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Abstract 

Heavy-tailed distribution (HTD) and long-range dependence (LRD) have appeared in the studies of telecommunication, 
finance, and etc. However, the truncation of a heavy-tailed random variable is inevitable in a computer and network 
simulation due to the hardware and software limitations such as numbering format of binary digits and pseudo random 
number generators. Thus a natural issue arises: how well the approximation of a concerned objective in a simulation will be 
if a truncated random variable is used to replace the original heavy-tailed one? As pointed out in this paper, the difference 
of the means (or variances) between the truncated version and the original one will still be infinite if the original random 
variable is heavily tailed with infinite mean and/or variance, which indicates that the truncated approximation may be not 
consistent with what should be if the HTD/LRD assumptions are imposed. So, based on this observation and our previously 
established approximation theory via reflecting Gaussian process (RGP) with or without LRD, we can provide more 
reasonable interpretations to some well-known large-scale computer and statistical experiments in characterizing the 
superposition of internet traffic sources, which clarify that the findings in these simulations should be more close to the 
reality but not to the mathematical assumptions about HTD/LRD, which are imposed in their models and analysis. Hence 
our findings smooth, to some extent, the gaps between HTD/LRD theory and real-world simulations. More importantly, 
our findings also indicate that it is more suitable to use the truncated version of a heavy-tailed random variable in a 
simulation and related analysis in order to be more consistent with reality and to avoid more complicated discussions via 
HTD/LRD theory. 
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1. Introduction 

HTD/LRD have been used in many areas to characterize source traffics in telecommunication (see, e.g., 
Refs. [5~6], [11], [13], [19], and etc.), price jumps and correlations in finance (see, e.g., Refs. [1], [2]), and 
etc. Particularly, in the early 1990s, the authors such as Refs. [11] and [19] disclosed one of the most  
interesting findings in high-speed networks, i.e., source traffic data were shown to possess LRD. Since then, 
stochastic modeling associated with LRD data has become an active area of research. For examples, in the 
early 2000s, a number of scientists in Bell Labs focused on traffic data and related queueing modeling 
based on statistical multiplexing. Their achievements (see, e.g., Refs. [5~6], and etc.) through large-scale 
computer and statistical experiments indicate that the packet interarrival times and packet sizes tend to i.i.d. 
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(independent and identically distributed) when the number of the input connections increases. Their 
findings are of great importance in designing and implementing telecommunication software systems and 
hardware devices since HTD/LRD sources will significantly increase system design complexity and the 
cost of high-speed memory. Moreover, for some particular cases and under certain time scaling, Refs. [6] 
developed some theory to make their simulation findings justified. 

However, since the above well-known simulations are computer based ones, the truncation of a 
heavy-tailed random variable used in the simulations is inevitable due to the hardware and software 
limitations of a computer, such as, the numbering format of binary digits and the pseudo uniform random 
number generators (see, e.g., Ref. [14]). Then a natural issue arises concerning the truncation: how well the 
approximation of a concerned objective designed in a simulation will be if a truncated random variable is 
used to replace the original heavy-tailed one? As pointed out in this paper, the difference of the means (or 
variances) between the truncated version and the original one will still be infinite if the original random 
variable is heavily tailed with infinite mean and/or variance, which indicates that the truncated 
approximation may be not consistent with the HTD/LRD based theory. In fact, some of the simulations 
conducted by authors in Refs. [5~6], and etc. have revealed some gaps between the simulation findings and 
the related HTD/LRD theory. 

For example, the theory developed in Ref. [6] to justify their simulation findings is under the so-called 
critical time scale introduced in Ref. [15], i.e., the characteristics of an individual source becomes less 
important when the number of superposed sources increases. Nevertheless, in general, the characteristics of 
the superposed limiting process heavily depends on the ways of the time/space scales (see, e.g., Refs. [6], 
[10], [12]). If the time scale of interest does not change with superposition, things will be different since 
individual source behavior still plays an important role. 

So, by the above observation and our previously established approximation theory in Ref. [10] 
concerning RGP with or without LRD, we can provide more reasonable interpretations to the simulation 
findings in Refs. [5~6], and etc., which are based on the same queueing model and the same time/space 
scaling with both heavy-tailed random variable and its truncated counterpart as the driving random 
environmental factors. From these interpretations, we can see that the simulation findings in Refs. [5~6], 
and etc. should be more close to the reality but not to the mathematical assumptions about HTD/LRD, 
which are imposed in their models and stemmed from Ref. [19] where only bounded range of time scales 
are concerned. Hence our findings smooth, to some extent, the gaps between HTD/LRD theory and 
real-world simulations. More importantly, our findings also indicate that it is more suitable to use the 
truncated version to replace a heavy-tailed random variable in a simulation and related analysis in order to 
be more consistent with reality and to avoid more complicated discussions via HTD/LRD theory. 

The rest of this paper is organized as follows. In Section 2, we make a comparison between a 
heavy-tailed random variable and its associated truncated version, and state the reason why the hardware 
and software systems in a computer can cause truncation to a heavy-tailed random variable. Moreover, in 
the section, we also describe the possible impact of the truncation of a random variable on some 
well-known simulation findings in high-speed networks. In Section 3, we use our previously established 
approximation theory via RGP to justify that some well-known simulation findings should be more close to 
the reality but not to the imposed mathematical assumptions about HTD/LRD. Finally, in Section 4, we  
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present the conclusion of the paper and make some remarks about the impact of a truncated heavy-tailed 
random variable on financial engineering, insurance and time series analysis.  

2. Truncated Random Variable vs. HTD/LRD in a Computer Simulation 

2.1. Truncation Against HTD/LRD Related Simulation  

Consider a random variable X with distribution F(x)=P﹛X ≤  x﹜over x∈[p, q], where p,q∈(-∞ , +∞ ) 
with p<q, and moreover, suppose [p, q]=[p, +∞ ) if q=+∞ and [p, q]=(-∞ , q] if p=-∞ . Then we can 
define the truncated random variable Y over [p, q] as follows,  

                     
[ , ],

[ , ].
X if X takesvalues in p q

Y
ignored if X does not takevalues in p q
⎧

= ⎨
⎩

                (1) 

In other words, the distribution of Y can be represented in a conditional probability form, i.e., for any 

[ , ]y p q∈ , 

               
{ , [ , ]}{ } { | [ , ]} .

{ [ , ]}
P X y X p qP Y y P X y X p q

P X p q
≤ ∈

≤ = ≤ ∈ =
∈

             (2) 

Thus we know that the truncated mean corresponding to X is given as follows, 

               { [ , ]} { [ , ]} [ , ] [ ]. [ ].X p q X p qE XI E E XI X p q E Y E Y∈ ∈
⎡ ⎤⎡ ⎤ ⎡ ⎤= ∈ = =⎣ ⎦ ⎣ ⎦⎣ ⎦          (3) 

Similarly, we know that the truncated variance corresponding to X is given by  

               ( ){ [ , ]} ( ).X p qVar XI Var Y∈ =                               (4) 

Therefore, when the random variable X is lightly tailed, we know that the following claims are true as 
p →−∞  and q →+∞ , 

                             

{ ( , ) ( , )} 0,
[ ] [ ] 0,

( ) ( ) 0,

P X p q
E X E Y
Var X Var Y

∈ −∞ ∪ +∞ →
− →
− →

 

which imply that Y can be used as an approximating random variable for X in a simulation. 
However, when the random variable X is heavily tailed, the mean and/or variance of X may be infinite. 

For example, if X is a Pareto distributed random variable, then the distribution of X has the following 

expression with parameters 0β ≥  and 0mx ≥ , 

                       
1 ,

( )
0 ,

m
m

m

x for x x
F x x

for x x
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⎪ <⎩

                         (5) 
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which implies that both the mean and variance of X will be infinite if 1β ≤ and that the mean is finite and 

the variance is infinite if 1 2β< ≤ . Moreover, the distribution for the corresponding random variable Y 

that is truncated by a given constant mb x≥ can be expressed as follows, 

                       

1 for ;

1
( ) for ,

1

0 for .

m

t
m

m
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x q

x
xF x x x q

x
q

x x

β
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⎪
⎪ ⎛ ⎞− ⎜ ⎟⎪⎪ ⎝ ⎠= ≤ ≤⎨

⎛ ⎞⎪ − ⎜ ⎟⎪ ⎝ ⎠⎪
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                         (6) 

Therefore it follows from (2.5)-(2.6) that we may have the following claims for any given mq x>  when 

X is Pareto distributed, 

                       [ ] [ ] and/or ( ) ( ) ,E X E Y Var X Var Y− = ∞ − = ∞                (7) 

i.e., the differences of the mean and/or variance between the heavy-tailed random variable and its truncated 
counterpart may be infinite. Therefore, if E[X]=∞  and/or Var(X)= ∞ , it is not suitable to use the 
truncated random variable Y as an approximating one for X in a simulation no matter how large E[Y] and/or 
Var(Y) are. In addition, we have the observation that the truncated random variable may take a large 
(maybe huge but bounded) value with relatively large probability but itself is essentially not a heavy-tailed 
random variable. So, to be concise in applications and to avoid more complicated discussions through 
applying HTD/LRD theory when a random variable appeared in a real-world application (e.g., in finance) 
is obviously bounded by some large (maybe huge) constant (e.g., the total wealth in the world or in a local 
environment), a good choice is to use the truncated version of a heavy-tailed random variable in a 
simulation. 

2.2. The Reason Causing Truncation in a Computer Simulation   

In a today’s computer, numbering format is based on a fixed number of binary digits, which is denoted by L, 
e.g., L=32. So the integer M=2L -1 is the largest integer accepted by the computer. Due to this fact, some 
random numbers generated from pseudo random number generators employed in a simulation will be 
truncated if the associated random variable is heavily tailed. For example, consider the Pareto distributed 
random variable X and a uniformly distributed random variable U over [0, 1], it follows from the discussion 
in page 32 of Ref. [18] or page 36 of Ref. [14] that 

                                     ( )X F U←=                                   (8) 

where F← denotes the left-continuous inverse of F and has the following expression, 
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                              1/( ) , (0,1).
(1 )

mxF u u
u β

← = ∈
−

                          (9) 

Therefore, once we generate the uniformly distributed random numbers from U over (0, 1), we get the 

Pareto distributed random numbers from X over [0, )∞ . Currently, there exist some pseudo uniform 

random number generators such as the Kiss generator whose period is of order 295 (see, e.g., pages 39-43 in 

Ref. [14]). Nevertheless, all the generated random numbers ( )F u← Corresponding to u  near the unity 

will be truncated in a simulation if ( ) .F u M← >   

To be clear, we also remark that there exists a class of uniformly distributed random number generators 

with the form of 1 ( )n nX f X+ = such as linear congruence generator, whose period is bounded by M(see, 

e.g., pages 40-43 in Ref. [14]), then the largest pseudo uniform random number except the unity, which 

generated from these generators, are bounded by a constant (2 1) / 2L Lc = − . Therefore, if 1 2β< ≤ in 

(9), we can see that the ( )F u←  corresponding to the generated random number u  is always less than 

M for relatively small mx , which indicates that these generators themselves also have the truncation ability 

to a heavy-tailed random variable since all the values of ( ( ), )F c← ∞  to the Pareto distributed random 

variable are truncated.  

2.3. Impacts on Some Well-known Simulations Related to HTD/LRD  

The above observations indicate that many existing simulations and related analysis based on HTD/LRD 
appeared in communication systems, financial engineering, and etc. (see, e.g., Refs. [5~6], [19]) may need 
some new interpretations. In fact, some of these simulations are well-known and have shown some gaps 
between the simulation findings and the related HTD/LRD theory.  

Concretely, in the early 1990s, one of the most interesting findings in high-speed networks is the one that 
traffic data were shown to possess LRD (see, e.g., Refs. [11], [13], [19]). In particular, The authors in Refs. 
[19] showed that ON/OFF processes with heavy-tailed ON-period distributions exhibit LRD, which is 
based on detailed statistical analysis of real-time traffic measurements on large time scales but bounded by 
M=2L -1 in seconds from Ethernet LAN's at the level of individual sources. Since then, stochastic modeling 
associated with LRD data has become an active area of research. For examples, in the early 2000s, a 
number of scientists in Bell Labs focused on traffic data and related queueing modeling based on statistical 
multiplexing. Their achievements (see, Refs. [5~6], and etc.) through large-scale computer and statistical 
experiments indicate that the packet interarrival times and packet sizes tend to i.i.d. when the number of the 
input connections increases. Their findings are of great importance in designing and implementing 
telecommunication software systems and hardware devices since HTD/LRD sources will significantly 
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increase system design complexity and the cost of high-speed memory. Moreover, for some particular cases 
and under certain time scaling, the authors of Ref. [6] developed some theory to make their simulation 
findings justified. 

For example, a particular queueing model used in their theory is based on the following assumptions: the 
distributions of ON- and OFF-periods are Pareto and exponential respectively and packet sizes are constant. 
They showed that the sequence of probabilities that steady state unfinished works exceed a threshold tend 
to the corresponding probability assuming Poisson input process when the number of input sources tends to 
infinity, which coincides with their simulation studies.  

Nevertheless, as pointed out in Ref. [6], their theory heavily depends on the so-called critical time scale 
introduced in Ref. [15], under which the characteristics of an individual source become less important. If 
the time scale of interest does not change with superposition, then things will be different since individual 
source behavior still plays an important role. Interested readers are also directed to Ref. [12] for more 
details about the influence on LRD caused by different time scales. 

Now, since the simulations conducted in Refs. [5~6] and etc. are computer based ones, the truncation of 
a heavy-tailed random variable as discussed in Section 2 is inevitable, we can provide some different 
interpretations about the findings in their simulations. Further, our interpretations seem to be more 
consistent between their simulation findings and our approximation theory developed in Ref. [10]. For 
example, under the same queueing model and the same time/space scaling, if the ON-period random 
variables with Pareto distributions are truncated, then the queueing length process corresponding to large 
superposition number of input sources is roughly equal to the one with input traffic whose interarrival times 
are i.i.d., which coincides with their simulation findings in Refs. [5~6], and etc. Nevertheless, if the 
ON-period random variables are not truncated, then the queueing length process corresponding to large 
superposition number of input sources is roughly equal to the one whose input traffic is of LRD. From this 
example, we can see that whether or not a heavy-tailed random variable is truncated will have a significant 
impact on a simulation. In the following section, we will use a generalized queueing model to concretely 
justify our findings based on the theory developed in Refs. [10] and the observation found in the current 
paper concerning the truncation of a heavy-tailed random variable in a simulation.  

3. Demonstration Through a Generalized Queueing System 

In the study of Ref. [10], the author established some approximation theory to justify several heavy traffic 
limit theorems under different time/space scaling for a queue with superposed LRD ON/OFF input sources 
and general service time distribution. In this section, we employ one of the limit theorems, which is under a 
time/space scaling similar to the diffusive scaling as used in the conventional central limit theorem, to 
demonstrate our findings as stated at the end of Section 2.3. The rest of this section is organized as follows. 
In Subsections 3.1-3.2, we summarize the queueing model and refine the limit theorem required for the 
current purpose, and moreover, and in Subsection 3.3, we present our interpretations and their implication. 

3.1. The Queueing Model  

In the queueing system under consideration, the service times are assumed to be generally distributed and 
there are N i.i.d. ON/OFF input sources. Each ON/OFF source n∈{1,..,N} consists of independent strictly 



W. Dai. /Journal of Computational Information Systems 7:5 (2011) 1488-1499          1494 
 
alternating ON- and OFF-periods, moreover, it transmits packets to a server according to a Poisson process 

with interarrival time sequence { ( ), 1}nu i i ≥  and rate λ  if it is ON and remains silent if it is OFF. The 

lengths of the ON-periods are identically distributed and so are the lengths of OFF-periods, and 
furthermore, both of their distributions can be heavy-tailed with infinite variance. Specifically, for any 

distribution F, we denote by 1F F= −  the complementary (or right tail) distribution, and by F1 and F2 

the distributions for ON-and OFF-periods with probability density functions f1 and f2 respectively. Their 

means and variances are denoted by iμ  and 2
iσ  for 1, 2i = . In what follows, we assume that as 

x →∞， 

                  either ( ) ~ ( )ii iF x x L xα−  with 1 2iα< <  or 2
iσ < ∞，              (10) 

where ~ denotes “nearly equals” and 0iL >  is a slowly varying function at infinity, that is, 

                                
( )lim 1
( )

i

x
i

L tx
L x→∞

=  for any 0t > . 

Note that the mean iμ  is always finite but the variance 2
iσ  is infinite when 2iα < , and furthermore, 

one distribution may have finite variance and the other has an infinite variance since F1 and F2 are allowed 
to be different. The sizes of transmitted packets (service times) form an i.i.d. random sequence  

{ ( ) ( ) / , 1}N Nv i v i iμ= ≥ , where Nμ  is the rate of transmission corresponding to each N and 

{ ( ) : 1}v i i ≥  is an i.i.d. random sequence with mean 1 and variance 2
vσ , moreover, { ( ) : 1}v i i ≥  is 

independent of the arrival processes. 
To derive our queueing dynamical equation, we introduce more notations. For a single source 

{1, , }n N∈ , it follows from the explanation in Ref. [12] that the alternating ON/OFF periods can be 

described by a stationary binary process { ( ), 0}n nW W t t= ≥ , where  

                
1

( )
0nW t
⎧

= ⎨
⎩

if input traffic is in an ON- period at time t,

if input traffic is in an OFF - period at time t.
         (11) 

Moreover, the mean of nW  is given by 

                        { } 1

1 2

[ ( )] ( ) 1n nE W t P W t μγ
μ μ

= = = =
+

                      (12) 
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In addition, we let ( )NA t  be the total number of packets transmitted to the server by time t summed 

over all N sources, ( )NS t  be the total number of packets that finished service at the server if it keeps 

busy by time t. Then the queue length process ( )NQ t (the number of packets including the one being 

served at the server at time t) can be represented by 

                             ( ) ( ) ( ( ))N N N NQ t A t S B t= =                            (13) 

where we assume that the initial queue length is zero for convenience, ( )NB t  is the cumulative amount 

of time that the server is busy by time t. In the following analysis, we will employ the first-in-first-out 
(FIFO) and non-idling service discipline under which the server is never idle when there are packets 
waiting to be served. 

3.2. The Required Limit Theorem   

For the above system, we are interested in the behavior of the scaled queueing process ( )NQ ⋅  under the 

condition that the load of the server closely approaches the service capacity when the source number N gets 
large enough, where 

                                 
1( ) ( ).N NQ Q
N

⋅ ≡ ⋅                                (14) 

Moreover, for convenience, we adapt some notations from Ref. [17]. When 1 2iα< < , set 

( (2 )) /( 1)i i ia α α= Γ − − . When 2
iσ < ∞ , set 2iα = , 1iL ≡  and 2 / 2i ia σ= . In addition, define  

                                 2 1 1

2

( )lim
( )x

L xb t
L x

α α−

→∞
= .                              (15) 

If 0 b< < ∞ (implying 1 2α α=  and 1 2lim ( ) / ( )xb L x L x→∞= ), set min 1α α= , 

                             
2 2

2 2 1 1 2
23

1 2 min

2( )
( ) (4 )

a b a and L Lμ μπ
μ μ α

+
= =

+ Γ −
;                (16) 

if, on the other hand , 0b =  or b = ∞ , 

                            
2

2 max min
min3

1 2 min

2
( ) (4 )

a and L Lμπ
μ μ α

= =
+ Γ −

                (17) 
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where min is the index 1 if b = ∞ (e.g. if 1 2α α< ) and is the index 2 if 0b = , max denoting the other 

index . Moreover, for each N, let the service rate Nμ corresponding to some positive constant θ  be 

given by  

                                N N Nμ λγ θ= + .                                (18) 

In addition, suppose that the distributions of 1F  and 2F  satisfy 

                      ( ) ( 1,2)iF x i = is absolutely continuous in terms of x;                (19) 

     The density ( ) ( 1,2)if x i =  of iF  satisfies 
0

lim ( )ix
f x

+→
< ∞ .               (20) 

Theorem 3.1. Under conditions (18)-(20) and as N →∞ , ( )NQ ⋅ converges in distribution under 

Skorohod topology to a reflecting Gaussian process ( )Q ⋅ given by  

                      ( ) ( ) ( ) ( ) ( ) 0Q A T S Iγ λ λγ θ⋅ = ⋅ + ⋅ − ⋅ − ⋅+ ⋅ ≥                     (21) 

where the three processes ( )A γ ⋅ , ( )S λγ ⋅ and ( )T ⋅ are independent each other, and furthermore, 

( )A γ ⋅ is a Brownian motion with mean zero and variance functionλγ ⋅ , ( )S λγ ⋅  is also a Brownian 

motion with mean zero and variance function 2
vλγσ ⋅ , ( )T ⋅ is a Gaussian process with a.s. continuous 

sample paths , mean zero and stationary increments , whose covariance function 

          ( ( ))Var T t can be expressed as 

2 2

2

1~ ( ) ,
2

10
2

Ht L t as t for H

t for all t and H

π

π

⎧ →∞ ≠⎪⎪
⎨
⎪= ≥ =
⎪⎩

         (22) 

where H is the Hurst parameter defined by H= min(3 ) / 2α− . Moreover, ( )I ⋅  is a non-decreasing 

process with (0) 0I = and satisfies 

                                 
0

( ) ( ) 0Q s dI s
∞

=∫ .                                (23) 
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3.3. The Interpretations and Their Implication 

In this subsection, we suppose that the ON-periods in the queueing system are of Pareto distribution with 

1 2β< ≤  and thus we know that the ON-period is heavily tailed with mean 1μ < ∞ , variance 

2
1σ = ∞ , 1α β= , 1( ) mL x xβ= . Moreover, we suppose that the OFF periods are of exponential 

distribution with mean 2μ < ∞ , variance 2 2
2 2σ μ= < ∞ , 2 2 21/ , ( ) 1L xα μ= =  and suppose that 

2 1α α> . Then it follows from (15) that b = ∞  and then we know that min 1α α β= = , which implies 

that H defined in Theorem 3.1 takes value over (1/2, 1). Hence it follows from Theorem 3.1 that the 

corresponding limiting queue length process Q is a reflecting Gaussian process with LRD. Therefore, if 

we consider Q  as an approximating physical queue length process, then the corresponding input process 

superposed from large number of ON/OFF sources should be of LRD. 
However, if we consider the ON-periods are of the corresponding truncated Pareto distribution, the 

associated mean and variance are both finite. Thus, similar to the above discussion, we know that H=1/2, 

which means by Theorem 3.1 that the derived limiting queue length process Q  is a reflecting Brownian 

motion (RBM), which does not have the LRD (interested readers are also directed to Refs. [8~9] for more 

details about Brownian approximations). Nevertheless, the constant 2π  in (21) may be very large. 

Therefore, if we consider Q  as an approximating queue length process, then the corresponding input 

process superposed from large number of ON/OFF sources should not be of LRD and the packet 
interarrival times more look like being generated from an i.i.d sequence of random variables, which 
coincides with what were observed in the simulations conducted by Refs. [4~6], and etc. 

Finally, from the practical viewpoint, it should be reasonable that the ON-periods and OFF-periods from 
lower speed end users are bounded by some large (maybe huge) constant (e.g., even the range of time 

scales used in the implementations of Ref. [19] are bounded by 12LM −= ). Therefore, the findings based 
on their simulations in Refs. [5~6] and etc. should be more close to the reality but not to their mathematical 
assumptions imposed about HTD/LRD due to the truncation effect in their simulations. More importantly, 
their assumptions on HTD/LRD are stemmed from Ref. [19] where only bounded time scales are concerned. 
So it is more suitable to use the truncated version of a heavy-tailed random variable in a simulation to be 
consistent with practice and to avoid more complicated HTD/LRD related analysis. 
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4. Conclusions and Future Work 

In this paper, we have answered the question arising in a simulation or a real-word application, which 
indicates that the approximation of a concerned objective through a truncated random variable to replace 
the original heavy-tailed one may be not consistent with what should be if the HTD/LRD assumptions are 
imposed. So, based on this observation and our previously established approximating theory about RGP 
with or without LRD, we provide more reasonable interpretations to some well-known large-scale 
computer and statistical experiments in characterizing the superposition of internet traffic sources. More 
importantly, our findings also indicate that, in a simulation and related analysis, it is more suitable to use a 
truncated random variable to replace a heavy-tailed one in order to be more consistent with reality and to 
avoid more complicated discussions via HTD/LRD theory. 
  In addition to telecommunication, the studies concerning HTD/LRD have appeared in many fields such 
as financial engineering, insurance, and time series analysis (see, e.g., Refs. [1~3]). For the purpose of 
computer oriented simulations and real-world applications, it is also inevitable to handle the truncation 
problem when a heavy-tailed random variable is concerned.  
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