2 and 3.3. □ 

4. Numerical Examples 

In this section, we use numerical examples to illustrate the usage and efficiency of our 
optimal threshold policy. Firstly, we present several examples with different payment functions 
to show the dynamic evolving of the optimal thresholds in terms of the number of the other class 
of customers in a channel. Secondly, we conduct the numerical comparison between our optimal 
value function and another intuitively reasonable one to exhibit the optimality of our policy. 
Thirdly, we obtain optimal routing parameters by integrating our optimal policy with simulation. 
Fourthly, we extend our system to a more general one where different classes of customers may 
have different service rates and we show that our optimal policy is still reasonably good by a 
numerical example. All of the numerical results given here are obtained by solving the dynamic 
programs iteratively and the value iteration algorithm is run enough times in order that at least 
four-digit accuracy is achieved for each problem instance.  

Example 4.1  Here we take the payment function h(x) to be a linear function of x, that is, 
for some constants q1 and q2, h(x) = q1x1 +q2x2. The corresponding numerical results about the 
evolving of thresholds are described in Figure 2 and Figure 3. 
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Figure 2  Optimal thresholds with n = 19, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, l1 = 200, l2 = 400, 

c = 1000, q1 = 1000 and q2 = 2000. 

 
Figure 3  Optimal thresholds with n = 19, α = 0.1, 1λ = 0.03, 2λ = 0.37, µ = 0.5/19, l1 = 200, l2 = 400, 

c = 1000, q1 = 1000 and q2 = 2000. 
Example 4.2 For some constant q, we take the payment function 

2 2
1 2( ) (2500 6( 4) 10( 11) )h x q x x= − − − − . The corresponding numerical results about the 

evolving of thresholds are shown in Figure 4. 
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Figure 4  Optimal thresholds with n = 19, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, l1 = 200, l2 = 400, 

c = 1000 and q = 2000.  
Example 4.3  For some constants q, p1 and p2, we take the payment function 

1 1 2 2( ) (2 )p x p xh x q e e− −= − − . The corresponding numerical results about the evolving of 
thresholds are displayed in Figure 5. 

 
Figure 5  Optimal thresholds with n = 19, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, l1 = 200, l2 = 400, 

c = 1000, q = 2000, p1 = 0.1 and p2 = 0.3. 
Example 4.4  In this example, firstly, we take the payment function h(x) = q1x1 + q2x2 for 

some constants q1 and q2 and use our algorithm to obtain the values of the optimal value function 
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defined in (8) at all possible initial states. Secondly, we separate the servers into two groups, 
each is assigned to serve only for a particular customer class. Then we use two 1-dimensional 
Markov decision processes on a finite set to generate a 2-dimensional optimal value function. 
Concretely, suppose that there are b number of servers assigned for class one customers and (n－
b) number of servers assigned for class two customers. Then the iteration algorithms for the 
associated 1-dimensional Markov decision processes are given by  

( )1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1( ) ( ) ( ) ( ( 1) ( ) ( ))T v x h x c T v x x v x b x v xλ µ
α γ

= − + + − + −
+

 

( )2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2

1( ) ( ) ( ) ( ( 1) ( ) ( ))T v x h x c T v x x v x n b x v xλ µ
α γ

= − + + − + − −
+

 

where 1 1 bγ λ µ= +  and 2 2 ( )n bγ λ µ= + − , 1 1 1 1( )h x q x=  and 2 2 2 2( )h x q x=  for some 
constants q1 and q2, c1 = cb/n and c2 = c－c1, moreover, 

1 1 1 1 1
1

1 1 1 1 1 1 1 1 1

1 1 1 1

( 1) , ,
( ) ( ) , ,

( ) ,

v x if x b x a
T v x v x l if x b x a

v x l if x b

+ < ≤
= − < >
 − =

 

   
2 2 2 2 2

2
2 2 2 2 2 2 2 2 2

2 2 2 2

( 1) , ,
( ) ( ) , ,

( )

v x if x n b x a
T v x v x l if x b x a

v x l if x n b

+ < − ≤
= − < >
 − = −

 

and max{ : ( ) 0}i i i i i ia x v x l= ∆ + > with ( ) ( 1) ( )i i i i i i iv x v x v x∆ = + −  for i = 1, 2. Then we 

can obtain the value differences 1 2 1 1 2 2( , ) ( ( ) ( ))v x x v x v x∗ ∗ ∗− +  for 10 x b≤ ≤  and 

20 x n b≤ ≤ − . In our numerical implementation, for any {0,1, , }b n∈ K , the corresponding 
value differences are positive and see for one particular example given in Figure 6 where 

3b = . 

 
Figure 6  Comparison of value functions with n = 19, b = 3,α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, l1 
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= 200, l2 = 400, c = 1000, q1 = 1000, q2 = 2000. 
Example 4.5  In this example, we consider two channels A and A . Note that all notations 

related to Channel A  will be put a bar above the corresponding notations for Channel A. The 
payment functions h(x) and ( )h x  are taken to be linear in terms of x and x respectively, i.e., 

1 1 2 2( )h x q x q x= +  and 1 1 2 2( )h x q x q x= +  for some constants q1, q2, 1q and 2q . Basing on 
the iterative algorithm given in Proposition 3.1 for Markov decision process, we add one more 
simulation step to obtain the optimal routing parameters 1λ and 1λ that satisfy 1 1 0.3λ λ+ =  and 

solve the optimization problem (6). In the simulation, we take 1 0.3( / )i Nλ =  for 

0,1, , .i N= K  Firstly, we handle the case that Channel A  is configured exactly the same as 
Channel A with n = n = 6. Due to the symmetry property, the optimal routing parameters 
should coincide for the initial states (i,2,2,2) and (2,2,i,2) with 0,1, 4i = K , which are shown 
in Figure 7 and Figure 8. In Figure 8, we see some difference between optimal parameters at 
points (1, 2, 2, 2) and (2, 2, 1, 2). This phenomenon can be interpreted as follows: when N takes 
odd number (for example N = 49), 1λ  can never take the real optimal value 0.15, and moreover, 

due to the fact that¸ 1 1 0.3λ λ+ = , the difference appears. Secondly, we handle the asymmetry 
case with n = 7 and n = 5. The associated numerical results about the optimal routing 
parameters are given in Figure 9. 

 
 

 
Figure 7  Optimal routing parameters with n = 6, α = 0.1, 1λ = 0.15, 2λ  = 0.25, µ = 0.5/19, 

l1 = 200, l2 = 400, c = 1000, q1 = 1000, q2 = 2000; n = 6, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, 1l = 200, 

2l = 400, c = 1000, 1q = 1000, 2q = 2000, N = 50. 
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Figure 8  Optimal routing parameters with n = 6, α = 0.1, 1λ = 0.15, 2λ  = 0.25, µ = 0.5/19, 

l1 = 200, l2 = 400, c = 1000, q1 = 1000, q2 = 2000; n = 6, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, 1l = 200, 

2l = 400, c = 1000, 1q = 1000, 2q = 2000, N = 49. 

 
Figure 9  Optimal routing parameters with n = 7, α = 0.1, 1λ = 0.15, 2λ  = 0.25, µ = 0.5/19, 

l1 = 200, l2 = 400, c = 1000, q1 = 1000, q2 = 2000; n = 5, α = 0.1, 1λ = 0.15, 2λ = 0.25, µ = 0.5/19, 1l = 200, 

2l = 400, c = 1000, 1q = 1000, 2q = 2000, N = 49. 

Example 4.6  In this example, we extend the iterative algorithm presented in Proposition 
3.1 to allow different service rates iµ (i = 1,2) for different customer classes. Concretely, the 
new algorithm can be designed as follows, 

2 2 2

1 2
1 1 1

( ) ( ( ) ) ( ) ( ) max{ , } ( )i i i i i i i
i i i

Tv x h x c T v x x v x e n x v xλ µ µ µ µ
= = =

 
= − + + − + − 

 
∑ ∑ ∑  

where the threshold policy related to Tiv(x) for i = 1,2 is the same as the one given in 
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Proposition 3.4. In our numerical implementation, we see that the new algorithm still converges 
and the limiting thresholds keep the properties as stated in Theorem 3.1, see for an example, 
numerical results in Figure 10 where 1 1 2 2( ) (2 )p x p xh x q e e− −= − −  for some constants q, p1 

and p2. Moreover, let 1 2( , )v x x∗  denote the limiting value function of our new algorithm. Then 

as in Example 4.4, we can obtain the value differences 1 2 1 1 2 2( , ) ( ( ) ( ))v x x v x v x∗ ∗ ∗− +  for 

10 x b≤ ≤  and 20 x n b≤ ≤ − , and for any {0,1, , }b n∈ K , the corresponding value 
differences are positive as shown, for a particular example, in Figure 11. From these numerical 
results, we reach a reasonable conjecture that the limiting value function ( )v x∗  is also an 
optimal value function in certain function class. 

 
Figure 10  Optimal thresholds with n = 19, α = 0.1, 1λ = 0.15, 2λ  = 0.25, 1µ = 0.3/19, 2µ = 0.5/19, 

l1 = 200, l2 = 400, c = 1000, q = 2000, p1 = 0.1 and p2 = 0.3. 

 
Figure 11: Comparison of value functions with n = 19, b = 3, α = 0.1, 1λ = 0.15, 2λ  = 0.25,  1µ = 

0.3/19, 2µ = 0.5/19, l1 = 200, l2 = 400, c = 1000, q1 = 1000, q2 = 2000. 
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5. Justifications of Some Previously Given Lemmas 

             
5.1 Lemma 5.1 and Its Proof 

Lemma 5.1  Let ( )iA ⋅  for each {1, 2}i ∈  be a Poisson process with rate iλ and let 

( )iI ⋅ denote the process satisfying that ( ) 1iI t = if there is an arrival of class i customer at the 

time point t and ( ) 0iI t =  otherwise. Moreover, let 
2

1
( ) ( )ii

I I
=

⋅ ≡ ⋅∑ , then 

                { ( ) 1 [0, )} 0P I t for all t> ∈ ∞ = .                    (16) 

Proof. Define 
2

1
( ) ( )ii

A t A t
=

≡ ∑  for each 0t ≥ , then the superposed process ( )A ⋅  is 

still a Poisson process with rate 
2

1
.ii

λ λ
=

= ∑  Thus, due to the independent increment property 
and by using the Poisson distribution, we have 

{ ( ) 1} { ( ) ( ) 1} ( ).P I t P A t t A t o t> ≤ + ∆ − > = ∆  
Let 0t∆ → , we have that, for each [0, )t ∈ ∞ , 

                      { ( ) 1} 0P I t > = .                             (17) 
Notice that [0, )∞  is an uncountable set, therefore we take a sequence of time points as 

1 20 mt t t< < < < <L Lsatisfying mt → ∞  when m → ∞ , then the associated sequence of 

sets { ( ) 1 for all [0, ]}mI t t t> ∈  decreases to the set { ( ) 1 for all [0, )}I t t> ∈ ∞  as 

m → ∞ . Moreover, for each tm, let ,

2
p q
m mp

qt t=  for positive integers p and q that satisfy 

0,1, , 2 .pq = K Then it follows from the right continuous property of ( )I ⋅  and equation (17) 
that 

,

1

,

1

{ ( ) 1 for all [0, )}
lim { ( ) 1 for all [0, ]}

lim { ( ) 1}

lim { ( ) 1}

0.

mm

p q
mm

p

p q
mm p

P I t t
P I t t t

P I t

P I t

→∞

∞

→∞
=

∞

→∞
=

> ∈ ∞
= > ∈

  = > 
  

≤ >

=

∑

U  

Hence we complete the proof of the lemma. □ 
Remark 5.1  One can employ the same idea to prove that almost surely along any path, 

there is at most one customer who finishes service at a time point in [0, )∞  since the service 
time distributions are assumed to be exponential. 
5.2  Proof of Lemma 3.1 

The proof of the lemma is the evaluation of equations (1) and (2) in Lippman[10]. First, we 
calculate the following expected α -discounted reward earned during one transition when 
starting from state x and choosing action a(x) through formula (2) in [10]. Following equation (3) 
and its expalnations in [10], we substitute γ  given in equation (7) into equation (2) in [10]. 
Then we have 
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{ }
{ }

0 0

0 0

00

0

( , ( )) (( ( ) ) , / , ( ), ) ( / , ( ))

( ( ) ) ( / , ( ))

1( ( ) ) ( / , ( ))

1( ( ) )

t t

S

t t

S

t t

S

r x a x e d h x c t x a x x e dt dq x x a x

h x c e d e dq x x a x

h x c e e dt dq x x a x

h x c e

ατ γ
α

ατ γ

ατ γ

ατ

τ γ

τ γ

γ
α

α

∞ − −

∞ −

∞ − −

−

 ′ ′ ′= −  

  ′ ′= −   

   ′ ′= − −  
  

 = − − 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

0

1 ( ( ) )

( )

t te dt

h x c

h x c

γγ

α γ

∞ −

= −
+

= −

∫

 (18) 

Next, notice that associated with a class i customer’s arrival, the transition probability 
( / , ( ))q x x a x′ appeared in equation (3) of [10] is , ( )/i x a xλ λ , and associated with a class i 

customer’s departure, the probability is , ( )/i i x a xx µ λ . Therefore, by substituting γ  in equation 
(7), the above equation (18) and equation (3) in [10] into equation (1) in [10], we can conclude 
that the lemma is true. □ 

5.3  Proof of Lemma 3.4 
Step One.  We prove the concave property (10) for Tv(x). In doing so, we first show that 
                  ( ) 0j j iT v x∆ ∆ ≤  for all , {1, 2}i j ∈ .                     (19) 

As a matter of fact, for j = i, we have 
2

1
2

1
2

1
2

1
2

1

( ) 0 2, ( ) 1
( ( ) ) 0 2, ( ) 1

( ) 0 2, ( )
( ) ( ) 0 2, ( )

( ( ) ) 0 2, ( ) 1

i i i i i i i

i i i i i i i

i i i i i i i

i i i i i i i i i

i i i i i i i

i

v x e if x n x a x
v x e l if x n x a x

v x e l if x n x a x
T v x v x if x n x a x

v x e l if x n x a x

=

=

=

=

=

∆ ∆ + ≤ Σ < − < −
− ∆ + + < Σ < − = −
∆ + + ≤ Σ < − =

∆ ∆ ≡ ∆ ∆ ≤ Σ < − >
− ∆ + + < Σ = − ≤ −
∆ 2

1
2

1

( ) 0 2, ( )
( ) 0 2, ( ).

i i i i i i

i i i i i i

v x e l if x n x a x
v x if x n x a x

=

=










+ + ≤ Σ = − =
∆ ∆ ≤ Σ = − >

 

Then, it follows from Lemma 3.3 that ( ) 1 ( ) ( )i i j ia x a x e a x− ≤ + ≤  and 

( ) 1 ( 2 ) ( )i j i j i ja x e a x e a x e+ − ≤ + ≤ + . Thus, for j i≠ , we have 
2

1
2

1

( ) 0 2, ( ) 2
( ) ( ( ) ) 0 2, ( ) 1,

( ) ( ) ( ) 1or
( ) ( ),
( 2 ) ( ) 2

j j i i i i i

ji j i i j i i i i i

j j i i j i

i j i

i j i

v x e if x n x a x
v x e v x e l if x n x a x

Tv x a x e a x
a x e a x
a x e a x

=

=

∆ ∆ + ≤ Σ < − ≤ −
∆ ∆ + − ∆ + + < Σ < − = −∆ ∆ ≡ + = −
 + =


+ = −
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2
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( ) ( ( ) ) 0 2, ( ),
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i j i j
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v x e v x e l if x n x a x
a x e a x
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=
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2
1

2
1

2
1
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( ) 0 2, ( ),
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( ) 0 2, ( ),
( ) ( ) ( 2 )
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i i i
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i i j i j

j j i i i i

i i j i j

ji j i i j i
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a x e a x
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v x e if x n x a x
a x a x e a x e

v x if x n x a x
a x a x e a x e

v x e v x e l
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=

< − =
+ =
+ = + −

∆ ∆ + ≤ Σ < − =
= + = +

∆ ∆ ≤ Σ < − >
≥ + ≥ +

∆ ∆ + − ∆ + + < 2
1

2
1

2
1

2
1

2, ( ) 1
( ) ( ( ) ) 0 2, ( ),

( ) ( ) 1
( ) ( ( ) ) 0 2, ( ),

( ) ( )
( ) 0 2, ( ).

i i i i

ji j i i j i i i i i

i j i

ji j i i j i i i i i

i i j

j j i i i i

if x n x a x
v x e v x e l if x n x a x

a x e a x
v x e v x e l if x n x a x

a x a x e
v x if x n x a x

=

=

=

=












Σ = − ≤ −
∆ ∆ + + ∆ + + < Σ = − =

+ = −
∆ ∆ + − ∆ + + < Σ = − =

= +
∆ ∆ ≤ Σ = − >





















 

Step Two.  We prove submodular property (11) for Tv(x) by showing the following claim, 
                ( ) ( ) 0j i i i j iTv x T v x∆ ∆ = ∆ ∆ ≤  for j i≠                   （20） 

As a matter of fact, 
2

1
2

1

2
1

2
1

( ) 0 2, ( ) 2
( ( ) ) 0 2, ( ) 1,

( ) ( ) 1
( ) 0 2, ( ) 1

( ) ( )
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j i i i i i i

i j i
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i
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=

=

=

=
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∆ ∆ ≡ ∆ + + ≤ ∑ < − =

+
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1
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Step Three.  We prove property (12) for Tv(x). We firstly show the following claim, 
                       ( ) 0 for .ij i iTv x i j∆ ∆ ≤ ≠                     (21) 

As a matter of fact, we have 
2
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We secondly show that 

                             ( ) 0 for .ji j iT v x i j∆ ∆ ≤ ≠                      （22） 

As a matter of fact, ( )ji j iT v x∆ ∆ ≡  
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Step Four.  Let 
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Then we have the claim that f(x) satisfies (10)-(12) for 
2

1
2.ii

x n
=

≤ −∑ Firstly, we show that 

(10) is satisfied. As a matter of fact, for , {1,2},i j ∈  

2 2

1 1

( )

( ( )) ( ) ( ( ))

( ( ) ( )) ( 2) ( ) ( )
0.

j j

j j i i j j j j i
i i

i j j i j j j j i j j j

f x

x v x e n v x x v x

x v x e x v x e n x x v x for i j
= =

∆ ∆

= ∆ ∆ − + ∆ ∆ − ∆ ∆

= ∆ ∆ − + ∆ ∆ − + − − − ∆ ∆ ≠

≤

∑ ∑ (24) 
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Secondly, we show that (11) is satisfied. As a matter of fact, for , {1, 2}j k ∈  and j k≠ , 

(25) 

Thirdly, we show that (12) is satisfied. As a matter of fact, for , {1, 2}j k ∈  and j k≠ , 

2 2

1 1

( )

( ( )) ( ) ( ( ))

( ( ) ( )) ( 2) ( )
0.

jk j

jk j i i jk j jk j i
i i

k jk j k j jk j j k j jk j

f x

x v x e n v x x v x

x v x e x v x e n x x v x
= =

∆ ∆

= ∆ ∆ − + ∆ ∆ − ∆ ∆

= ∆ ∆ − + ∆ ∆ − + − − − ∆ ∆

≤

∑ ∑          (26) 

Finally, by steps one to four and by the fact that h(x) satisfies conditions (10)-(12), we 
know that Tv(x) satisfies conditions (10)-(12). Therefore we complete the proof of the lemma. 
□ 

6. Concluding Remarks and Future Research 

In this paper, we studied the stochastic optimal admission and routing controls for a system 
consisting of two parallel-server channels with zero waiting buffer capacity and multi-class 
customers via Markov decision processes moving in discrete triangles. Our findings can possibly 
be extended to more general cases in two directions. Firstly, in the current paper, the classes of 
customers are classified according to the arrival rates, payments and penalty costs. We 
conjecture that our results should be true when the service rates for different classes are also 
different. This conjecture is partially justified by the numerical implementation summarized in 
Example 4.6. Secondly, when there are more than two classes of customers who are served in 
each channel, the corresponding Markov decision processes move in high-dimensional discrete 
trihedrons. The research to find the suitable class of structured value functions that is preserved 
under certain sense is also interesting. 
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