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Abstract We prove a heavy traffic limit theorem to justify diffusion approximations 
for multiclass queueing networks under preemptive priority service discipline and provide 
effective stochastic dynamical models for the systems. Such queueing networks appear 
typically in high-speed integrated services packet networks about �elecommunication sys
tem. In the network, there is a number of packet traffic types. Each type needs a number 
of job classes (stages) of processing and each type of jobs is assigned the same priority 
rank at every station where it possibly receives service. Moreover, there is no inter-routing 
among different traffic types throughout the entire network. 
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Introduction 

Motivated from high-speed integrated services packet networks in telecommunication sys
tem, we study a type of multiclass queueing networks and establish associated approximating 
stochastic dynamical models in guidance of system performance evaluation and prediction. An 
important feature of such queueing networks is that each station in the network can process 
more than one class of jobs and have complicated feedback structure. Heavily loaded (close 
to service capacity) networks, where congestion and blocking are compelling problems, are of 
particular interest. Frequently, exact analysis of such networks is unavailable and it is natural 
to seek tractable approximations. In connection with this, it has been shown that a certain 
class of diffusion processes, known as semimartingale reflecting Brownian motions (SRBMs), 
approximate normalized versions of the queue length or workload processes in many single class 
queueing networks and some multiclass queueing networks under conditions of heavy traffic 
(e.g. , Ref. [I-U]). The approximating Brownian models (SRMBs) use only the first two mo
ments of the interarrival times, service times, and routing vectors associated with the networks. 
Moreover, for the Brownian models, many quantities including the stationary distribution can 
be computed either exactly or numerically [2, 12-14J. Therefore, one can obtain performance es
timates for the networks, like average queue lengths and average queueing delays, from their 
Brownian counterparts. Unfortunately, it is known that not all multiclass networks with feed
back can be approximated by SRBMs in heavy traffic[15J. In fact, one of the challenges in 
contemporary research on queueing networks is to identify broad categories of networks which 
can be so approximated and to prove a heavy traffic limit theorem justifying the approximation. 
Hence, in this paper, we prove a heavy traffic limit theorem to show that SRBMs can be used 
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to approximate preemptive priority multiclass queueing networks with general interarrival time 
and service time distributions. 

The traditional methods for demonstrating the approximations rely on the existence and 
uniqueness of solutions to the Skorohod problems associated with corresponding queueing 
networks[41. However, uniqueness does not always hold, for example, in the case of networks 
with finite buffers[1-3J, and in the case of multiclass networks with feedback[15J. In these cases, 
traditional methods cannot be readily extended. To overcome the difficulty, the weak con
vergence method was initially established by authors, such as W. Dai[1,2J, J. G. Dai and W. 
Dai[3J, for finite buffer networks, then along the similar line by authors like Williams[7, 8, 16J 

and Bramson{5,61 for certain family of multiclass networks. By the method, the keys to prove 
a heavy traffic limit theorem for multiclass networks with feedback are to show a state space 
collapse property and a completely-S property for some reflection matrix. Bramson and J. G. 
Dai[9J further summarized the results in Refs. [5,7, 16J and claimed that as long as one can show 
the uniform convergence for associated fluid model then one can prove the state space collapse 
property. By this way, they established a heavy traffic limit theorem in Ref. [9J for a single 
station multiclass queueing system under preemtive priority service discipline. Nevertheless, 
it is not trivial to establish the uniform convergence and the completely-S property for more 
general network models (e.g., as presented above). Hence the proofs of these two properties are 
the main parts in our justification. 

The rest of this paper is organized as follows. The network model is described in Section 1. 
Our main theorem is stated in Section 2 and its proof is given in Section 3. 

1 Queueing network model 

The queueing network under consideration has J single server stations and each station has 
an infinite capacity waiting buffer. In the network, there are h traffic types and each type 
consists of J job classes distributed at different stations. Therefore, the network is populated 
by K(= Jh) job classes. Stations are labeled by j = 1"" ,J, and classes by k = 1" " , K. 
When a job of a type arrives from outside the network, it may only receive service for part of J 
job classes and may visit a particular class more than once, then it leaves the network. At any 
given time during its lifetime in the network, the job belongs to one of the job classes. The job 
changes classes as it moves through the network and becomes a new job of a. new class after 
a change, changing classes happens only at each time a service is completed; all jobs within a 
class are served at a unique station. Since the network is multiclass, more than one class might 
be served at a station. Each job is assumed to leave the network eventually and there is no 
inter-routing among different job types throughout the entire network. 

Fig. 1 

: 

A two-station, two-type and 
four-class network 

Concerning the service discipline that controls the 
order in which jobs are served at each station , each 
type of jobs is assigned the same priority rank at ev
ery station where it possibly receives service (see, for 
example ih Fig. 1, where type 1 traffic possibly re
quires class 1 and class 2 services, type 2 traffic possi
bly requires class 3 and class 4 service, job classes in 
type 1 have the lower priority at their corresponding 
stations). When the server switches from one job to 

another, the new job will be taken from the leading (or longest waiting) job at the highest 
ranked non-empty class at the server station. Moreover, we assume that the service discipline 
is preemptive-resume. That is, when a job, with a higher rank than the one currently being 
served, arrives at the server station, the service of the current job is interrupted. When service 
of all jobs with higher ranks is completed, the interrupted service continues from where it left 
off. Finally, we assume our policy is non-idling, namely, a server is never idle when there are 
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jobs waiting to be served at its station. 
We use C(j) to denote the set of classes belonging to station j, and s(k) to denote the 

station to which class k belongs; when j and k appear together, we implicitly set j = s(k). 
Associated with each class k of a queueing network, there are two independent and identically 
distributed (i.i.d.) sequences of random variables, Uk = {uk(i), i � I} and Vk = {vk(i), i � I}, 
an i.i.d. sequence of K -dimensional random vectors, q} = {q} (i), i � I}, and two real numbers, 
Qk � 0 and mk > O. We assume that the 3K sequences 

Ul . . .  UK VI . . . VK -1,1 . • .  -I,K , , , , , ,,+,, ,,+, (1) 

are mutually independent. We set ak = var(uk(I)) and bk = var(vk(I)), and assume that 
ak < 00 and bk < 00, and that Uk and Vk are unitized, i.e., E[uk(I)] = 1 and E[vk(I)] = l. 
For each i, uk(i)!Qk denote the interarrival time between the (i - l)th and the ith externally 
arriving job at class k, mkvk(i) denote the service time for the ith class k job, and ¢k(i) denote 
the routing vector of the ith class k job. It follows that for each class k, mk is the mean 
service time for class k jobs, Qk is the external arrival rate to class k, and ak and bk are the 
squared coefficients of variation for interarrival and service times. (The squared coefficient of 
variation of a positive random variable is defined to be the variance divided by the squared 
mean.) We allow Qk = 0 for some classes k, and set £ = {k : Qk =1= O}. We suppose that the 
routing vector ¢k(i) takes values in {eo, el,··· ,eK}, where eo is the K-dimensional vector with 
components 0 and, for l = 1, ··· , K, el is the K-dimensional vector with lth component 1 and 
other components O. When ¢k(i) = el, the ith job departing class k becomes a class l job. We 
let Pkl = P { ¢k (i) = ell be the probability that a job departing class k becomes a class l job 
(of the same type). The K x K matrix P = (Pkl) is the routing matrix of the network. From 
our assumption that every job will "leave the system eventually, our network is open, namely, 
the matrix 

Q = 1 + p' + (pl)2 + ... (2) 

is finite, which is equivalent to (1 - PI) being invertible, with Q = (I - PI)-l, where 1 denotes 
the identity matrix and the prime symbol on P denotes its transpose. 

To study open multiclass queueing networks, one employs the solution A!, l = 1, ··· , K, of 
the traffic equations 

K 
Al = Ql + L AkPkl, 

k=l 
(3) 

or equivalently, in vector form, of A = Q + pI A. Since the network corresponding to P is open, 
the unique solution A of Eq. (3) is A = QQ. The term Ak is referred to as the nominal total 
arrival rate at class k; it depends on both external and internal arrivals. If, for each class k, 
there is a long-run average rate of flow into the class which equals to the long-run average rate 
out of that class, this rate will equal Ak. Employing vectors m = (ml, ··· ,mK)' and A, one 
defines the traffic intensity Pj for the jth server as 

Pj = L Akmk. (4) 
kEC(j) 

In vector form, P is given by P = eM A, where M = diag( m) is the K x K diagonal matrix 
whose diagonal entries are given by the components of m and all other entries are 0, moreover, 
C is the constituency matrix, 

C. 
= 
{I, if k E C(j), that is, class k is served at station j; 

Jk 0, otherwise. (5) 
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When Pj :S 1, Pj is also referred to as the nominal fraction of time server j is busy. In this 
paper, we study the networks in which Pj is close to one for each station j. Such networks are 
said to be "heavily loaded" . 

2 Heavy traffic limit theorem 

Before we state our heavy traffic limit theorem, we require additional terminology including 
scaling, heavy traffic conditions and some definitions. 
2.1 Scaling and heavy traffic conditions 

Let aT and mT denote the vectors of the external arrival rates and mean service times for 
a sequence of networks indexed by r E { I, 2,···}. Let AT = QaT and pT = CMT AT with 
MT = diag(mT). It is supposed that the set £ = { k: ak =I- O} and the routing matrix P do not 
depend on r. It is further assumed that aT and mT are so chosen that the below heavy traffic 
conditions are satisfied as r � 00, 

ak � ak > 0 for k E £, mk � mk > 0 for k = 1, . . .  , K, 

and that pT � e at the rate 

(6) 

(7) 

where e is the J-dimensional vector with components 0 and'Y is some J-dimensional vector. 
Notice that from Eqs. (6) and (7), we have 

p=CMA=e, (8) 

that is, each station is critically loaded in the limit. The interarrival times for class k are given 
by { uk(i)/ak,i = 1,2, .. ·} and the service times by { mkvk(i), i = 1, 2, .. ·}. Therefore the 
squared coefficients of variation (SCV) of the interarrival times and service times for class k, 
ak and bk , do not depend on the index r. 

For the rth network, the below processes ZT, WT and yT will be employed to measure 
its performance. The process ZT = {ZT(t), t � I} is K-dimensional with Z'k(t) representing 
the number of class k jobs at time t. It is called the queue length process. The other two 
processes, WT = {WT(t), t � I} and yT = {yT(t), t � I}, are both J-dimensional. For each 
station j, W;(t) denotes the amount of work for server j (measured in units of remaining service 
time) embodied in those jobs which are at station j at time t. The process WT is called the 
(immediate) workload process. For each station j, YT(t) denotes the total amount of time that 
the server at station j has been idle over time interval [0, t]. yT is called the (cumulative) idle
time process. The queue length and workload processes measure congestion and delay in the 
network; the idle-time process measures utilization of the resources (servers) in the network. The 
queue length, workload and idle-time processes are expected to grow when pT � e as r � 00. 
Considering functional central limit theorems, we define the scaled queue length processes 
ZT(t) = (ZI(t), . . .  , ZK(t))', the scaled workload processes WT(t) = (W[(t), ... , WK(t))' and 
the scaled idle-time processes yT(t) = (Y{(t), . . .  , Yk(t))' as follows: 

2.2 Some definitions 

- 1 2 - 1 2 Wk(t) = -Wk(r t), Yk(t) = -Yk(r t). r r 

Throughout this section, B denotes the a-algebra of Borel subsets of n� with n+ = [0,00), 
() is a vector in n J that denotes the J -dimensional Euclidean space, r is a J x J symmetric 
and strictly positive definite matrix, R is a J x J matrix and v is a probability measure on 
(n�, B). The following definition of an SRBM is adapted from Ref. [16]. 
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Definition 1 (SRBM) An SRBM associated with the data ('R.i, 0, r, R, v) is an {Ft}-
adapted, J-dimensional process W, dejined on some jiltered probability space (O,F,{Ft},P), 
such that P-a.s.: 

1. W has continuous paths with W(t) E R:L for t � 1, 
2. W = X + RY for appropriate J -dimensional processes X and Y. 
3. the processes X and Y satisfy the following properties, under P, 
(a) X is a Brownian motion with drift vector () and covariance matrix r such that X(O) has 

the distribution v, 

(b) {X(t) - X(O) - Bt, Ft, t 2: O} is a martingale. 
4. the process Y is an {Ft}-adapted J-dimensional process such that P-a.s., for each j = 

1" " ,J, 
(a) Yj(O) = 0, 
(b) Yj is continuous and nondecreasing, 
(c) Yj can increase only at time t where Wj(t) = O. 

Definition 2 (Completely-S) A J x J matrix is called completely-S if and only if for 
each principal submatrix R of R there is x > 0 such that Rx > 0, where vector inequalities are 
interpreted componentwise. 
2.3 Main theorem 

To state our heavy traffic limit theorem, we need some general assumptions. Recall that 
Q and m are the limits in Eq. (6) and A = QQ. We will suppose that Eq. (6) holds, and 
Ak > 0 for all k. Let A, E and II denote the diagonal matrices with entries Ak, bk and Q%ak for 
k = 1, . .. , K  along the main diagonal, and let rk be the K x K matrix given by 

with l, If = 1"" , K. One can check that rk is the covariance matrix of the routing vector 
¢k(I). Thus it is symmetric and nonnegative definitive. Set 

(9) 

From Eq. (9), it is easy to see that H is symmetric and nonnegative definitive since L�=l Akrk 
and the two diagonal matrices are each symmetric and nonnegative definitive. In the sequel, 
we will always assume that H is strictly positive definitive to guarantee the randomness of our 
network. Let � denote a K x J nonnegative matrix with entries given by 

A { _1_ , if k is the lowest priority class at station j; 
L.l.kj = mk 

0, otherwise. 
(10) 

For a vector a = (at,··· ,ad)', define IIall = maxf=l l ail and let::::} denote the weak convergence 
in Skorohod topological space[17] . Then we have the following theorem. 

Theorem 1 Assume that Eqs. (6) and (7) are true, the initial data satisfy 

wr(o) ::::} W*(O) as r --+ 00 

for some nonnegative random vector W*(O), and 

IIzr(o) - �Wr(O)II --+ 0 in probability as r --+ 00. 

(11) 

(12) 
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Let XT = WT - Ryr. Then, as r --t 00, 

(W-

r xr yr zr) =} (W* X* Y* Z*) 

, " ' " (13) 

for some W*, X*, Y* and Z*, where W* = X' + RY* is a (R�,e,r,R,v)-SRBM, and the 
limits have state space collapse prop'erty 

Z* = D.W*. 

Moreover, R is a completely-S matrix given by 

and the parameters () and r are as follows: 

() = R--y, r = RHR'. 

3 Demonstrating main theorem 

(14) 

(15) 

(16) 

Lemma 1 Under the conditions of Theorem 2.3, the matrix I + CMQP'D. is invertible, 
and its inverse matrix R given by Eq. (15) is completely-S. 

Proof Without loss of generality, we use consecutive numbers to index the job classes that 
have the same priority rank at stations 1 to J, i.e., the lowest priority job classes for station 
1 to J are indexed by II = {I, ... , J} ,  the second lowest priority classes are indexed by I2 = 

{ J + 1, ... , 2J}, . . . , and the highest priority classes are indexed by Ih = {K - J + 1, . . .  , K}, 
where h = K I J is the number of job types. There is no inter-routing among job classes II, I2, 
... , Ih. Thus, from the index method, we know that tq.e routing matrix P is a block diagonal 
matrix with h J x J submatrices PIiI, for i E {I, . . . , h} along the main diagonal, where the 
matrix PIiI, is corresponding to the routing probabilities of the job classes that have priority 
rank i at their stations. Then P can be denoted by 

(17) 

Therefore the matrix Q is also a block diagonal matrix and it can be written as 

(18) 

The matrix C M can be blocked as 

(19) 

The matrix D. is the following blocked matrix consisting of h J x J submatrices 

D. = [diag(mI, '" ,mJ )-1,0,··· ,0]' , (20) 

where 0 is the J x J zero matrix. From Eqs. (18), (19) and (20), we have 

I +G = I +CM(I - p')-ID. - CMD. 
= diag(ml,'" ,mJ)(I - PtI,}-I [diag(mI"" , mJ)r1• (21) 

From Eq. (21), we see that 1+ G is invertible and the inverse R is given by 

(22) 
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Since the network is open, we know that the matrix (J - PtI1) is completely-S (see, for 
example, Bernard and Kharroubi[18], Harrison and Reiman[19] ). Then it is easy to check that 
R is completely-So 

The remaining proof of our main theorem heavily depends on the below fluid model which 
is the analog of queueing network process as explained in Ref. [9J, 

A(t) = o:t + pI D(t), (23) 
Z(t) = Z(O) + A(t) - D(t), (24) 
W(t) = CM(A(t) + Z(O)) - CT(t), (25) 
CT(t) + Y(t) = eJ t, (26) 
}j(t) can increase only at time t where Wj(t) = 0, for j = 1"" , J, (27) 

for all t ;::: 0, where 0: = (0:1 , ' " ,O:K )' is supposed to have nonnegative components and 
m = (mI,'" ,mK)' has positive components, M = diag(m), and P is a flow transition matrix. 
Moreover, we have 

T(t) = M D(t). (28) 

We will assume that all of the fluid process are continuous and nonnegative with A(·), D(·), 
T(.) and y(.) being nondecreasing. Moreover, one can check that 

A(O) = D(O) = T(O) = Y(O) = 0 

follow from Eqs. (23)-(26). And that 

W(t) = CMZ(t), for all t;::: 0, 

follows from Eqs. (24), (25) and (28). 

(29) 

(30) 

Employing Eqs. (23)-(28), one can show that each of these fluid process is Lipschitz contin
uous, that is, for some N > 0 (depending only on (0:, m, P)), 

if f is any of the above fluid processes. In particular, they are absolutely continuous and hence 
differentiable almost everywhere with respect to Lebesgue measure on [0,00). A time t > 0 is 
said to be a regular point for the fluid model solution (A, D, T, W, Z, Y) satisfying Eqs. (23)
(30) if they are all differentiable at this time. Whenever we employ the derivative of a fluid 
process at a time t, we implicitly assume that t is a regular point. The notation, j(t), will be 
used to denote the derivative of a function f at the time t. Hence, it follows from our service 
discipline that 

t:(t) = 1 when Zit(t) > 0, for all regular values of t, k = 1"" ,K, (31) 

where Zit (.) corresponds to the total number of jobs presenting in classes whose priorities are 
at least as great as k and T: (.) is corresponding to the cumulative amount of time that server 
s(k) has spent on classes whose priorities are at least as great as k. 

Definition 3 Let � be a K x J nonnegative matrix. A fluid model is said to be uniformly 
convergent with lifting matrix � if there exists a function g: R+ -+ R+ with g(t) -+ 0 as t -+ 00, 
such that for each fluid model solution (A(.), D(.), T(·), W(·), y(.), Z(·)) with IIZ(O)II = 1, 

IIZ(t) - Z(oo) II � g(t) for all t;::: 0, 

for some Z ( 00) E R!f. satisfying 

Z(oo) = �w f or same wE R!f.. 

(32) 

(33) 
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Proposition 2 Assume that the matrix � is given by Eq. (10) and the conditions (6), 
(7), (11) and (12) all hold. Then the fluid models (23)-(31) is uniformly convergent with the 
lifting matrix �. 

Proof With the notations in the proof of Lemma 1, we know that II is the index set of 
all classes with the lowest priority at each station, and Ii for i E {2, ... , h} denotes the index 
set of all classes with priority rank i at each station. We will show that the fluid level Zk(t) for 
k E Ii with i E {2, . . . , h} reaches zero in a finite time, and that the fluid level Zk(t) for k E II 
remains constant after that time with the initial data IIZ(O)II = l. 

Step 1 We show that the fluid level Zk(t) for k E Ii with i E {2, ··· , h} reaches zero in a 
finite time. For a K -dimensional vector x, we use (XI" ... , XIh)' to denote the corresponding 
partition. Let MIi for i E {2, ··· , h} be the J x J diagonal matrix with entries mk, k E Ii, 
along the main diagonal, and let 

Then we can construct a Lyapunov function (total workload) of the fluid levels of all classes 
that have priority rank i as follows: 

(34) 

where e denotes the J-dimensional vector with components O. Noticing Eqs. (17) and (18) in 
the proof of Lemma 1, we can construct a Lyapunov function of the fluid levels of all higher 
priority classes 

h 
f(t) = L fi(t). (35) 

i=2 

Now we try to show that there exists an appropriate 8 � 0 such that f(t) = 0 for all t � 8. In 
doing so, we use the induction method in terms of i E {2, ··· , h}. 

Before going to the induction procedure, we need to derive some equations associated with 
the set Ii for i E {I, 2, ··· , h}. From Eqs. (23), (24) and the structure of the routing matrix P, 
we have 

ZIi(t) = ZIi(O) + Il:IJ - (I - Pf,IJDIi (t). (36) 

In the sequel, we need to consider the cases where Zk(t) = 0 and Zk(t) -10 for k E Ii and a 
fixed t � o. Therefore we introduce the following notations: 

(37) 

Notice that the network is open, then we can solve Eq. (36) and obtain 

(38) 

where Qro = (I - Pforo)-l and Zro(t) = 0 by Eq. (37). From the traffic equation (3) and the 
structure 'of the routing matrix P ,  �e have 

(39) 

SolvihgEq. (39), we get 

(40) 
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We are now ready to go into the induction justification procedure. In the first step of the 
induction, we consider the case i = h and show that the fluid level Zk(t) for k E Ih reaches zero 
in a finite time, where Ih is the index set of all classes that have the highest priority at each 
station. Instead, we demonstrate that there exists an appropriate 8h 2: 0 such that A(t) = 0 
for all t 2: 8h, and hence Zk(t) = 0 for t 2: 8h and k E Ih. In fact, when A(t) > 0 at a point 
t, then there is at least one k E Ih such that Zk(t) > 0 and hence If: is nonempty. Thus from 
Eqs. (34), (36) and (39) and for each regular point t, we have 

jh(t) = e' MZh (.�Zh - ihh (t)) 
= e�oMzo (A Zo - bzo(t)) + e�nMzn (Am - Dzn(t)) h h h h h h h h 

where ezo and ezn are vectors with components ones with dimensions corresponding to the h h 
numbers of indices in If: and r,:, respectively. In the third equality of Eq. (41), we used 
Eqs. (38), (40) and the fact ZZi(t) = o. In the fifth equality of Eq. (41), Ok denotes the kth 
component of the corresponding vector. In the last equality of Eq. (41), we used the heavy 
traffic condition (8), and the fluid model property (31) and (28) to conclude that bl(t) = 0 for 
l E C(s(k)) \ {k} and mkih(t) = 1, where k is the index of the highest priority class at station 
s(k) and C(s(k)) \ {k} is the index set of all classes but class k at station s(k). Now notice that 
ez' o M zoQzoPz ' nzoMz-n1 2: o. Therefore h h h h h  h 

where Qh is the set consisting of sets of all possible nonempty combinations of class indices in 
Ih. Then from Eqs. (41) and (42), we know that jh(t) :::; -8� whenever fh(t) > O. Define 

(43) 

Then, it is easy to show that !h(t) = 0 for t 2: 8h since fh(·) is absolutely continuous. Moreover, 
Zk(t) = 0 for all t � 8h and k E Ih. 

In the second step of the induction, we suppose that, for a fixed i E {2, . .. ,h - I}, the claim 
is true for i + 1 :::; j :::; h, that is, there exists a nonnegative number 8;+1 such that Zk(t) = 0 
for t � 8i+1 and k E UJ=i+lIj (union of sets Ij). Furthermore, we can conclude that Zk(t) = 0 
at regular points for all t 2: 8i+l and k E UJ=i+lIj. Thus from Eqs. (36) and (39) and for 
i + 1 :::; j :::; h, we have 

(44) 

In the third step of the induction, we prove that, for the fixed i in the second step, the claim 
is true for i :::; j :::; h,  that is, there exists a nonnegative number 8; such that Zk(t) = 0 for all 
t � 8; and k E UJ=Jj. Instead, we demonstrate that there exists an appropriate 8i 2: 0 such 
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that fJ(t) = 0 for all t 2: 0; and i � j � h. To achieve this objective, we consider t 2: Oi+!. 
From the induction assumption in the second step, we know that fJ(t) = 0 for i + 1 � j � h. 
Then we only need to discuss Ji(t) for t 2: Oi+!. Notice that there is at least one k E Ii such 
that Zk(t) > 0 and hence If is nonempty when Ji(t) > 0 at a point t. Thus from Eqs. (34), 
(36), (39) and for each regular point t, we h8jvq, 

ji(t) = e'MI• (AIi - DIi(t)) 
= e�fMIf (AIf - DIf(t)) + e�rMIr (AII' - DIr(t)) 

= e�fMIfQIfPhIf (AII' - ihr(t)) + e�rMIr (AII' - DIr(t)) 

= (e�fMIfQIfPfrIfMi/ + e�f) (MIfAIf - MIfDXf(t)) 

= L (1 + (e�fMIfQIfPfrIfMi;nl) J (Akmk - mkDk(t)) 
kEIr 

Here, we need give some interpretations about the last equality of Eq. (45). 1t;(s(k)) is the 
index set of classes whose priority ranks are at least i at station s(k), and C(s(k)) \ 1t;(s(k)) 
denotes the index set of classes with priority ranks lower than i at station s(k). Notice that the 
class k at station s(k) has priority rank i and is nonempty. Thus, from Eq. (28) and the SBP 
fluid model property (31), we know that DI(t) = 0 for l E C(s(k)) \ 1ti(s(k)) and 

L mIDI(t) = 1. (46) 
IE1ti(S(k)) 

Thus, from the heavy traffic condition (8), the induction assumption (44) in the second step, 
and Eq. (46), we have, for k E If, 

Akmk - mkDk(t) = L (Alml - mIDI(t)) = - L Alml· 
IE1t;(s(k)) IEC(s(k))\1t;(s(k)) 

Therefore we provide a proof for Eq. (45). Next notice that e'p MIfQIfPfnI?Minl 2: O. Then 
we have 

• ., . 

O�:= min { " (1 + (e�OMI?QpPf,:,pMinl) ) ( " Alml) }  > 0, (47) I!lEQ' � 't t t 't t 't k � • • kEIr IEC(s(k))\1ti(s(k)) 
where (h is the set consisting of sets of all possible nonempty combinations of class indices in Ii' 
Then from Eqs. (45) and (47), we know that, for t E [Oi+l' 00), ii(t) � -o� whenever f;(t) > O. 
Define 

(48) 

Then, it is easy to show that Ii (t) = 0 for t 2: 0; since fi (.) is absolutely continuous, and hence 
Zk(t) = 0 for all t 2: 0; and k E uJ=iIj. 

In the end of this step, we take 0 = 02 obtained from the above induction procedure. Then, 
we have that f(t) = 0 for t 2: 0 and hence Zk(t) = 0 for all t 2: 0 and k E uJ=2Ij, where f(t) is 
defined in Eq. (35). 
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Step 2 We demonstrate that the fluid level Zk(t) for k E II remains constant after the 
finite time 8 obtained in Step 1. In order to prove the claim, we restart the fluid model solution 
at time 8 as follows: 

(AO(t), DO(t), TO(t), WO(t), yO(t), ZO(t)) 
= (A(t + 8) - A(8), D(t + 8) - D(8), T(t + 8) - T(8), W(t + 8), Y(t + 8) - Y(8), Z(t + 8)) 

(49) 

for t 2: o. It is easy to check that the left-hand side of Eq. (49) is still a fluid model solution 
with the initial data ZO(O) = Z(8). From Eqs. (36), (40) and zt (t) = 0 for i E {2,··· , h}, we 
have 

(50) 

Hence, we have 

Zf.(t) = zt (0) + aI, t - (J - Pf,I.)Mi.' (eI' t - t, ry,<t) - y' (t») -

where 

= xt (t) + ( aI, - (I - Pb')�i.' (eI, -t, MI, AI.») t + (J - Pr,I, )Mi.' y' (t) 

= XO (t) + (/ - pi )M-IYO(t) (51) II IIII II ' 

h 
xt (t) == zt (0) + (/ - PflII )Mi,I L MI; (I - Pf;IJ-I zt (0). 

i=2 

In the first equality of Eq. (52), we used Eqs. (36), (28) and (26). In the second equal
ity, Eqs. (28) and (51) are employed. The third equality is obtained from the heavy traffic 
condition (8) and the traffic equation (39). Moreover, we have 

100 ZZ(t)dY:(t) = 0 for k E II, 

Y:O is non-decreasing and Y:(O) = 0 for k E II· 

(52) 

(53) 

Therefore, Eq. (52) to Eq. (54) form a so-called continuous deterministic regulation (Skorohod) 
problem. Since the network is open, we know that the matrix (I - PtII) is completely-S 
(See, for example, Bernard and Kharroubill81, Harrison and ReimanlI91). Then it is easy to 
check that the reflection matrix (I - PflII )Mi,l in Eq. (52) is completely-So Thus, following 
an oscillation inequality in Bernard and Kharroubill8) and Eq. (52), we have 

Osc(zt (.), [tl, t2]) == sup {llzt (t) - zt (8)11: h ::; 8 < t::; t2} 
::; � Osc(xt (.), [h, t2]) = 0 (54) 

for any 0 ::; h < t2 < 00, where � is a positive constant depending only on the reflection matrix 
(I - PfIIJMi,I in Eq. (52). Then we have ZII (8 + t) = ZII (8) for all t � o. Thus we finish 
the proof of the second step. 

Finally, set ZIl (00) = ZIl (8) and ZI; (00) = 0 for i E {2,· .. , h}, then we have Z(t) = Z(oo) 
for t � 8. If we can show sUPIIZ(O)II=1 8 < 00, Proposition 2 is proved. As a matter of fact, this 
claim can be demonstrated by induction. First, for j = h, we have that sUPIIZ(O)II=1 8h < 00 by 



1342 DAI Wan-yang 

Eq. (43) and (34). Secondly, suppose that sUPIIZ(O)II=l Oi+! < 00 for a fixed i E {2, . . .  , h  - I}. 
Thirdly, we consider the case j = i. Since Z(·) is Lipschitz continuous, we have 

(55) 
where N is a constant depending only on (a, M, P). From Eqs. (48), (34) and the induction 
assumption, we know that sUPIIZ(O)II=10i < 00. 

Proof of Theorem 2.3 Due to Lemma 1 and Proposition 2, it follows from Bramson and 
J. G. Dai[9] that our main theorem is true. 
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