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Summary

This dissertation is concerned with the performance analysis of queueing net-

works under different blocking schemes (communication blocking or buffer overflow).

Brownian models (semimartingale reflecting Brownian motions) are proposed for ap-

proximate analysis of the queueing networks. The approximations are justified by

heavy traffic limit theorems. A general numerical algorithm via finite element method

is implemented to compute the stationary distribution of a semimartingale reflecting

Brownian motion in a d-dimensional box. Brownian estimates of the performance

measures are presented numerically. Comparisons with known results are given to

show the effectiveness of the Brownian models and the algorithm. These perfor-

mance measures include long-run average throughput rate of the system, long-run

average queue length and the long-run average blocking (or loss) rate at each station.

Motivated by applications in communication networks, manufacturing systems

and computer architectures, our focus is on modeling of queueing networks with finite

buffers. Concretely, we deal with queueing networks of d single server stations. Each

station has a finite capacity waiting buffer, and all customers served at a station are

homogeneous in terms of service requirements and routings. When a communication

blocking scheme is used in the network, we assume that the network has feedforward

structure. When a loss scheme is used, the network is allowed to have feedback.

We show that the properly normalized d-dimensional queue length process converges

weakly to a d-dimensional reflected Brownian motion (RBM) in a rectangular box

under a heavy traffic condition. In addition to the usual requirement that the external

arrival rate is close to the service rate at each station, the heavy traffic condition

requires that the buffer size at each station is in the order of 1/(1 − ρi), where ρi

is the traffic intensity at station i. The techniques used in existing heavy traffic



xiii

limit theorems do not apply here because the solution to our Skorohod problem

is not unique. Our proof relies heavily on a uniform dominated oscillation result

for solutions to the Skorohod problems. We show that any limiting process is an

SRBM of the type defined in Taylor and Williams [38]. We also use results of Dai

and Williams [16] on existence and uniqueness of semimartingale RBM in a general

polyhedral domain. Our theorems provide a solid foundation for using Brownian

models to estimate performance measures of the networks.

To make practical use of SRBM’s approximate models of queueing networks,

we present a general implementation via finite element method to compute the sta-

tionary distribution of SRBM. We compare the numerical results from our algorithm

with known analytical results for SRBM, and also employ the implementation to es-

timate the performance measures of several illustrative finite buffer networks. All the

numerical comparisons show that our Brownian estimates give reasonably accurate

estimates.
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CHAPTER 1

Introduction

Queueing network models with finite buffers provide powerful and realistic tools for

performance evaluation of discrete flow systems such as communication networks,

manufacturing systems and computer architectures . Despite of a growing literature

on the performance analysis of this type of networks, there is still no viable analytical

method for predicting performances of such networks. In this dissertation, we propose

Brownian system models for open queueing networks with finite buffers under different

blocking schemes. We further justify the Brownian approximations by proving so

called heavy traffic limit theorems. Finally, we employ the finite element method

to implement an algorithm to numerically compute the stationary distribution of

the Brownian models.This implementation provides a practical computer tool for

performance analysis of queueing networks with finite buffers.

The queueing network under study has d single server stations with first-in-first-

out (FIFO) service discipline at each station. Associated with each station there is

a waiting buffer that has finite size. We assume that all customers visiting a station

are homogeneous in terms of service requirements and routings. Such a network is so

called a single class network in literature because at each station there is one customer

class. The network is of the type described in the pioneering paper of Jackson [28]

with the following extensions: (a) the service times at each station are independent,

identically distributed (i.i.d.) with a general distribution; (b) the interarrival times
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associated with each arrival stream are i.i.d. with a general distribution; (c) the buffer

size at each station is finite. Such extensions are important for applications because

non-exponential service time distributions and finite waiting rooms are common place

in telecommunication networks and manufacturing systems, see Gerla and etc [19],

Kroner and etc [30], Nikolaidis and Akyildiz [32].

It is the finite buffer restriction that distinguishes this work from others in

literature. When a buffer is full, different blocking schemes (communication blocking

or buffer overflow) can be employed. When communication blocking is used, we

further assume that the network has a feedforward routing structure. An example of

2-station tandem network under communication blocking is pictured in Figure 1.1.

When the buffer at station 2 is full, server at station 1 stops working although a

customer may still occupy station 1. When the buffer at station 1 is full, the external

arrival stream to station 1 is turned off.

Deterministic

m1 = 1

1

Exponential

m2 = 1

2
Poisson

λ1 - - -

Figure 1.1: A tandem network under communication blocking

For such a type of finite buffer queueing networks, one is interested in the perfor-

mance measures like the average work-in-process (WIP) level and percentage of time

that a station is blocked. Until now, there is no good analytical tool for predicting

such performance measures accurately and efficiently. In this dissertation, we propose

to use a d-dimensional semimartingale reflected Brownian motion (SRBM) in a rect-

angular box to approximate the d-dimensional queue length process. We then employ
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the finite element method to implement a general algorithm of Dai and Harrison [12]

for computing the stationary distribution of the SRBM. These computational tools

lead to estimates of the performance measures of the queueing network.

Given a d × d positive definite matrix Γ, a d-dimensional vector θ and d × 2d

matrix R (whose ith column is denoted by vi). A d-dimensional continuous stochastic

process Z is said to be an SRBM in a d-dimensional box S associated with data

(Γ, θ, R) if (see section 2.2 for a more precise definition),

1. Z(t) = X(t) +
∑2d

i=1 viYi(t) for all t ≥ 0;

2. Z has paths in S;

3. X = {X(t)} is a d-dimensional Brownian motion with drift vector θ and covari-

ance matrix Γ;

4. for i = 1, ..., 2d, Yi(0) = 0, Yi is non-decreasing and Yi(·) can increase only at

times t such that Z(t) is on the boundary of S.

This definition suggests that the SRBM Z behaves like an ordinary Brownian motion

with drift vector θ and covariance matrix Γ in the interior of box S. When Z hits

the boundary of box S, the process Yi(·) increases, causing an overall pushing in the

direction of vi. The magnitude of the pushing is the minimal amount required to keep

Z inside the box S.

For example, consider the network pictured in Figure 1.1. Let Qi(t) (i = 1, 2)

be the number of customers at time t at station i. The Poisson arrival stream to

station 1 has average rate λ1. Service times at station 1 are deterministic with mean

1. Service times at station 2 are exponentially distributed with mean 1. The buffer

size at each station is 25. Then Q(t) can be approximated by an SRBM with data
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Γ = γI, θ = (λ− 1, 0). The reflection matrix R is given by

R =




1 0 −1 1

−1 1 0 −1


 . (0.1)

The ith column vi of R is the reflection direction on face Fi as shown in Figure 1.2,

where γ is the system throughput rate and I is the 2 × 2 identity matrix. The

algorithm described in Chapter 5 will compute the Brownian estimates of long run

average queue length and throughput rate.

25

25

@
@
@R

v1

@
@
@Rv4

6v2

�
v3

•

F1

F2

F4

F3

Figure 1.2: Reflection on an 2-dimensional state space

The Brownian approximation described in the previous paragraph is justified by

a heavy traffic limit theorem. The theorem says that under a heavy traffic condition

the properly scaled d-dimensional queue length process will converge in distribution

to a d-dimensional SRBM. Let ρi be traffic intensity at station i. It is the product of

mean service time and effective arrival rate (resulting from external arrivals as well as

internal transitions) at station i. One can interpret ρi as the long-run fraction of time

that server i is busy, or server utilization at station i. The heavy traffic condition

requires that the traffic intensity ρi at station i is close to one. and the buffer size at

station i is in the order of 1/(1− ρi). As a consequence, the theorem suggests that if

the buffer size is in the order of 1/(1− ρi)
2, one essentially will not “see” finite buffer

effects. This insight provides some qualitative description as to when we can assume

the network has infinite buffers.
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One can trace back heavy traffic analysis of this type to Iglehart and Whitt [26,

27] which treat single station, multi-server queueing systems under FIFO discipline,

Harrison [22] that deals with tandem queueing systems. Their heavy traffic limits were

given as a complicated function of multidimensional Brownian motion. Harrison [23]

again considered tandem queueing networks, and introduced reflected Brownian mo-

tion on the nonnegative orthant as the diffusion limit for the first time. These results

are extended by Reiman [35], who proves a theorem for networks of Jackson form

with the exponential distributions replaced by general ones. Johnson [29] generalized

Reiman’s result to a network with two customer types, one of which has preemptive-

resume priority over the other at all stations. Chen and Shanthikumar [7] extended

Reiman’s result to networks in which stations may have multiple servers. Peterson [34]

proved an analogous result for multiclass network in which the routing is determin-

istic and feedforward. For multiclass network with feedback, Reiman [36] proved a

theorem to justify the approximation of the workload process by a one-dimensional

RBM, and the proof due to Reiman was subsequently simplified and generalized by

Dai and Kurtz [15]. Similar progress has been made in the area of diffusion approx-

imations for single class closed queueing network with Markovian routing, see Chen

and Mandelbaum [5, 6].

All of the works above heavily depend on the uniqueness of the solutions to

their Skorohod problems. In other words, their Skorohod problems require more

strict constraints on their reflection matrices, see Harrison and Reiman [24], Dupuis

and Ishii [17]. However, the uniqueness fails in many Skorohod problems that come up

in multiclass queueing networks with feedback and finite buffer queueing networks,

including the network pictured in Figure 1.1, see Bernard and El Kharroubi [1],

Mandelbaum [31].

Due to the non-uniqueness property of the Skorohod problem, the techniques in
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our proof of heavy traffic limit theorems differ from the ones used in existing limit

theorems (Reiman [35, 36], Peterson [34]). The method involves two novel ideas.

The first idea is to prove a uniform oscillation theorem and the other is to prove a

martingale property for the limiting process. Combining these two results with the

existence and uniqueness of an SRBM in a general polyhedron (Dai and williams [16]),

we finish the proof.

Roughly speaking, for a d-dimensional box S and a matrix R, a pair of functions

(z, y) is called a solution to a Skorohod problem associated with (S, R) if for a given

d-dimensional function x, we have (an exact definition will be introduced in section

3.2)

1. z(t) = x(t) + Ry(t) ∈ S for t ≥ 0,

2. for each i, yi is nondecreasing with yi(0) = 0, and yi can increase only at times

t for which z(t) reaches the boundary Fi.

To state the uniform oscillation theorem, let (zn(·), yn(·)) be a solution to a

Skorohod problem associated with xn(·) on a rectangular state space Sn with reflection

matrix Rn for n = 1, 2, ... Assume that Sn is a sequence of rectangular boxes and

Rn → R as n →∞. Suppose that at each corner of Sn, a corresponding d× d matrix

obtained from R is completely-S as defined in Taylor and Williams [38]. Then there

is a constant C such that for any 0 ≤ t1 < t2,

Osc(zn(·), [t1, t2]) ≤ C max {Osc(xn(·), [t1, t2]), Γn} ,

Osc(yn(·), [t1, t2]) ≤ C max {Osc(xn(·), [t1, t2]), Γn} ,

where, for a function f(·) and an interval [t1, t2], Osc(f(·), [t1, t2]) =

supt1≤s≤t≤t2 |f(t) − f(s)|, and Γn is the largest jump size of yn(·), which is fixed

for each n if the station number is fixed.
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To state the martingale property for the limiting process, let Zn(·) be the

scaled queue length process and Y n(·) be the vector of scaled cumulative block-

ing time and idle time processes, or scaled cumulative loss and idle time processes.

Then (Zn(·), Y n(·)) is a solution to the Skorohod problem corresponding to a pro-

cess Xn(·). We show that {(Xn(·), Zn(·), Y n(·))} has a subsequence converging to

(X(·), Z(·), Y (·)), where X(·) is a Brownian motion with drift vector θ and some co-

variance matrix. We need to show that Z(·) is an SRBM corresponding to X(·). A

key to the proof is to show the following martingale property: {X(t)− θt, t ≥ 0} is a

martingale with respect to the filtration generated by X(·) and Y (·).
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CHAPTER 2

Network System Models

In this chapter, we describe queueing network models with finite buffers under dif-

ferent blocking schemes. Their corresponding Brownian approximating models are

presented. The Brownian models are rooted from heavy traffic limit theorems, which

will be presented in Chapter 4.

2.1 Intree-like Network under Communication

Blocking

2.1.1 Queueing Network Model

The first type of queueing network under consideration has d single server stations

indexed by i ∈ J = {1, ..., d}. The size of the buffer associated with each station i

is finite. Therefore, at each station i there are at most bi customers, including the

one possibly being served. The network is assumed under first-in-first-out (FIFO)

service discipline. Customers visiting station i are homogeneous in terms of service

time distribution and routing mechanism. All customers eventually leave the network.

Namely, the network is open. An example of a 5-station network is pictured in Figure

2.1. For each station i, let Ei(t) be the number of external customer arrivals to station

i when the arrival process is turned on for t units of time and Si(t) be the number of

customer departures from station i in t units of server i busy time. If station i has no
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Figure 2.1: A five station intree-like network

external arrivals, Ei(t) = 0 for all t ≥ 0.

For each i, let {ui(k), k ≥ 1} and {vi(k), k ≥ 1} be i.i.d. random sequences with

mean Eui(1) = Evi(1) = 1. Then we put the following assumptions on the processes

Ei(·) and Si(·). Each Ei(·) is associated with an i.i.d. interarrival times sequence

{ξi(k) = (1/λi)ui(k), k ≥ 1} with mean value Eξi(1) = 1/λi < ∞, variance σ2
a,i

and squared coefficient of variation SCV c2
a,i = λ2

i σ
2
a,i. Similarly, Si(·) is associated

an i.i.d. service time sequence {ηi(k) = (1/µi)vi(k), k ≥ 1} with mean value mi =

Eηi(1) = 1/µi < ∞, variance σ2
s,i and SCV c2

s,i = µ2
i σ

2
i . Therefore, Ei(·) and Si(·)

can be denoted by

Ei(t) = sup

{
k :

k∑

l=1

ξi(l) ≤ t

}
, (1.1)

Si(t) = sup

{
k :

k∑

l=1

ηi(l) ≤ t

}
. (1.2)

We assume that routing is deterministic. That is, customers leave station i will

all go next to station σ(i) ∈ J ≡ {1, 2, ..d} or leave the system. Due to this routing

requirement, we call the network an intree-like network, see Figure 2.1.

As mentioned before, an important new feature in the network is that the sizes

of buffers are finite. When the buffer at station σ(i) is full, server i stops working until
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the buffer σ(i) has free space available although a customer may still occupy station

i. In the literature of queueing theory, this is called communication blocking. In the

following section, we will look at other mechanisms in dealing with buffer overflow

problem. The blocking in the network introduces new complications in heavy traffic

theory.

Let Qi(t) be the number of customers at station i at time t, including possibly

the one being served. Let Y b
i (t) be the amount of time that buffer i is full in time

interval [0, t] and Y 0
i (t) be the amount of time that server i has been idle while server

i is not blocked in [0, t]. We are interested in estimating performance measures,

including the long-run average buffer size

lim
t→∞

1

t

∫ t

0
Qi(s)ds, (1.3)

the long run average time that buffer i is full,

lim
t→∞

Y b
i (t)

t
, (1.4)

and the long-run average server utilization rate

1− lim
t→∞

Y 0
i (t)

t
− lim

t→∞
Y b

σ(i)(t)

t
. (1.5)

We propose that the d-dimensional queue length process Q = {Q(t), t ≥ 0} be ap-

proximated by a reflecting Brownian motion (SRBM) Q̃ = {Q̃(t), t ≥ 0} to be defined

in the next subsection, where Q(·) is the vector of queue length processes, namely,

Q(·) = (Q1(·), Q2(·), ..., Qd(·))′. Performance measures like those in (1.3)-(1.5) can

be estimated from their Brownian counterparts. Approximating procedure will be

justified by a heavy traffic limit theorem in Chapter 4.

2.1.2 Semimartingale Reflecting Brownian Motion

In this subsection, we introduce some standard terminology in the study of reflecting

Brownian motion, see Harrison and Reiman [24], Taylor and Williams [38], Dai and



11

Williams [16]. More specifically, we consider a class of semimartingale reflecting

Brownian motion (SRBM). Let S be a d-dimensional box with 2d boundary faces as

follows,

S ≡
{
x = (x1, ..., xd)

′ ∈ Rd : 0 ≤ xi ≤ bi, for i ∈ J
}

. (1.6)

Fi = {x ∈ S : xi = 0} , Fi+d = {x ∈ S : xi = bi} for i = 1, ..., d. (1.7)

Let Γ a d× d positive definite matrix, θ be a d-dimensional vector and R be a d× 2d

matrix (whose ith column is denoted by vi).

A triple (Ω,F , {Ft}) will be called a filtered space if Ω is a set, F is a σ-field

of subsets of Ω, and {Ft, t ≥ 0} is an increasing family of sub-σ-fields of F , i.e., a

filtration. If, in addition, P is a probability measure on (Ω,F), then (Ω,F , {Ft},P)

is called a filtered probability space.

Definition 2.1.1 An SRBM associated with the data (S, θ, Γ, R) that has initial dis-

tribution π is a continuous, {Ft}-adapted, d-dimensional process Z defined on some

filtered probability space (Ω,F , {Ft},P) such that under P,

Z(t) = X(t) +
2d∑

i=1

viYi(t) for all t ≥ 0, (1.8)

where

1. Z has continuous paths in S, P -a.s.,

2. X is a d-dimensional Brownian motion with drift vector θ and covariance matrix

Γ such that {X(t)− θt,Ft, t ≥ 0} is a martingale and PX−1(0) = π,

3. Y is an {Ft}-adapted, 2d-dimensional process such that P-a.s., for each i ∈
{1, ..., 2d}, the ith component Yi of Y satisfies

(a) Yi(0) = 0,

(b) Yi is continuous and non-decreasing,
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(c) Yi can increase only when Z is on the face Fi.

An SRBM Z as defined above behaves like a d-dimensional Brownian motion with drift

vector θ and covariance matrix Γ in the interior of state space S. When the boundary

face Fi is hit, the process Yi increases, causing an instantaneous displacement of Z in

the direction given by vi, the magnitude of the displacement is the minimal amount of

requirement to keep Z always inside S. Therefore, we call Γ, θ and R the covariance

matrix, the drift vector and the reflection matrix of Z, respectively. When explicit

dependence on an initial distribution π is needed, we use Pπ to denote the probability

measure. When the initial distribution π is concentrated on a point x ∈ S, we use

Px to denote the probability measure.

One can derive parameters Γ, θ and R for different queueing network models.

Once these parameters are given, the corresponding Brownian approximating models

are derived.

2.1.3 Brownian System Model

In this section, we present a suitable SRBM as an approximating model for the intree-

like queueing network discussed in previous section. Let B0
i (t) be the cumulative

amount of time that buffer i is not full during time interval [0, t]. As a matter of

definition, we have

B0
i (t) = t− Y b

i (t),

where Y b
i (t) is the amount of time that buffer i is full in the time interval [0, t] as

defined before. We model the external arrival processes in the following way. The

arrival process at station i is turned on only when the buffer at the station is not full.

Therefore Ei(B
0
i (t)) is the number of external arrivals to station i by time t.

Recall that customers leaving station i will go next to station σ(i). Because of

the communication blocking mechanism used, server i is blocked Y b
σ(i)(t) units of time
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in [0, t]. Let Bi(t) be the cumulative amount of time that server i is busy in [0, t]. we

have

Bi(t) = t− (Y 0
i (t) + Y b

σ(i)(t)).

Therefore Si(Bi(t)) is the number of departures from station i by time t. Moreover

we can write down the main equation that governs the dynamics of the queue length

processes. Namely,

Qi(t) = Qi(0) + Ei(B
0
i (t)) +

∑

j∈J,σ(j)=i

Sj(Bj(t))− Si(Bi(t)), i ∈ J, (1.9)

where Qi(0) is the initial queue length at station i. To set up a connection between the

Brownian system model and the queue length process Q(t), we define the following

centered processes Êi and Ŝi by

Êi(t) = Ei(t)− λit (1.10)

Ŝi(t) = Si(t)− µit. (1.11)

Let

Ξi(t) = Qi(0) + Êi(B
0
i (t)) +

∑

j∈J,σ(j)=i

Ŝj(Bj(t))− Ŝi(Bi(t)) (1.12)

θi = λi +
∑

j∈J,σ(j)=i

µj − µi. (1.13)

Let Q(t) = (Q1(t), ..., Qd(t))
′, Ξ(t) = (Ξ1(t), ..., Ξd(t))

′, Y 0(t) = (Y 0
1 (t), ..., Y 0

d (t))′,

Y b(t) = (Y b
1 (t), ..., Y b

d (t))′ and θ = (θ1, ..., θd)
′. After going through the standard

centering process as in Harrison [21], we have

Q(t) = Ξ(t) + θt + R0Y 0(t) + RbY b(t), (1.14)

where R0 and Rb are d× d matrix given by

R0
ij =





µi, if i = j

−µj, if j < i and σ(j) = i,

0, if j < i and σ(j) 6= i or j > i,

(1.15)
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Rb
ij =





−(λi +
∑

l<i,σ(l)=i µl), if i = j,

µi, if j > i and σ(i) = j,

0, if j > i and σ(i) 6= j or j < i.

(1.16)

Furthermore, we have

Q(t) ∈ S, t ≥ 0, (1.17)

Y 0
i (0) = 0, Y 0

i (·) is continuous and nondecreasing, i ∈ J, (1.18)

Y b
i (0) = 0, Y b

i (·) is continuous and nondecreasing, i ∈ J, (1.19)

Y 0(·) increases only at times t when Qi(t) = 0, i ∈ J, (1.20)

Y b
i (·) increases only at times t when Qi(t) = bi, i ∈ J. (1.21)

Comparing (1.8) and (1.14), we see that if Ξ is a Brownian motion, then Q will be

an SRBM of the type defined in Definition 2.1.1 of previous section. In Chapter 4,

we will rigorously justify that Ξ can indeed be approximated by a Brownian motion

under a heavy traffic scaling. For the purpose of performance analysis, we just simply

replace the queue length process by an (S, θ, Γ, R)-SRBM Z(t) = X(t) + RY (t) with

θ given by (1.13), R = (R0, Rb) given by (1.15)- (1.16) and Γ given by

Γ = diag(λ1c
2
a,1γ1, ..., λdC

2
a,dγd) + (I − P ′)diag(µ1c

2
s,1γ1, ..., µdc

2
s,dγd)(I − P ) (1.22)

with Pij = 1 if j = σ(i) and zero otherwise. γi (i = 1, ..., d) is the long-run average

rate at which services are completed at station i. That is,

γi = lim
t→ µiBi(t)/t.

They are unknown and can be computed iteratively via the algorithm developed in

Chapter 5.
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2.1.4 Performance Comparisons for a Tandem Network

In this section, we use our algorithm developed in Chapter 5 to compute some perfor-

mance measures for a two-station tandem network with finite buffers. The compar-

isons are given among computed results using our algorithm and existing estimates.

Consider the simple queueing network pictured in Figure 2.2. The network

consists of two stations arranged in series under FIFO service discipline. Arriving

customers go to station 1 first. After completing service there, they go next to

station 2, and after completing service at station 2, they exit the system. The input

process to station 1 is a Poisson process with average arrival rate λ1. Service times

at station 1 are deterministic of duration m1 = 1, and service times at station 2 are

exponentially distributed with mean m2 = 1. There is a storage buffer in front of

station i (i = 1, 2) that can hold 24 waiting customers, in addition to the customer

occupying the service station. When the buffer in front of station 1 is full, the Poisson

input is simply turned off, and in similar fashion, server 1 stops working when the

buffer in front of station 2 is full, although a customer may still occupy station 1 when

the server is idle because of such blocking. The steady-state performance measures

in which we are interested are

• The long-run average queue length qi at station i (i = 1, 2).

• The long-run average throughput rate γ.

The average throughput rate can be equivalently viewed as (a) the average rate at

which new arrivals are accepted into the system, or as (b) the average rate at which

services are completed at the first station, or as (c) the average rate at which customers

departure from the system.

This queueing network model was studied by Dai and Harrison [12]. As an

example, we do some numerical comparisons of performance measures such as qi and
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Figure 2.2: A tandem network with finite buffers

γ by employing an algorithm similar to the one developed in Chapter 5. The main

equation that governs the dynamics of the queue length process is given by (1.12)-

(1.21). Namely,

Q1(t) = Ξ1(t) + θ1t + Y 0
1 (t)− λ1Y

b
1 (t) + Y b

2 (t),

Q2(t) = Ξ2(t) + θ2t− Y 0
2 (t) + Y b

1 (t)− Y b
2 (t).

To be consistent with the formulation in Dai and Harrison [12], let Y1(t) = Y 0
1 (t),

Y2(t) = Y 0
2 (t), Y3(t) = λ1Y

b
1 (t) and Y4(t) = Y b

2 (t). Then the queue length process can

be approximated by a SRBM as explained in Dai and Harrison [12]. That is,

Q̃(t) = Ξ(t) + θt + RY (t),

where Ξ is a Brownian motion with drift zero and covariance γI, θ = (λ1− 1, 0)′ and

the reflection matrix R is given by

R =




1 0 −1 1

−1 1 0 −1


 .

The state space S for the SRBM Q(t) is shown in Figure 1.2, where the boundary size

is 25. As discussed in Dai and Harrison [12], γ is unknown and it can be computed

iteratively.
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Table 2.1: Iterative calculation of throughput rate γ for λ1 = 0.9

λ1 = 0.9, n = 14

Iterative number 1 2 3 4

Trial value γ 1.0 0.898354 0.899045 0.899041

Computed q1 5.208493 4.684678 4.688321 4.688300

Computed q2 6.632457 6.165969 6.169345 6.169325

Computed γ 0.898354 0.899045 0.899041 0.899041

Table 2.1 shows the computed throughput rate γ obtained by our algorithm and

the iterative procedure in Dai and Harrison [12]. The Poisson input rate λ1 = 0.9

and the number n of grid points in interval [0, 25] is 14.

In Table 2.2, we give performance estimates derived from the approximate Brow-

nian model with our algorithm, identified in the table as FEM (Finite Element

Method) estimates. The estimates are taken from the third iteration. The QNET

and SIM estimates are obtained from Dai and Harrison [12].

2.1.5 Numerical Prediction for a Three-Station Network

Consider the intree-like queueing network pictured in Figure 2.3. The input processes

to station i (i = 1, 2) are Poisson processes with arrival rate λi. Service times at

station 1 are deterministic of duration m1 = 1. Service times at station 2 and 3 are

exponentially distributed with mean m2 = 1 and m3 = 0.5. There is a storage buffer

in front of station i that can hold 24 waiting customers (i = 1, 2, 3), in addition to the

customer being served. When the buffer in front of station i is full, the Poisson input

process is simply turned off, and in similar fashion, servers 1 and 2 stop working when

the buffer in front of station 3 is full, although a customer may still occupy station 1
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Table 2.2: Performance comparisons for a tandem network

λ1 = 0.9, n = 14

γ q1 q2

FEM 0.8990 4.6883 6.1694

SIM 0.8991 5.1291 6.2691

QNET 0.8995 4.8490 6.3184

λ1 = 1.0, n = 14

γ q1 q2

FEM 0.9688 13.7865 11.2135

SIM 0.9690 13.87 11.07

QNET 0.9688 13.75 11.25

λ1 = 1.1, n = 14

γ q1 q2

FEM 0.9801 20.6679 12.4572

SIM 0.9801 20.4801 12.3801

QNET 0.9801 20.5239 12.4445

λ1 = 1.2, n = 14

γ q1 q2

FEM 0.9804 20.6671 12.4572

SIM 0.9804 20.4804 12.4804

QNET 0.9807 20.2688 12.4676
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or 2 when the server is idle because of such blocking. The steady-state performance

measures on which we focus are

• The long-run average queue length qi at station i (i = 1, 2, 3).

• the long-run average rate at which new arrivals are accepted into the system,

or as the long-run average rate γi at which services are completed at station i

(i = 1, 2).

• The long-run average throughput rate γ3 at station 3, or the long-run average

rate at which services are completed.

In these terminologies, “queue length” means that the number of customers at the

station, either waiting or being served. Obviously, we have γ3 = γ1 + γ2.

Exponential

m2 = 1

2

Deterministic
m1 = 1

1

Exponential

m3 = 0.5

3

λ1 -

λ2 -

@
@
@
@
@R

�
�
�
�
��

-

Figure 2.3: A three station intree-like network

As an alternative to simulation, we compute the approximated performance

measures above via SRBM and our algorithm developed in Chapter 5. The SRBM

can be written as

Q1(t) = Ξ1(t) + θ1t + Y 0
1 (t)− λ1Y

b
1 (t) + Y b

3 (t),
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Q2(t) = Ξ2(t) + θ2t + Y 0
2 (t)− λ2Y

b
2 (t) + Y b

3 (t),

Q3(t) = Ξ3(t)− Y 0
1 (t)− Y 0

2 (t) + 2Y 0
3 (t)− 2Y b

3 (t).

Let Yi(t) = Y 0
i (t) (i = 1, 2, 3), Y4(t) = λ1Y

b
1 (t), Y5(t) = λ2Y

b
2 (t) and Y6(t) = Y b

3 (t),

then we have

Q(t) = Ξ(t) + θt + RY (t),

where ξ(·) is a 3-dimensional approximate Brownian motion with covariance matrix

Γ and drift vector 0. The three dimensional vector θ = (λ1 − 1, λ2 − 1, 0)′, and the

reflection matrix R is given by

R =




1 0 0 −1 0 1

0 1 0 0 −1 1

−1 −1 2 0 0 −2


 .

Notice that B0
i (i = 1, 2) and Bi (i = 1, 2, 3) are continuous and nondecreasing

processes, then there exist constants γ1 > 0 and γ2 > 0 such that

λ1B
0
1(t) ∼ γ1t, B1(t) ∼ γ1t, (1.23)

λ2B
0
2(t) ∼ γ2t, B2(t) ∼ γ2t, (1.24)

2B3(t) ∼ (γ1 + γ2)t. (1.25)

Therefore by (1.22), the covariance matrix Γ can be denoted by

Γ =




γ1 0 0

0 2γ2 −γ2

0 −γ2 γ1 + 2γ2


 . (1.26)

The two constants γ1 and γ2 will be calculated iteratively by employing our algorithm

developed in Chapter 5. To see this point, let δi represent the long-run average amount

of pushing per unit of time needed on boundary Fi in order to keep the SRBM Q
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inside the box S. Then by the basic adjoint relationship introduced in Chapter 5, we

have

(λ1 − 1) + δ1 − δ4 + δ6 = 0, (1.27)

(λ2 − 1) + δ2 − δ5 + δ6 = 0, (1.28)

−δ1 − δ2 + 2δ3 − 2δ6 = 0. (1.29)

Next notice that

B0
i (t) = t− 1

λi

Yi(t), i = 1, 2,

B1(t) = t− Y1(t)− Y6(t),

B2(t) = t− Y2(t)− Y6(t),

2B3(t) = t− Y3(t).

Then by (1.23) to (1.25), we have that

γ1 = λ1 − δ4, (1.30)

γ1 = 1− δ1 − δ6, (1.31)

γ2 = λ2 − δ5, (1.32)

γ2 = 1− δ2 − δ6, (1.33)

γ1 + γ2 = 2− 2δ3. (1.34)

From (1.27) to (1.29), we see that (1.30) and (1.31) are equivalent, (1.32) and (1.33)

are equivalent, (1.34) is equivalent to the summation of (1.30) and (1.32). All of these

relationships hold as we expect. Then the following iterative procedure naturally

suggests itself:

1. start with trial values of γ1 and γ2 (say, γ1 = γ2 = 1),

2. set the covariance matrix Γ in (1.26) to compute the data set of the SRBM,
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3. compute the steady-state performance characteristic δ4 and δ5,

4. use (1.30) and (1.32) to determine new values of γ1 and γ2,

5. repeat the procedure 1-4 until convergence is obtained.

By the above procedure and the algorithm developed in Chapter 5, the computed

performance measures for λ1 = 0.9, λ2 = 1.0 and n = 5 are shown in Table 2.3,

including the long-run average throughput rates γi (i = 1, 2), the long-run average

queue length qi (i = 1, 2, 3), and δi (i = 1, 2, ..., 6), the long-run average amount

of pushing per unit of time on boundary Fi. An important feature is that δi (i =

1, 2, ..., 6) satisfies (1.27)-(1.29) with very small error as we expect.

Table 2.4 shows the average throughput rates and average queue lengths for

different arrival rates at station 1 and station 2 with our algorithm and the above

iterative procedure. All results are taken from the forth iteration and n = 5. An

unusual observation in the table should be pointed out here. When we increase the

Poisson input rate λ2 to 1.2 at station 2, the long-run average rate γ2 at station 2

does not increase.

2.2 Tree-like Queueing Network under Communi-

cation Blocking

2.2.1 Queueing Network Model

The second type of queueing network discussed in this part has the tree-like structure

under a communication blocking scheme. Similar to intree-like network, here we

consider a queueing network which consists of d single server stations indexed by

i ∈ J = {1, ..., d}. The size of the buffer associated with each station i is finite.

Therefore, at each station i there are at most bi customers, including the one possibly
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Table 2.3: Iterative calculation of throughput rate γ1 and γ2

λ1 = 0.9, λ2 = 1.0, n = 5

Iterative number 1 2 3 4

Trial value γ1 1.0 0.895180 0.896106 0.896081

Trial value γ2 1.0 0.958692 0.961853 0.961695

Computed q1 6.534646 6.217643 6.223954 6.223704

Computed q2 12.341952 12.165035 12.168961 12.168808

Computed q3 9.198588 9.032063 9.036501 9.036329

Computed γ1 0.895180 0.896106 0.896081 0.896082

Computed γ2 0.958692 0.961853 0.961695 0.961703

Computed δ1 0.093603 0.094088 0.094054 0.094056

Computed δ2 0.030091 0.028341 0.028440 0.028435

Computed δ3 0.069861 0.067822 0.067905 0.067901

Computed δ4 0.003306 0.002516 0.002531 0.002530

Computed δ5 0.035553 0.032451 0.032593 0.032586

Computed δ6 0.011217 0.009806 0.009864 0.009862
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Table 2.4: Performance estimates for the three station network

λ1 = 0.9, λ2 = 1.0, n = 5

γ1 γ2 q1 q2 q3

FEM 0.896082 0.961703 6.223704 12.168808 9.036329

λ1 = 1.0, λ2 = 1.1

γ1 γ2 q1 q2 q3

FEM 0.960058 0.967873 14.768292 18.397146 11.950783

λ1 = 1.1, λ2 = 1.2

γ1 γ2 q1 q2 q3

FEM 0.977809 0.951475 18.896440 21.870421 11.894797
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Figure 2.4: A five station tree-like network

being served. The network is assumed under FIFO service discipline. Customers

visiting station i are homogeneous in terms of service time distribution and routing

mechanism. All customers eventually leave the network. Namely, the network is

open.

Arrivals and services are the same as in the intree-like network. The rout-

ing structure is tree-like, for example, see Figure 2.4. Stations are numbered in an

increasing order, and only at station 1 there is an external arrival stream. Upon

completion of service at station i, a customer goes next to a station j ∈ σ(i) with

probability Pij. σ(i) indexes the stations where a customer will visit after he finishes

service at station i. It can be denoted by

σ(i) ≡ {j ∈ J, Pij > 0, j > i} .

We assume that σ(i) ∩ σ(j) = ∅ for i 6= j. That is, each station has at most one

predecessor. When the buffer at one of stations in σ(i) is full, server i stops working

although a customer may still occupy station i when the server is idle because of such

blocking.

Finally, we suppose that the routing of a customer in the network is independent
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of all previous history. To be more precise for the statement, let φi(k) be the routing

vector for the kth customer who finishes service at station i, that is,

φi = {φij(k), k ≥ 1} , for i, j ∈ J. (2.1)

If φij(k) = 1, the kth customer at station i becomes a customer at station j. If

φij(k) = 0 for any j ∈ J , the kth customer at station i leaves the system. Therefore

φi(k) is a d-dimensional “Bernoulli Random Variable” with parameter P ′
i , where Pi

denotes the ith row of P = {Pij} with the spectral radius less than unity, the prime

denote the transpose. We assume that φ = {φi(k), k ≥ 1} is i.i.d. and φ1, φ2, ..., φd

are independent and independent of the arrival processes and service processes. Fur-

thermore, let

Φi(k) ≡ φi(1) + ... + φi(k), (2.2)

or, in component form,

Φij(k) ≡
k∑

l=1

φij(l) for i, j ∈ J, (2.3)

where Φij(k) is the cumulative number of customers to station j for the first k cus-

tomers leaving station i.

Finally, let Qi(t) be the number of customers at station i, including possibly

the one being served. Let Y 0
i (t) be the cumulative time that station i is empty and

all of stations j ∈ σ(i) are not full in [0, t]. Let Y b
j (t) be the cumulative amount of

time that station j ∈ σ(i) is full and every station l (l ∈ σ(i), l > j) is not full for

some i ∈ J ∪{0} with σ(0) = 1. Then
∑

j∈σ(i) Y b
j (t) denotes the total amount of time

that station i is blocked by time t. Similar to intree-like network, we are interested

in quantities, including long-run average buffer size

lim
t→∞

1

t

∫ t

0
Qi(t)(s)ds,
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and the long-run average server utilization rate

1− lim
t→∞

Y 0
i (t)

t
− lim

t→∞
1

t

∑

j∈σ(i)

Y b
j (t).

2.2.2 Brownian System Model

In this section, we present a suitable SRBM as an approximating model for the tree-

like queueing network described in previous section. Let Bi(t) be the cumulative

amount of time that the server i is busy in [0, t]. Then we have

Bi(t) = t− Y 0
i (t)− ∑

j∈σ(i)

Y b
j (t).

Furthermore let B0
1(t) be the cumulative amount of time that buffer 1 is not full

during time interval [0, t]. As a matter of definition, we have

B0
1(t) = t− Y b

1 (t).

Then the queue length process at station i can be represented by

Q1(t) = Q1(0) + E1(B
1
0(t))− S1(B1(t)),

Qi(t) = Qi(0) + Φji(Sj(Bj(t)))− Si(Bi(t)), (i > 1 and some j < i, i ∈ σ(j)),

where Qi(0) is the initial queue length at station i. Similar to previous discussion in

intree-like network, we go through the standard centering process as in Harrison [21].

Let

Ê1(t) = E1(t)− λ1t, (2.4)

Ŝi(t) = Si(t)− µit, (2.5)

Φ̂ji(k) = Φji(k)− Pjik, (2.6)

where k takes values in nonnegative integer set. Let

Ξ1(t) = Q1(0) + Ê1(B
1
0(t))− Ŝ1(B1(t)),
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Ξi(t) = Qi(0) + Φ̂ji(Sj(Bj(t))) + PjiŜj(Bj(t))− Ŝi(Bi(t)) (i > 1),

θ1 = λ1 − µ1,

θi = Pjiµj − µi (i > 1).

Let Q(t) = (Q1(t), ..., Qd(t))
′, Ξ(t) = (Ξ1(t), ..., Ξd(t))

′, Y 0(t) = (Y 0
1 (t), ..., Y 0

d (t))′,

Y b(t) = (Y b
1 (t), ..., Y b

d (t))′, θ = (θ1, ..., θd) and P be the d × d routing matrix. Then

we have

Q(t) = Ξ(t) + θt + R0Y 0(t) + RbY b(t), (2.7)

where R0 and Rb are d× d matrix given by

R0
ij =





µi, if i = j,

−µjPji, if j < i and Pji > 0,

0, otherwise,

(2.8)

Rb
ij =





−λ1, if i = j = 1,

µi, if j > i and j ∈ σ(i),

−µlPli, if j ∈ σ(l), Pli > 0 for some l < i,

0, otherwise.

(2.9)

Furthermore, we have

Q(t) ∈ S, t ≥ 0, (2.10)

Y 0
i (0) = 0, Y 0

i (·) is continuous and nondecreasing, i ∈ J, (2.11)

Y b
i (0) = 0, Y b

i (·) is continuous and nondecreasing, i ∈ J, (2.12)

Y 0(·) increases only at times t when Qi(t) = 0, i ∈ J, (2.13)

Y b
i (·) increases only at times t when Qi(t) = bi, i ∈ J. (2.14)

Therefore, similar to the discussion in intree-like network, we can simply replace the

queue length process by an (S, θ, Γ, R)-SRBM with R given by (2.8)-(2.9) and

Γ = diag(λ1c
2
a,1γ1, ..., λdc

2
a,dγd)+(I−P ′)diag(µ1c

2
s,1γ1, ..., µdc

2
s,dγd)(I−P )+

d∑

j=1

µjγjΓ
j,
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where γi (i = 1, ..., d) is the long-run average rate at which services are completed at

station i, and

Γj
lk =





Pjl(1− Pjl), if l = k,

−PjlPjk, if l 6= k.

2.3 Queueing Network with Feedback and Loss

2.3.1 Queueing Network Model

In this section, we will look at some new mechanism for a network in dealing with

buffer overflow problem. The queueing network under consideration consists of d

single server stations indexed by i ∈ J = {1, ..., d}. The size of the buffer associated

with each station i is finite. Therefore, at each station i there are at most bi customers,

including the one possibly being served. The network is assumed under FIFO service

discipline. Customers visiting station i are homogeneous in terms of service time

distribution and routing mechanism. All customers eventually leave the network,

namely the network is open. An example of the network is pictured in Figured 2.5.
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Figure 2.5: A network with feedback and loss

Again the arrivals and services we specified are the same as before. The routing
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is different from the previous two models. Upon completion of service at station i,

a customer goes next to a station j ∈ J with probability Pij and exits the network

with probability 1 −∑
j Pij, independent of all previous history. To be more precise

for the statement, let φi(k) be the routing vector for the kth customer who finishes

service at station i. That is,

φi = {φij(k), k ≥ 1} , for i, j ∈ J. (3.1)

If φij(k) = 1, the kth customer at station i becomes a customer at station j. If

φij(k) = 0 for any j ∈ J , the kth customer at station i leaves the system. Therefore

φi(k) is a d-dimensional “Bernoulli Random Variable” with parameter P ′
i , where Pi

denotes the ith row of P = {Pij} with the spectral radius less than unity, the prime

denote the transpose. We assume that φ = {φi(k), k ≥ 1} is i.i.d. and φ1, φ2, ..., φd

are independent and independent of the arrival processes and service processes. Fur-

thermore, let

Φi(k) ≡ φi(1) + ... + φi(k), (3.2)

or, in component form,

Φij(k) ≡
k∑

l=1

φij(l) for i, j ∈ J, (3.3)

where Φij(k) is the cumulative number of customers to station j for the first k cus-

tomers leaving station i.

A customer arrives at a full buffer station i. Instead of going into the station, it

either goes next to station j with probability P̄ij, or is lost with probability 1−∑
j P̄ij,

independent of all previous history. Similar to the discussion before, let φ̄i(k) be the

routing vector for the kth deflected customer at station i, that is,

{φ̄ij(k), k ≥ 1}. (3.4)

If φ̄ij = 1, the kth customer is deflected from station i to some station j. If φ̄ij = 0

for all j ∈ J , the kth customer leaves the network and is lost. Therefore φ̄i(k) is
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a d-dimensional “Bernoulli random variable” with parameter P̄ ′
i where P̄i denotes

the ith row of P̄ = (P̄ij) with the spectral radius less than unity. We assume that

φ̄ = {φ̄i(k), k ≥ 1} is i.i.d., φ̄1, ..., φ̄d are independent of the arrival processes and

service processes. Furthermore, let

Φ̄i(k) ≡ φ̄i(1) + ... + φ̄i(k), (3.5)

or, in component-wise form,

Φ̄ij(k) ≡
k∑

l=1

φ̄ij(l) for i, j ∈ J, (3.6)

where Φ̄ij(k) is the total number of customers to station j for the first k customers

leaving station i due to its full buffer.

Finally, let Qi(t) be the number of customers at station i, including the one

being served. Let Y 0
i (t) be the cumulative amount of time that station i is empty in

[0, t] and Y b
i (t) be the cumulative number of customers lost at station i due to the

full buffer by time t. The quantities are of interests, including the average buffer size

lim
t→∞

1

t

∫ t

0
Qi(s)ds,

and the long-run average number of customers that are lost at station i

lim
t→∞

Y b
i (t)

t
,

and the server utilization rate

1− lim
t→∞

Y 0
i (t)

t
.

All of these performance measures can be estimated from their Brownian counterparts.

2.3.2 Brownian System Model

In this section, we present a suitable SRBM as an approximating model for the

queueing network described in the previous section. Let Bi(t) be the cumulative
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amount of time that server i is busy in [0, t]. As a matter of definition, we have

Bi(t) = t− Y 0
i (t).

Then we can write down the main equation that governs the dynamics of the queue

length process, that is,

Qi(t) = Qi(0) + Ei(t) +
∑

j 6=i

(Φji(Sj(Bj(t)) + Φ̄ji(Y
b
j (t)))− Y b

i (t)− Si(Bi(t)),

where the third term on the right hand side denotes the cumulative number of cus-

tomers routing to station i from other stations. It includes customers either deflected

or finished service at other stations.

Similar to the discussion before, we go through the standard centering process

as in Harrison [21]. Let

Êi(t) = Ei(t)− λit,

Ŝi(t) = Si(t)− µit,

Φ̂ji(k) = Φji(k)− Pjik,

ˆ̄Φji(k) = Φ̄ji(k)− P̄jik,

where k takes values in nonnegative integer set. Let

Ξi(t) = Qi(0) + Êi(t) +
∑

j 6=i

PjiŜj(Bj(t))

+
∑

j 6=i

{Φ̂ji(Sj(Bj(t)) + ˆ̄Φji(Y
b
j (t))} − Ŝi(Bi(t)),

θi = λi +
∑

j 6=i

µjPji − µi.

Let Q(t) = (Q1(t), ..., Qd(t))
′, Ξ(t) = (Ξ1(t), ..., Ξd(t))

′, Y 0(t) = (Y 0
1 (t), ..., Y 0

d (t))′,

Y b(t) = (Y b
1 (t), ..., Y b

d (t))′, θ = (θ1, ..., θd)
′R0 = (I − P ′) and Rb = −(I − P̄ ′). Then,

Q(t) = Ξ(t) + θt + R0diag(µ)Y 0(t) + RbY b(t), (3.7)
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Q(t) ∈ S, t ≥ 0, (3.8)

Y 0
i (0) = 0, Y 0

i (·) is continuous and nondecreasing, i ∈ J, (3.9)

Y b
i (0) = 0, Y b

i (·) is nondecreasing, i ∈ J, (3.10)

Y 0(·) increases only at times t when Qi(t) = 0, i ∈ J, (3.11)

Y b
i (·) increases only at times t when Qi(t) = bi, i ∈ J. (3.12)

Similar to the discussion before, the queue length process in (3.7) can be replaced by

an (S, θ, Γ, R)-SRBM with covariance matrix given by

Γ = diag(λ1c
2
a,1γ1, ..., λdc

2
a,dγd) + (I − P ′)diag(µ1c

2
s,1γ1, ..., µdc

2
s,dγd)(I − P )

+
d∑

j=1

µjγjΓ
j +

d∑

j=1

(1− γj)Γ̄
j

where γi (i = 1, ..., d) is the long-run average rate at which services are completed at

station i, and

Γj
lk =





Pjl(1− Pjl), if l = k,

−PjlPjk, if l 6= k,

Γ̄j
lk =





P̄jl(1− P̄jl), if l = k,

−P̄jlP̄jk, if l 6= k.
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CHAPTER 3

Oscillation, Compactness and

Convergence

3.1 Convex Polyhedron and SRBM

In this section, we give some general background on convex polyhedron and SRBM.

A polyhedron is defined in terms of m (m ≥ 1) d-dimensional unit vectors {ni, i ∈
J}, J ≡ {1, ..., m} and an m-dimensional vector (b1...bm)′, where the prime denotes

transpose. The state space S is defined by

S ≡
{
x ∈ Rd : ni · x ≥ bi for all i ∈ J

}
(1.1)

where ni ·x = n′ix represents the inner product of the vectors ni and x. It is assumed

that the interior of S is non-empty and that the set ((n1, b1), ..., (nm, bm)) is minimal

in the sense that no proper subset defines S, that is, for any strict subset K ⊂ J ,

the set {x ∈ Rd : ni · x ≥ bi for any i ∈ K} is strictly larger than S. This minimal

property is equivalent to the following assumption that each of the faces

Fi ≡ {x ∈ S : ni · x = bi} for i ∈ J (1.2)

where Fi is a (d − 1)-dimension superplane, see Theorem 8.2 in Brondsted [2]. As a

consequence, ni is the unit normal to face Fi that points into the interior of S.

Definition 3.1.1 For each ∅ 6= K ⊂ J , define FK = ∩i∈K Fi and let F∅ = S. A
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set K ⊂ J is maximal if K 6= ∅, FK 6= ∅ and FK 6= FK̄ for any K̄ ⊃ K such that

K̄ 6= K.

Definition 3.1.2 A convex polyhedron S is simple if for each K ⊂ J such that K 6= ∅
and FK 6= ∅, exactly | K | distinct faces contain FK.

This definition is equivalent to one of the following two conditions,

1. Every nonempty subset of a maximal set is maximal,

2. K ⊂ J is maximal whenever K 6= ∅ and FK 6= ∅.

A point x0 ∈ S is a vertex of S if FK = {x0} for some K ⊂ J . If S is simple, precisely

d faces meet at any vertex of S.

Let θ be a vector in Rd, Γ be a d× d symmetric, positive definite matrix, and R

be a d ×m matrix. A triple (Ω,F , {Ft}) will be called a filtered space if Ω is a set,

F is a σ-field of subsets of Ω, and {Ft, t ≥ 0} is an increasing family of sub-σ-fields

of F , i.e., a filtration. If, in addition, P is a probability measure on (Ω,F), then

(Ω,F , {Ft}, P ) is called a filtered probability space. Now we present the definition of

a semimartingale reflected Brownian motion (SRBM) on a general convex polyhedron.

Definition 3.1.3 An SRBM associated with the data (S, θ, Γ, R) that has initial dis-

tribution π is a continuous, {Ft}-adapted, d-dimensional process Z defined on some

filtered probability space (Ω,F , {Ft},P) such that under P,

Z(t) = X(t) + RY (t) for all t ≥ 0, (1.3)

where

1. Z has continuous paths in S, P-a.s.,

2. under P, X is a d-dimensional Brownian motion with drift vector θ and covari-

ance matrix Γ such that {X(t)−θt,Ft, t ≥ 0} is a martingale and PX−1(0) = π,
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3. Y is an {Ft}-adapted, m-dimensional process such that P-a.s., for each i ∈
1, ..., m, the ith component Yi of Y satisfies

(a) Yi(0) = 0,

(b) Yi is continuous and non-decreasing,

(c) Yi can increase only when Z is on the face Fi, i.e.

∫ t

0
IFi

(Z(s))dYi(s) = Yi(t) for all t ≥ 0. (1.4)

Definition 3.1.4 A square matrix A is called an S-matrix if there is a vector x ≥
0 such that Ax > 0. The matrix A is completely-S if and only if each principal

submatrix of A is an S-matrix.

From Definition 3.1.4, we have the following geometric interpretation for a 2 × 2

completely-S matrix A = (v1, v2). The 2-dimensional vectors v1 and v2 are the inward

vectors on the boundaries F1 and F2 of the nonnegative othant. At the corner O,

there exists a positive linear combination x1v1 + x2v2 , x1 > 0 and x2 > 0 such that

x1v1 + x2v2 points to the interior of the nonnegative othant.

-

6

O
�
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�
�
��

x1v1 + x2v2
@
@
@R

v1

6v2

F1

F2

Figure 3.1: Geometric interpretation of completely-S matrix

In order to apply the completely-S condition to a general polyhedron, we do the

following extension. Let N denote the m × d matrix whose ith row is given by the
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row vector n′i for each i ∈ J . For an m × m matrix A and K ⊂ J , let AK denote

the | K | × | K | matrix obtained from A by deleting those rows and columns with

indices in J \K. Concerning the matrix N and the reflection matrix R, the following

assumptions (A.1) and (A.2) are employed throughout our analysis, that is,

• (A.1) : the matrix (NR)K is an S-matrix for each maximal K ⊂ J ;

• (A.2) : the matrix (NR)′K is an S-matrix for each maximal K ⊂ J .

Let vi denote the ith column of the matrix R for each i ∈ J , then conditions (A.1)

and (A.2) are equivalent to (A.1)′ and (A.2)′ respectively.

• (A.1)′ : For each maximal K ⊂ J , there is a positive linear combination

v =
∑

i∈K aivi, ai > 0 for i ∈ K, such that ni · v > 0 for all i ∈ K;

• (A.2)′ : For each maximal K ⊂ J , there is a positive linear combination

η =
∑

i∈K cini, ci > 0 for i ∈ K, such that η · vi > 0 for all i ∈ K.

Conditions (A.1) and (A.2) will be the key assumptions in proving the oscillation

theorem introduced in next section. They also take an important role in the proof

of existence and uniqueness in law of an SRBM starting from each point x ∈ S, see

Theorem 1.3 in Dai and Williams [16].

Let CS = C([0,∞), Rd
S × Rm

+ × S) = {(x, y, z) : x, y, z are continuous functions

from [0,∞) into Rd
S, Rm

+ ,S with x(0) ∈ S, respectively}, M = σ{(y, z)(s) : 0 ≤ s <

∞, (y, z) ∈ C([0,∞), Rm
+ × S)}, and for each t ≥ 0, Mt = σ{(y, z)(s) : 0 ≤ s ≤

t, (y, z) ∈ C([0,∞), Rm
+ × S)}, where Rm

+ is m-dimensional nonnegative vector space.

Then the following proposition gives the existence and uniqueness in law of an SRBM

associated with (S, θ, Γ, R) and initial distribution π.

Proposition 3.1 Suppose that Assumptions (A.1) and (A.2) hold. Then there exists

a unique probability measure Qπ on the filtered probability space (CS,M, {Mt}) such

that Z together with Qπ is an (S, θ, Γ, R)-SRBM.
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Proof. This is a direct generalization of Theorem 1.3 of Dai and Williams [16], see

Dai and Kurtz [14], or by using the same argument as the well-posed Martingale

problem, see page 182 and Problems 49, 50 in Ethier and Kurtz [18]. 2

3.2 (S, R)-Regulation Problem: Oscillation

With (S, R) referred to previous section, we study the oscillation property of an (S, R)-

regulation. First, we state the definition of an (S, R)-Regulation problem in DRd [0, T ]

which is the path space of all functions f : [0, T ] → Rd which are right continuous

and have left limits. The space DRd [0, T ] is endowed with Skorohod topology

Definition 3.2.1 Given T > 0 and x ∈ DRd [0, T ] with x(0) ∈ S, an (S, R)- Regula-

tion of x over [0,T] is a pair (z, y) ∈ DS[0, T ]×DRm
+
[0, T ] such that

1. z(t) = x(t) + Ry(t) ∈ S for all t ∈ [0, T ],

2. for each i ∈ J , yi is nondecreasing, yi(0) = 0, and yi can increase only at times

t ∈ [0, T ] for which z(t) ∈ Fi.

The following lemma shows that there exists a unique solution for one dimensional

(S, R)-regulation problem with S = R+.

Lemma 3.1 Let S = R+ and x ∈ DR[0, T ] with x(0) ∈ R+ for any given T >

0. Then for any α > 0, there exists a unique solution given by (z, y) for (R+, α)-

regulation problem

z(t) = x(t) + α y(t), (2.1)

y(t) = α−1 sup
0≤s≤t

x−(s) for each t ∈ [0, T ]. (2.2)
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Proof. It is easy to show that (z, y) defined by (2.1) and (2.2) is a solution of

(R+, α)-regulation problem. In fact, clearly, z = x + αy and z(t) = x(t) + αy(t) ≥
x(t) + x−(t) = x+(t) ≥ 0. Thus z(t) ∈ R+. Since x(0) ≥ 0, y(0) = 0. Obviously y

is non-decreasing. Moreover z and y are right continuous and have left limit at any

point t0 ∈ [0, T ]. To show this, notice that x ∈ DR[0, T ], then

lim
t→t−0

x−(t) = x−(t−0 ).

Thus for any ε > 0, there exists δ > 0 such that

| x−(t)− x−(t−0 ) |< ε

for all t ∈ [t0 − δ, t0). Therefore for any t1, t2 ∈ [t0 − δ, t0) and t1 ≤ t2, we have

| x−(t1)− x−(t2) |< 2ε.

Hence

0 ≤ y(t2)− y(t1) ≤ 2ε.

Therefore y has left limit at t0. Similarly, we can prove that y is right continuous at

t0. Thus z, y ∈ DR+ [0, T ].

Now we show that 2 is true in Definition 3.2.1. Here we only study the case

when y increases to the left of t0 > 0. Then for each δ > 0, 0 ≤ y(t0 − δ) < y(t0). (If

t0 = 0, it only has the right-side case). We divide this into two cases since the left

limits exist for y(·) and x(·); case (a) y(t−0 ) = y(t0), case (b) y(t−o ) < y(t0).

For case (a), z(t0) = 0 follows from Lemma 8.1 in K.L.Chung and

R.J.Williams [10] since y(·) is right continuous.

For case (b), if x−(t0) < y(t0), then

y(t0) = sup
0≤s≤t0

x−(s)

= max

{
sup

0≤s<t0

x−(s), x−(t0)

}
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= max
{

y(t−0 ), x−(t0)
}

< y(t0).

That is a contradiction. So x−(t0) = y(t0) > y(t0 − δ) ≥ 0 and hence x(t0) < 0.

Finally, z(t0) = x(t0) + y(t0) = 0.

To prove the uniqueness, suppose that 〈z̄, ȳ〉 is another solution for (R+, α)-

regulation problem. Then by (1) in definition 3.2.1, we have

z(t)− z̄(t) = y(t)− ȳ(t).

Since z, y, z̄, ȳ ∈ DR+ [0,∞), they are bounded in finite interval [0, t], see page 110 in

Billingsley [3]. Hence by Fubini’s Theorem or Proposition 10 on page 68 of Wang [40],

we have the following formula of integral by parts for Lebesgue Stieltjes-integral.

0 ≤ (y(t)− ȳ(t))2 +
∑

0<s≤t

((y(s)− ȳ(s))− (y(s−)− ȳ(s−)))2

= 2
∫ t

0
(y(t)− ȳ(s))d(y(s)− ȳ(s))

= 2
∫ t

0
(z(s)− z̄(s))d(y(s)− ȳ(s))

= (−2)
∫ t

0
z(s)dȳ(s)− 2

∫ t

0
z̄(s)dy(s) ≤ 0.

where the third equality follows from 2 in Definition 3.2.1. Thus y(t) = ȳ(t), z(t) =

z̄(t) for all t. 2

Before we move to the discussion of the oscillation property for general (S, R)-

regulation problem, we introduce some notations and results on the decomposition of

state space S. For convenience, we restate Lemma B.1 of Dai and Williams (1994),

which will be used several times.

Lemma 3.2 There is a constant C ≥ 1 which depends only on {ni, i ∈ J} such that

for each K : ∅ 6= K ⊂ J and each FK 6= ∅, and each x ∈ S,

d(x, FK) ≤ C
∑

i∈K

(ni · x− bi). (2.3)
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2

Then for each ε ≥ 0 and K ⊂ J (including the empty set) , define

F ε
K =

{
x ∈ Rd : 0 ≤ ni · x− bi ≤ Cε for all i ∈ K, ni · x− bi > ε for all i ∈ J \K

}
(2.4)

where Cε = Cmε and C is given by Lemma 3.2. Then by Lemma 4.1 and Lemma 4.2

in Dai and Williams [16] for each ε ≥ 0, we have

S = ∪K∈Ξ F ε
K , (2.5)

where Ξ denotes the collection of subsets of J consisting of all maximal sets in J

together with the empty set. If K ⊂ J is maximal, the conditions (A.1) and (A.2)

hold for (SK , RK), where

SK = {x ∈ Rd : ni · x ≥ bi for all i ∈ K},

and RK is the d× | K | matrix whose columns are given by ith column of matrix R.

Finally, for a function f defined from [t1, t2] ⊂ [0, ∞) into Rk for some k ≥ 1, let

Osc(f, [t1, t2]) = sup
t1≤s≤t≤t2

|f(t)− f(s)|. (2.6)

Then we have the following oscillation result for a sequence of (Sn, Rn)-regulation

problems.

Theorem 3.1 For any T > 0, given a sequence of {xn}∞n=1 ∈ DRd [0, T ] with the

initial values xn(0) ∈ Sn. Let (zn, yn) be an (Sn, Rn)-regulation of xn over [0.T ], where

(zn, yn) ∈ DRd [0, T ]×DRm [0, T ]. Assuming that all Sn have the same shape,i.e., the

only difference is the corresponding boundary size bn
i . Assuming that {bn

i } belongs to

some bounded set, and the jump sizes of yn are bounded by Γn for each n. Then if

(N,R) satisfies (A.1), (A.2) and Rn → R as n →∞, we have

Osc(zn, [t1, t2]) ≤ C max {Osc(xn, [t1, t2]), Γ
n} , (2.7)

Osc(yn, [t1, t2]) ≤ C max {Osc(xn, [t1, t2]), Γ
n} . (2.8)
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Where C depends only on (N, R, | K |) for all K ∈ Ξ.

Proof. Since Rn → R and (N, R) satisfies conditions (A.1) and (A.2), without loss of

generality, we suppose that there is a common η such that (A.1)′ and (A.2)′ are true

for each maximal set K ∈ Ξ for all n ≥ 1. We prove this theorem via an induction

on the size of J , which is the common index set for faces of Sn (n ≥ 1).

First consider the case | J |= 1. Then Rn = vn
1 is a vector in Rd for each n. From

condition (A.1), we have that ni · vn
1 > 0. Then from Lemma 3.1, we can see that yn

is uniquely determined by the 1-dimensional regulator mapping for n1 · xn − bn
1 ,

n1z
n(t) = n1x

n(t) + n1v
n
1 yn(t) (2.9)

yn(t) = sup
0≤s≤t

(n1x
n(s)− bn

1 )−/n1v
n
1 (2.10)

It is clear that yn(0) = 0 and yn(·) is non-decreasing, and (2.9), (2.10) defines a

([bn
1 ,∞), n1 · vn

1 )-regulation of n1 · vn
1 over [0, T ]. Then we have

Osc(yn, [t1, t2]) ≤ 1

n1vn
1

max {Osc(xn, [t1, t2]), Γ
n} , (2.11)

Osc(zn, [t1, t2)) ≤ (1 +
‖ vn

1 ‖
n1vn

1

) max {Osc(xn, [t1, t2]), Γ
n} . (2.12)

Finally, let C = supn max{1 +
‖vn

1 ‖
n1vn

1
, 1

n1vn
1
}, then 1 ≤ C < ∞ and C depends only

on (N, R, | K |) for K ∈ Ξ because vn
1 → v1. Thus we have the theorem is true for

| J |= 1.

Secondly suppose that the results (2.7) and (2.8) are true for 1 ≤| J |< m. Then

consider the case with | J |= m. The proof of the induction steps is divided into the

following several parts.

Part (a): Here we claim that there exists a constant C1 ≥ 1 that depends only

on (N,R, | K |) for K ∈ Ξ, such that for each K ∈ Ξ \ {J}, if yn
J\K does not increase

on [t1, t2) for each n ≥ 1, then one has

Osc(yn, [t1, t2]) ≤ C1 max {Osc(xn, [t1, t2]), Γ
n} , (2.13)

Osc(zn, [t1, t2]) ≤ C1 max {Osc(xn, [t1, t2]), Γ
n} . (2.14)
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In fact, for each t ∈ [0, t2 − t1), we have

zn(t + t1) = zn(t1) + (xn(t + t1)− xn(t1)) +
∑

i∈K

vn
i (yn

i (t + t1)− yn
i (t1)). (2.15)

It follows that (zn(· + t1), y
n
k (· + t1) − yn

k (t1)) is an (Sn
K , Rn

K)-regulator of zn(t1)+

xn(· + t1)-x
n(t1) during [0, t2 − t1). If K = ∅, then yn does not increase on [t1, t2),

then (2.7) and (2.8) trivially hold with C1 = 1. If K 6= ∅, then K is maximal and

conditions (A.1) and (A.2) hold for (Sn
K , Rn

K) by Lemma 4.2 in Dai and William [16].

So, by the induction assumption and | K |< m, there exists a constant CK ≥ 1 that

depends only on (NK , RK , | K ′ |) for all K ′ ∈ Ξ, K ′ ∈ K and NK = {ni, i ∈ K} such

that for any t′2 < t2,

Osc(yn, [t1, t
′
2]) = Osc(yn(·+ t1), [0, t

′
2 − t1])

≤ CK max {Osc(xn(·+ t1)− xn(t1) + z(t1), Γ
n}

= CK max {Osc(xn, [t1, t
′
2]), Γ

n}

≤ CK max {Osc(xn, [t1, t2]), Γ
n} . (2.16)

Since the jump sizes of yn are bounded by Γn and zn(t) = xn(t) + Rnyn(t), we have

Osc(yn, [t1, t2]) ≤ CK max{Osc(xn, [t1, t2]), Γ
n},

Osc(zn, [t1, t2]) ≤ C ′
K max{Osc(xn, [t1, t2]), Γ

n},

where C ′
K = supn(1+ ‖ Rn ‖)CK . Taking C1 to be the maximum of the C ′

Ks for K

running through Ξ \ {J} , we have (2.7) and (2.8) are true.

For parts (b) and (c), let εn=max{Osc(xn, [t1, t2]), Γ
n} for each n ≥ 1. Without

loss of generality, we suppose that εn > 0. By lemma 4.1 in J.Dai and R.Williams [16],

zn(t1) ∈ F n,C1εn

K for some K ∈ Ξ.

Part (b): Suppose that the K found above is not J . Then, for all i ∈ J \K,

d(zn(t1), F
n
i ) ≥ niz

n(t1) − bn
i > C1ε

n. Applying the result in part (a) to intervals

[t1, t
′
2) with t′2 ≤ t2 shows that zn(t) does not reach F n

i for any i ∈ J \ K during



44

[t1, t2) and therefore yn
J\K does not increase on [t1, t2). Thus, by part (a), we have

that (2.7) and (2.8) hold in this case. In fact, if there exists such a t′2, t1 < t′2 < t2 such

that niz
n(t)−bn

i does not reach F n
i during [t1, t

′
2) and hits F n

i at t′2. Since niz
n(t)−bn

i

is right continuous and greater than zero, then t′2 > t1 can be guaranteed. By part

(a), we have

niz
n(t′2)− bn

i = ni(z
n(t′2)− zn(t1)) + niz

n(t1)− bn
i

> (−1)C1 max {Osc(xn, [t1, t
′
2]), Γ

n}+ C1 max {Osc(xn, [t1, t
′
2]), Γ

n}

≥ 0.

This is a contradiction. Therefore, t′2 = t2 and thus part (b) is true.

Part (c): Suppose that the K described before part (b) is equal to J .

Since zn(t1) ∈ F n,C1εn

J , then by Lemma B.1 in Dai and Williams [16], we have

d(zn(t1), F
n
i ) ≤ C2ε

n where C2 = C1(Cm) and C depends only on N . Then one

of the following two cases holds:

(i) d(zn(t), F n
i ) ≤ 2C2ε

n for all t ∈ [t1, t2] and i ∈ J . Then we have

0 ≤ niz
n(t)− bn

i ≤ d(zn(t), F n
i ) ≤ 2C2ε

n for all t ∈ [t1, t2]. (2.17)

Furthermore, we get

Osc(niz
n, [t1, t2]) ≤ 4C2ε

n. (2.18)

Now, since K = J is maximal, then by condition (A.1) and the explanation at the

beginning of this proof, there exists a positive linear combination η =
∑

i∈J γini

(γi > 0, for all i) of the {ni, i ∈ J} such that ηvn
i > 0 for all i ∈ J . Then we have

ηzn(t) = ηxn(t) +
∑

i∈J

(ηvn
i )yn

i (t) for all t ∈ [0, T ]. (2.19)

By (2.18), (2.19) and the fact which the yn
i are non- decreasing, we have that there

exists a constant C ′
3 depending only on (N, R, | K |) for all K ∈ Ξ such that

min
i∈J

(ηvn
i )Osc(yn

1 + ... + yn
m, [t1, t2]) (2.20)
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≤ Osc(ηzn, [t1, t2]) + Osc(ηxn, [t1, t2])

≤ ∑

i∈J

γiOsc(niz
n, [t1, t2]) + Osc(nix

n, [t1, t2])

≤ C ′
3ε

n.

Then by (2.20) and zn = xn + Rnyn, we have

Osc(yn
i , [t1, t2] ≤ Osc(yn

1 + ... + yn
m, [t1, t2])

=
C ′

3ε
n

mini∈J(ηvn
i )

Osc(zn, [t1, t2]) ≤ (1 +
C ′

3 ‖ Rn ‖
mini∈J(ηvn

i )
)εn.

Finally, let C3 = supn(1 +
C′3‖Rn‖

mini∈J (ηvn
i )

). Since Rn → R , then C3 < ∞ and it depends

only on (N, R, | K |).
(ii) There is i ∈ J and t3 ∈ [t1, t2] such thatd(zn(t3), F

n
i ) > 2C2ε

n. Define

t′1 = inf {t > t1 : d(zn(t), F n
i ) > 2C2ε

n for some i ∈ J} (2.21)

By the existence of left limit of zn(t), for any small enough δ > 0 and any i ∈ J , we

have d(zn(t), F n
i ) ≤ 2C2ε

n for t ∈ [t1, t
′
1 − δ]. Thus by use of part c(i), we see that

Osc(yn, [t1, t
′
1 − δ]) ≤ C3ε

n, Osc(zn, [t1, t
′
1 − δ]) ≤ C3ε

n. (2.22)

Let δ → 0 in the above formulas, the following facts are true since yn and zn have

left limits,

Osc(yn, [t1, t
′
1)) ≤ C3ε

n, Osc(zn, [t1, t
′
1)) ≤ C3ε

n. (2.23)

Over [t′1, t2], by lemma 4.1 in Dai and Williams [16], we have zn(t′1) ∈ F n,C1εn

K for K ∈
Ξ \ {J}, and therefore we have the case in part (b) over [t′1, t2]. Thus,

Osc(zn, [t′1, t2]) ≤ C1ε
n, Osc(yn, [t′1, t2]) ≤ C1ε

n. (2.24)
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By (2.23) and (2.24), we have

Osc(zn, [t1, t2]) ≤ (C1 + C3)ε
n + Γn

≤ (1 + C1 + C3)ε
n

Osc(yn, [t1, t2]) ≤ (1 + C1 + C3)ε
n.

Take C4 = 1 + C1 + C3 which depends only on (N, R, | K |) for all K ∈ Ξ. Then we

finish the proof. 2

3.3 Weakly Relative Compactness and Conver-

gence.

In this section, we discuss weakly relative compactness and convergence properties

of stochastic processes come up in (S, R)-regulation problems. As a preliminary,

we present the following lemma which is an extension of lemma 2.4 in Dai and

Williams [16].

Lemma 3.3 . Suppose zn converges to z in DRd [0,∞), yn converges to y in

DR+ [0,∞) and y ∈ CR+ [0, R+). If yn, y are non-decreasing. Then, for any

f ∈ Cb(R
d), we have

∫ t

0
f(zn(s))dyn(s) →

∫ t

0
f(z(s))dy(s) as n →∞ (3.1)

uniformly for t in any compact subset of [0,∞).

Proof. Notice that zn → z in DRd [0,∞), then by Proposition 3.5.3 and Remark 3.5.4

in Ethier and Kurtz [18] or page 112 in Billingsley [3], there exists a sequence {γn}
of continuous, strictly increasing functions mapping [0,∞) onto [0,∞) such that, as
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n →∞, we have

zn(γn(t)) → z(t) u.o.c. in t and γn(t) → t. (3.2)

Now, fix t > 0 and observe that for all u ∈ [0, t],

∫ u
0 f(zn(s))dyn(s)−

∫ u

0
f(z(s))dy(s) (3.3)

=
∫ γ−1

n (u)

0
(f(zn(γn(s)))− f(z(s)))dyn(γn(s))

+
∫ γ−1

n (u)

u
f(z(s))dyn(γn(s))

+
∫ u

0
f(z(s))d(yn(γn)− y)(s).

The first term on the right hand side of (3.3) converges to zero as n → ∞
uniformly on u ∈ [0,t] since it is bounded by

max
0≤s≤γ−1

n (t)
| f(zn(γn(s))− f(z(s)) | yn(t)

and since f ∈ Cb(R
d), y(t) is continuous, yn(t) → y(t).

The second term tends to zero since it is dominated by

‖ f ‖∞ sup
0≤u≤t

| yn(u)− yn(γn(u)) |

≤ ‖ f ‖∞ ( sup
0≤u≤t

| yn(u)− y(u) | + sup
0≤u≤t

| y(u)− y(γn(u)) |

+ sup
0≤u≤t

| y(γn(u))− yn(γn(u)) |)

and since y(t) is continuous, which implies that yn(t) → y(t) u.o.c..

Finally, we claim that the third term tends to zero. In fact, since f(z(·)) ∈
DR[0,∞), by Theorem 3.5.6, Proposition 3.5.3 and Remark 3.5.4 of Ethier and

Kurtz [18], there is a sequence of step functions {gk(·)}∞k=1 of the form:

gk(·) =
lk∑

i=1

gk(tki )I[tki ,tki+1)
(·) (3.4)

where 0 = tk1 < tk2 < ... < tklk+1
< ∞ and sup0≤s≤t | f(z(s)) − gk(s) |→ 0 as k → ∞.

Then, we have

|
∫ u

0
f(z(s))d(yn(γn)− y)(s) | (3.5)
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≤ |
∫ u

0
(f(z(s))− gk(s))d(yn(γn)− y)(s) | + |

∫ u

0
gk(s)d(yn(γn)− y)(s) |

≤ sup
0≤s≤t

| f(z(s))− gk(s) | (yn(γn)(t) + y(t))

+ sup
0≤u≤t

lk∑

i=1

| gk(tki
∧

u) || (yn(γn)− y)(tki+1

∧
u)− (yn(γn)− y)(tki

∧
u) | .

Notice that yn(·) → y(·) ∈ C[0,∞) u.o.c., then we have yn(·) is uniformly bounded

on any compact subset of [0,∞). Furthermore, for fixed k, the last term of (3.5)

tends to zero as n →∞, the desired result then follows , that is,

lim
n→∞ |

∫ u

0
f(z(s))d(yn(γn)− y)(s) |≤ M sup

0≤s≤t
| f(z(s))− gk(s) | . (3.6)

Let k →∞, we have

lim
n→∞ |

∫ u

0
f(z(s))d(yn(γn)− y)(s) |= 0 (3.7)

uniformly in u ∈ [0, t]. Thus we complete the proof. 2

Now we introduce more notations in the space DRd [0,∞). For T > 0 and δ > 0,

let

Wx(T0) = Osc(x, T0) = sup{| x(s)− x(t) |, s, t ∈ T0}, T0 ⊂ [0, T ], (3.8)

W ′
x(δ, T ) = inf

{tj}
max
0<j≤r

Wx[tj−1, tj) (3.9)

where the infimum extends over the finite sets {ti} of points satisfying 0 = t0 < t1 <

... < tr = T and tj − tj−1 > δ for j = 1, ..., r. Define

‖ x ‖T = sup
0≤t≤T

| x(t) | . (3.10)

Then we have the following theorem concerning the relative compactness of a sequence

of stochastic processes.

Theorem 3.2 Let {Xn(·)} be a sequence of stochastic processes with sample paths in

DRd [0,∞) and Xn(0) ∈ Sn and {Y n(·), Zn(·)} be a corresponding (Sn, Rn)-regulation
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processes. Then {Xn(·), Y n(·), Zn(·)} is relatively compact if Xn(·) ⇒ X(·) ⊂
DRd [0,∞) with X(0) ∈ S, Sn → S, Γn → 0, Rn → R and (N, R) satisfying (A.1)

and (A.2).

where ⇒ denotes convergence in distribution and {Xn(·), Y n(·), Zn(·)} have sample

paths in the product space ΩSn = DSn

Rd [0,∞)×D+
Rm [0,∞)×DSn [0,∞).

Proof. The main tools of the proof are Theorem 7.2 and Corollary 7.4 in Chapter 3

in Ethier and Kurtz [18]. Since Xn(·) ⇒ X(·), then by Remark 7.3 in Chapter 3 in

Ethier and Kurtz [18], the following compact containment condition holds. Namely,

for every η > 0 and T > 0, there is a positive constant M such that

inf
n

P{| Xn(t) |≤ M, 0 ≤ t ≤ T} ≥ 1− η. (3.11)

By Theorem 3.1, the following oscillation result holds

Osc((Xn, Y n, Zn), [t1, t2]) ≤ C max Osc(Xn, [t1, t2]), Γ
n} (3.12)

where [t1, t2] ⊂ [0, T ] and C is a constant which depends only on (N, R, | K |) and

C ≥ 1. Thus we have

| (Xn(t), Y n(t), Zn(t)) | (3.13)

≤| (Xn(0), Y n(0), Zn(0) | +C max Osc(Xn, [0, T ]), Γn}

≤ 2 | Xn(0) | +C [2 ‖Xn‖T + (2d + 1)]

where we used the assumption Γn < 2d+1 without loss of generality since Γn → 0 and

0 ≤ t ≤ T . Combining (3.11) and (3.13) together, the following compact containment

condition holds for {(Xn, Y n, Zn)}.

inf
n

P{| (Xn(t), Y n(t), Zn(t)) |≤ 2M + (2M + 2d + 1)C, 0 ≤ t ≤ T} (3.14)

≥ inf
n

P{| Xn(t) |≤ M, 0 ≤ t ≤ T}

≥ 1− η.
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It follows from (3.14) that condition (a) in Corollary 7.4 in Ethier and Kurtz [18] is

true. For the condition (b) in that corollary , noting (3.8), (3.9) and (3.11), we have,

for η > 0, T > 0 and δ > 0,

W ′
(Xn,Y n,Zn)(δ, T ) ≤ C W ′

Xn(δ, T ) + C Γn. (3.15)

Since Γn → 0, then C Γn ≤ 1
2
η for n large enough. So, there exists some δ > 0 such

that

lim sup
n→∞

P{W ′
(Xn,Y n.Zn)(δ, T ) ≥ η}

≤ lim sup
n→∞

P{C W ′
Xn(δ, T ) ≥ 1

2
η}

≤ η

2C

≤ η.

Here because Xn ⇒ X and Corollary 7.4(b) in Ethier and Kurtz [18], the sec-

ond inequality is true. Thus condition (b) is true in Corollary 7.4. Therefore,

{(Xn(·), Y n(·), Zn(·))} is relatively compact. Thus we finish the proof. 2

Next we present more concrete properties about the regulation processes.

Theorem 3.3 Assuming the jump sizes of Zn(·) and Y n(·) are bounded by Γn. Then

under the conditions of the previous theorem, any weak limit (X, Y, Z) of (Xn, Y n, Zn)

results in an SRBM Z defined on the filtered probability space (CS,M,Mt, Qπ) with

Qπ = P (X,Y, Z)−1 if under Qπ, X is a d-dimensional Brownian motion with drift

vector θ and covariance matrix Γ such that {X(t) − θt,Mt, t ≥ 0} is a martingale

and QπX−1(0) = π.

Proof. From Theorem 3.1, we know that (Xn, Y n, Zn) is weakly relatively com-

pact. Let (X, Y, Z) be a weak limit of the sequence. So there is a subsequence of

(Xn, Y n, Zn) that converges to (X, Y, Z). For notational convenience, we assume the
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sequence itself converges, that is,

(Xn, Y n, Zn) ⇒ (X, Y, Z). (3.16)

Let

Qn ≡ P (Xn, Y n, Zn)−1, (3.17)

Qπ ≡ P (X, Y, Z)−1. (3.18)

Then we have

Qn ⇒ Qπ. (3.19)

Since Γn → 0, Z and Y are continuous. Moreover, by the weak convergence and

Skorohod representation theorem, we can find a common supporting probability space

such that

Zn(·) → Z(·), u.o.c., a.s.

ni · Zn − bn
i ≥ 0, a.s.

Thus niZ(·) − bi ≥ 0 a.s. and therefore Z(·) ∈ S almost surely. The remaining

properties in (3)(a), (b) of Definition 3.1.3 follows from the corresponding properties

of Y n and weak convergence.

Finally, we show that (1.3) and (3)(c) in Definition 3.1.3 are true. Notice that

(Xn(·), Y n(·), Zn(·)) ⇒ (X(·), Y (·), Z(·)) ∈ CS. (3.20)

Then,the followings are true on some common supporting probability space by Sko-

rohod representation theorem,

(Xn(·), Y n(·), Zn(·)) → (X(·), Y (·), Z(·)), u.o.c.., a.s.

Zn(·) = Xn(·) + RnY n(·), a.s.

Therefore (1.3) is true since Rn → R.
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Now we turn to prove that 3(c) in Definition 3.1.3 is true. Since niZ(s)− bi ≥ 0

Qπ-a.s. for all s ≥ 0, where equality holds only if Z(s) ∈ Fi, and Yi is almost surely

non-decreasing, then it suffices to prove that, for each i ∈ J ,

∫ ·

0
((niZ(s)− bi)

∧
1) dYi(s) = 0 Qπ−a.s. (3.21)

In fact, notice the weak convergence, Lemma 3.3 and bn
i → bi, we have the integral

process in (3.21) under Qπ is the weak limit point of the sequence

{(∫ ·

0
((niZ

n(s)− bn
i )

∧
1) dY n

i (s); Qn

)}
. (3.22)

Now all of the integral processes in (3.22) are zero almost surely under Qn. Then we

know that (3.21) is true. Therefore we complete the proof of the theorem. 2
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CHAPTER 4

Heavy Traffic Limit Theorems

In this chapter, our analysis will mainly focus on intree-like queueing network under

communication blocking. Other types of networks can be analyzed by employing the

similar procedure.

4.1 System Representation

In this section, we first give some review about the intree-like queueing network model

introduced in Chapter 2. Then we derive the main equation that governs the dynamics

of the queue length process. Finally, a completely-S property on the reflection matrix

is presented.

Recall that Qi(t) is the number of customers at station i, including possibly the

one being served, Y b
i (t) is the amount of time that buffer i is full in time interval

[0, t] and Y 0
i (t) is the amount of time that server i has been idle while server i is

not blocked in [0, t], Bi(t) is the cumulative amount of time that server i is busy in

[0, t], and B0
i (t) is the cumulative amount of time that buffer i is not full during time

interval [0, t]. As a matter of definition, we have

B0
i (t) = t− Y b

i (t), (1.1)

Bi(t) = t− (Y 0
i (t) + Y b

σ(i)(t)). (1.2)

We model the external arrival processes in the following way. The arrival process
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at station i is turned on only when the buffer at the station is not full. Therefore

Ei(B
0
i (t) is the number of external arrivals to station i by time t and Si(Bi(t)) is the

number of departures from station i by time t. The routing is deterministic. That

is, customers leave station i will all go next to station σ(i) ∈ J ≡ {1, 2, ..d} or leave

the system. When the buffer at station σ(i) is full, server i stops working although a

customer may still occupy station i.

Then the main equation that governs the dynamics of the queue length process

can be written as

Qi(t) = Qi(0) + Ei(B
0
i (t)) +

∑

j∈J,σ(j)=i

Sj(Bj(t))− Si(Bi(t)), i ∈ J, (1.3)

where Qi(0) is the initial queue length at station i. Let

Êi(t) = Ei(t)− λit, (1.4)

Ŝi(t) = Si(t)− µit. (1.5)

It follows from (1.3) that for i ∈ J ,

Qi(t) = Qi(0) + Ei(B
0
i (t)) +

∑

j∈J,σ(j)=i

Sj(Bj(t))− Si(Bi(t)),

= Qi(0) + Êi(B
0
i (t)) + λiB

0
i (t) +

∑

j∈J,σ(j)=i

(Ŝj(Bj(t)) + µjBj(t))

−Ŝi(Bi(t))− µiBi(t),

= Qi(0) + Êi(B
0
i (t)) +

∑

j∈J,σ(j)=i

Ŝj(Bj(t))− Ŝi(Bi(t))

+λiB
0
i (t) +

∑

j∈J,σ(j)=i

µj(t− Y 0
j (t)− Y b

σ(j)(t))− µi(t− Y 0
i (t)− Y b

σ(i)(t))

= Qi(0) + Êi(B
0
i (t)) +

∑

j∈J,σ(j)=i

Ŝj(Bj(t))− Ŝi(Bi(t))

+


λi +

∑

j∈J,σ(j)=i

µj − µi


 t + µiY

0
i (t) + µiY

b
σ(i)(t)

− ∑

j∈J,σ(j)=i

µjY
0
j (t)−


λi +

∑

j∈J,σ(j)=i

µj


 Y b

i (t)



55

= Xi(t) + µiY
0
i (t) + µiY

b
σ(i)(t)

− ∑

j∈J,σ(j)=i

µjY
0
j (t)−


λi +

∑

j∈J,σ(j)=i

µj


 Y b

i (t), (1.6)

where

Xi(t) = ξi(t) + θit, (1.7)

ξi(t) = Qi(0) + Êi(B
0
i (t)) +

∑

j∈J,σ(j)=i

Ŝj(Bj(t))− Ŝi(Bi(t)), (1.8)

θi =


λi +

∑

j∈J,σ(j)=i

µj − µi


 t. (1.9)

Let Q(t) = (Q1(t), ..., Qd(t))
′, X(t) = (X1(t), ..., Xd(t))

′, Y 0(t) = (Y 0
1 (t), ..., Y 0

d (t))′,

Y b(t) = (Y b
1 (t), ..., Y b

d (t))′, R0 and Rb be d× d matrix given by

R0
ij =





µi, if i = j,

−µj, if j < i and σ(j) = i,

0 if j < i and σ(j) 6= i or j > i,

(1.10)

Rb
ij =





−(λi +
∑

l<i,σ(l)=i µl), if i = j,

µi, if j > i and σ(i) = j,

0, if j > i and σ(i) 6= j or j < i.

(1.11)

Then we have the following

Q(t) = X(t) + R0Y 0(t) + RbY b(t), t ≥ 0, (1.12)

0 ≤ Qi(t) ≤ bi, t ≥ 0, (1.13)

Y 0
i (0) = 0, Y 0

i (·) is continuous and nondecreasing, i ∈ J, (1.14)

Y b
i (0) = 0, Y b

i (·) is continuous and nondecreasing, i ∈ J, (1.15)

Y 0(·) increases only at times t when Qi(t) = 0, i ∈ J, (1.16)

Y b
i (·) increases only at times t when Qi(t) = bi, i ∈ J. (1.17)

Let P be the d × d matrix with Pij = 1 if j = σ(i) and zero otherwise, that is, P is
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the routing matrix. Then R0 and X(t) can be rewritten as

R0 = (I − P ′)diag(µ1, ..., µd) (1.18)

X(t) = Q(0) + Ê(B0(t))− (I − P ′)Ŝ(B(t)) + θt, (1.19)

where θ = (θ1, ..., θd)
′. Recall that the d-dimensional state space with 2d boundary

faces are given as follows

S ≡ {x = (x1, ..., xd)
′ ∈ Rd : 0 ≤ xi ≤ bi, i ∈ J},

Fi ≡ {x ∈ S : xi = 0}, Fi+d = {x ∈ S : xi = bi} for i = 1, ..., d.

Let N denote the 2d × d matrix whose ith row is given by the row vector n′i of the

unit normal to face Fi. That is,

N =




1 0 ... 0

0 1 ... 0

. . ... .

0 0 ... 1

−− −−− −−−−− −−
−1 0 ... 0

0 −1 ... 0

. . ... .

0 0 ... −1




. (1.20)

Let R = (R0, Rb), where R0 and Rb are defined in (1.10) and (1.11). Then matrices

N and R satisfy conditions (A.1) and (A.2) introduced in Chapter 3.

Lemma 4.1 NR satisfies condition (A.1) and (NR)′ satisfies condition (A.2),

Proof. Since S is an d-dimensional box, it is a simple polyhedron. Therefore

conditions (A.1) and (A.2) introduced in section 3.1 are equivalent, see Dai and

Williams [16]. So, we only need to prove that NR satisfies condition (A.1). It is
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equivalent to prove that any d × d subprincipal matrix M obtained from NR is

completely-S. Where we exclude those subprincipal matrices which contain ith row

(column) and (i + d)th row (column) of NR simultaneously. This is due to the fact

that faces Fi and Fi+d parallel each other. Notice that the (2d) × (2d) matrix NR

can be written as,

NR =




R0 | Rb

−−−−−− | − −−−−−
−R0 | −Rb


 (1.21)

Then,any d× d subprincipal matrix M described above has the following decomposi-

tion form,

M =




A1 0

0 A4


 +




0 A2

A3 0


 . (1.22)

Where A1 and A4 are subprincipal matrices of R0 and −Rb respectively. A2 and A3

are nonnegative matrices. Noticing the structures of R0 and −Rb, we know that both

of them are completely-S matrices, then we have that M is completely-S. Thus we

finish the proof. 2

Remark. Consider the 2-station tandem network pictured in Figure 1.2. By delet-

ing the 2th row and column, the 3th row and column from the corresponding matrix

NR. We see that the reflection matrix around the corner formed by faces F1 and

F4 is R14 =




µ1 µ1

µ1 µ1


 which is completely-S. However, the uniqueness of solu-

tion for the corresponding (S, R14)- regulation problem fails around the corner, see

Mandelbaum [31]. Thus, by the localization method, we can only get the existence

of solutions for (S, R14)-regulation problem and cannot guarantee the uniqueness.

Therefore the mappings x(·) → y(·) and x(·) → z(·) associated with the (S, R14)-

regulation problem are not Lipschitz continuous. The continuity property has played

a key role in proving heavy traffic diffusion approximations to queueing networks, see

Reiman [35],Johnson [29], Peterson [34], H.Chen and Mandelbaum [6], and etc.
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4.2 A Heavy Traffic Limit Theorem

In order to prove a heavy traffic limit theorem, we consider a sequence of queue-

ing networks indexed by n ≥ 1. In the nth network, the external arrival process

is En(t) = {(En
1 (t), ..., En

d (t))′, t ≥ 0}. Each En
i (t) (i = 1, ..., d) associates an i.i.d

interarrival time sequence {(1/λn
i )ui(k), k ≥ 1} with mean value 1/λn

i . The ser-

vice process is Sn(t) = {(Sn
1 (t), ..., Sn

d (t))′, t ≥ 0}. Each Sn
i (t) associates an i.i.d

service time sequence {(1/µn
i )vi(k), k ≥ 1} with mean value 1/µn

i . The buffer

size vector is bn = (bn
1 , ..., b

n
d)′. However, the routing does not depend on n. Let

Qn = {(Qn
1 (t), ..., Qn

d(t))′, t ≥ 0} be the queue length process associated with the nth

network. Let Y b,n
i (t) be the cumulative time that station i is full. Therefore, the cu-

mulative time that station i is blocked is Y b,n
σ(i)(t) in the time interval [0, t]. Let Y 0,n

i (t)

be the cumulative time that station i is empty while station i is not blocked in [0, t].

Put Y 0,n = {(Y 0,n
1 (t), ..., Y 0,n

d (t))′, t ≥ 0} and Y b,n = {(Y b,n
1 (t), ..., Y b,n

d (t))′, t ≥ 0}
and Y n(t) = (Y 0,n(t), Y 0,n(t))′. Let B0,n

i (t) be the cumulative amount of time that

buffer i is not full and Bn
i (t) be the cumulative amount of time that server i is busy

in time interval [0, t]. We assume

Qn(0), En
1 , ..., En

d , Sn
1 , ..., Sn

d are independent for each n. (2.1)

Moreover suppose, as n →∞,

λn
i → λi, , µn

i → µi > 0 (2.2)

√
n(λn

i −
∑

j∈J,σ(j)=i

µn
j − µn

i ),→ θi (2.3)

1√
n

bn
i → bi > 0 for i = 1, ..., d (2.4)

where λi, µi and θi are some constants. The assumptions (2.3) and (2.4) are called

heavy traffic conditions. For the initial state Qn(0), we assume that as n →∞

Q̃n(0) ≡ 1√
n

Qn(0) ⇒ Q̃(0) (2.5)
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for some random vector Q̃(0), where ′′ ⇒′′ denotes convergence in distribution. Fur-

thermore, due to Functional Central Limit Theorem, we have the following facts that

Ẽn(·) ≡ 1√
n

Ên(n·) =
√

n(
En(n·)

n
− λn·) ⇒ Ẽ(·), (2.6)

S̃n(·) ≡ 1√
n

Ŝn(n·) =
√

n(
Sn(n·)

n
− µn·) ⇒ S̃(·) (2.7)

where λn = (λn
1 , ..., λ

n
d)′ and µn = (µn

1 , ..., µ
n
d). By the independent assumption (2.1),

we have

(Q̃n(0), Ẽn(·), S̃n(·)) ⇒ (Q̃(0), Ẽ(·), S̃(·)).

Where Ẽ(·) and S̃(·) are independent d-dimensional zero-drift Brownian motion with

covariance matrices Γa and Γs as follows,

Γa = diag(λ1c
2
a,1, ..., λdc

2
a,d) = diag(λ)diag(c2

a),

Γs = diag(µ1c
2
s,1, ..., µdc

2
s,d) = diag(µ)diag(c2

s),

Now we are ready to state the heavy traffic limit theorem.

Theorem 4.1 Under assumptions (2.1)-(2.5), we have

(
1√
n

Qn(n·), 1√
n

Y 0,n(·), 1√
n

Y b,n(n·)
)
⇒

(
Q̃(·), Ỹ 0(·), Ỹ b(·)

)
as n →∞, (2.8)

where Q̃(·), together with Ỹ 0(·) and Ỹ b(·) is an (S, θ, Γ, R)-semimartingale reflecting

Brownian motion with the initial distribution PQ̃−1(0) = π on filtered probability

space (Ω,F ,Ft,P). {Ft} is the filtration generated by X̃, Ỹ 0 and Ỹ b, augmented with

all P-null sets. The process (Q̃, Ỹ 0, Ỹ b) is uniquely determined in distribution from

the following equations.

Q̃i(t) = X̃i(t) +
∑

j∈J

R0
ijỸ

0
j (t) +

∑

j∈J

Rb
ijỸ

b
j (t), P−a.s., t ≥ 0, (2.9)

0 ≤ Q̃i(t) ≤ bi, t ≥ 0, i ∈ J, (2.10)

Q̃(·), Ỹ 0(·) and Ỹ b are {Ft} − adapted, (2.11)
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Ỹ 0
i (0) = 0, Ỹ 0

i (·) is continuous and nondecreasing, i ∈ J, (2.12)

Ỹ b
i (0) = 0, Ỹ b

i (·) is continuous and nondecreasing, i ∈ J, (2.13)

Ỹ 0(·) increases only at times t when Q̃i(t) = 0, i ∈ J, (2.14)

Ỹ b
i (·) increases only at times t when Q̃i(t) = bi, i ∈ J, (2.15)

where

X̃i(t) = Q̃(0) + Ẽi(t) +
∑

j∈J,σ(j)=i

S̃j(t)− S̃i(t) + θit, t ≥ 0, i ∈ J, (2.16)

R0 and Rb are d× d matrices given by (1.10) and (1.11), Γ is the covariance matrix

given by

Γ = Γa + (I − P ′)Γs(I − P )

with Pij = 1 if j = σ(i) and zero otherwise. 2

The proof of the above heavy traffic limit theorem is divided into the following

several steps: justify a fluid limit theorem and a martingale convergence theorem.

4.2.1 Fluid Limit Theorem

Theorem 4.2 Under assumptions (2.1)-(2.5), as n →∞, we have

B̄0,n
i (t) =

1

n
B0,n

i (nt) ⇒ t,

B̄n
i (t) =

1

n
Bn

i (nt) ⇒ t,

Ȳ 0,n
i (t) =

1

n
Y 0,n

i (nt) ⇒ 0,

Ȳ b,n
i (t) =

1

n
Y b,n

i (nt) ⇒ 0.

Proof. First we rescale (1.12) as follows,

Q̄n(t) = Q̄n(0) + X̄n(t) + R0,nȲ 0,n(t) + Rb,nȲ b,n(t)
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where Q̄n(t) = 1
n
Qn(nt), X̄n(t) = 1

n
Xn(nt). For each n, (Q̄n(t), Ȳ 0,n(t), Ȳ b,n(t)) has

the properties (1.13) to (1.17) with the state space Sn given by

Sn =

{
x ∈ Rd

+ : xi ≤ b̄n
i =

bn
i

n

}
.

By (1.7)-(1.9), we have

X̄n
i (t) ≡ 1

n
Qn(0) +

1

n
Ên

i (nB̄0,n
i (t)) +

1

n

∑

j<i,σ(j)=i

Ŝn
j (nB̄n

i (t))− 1

n
Ŝn

i (nB̄n
i (t)) + θn

i t

Noticing that B̄n
0 (t) ≤ t, B̄n(t) ≤ t, then by (2.2)-(2.5) and Skorohod representation

theorem, we have

X̄n(t) → 0, u.o.c., as n →∞ (2.17)

where u.o.c. means that the convergence is uniformly on compact set.

Now since Sn are “boxes” of the same shape in d-dimensional space, (N,R)

satisfies conditions (A.1) and (A.2) introduced in Chapter 3, Rn → R. Then, by

Theorem 3.1, we have

Osc(Ȳ n, [s, t] ⊆ [0, T ]) ≤ C Osc(X̄n, [s, t] ⊆ [0, T ])

for any T ≥ 0, where C depends only on R and N for n large enough.

0 ≤ lim inf
n→∞ Osc(Ȳ n, [s, t] ⊆ [0, T ]) (2.18)

≤ lim sup
n→∞

Osc(Ȳ n, [s, t] ⊆ [0, T ])

≤ C lim
n→∞ Osc(X̄n, [s, t] ⊆ [0, T ])

= 0, a.s.,

where Ȳ n(t) = (Ȳ 0,n(t)′, Ȳ 0,n(t)′)′. Notice that Y n(0) = 0 for all n, we have

lim
n→∞ Ȳ n(t) = 0, u.o.c., a.s. (2.19)

Thus we complete the proof. 2

Remark. Since the weak limits in Theorem 4, 2 are constants, the weak convergence

is equivalent to convergence in probability, see problem 4 in Chapter 3 of Chung [9].
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4.2.2 Martingale Convergence Theorem

Here we prove an adaptedness property on a weak limit process (Q̃, X̃, Ỹ ) of

(Q̃n, X̃n, Ỹ n), where Q̃n(·) = 1√
n
Qn(n·), X̃n(·) = 1√

n
Xn(n·) and Ỹ n(·) = 1√

n
Y n(n·) =

1√
n
(Y 0,n(n·)′, Y b,n(n·)′)′. Define

Gn
t = σ

{
Q̃n(0), Ẽn(s), S̃n(s), Ỹ n(s), s ≤ t

}
, (2.20)

where Q̃n(0), Ẽn(s) and S̃n(s) are defined in (2.5)-(2.7). Let T i,n
k denote the partial

sum of the exogenous interarrival time sequence at the station i for the nth network,

that is,

T i,n
k =

k∑

l=1

ξn
i (l), i ∈ J (2.21)

with T i,n
0 ≡ 0. Then we have the following lemma.

Lemma 4.2 For each k ≥ 0, T i,n
k is a Gn

t -stopping time. Moreover, 0 = T i,n
0 <

T i,n
1 < · · · < T i,n

k →∞ as k →∞ a.s. for each n and i ∈ J .

Proof. The first claim is an immediate conclusion of
{
T i,n

k ≤ t
}

= {Ei(t) ≥ k}. The

second claim follows from strong law of large number. For more detailed discussion,

see page 57 and Theorem T23 in page 303 of Bremaud [4]. 2

Lemma 4.3 Let G
T

(i,n)−
k

denote the strict past at time T i,n
k . Namely,

G
T

(i,n)−
k

= σ
(
At ∩ {t < T i,n

k }, At ∈ Gn
t , t ≥ 0

)
.

Then, (a) T i,n
k is G

T
(i,n)−
k

-measurable; (b) ξi,n(k + 1) is independent of G
T

(i,n)−
k

.

Proof. For (a), we know, by Lemma 4.2, that T i,n
k is a Gn

t -stopping time. Then the

claim directly follows from Theorem T4 in page 298 of Bremaud [4].

For (b), let τ i,n
k denote the time at which the kth external customer arrives at

station i. Namely,

τ i,n
k = T i,n

k + Y n
i+d(τ

i,n
k ) ≥ T i,n

k (2.22)
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where Y n
i+d(τ

i,n
k ) is the total blocking time experienced by the external arrival stream

i at time τ i,n
k . Notice that ξi,n(k + 1) will be the actual working time for external

generator i to generate the (k +1)th customer from the time τ i,n
k on. Due to the inde-

pendence assumptions, ξi,n(k +1) is independent of the history of the network before

the time τ i,n
k . Therefore, ξi,n(k +1) is independent of the σ-field σ

(
F Ỹ n

t ∩ {t < τ i,n
k }

)

for each t ≥ 0. Notice that

{t < T i,n
k } =

(
{t < T i,n

k } ∩ {t ≥ τ i,n
k }

)
∪

(
{t < T i,n

k } ∩ {t < τ i,n
k }

)

= {t < T i,n
k } ∩ {t < τ i,n

k }

and

σ
(
F Ỹ n

t ∩ {t < T i,n
k }

)
= F Ỹ n

t ∩ {t < T i,n
k } (2.23)

=
{
A ∩ {t < τ i,n

k } ∩ {t < T i,n
k }, A ∈ F Ỹ n

t

}
.

The first equality in (2.23) is due to Theorem 3 in page 8 in Chow and Teicher [8]

since F Ỹ n

t = σ(Ỹ n(s), s ≤ t) is a σ-filed. Thus ξi,n(k + 1) is independent of

σ
(
F Ỹ n

t ∩ {t < T i,n
k }

)
, and furthermore (b) is true. 2

Theorem 4.3 (Martingale Convergence Theorem). Under assumptions (2.1)-(2.5),

we have that (Q̃n, X̃n, Ỹ n) is weakly relatively compact and for any weak limit pro-

cess (Q̃, X̃, Ỹ ), X̃(·) is a d-dimensional Brownian motion with the initial distribution

PX̃−1(0) = π and covariance matrix Γ. Moreover X̃(t) − θt is a martingale with

respect to the filtration Ft = σ(Q̃(s), Ỹ (s), s ≤ t).

Proof. First, define

τn
+(t) = min

{
T i,n

k : T i,n
k > t

}
, (2.24)

τn
−(t) = max

{
T i,n

k : T i,n
k ≤ t

}
. (2.25)
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Then for each i ∈ J ,

lim
n→∞ E[| 1√

n
(En

i (τn
+(nt))− λn

i τn
+(nt))− Ẽn

i (t)|] (2.26)

= lim
n→∞ E[| 1√

n
(1− λn

i (τn
+(nt)− nt)|]

≤ 1√
n

lim
n→∞ λn

i E[τn
+(nt)− τn

−(nt)]

= lim
n→∞

1√
n

λn
i E[ξn

i (1)] = 0.

Similarly,

lim
n→∞ E[| 1√

n
(En

i (τn
−(nt))− λn

i τn
−(nt))− Ẽn

i (t)|] = 0. (2.27)

Moreover,

E[Ẽn
i (T i,n

k+1)− Ẽn
i (T i,n

k )|Gn
T i,n

k

] (2.28)

=
1√
n

(1− λn
i E[ξn

i (k + 1)|Gn
T i,n

k

]) = 0,

where the filtration {Gn
t } is defined in (2.20). Notice that for any {Gn

t }-stopping time

T and any random variable X such that E[|X|] < ∞,

E[E[X|Gn
T ]|Gn

t ]I{T>t} = E[X|Gn
t ]I{T>t} = E[XI{T>t}|Gn

t ]. (2.29)

Also, for each i ∈ J and all s, t ≥ 0,

E[Ẽn
i (t + s)− Ẽn

i (t)|Gn
t ] (2.30)

= E[Ẽn
i (t + s)− 1√

n
(En

i (τn
−(n(t + s))− λn

i τ
n
−(n(t + s)))|Gn

t ]

+E[
1√
n

(En
i (τn

+(nt))− λn
i τn

+(nt))− Ẽn
i (t)|Gn

t ]

−∑

k

E[(Ẽn
i (T i,n

k+1)− Ẽn
i (T i,n

k )) I{nt<T i,n
k
≤n(t+s)}|Gn

t ]

= E[Ẽn
i (t + s)− 1√

n
(En

i (τn
−(n(t + s))− λn

i τ
n
−(n(t + s)))|Gn

t ]

+E[
1√
n

(En
i (τn

+(nt))− λn
i τn

+(nt))− Ẽn
i (t)|Gn

t ]

−∑

k

E[E[Ẽn
i (T i,n

k+1)− Ẽn
i (T i,n

m )|Gn
T i,n

k

] I{nt<T i,n
k
≤n(t+s)}|Gn

t ]
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Hence, from (2.26) to (2.29), we have

lim
n→∞E[| E[Ẽn

i (t + s)− Ẽn
i (t)|Gn

t ] |] = 0. (2.31)

Similarly,

lim
n→∞ E[| E[S̃n

i (t + s)− S̃n
i (t)|Gn

t ] |] = 0. (2.32)

Next, by rescaling (1.12),

Q̃n(t) = Q̃n(0) + X̃n(t) + R0,nỸ 0,n(t) + Rb,nỸ b,n(t), (2.33)

and for each n, (Q̃n(t), Ỹ 0,n(t), Ỹ b,n(t)) has the properties (1.13) to (1.17) with the

state space Sn given by

Sn =

{
x ∈ Rd

+ : xi ≤ b̃n
i =

bn
i√
n

}
.

Furthermore from (1.7)-(1.9), we have

X̃n
i (t) ≡ Q̃n(0) +

1√
n

Ẽn
i (nB̄0,n

i (t)) +
1√
n

∑

j<i,σ(j)=i

S̃n
j (nB̄n

i (t)) (2.34)

− 1√
n

S̃n
i (nB̄n

i (t)) +
√

nθn
i t.

Then by (2.1)-(2.5), Fluid Limit Theorem, Theorem 4.4 of Billingsley [3] and Con-

tinuous Mapping Theorem, we have

X̃n(t) ⇒ X̃(t) = Q̃(0) + Ẽ(t)− (I − P ′)S̃(t) + θt (2.35)

where X̃(t) is an d-dimensional Brownian motion with the initial random vector Q̃(0),

drift vector θ and d× d positive definite covariance matrix Γ given by

Γ = Γa + (I − P ′)Γs(I − P ). (2.36)

Notice that Rn → R, and (N, R) satisfies conditions (A.1) and (A.2) introduced

in Chapter 3. Then from Theorem 3.2, one can see that (Q̃n, X̃n, Ỹ n) is weakly
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relatively compact. Therefore for any weak limit (Q̃, X̃, Ỹ ) of (Q̃n, X̃n, Ỹ n), there

exists a subsequence of (Q̃n, X̃n, Ỹ n) which converges to (Q̃, X̃, Ỹ ). For notation

convenience, we assume that the convergent subsequence is (Q̃n, X̃n, Ỹ n) itself. Let

F n(t, s) = (Ẽn(t + s)− Ẽn(t))− (I − P ′)(S̃n(t + s)− S̃n(t)).

Let h(·) be an arbitrary real-valued, bounded, and continuous function of its argu-

ments and for arbitrary r; let ti ≤ t ≤ t + s, i ≤ r. Define

H̃n(t) = (Q̃n(t), Ỹ n(t)),

H̃(t) = (Q̃(t), Ỹ (t)).

Notice that

Ẽn
i (t) =

1√
n

(
sup

{
k :

k∑

l=1

ui(l) ≤ λn
i nt

}
− λn

i nt

)
,

S̃n
i (t) =

1√
n

(
sup

{
k :

k∑

l=1

vi(l) ≤ µn
i nt

}
− µn

i nt

)
.

By (2.2), there exist some nonnegative constants C1 and C2 such that C1 ≤ λn
i , µn

i ≤
C2. Thus for each fixed t, by (1.3), Theorem 7.3 and 7.4 in Chapter III in Gut [20],

we have that {(Ẽn
i (t))2} and {(S̃n

i (t))2} are uniformly integrable in terms of n. Then,

by the weak convergence and (2.31)-(2.32), we have

| E[h(H̃(ti), i ≤ r)(X̃(t + s)− X̃(t)− θs) | (2.37)

=| lim
n→∞ E[h(H̃n(ti), i ≤ r) F n(t, s)] |

= lim
n→∞ | E[h(H̃n(ti), i ≤ r)E[F n(t, s)|Gn

t ] |

≤ M lim
n→∞E[| E[F n(t, s)|Gn

t ] |]

= 0,

where M is some positive constant. The arbitrariness of h(·), ti, k, t and t+s, implies

that

E[X̃(t + s)− X̃(t)− θs|Fu, u ≤ t] = 0,
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which means that X̃(t)− θt is an {Ft}-martingale. Thus we finish the proof. 2

Proof of Theorem 4.1. It directly follows from Proposition 3.1, Theorem 3.3 and

the above martingale convergence theorem. 2

4.3 Extension to Tree-like Network

Consider a sequence of tree-like queueing networks described in Chapter 2. All of

the processes and parameters associated with the nth network will be indexed with

an n in a convenient place. We suppose that the number d of stations is fixed and is

independent of n. It is assumed that as n →∞,

λn
i → λi , µn

i → u > 0 (3.1)

√
n(λn

i + µn
j Pji − µn

i ) → θi (j < i), (3.2)

1√
n

bn
i → bi > 0 for i = 1, ..., d. (3.3)

Where we take Pji = 0 if i = 1 and λn
i = 0 if i > 1. For the initial states Qn(0),

assume that as n →∞,

Q̃n(0) ≡ 1√
n

Qn(0) ⇒ Q̃(0), (3.4)

where ′′ ⇒′′ denotes convergence in distribution. Moreover, due to Functional Central

Limit Theorem, we have

Ẽn(·) ≡ 1√
n

Ên(n·) =
√

n(
En(n·)

n
− λn·) ⇒ Ẽ(·) (3.5)

S̃n(·) ≡ 1√
n

Ŝn(n·) =
√

n(
Sn(n·)

n
− µn·) ⇒ S̃(·) (3.6)

Φ̃j,n(·) ≡ 1√
n

Φ̂j,n([n·]) =
√

n(
Φj([n·])

n
− P ′

j·) ⇒ Φ̃j(·), (3.7)
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where [x] is the integer part of x, λn = (λn
1 , ..., λ

n
d)′ and µn = (µn

1 , ..., µ
n
d)′. Φj does

not change with n. Ẽ(t), S̃(t) and Φ̃j(t) (j = 1, ..., d) are independent d-dimensional

zero-drift Brownian motion with covariance matrices Γa, Γs and Γj as follows,

Γa = diag(λ1c
2
a,1, ..., λdc

2
a,d) = diag(λ)diag(c2

a),

Γs = diag(µ1c
2
s,1, ..., µdc

2
s,d) = diag(µ)diag(c2

s),

Γj
lk =





Pjl(1− Pjl) if l = k

−PjlPjk if l 6= k

where Pj denotes the jth row of P .

Theorem 4.4 Under assumptions (3.1)-(3.7), we have

(
1√
n

Qn(n·), 1√
n

Y 0,n(·), 1√
n

Y b,n(n·)
)
⇒

(
Q̃(·), Ỹ 0(·), Ỹ b(·)

)
as n →∞ (3.8)

where Q̃(·) together with Ỹ 0(·) and Ỹ b(·) is an (S, θ, Γ, R)-semimartingale reflecting

Brownian motion with the initial distribution PQ̃−1(0) = π on the filtered probability

space (Ω,F ,Ft,P ). {Ft} is the filtration generated by X̃, Ỹ and Ỹ b, augmented with

all P -null sets. The process (Q̃, Ỹ 0, Ỹ b) is uniquely determined in distribution from

the following equations.

Q̃i(t) = X̃i(t) +
∑

j∈J

R0
ijµjỸ

0
j (t) +

∑

j∈J

Rb
ijỸ

b
j (t), P − a.s., t ≥ 0,

0 ≤ Q̃i(t) ≤ bi, t ≥ 0, i ∈ J,

Q̃(·), Ỹ 0(·) and Ỹ b are {Ft} − adapted,

Ỹ 0
i (0) = 0, Ỹ 0

i (·) is continuous and nondecreasing, i ∈ J,

Ỹ b
i (0) = 0, Ỹ b

i (·) is continuous and nondecreasing, i ∈ J,

Ỹ 0(·) increases only at times t when Q̃i(t) = 0, i ∈ J,

Ỹ b
i (·) increases only at times t when Q̃i(t) = bi, i ∈ J,
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where

X1(t) = Q̃1(0) + Ẽ1(t)− S̃1(t) + θ1t,

X̃i(t) = Q̃i(0) + Φ̃ji(Sj(Bj(t))) + PjiS̃j(Bj(t))− S̃i(Bi(t)) + θit, (i > 1),

and R0, Rb are given by (2.8) and (2.9) in Chapter 2. X̃(t) is an d-dimensional

Brownian motion with drift θ and covariance matrix

Γ = Γa + (I − P ′)Γs(I − P ) +
d∑

i=1

µiΓ
i. (3.9)

4.4 Extension to Overflow Network with Feedback

Similar to previous discussion, consider a sequence of overflow queueing networks

presented in Chapter 2. All of the processes and parameters associated with the nth

network will be indexed with an n in a convenient place. We suppose that the number

d of stations is fixed and is independent of n. It is assumed that as n →∞,

λn
i → λi , µn

i → u > 0 (4.1)

√
n(λn

i +
∑

j 6=i

µn
j Pji − µn

i ) → θi, (4.2)

1√
n

bn
i → bi > 0 for i = 1, ..., d (4.3)

For the initial states Qn(0), we assume that as n →∞

Q̃n(0) ≡ 1√
n

Qn(0) ⇒ Q̃(0), (4.4)

where ′′ ⇒′′ denotes convergence in distribution. Moreover, due to the Functional

Central Limit Theorem, we have

Ẽn(·) ≡ 1√
n

Ên(n·) =
√

n(
En(n·)

n
− λn·) ⇒ Ẽ(·) (4.5)

S̃n(·) ≡ 1√
n

Ŝn(n·) =
√

n(
Sn(n·)

n
− µn·) ⇒ S̃(·) (4.6)
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Φ̃j,n(·) ≡ 1√
n

Φ̂j,n([n·]) =
√

n(
Φj([n·])

n
− P ′

j·) ⇒ Φ̃j(·), (4.7)

˜̄Φ
j,n

(·) ≡ 1√
n

ˆ̄Φ
j,n

(n·) =
√

n(
1

n
Φ̄j([n·])− P̄j·) ⇒ ˜̄Φ

j
(·). (4.8)

where [x] is the integer part of x, λn = (λn
1 , ..., λ

n
d)′ and µn = (µn

1 , ..., µ
n
d)′. Φj does

not change with n. Ẽ(t), S̃(t), Φ̃j(t) and ¯̃Φ
j
(t) (j = 1, ..., d) are independent d-

dimensional zero-drift Brownian motion with covariance matrices Γa, Γs, Γj and Γ̄j

as follows,

Γa = diag(λ1c
2
a,1, ..., λdc

2
a,d) = diag(λ)diag(c2

a),

Γs = diag(µ1c
2
s,1, ..., µdc

2
s,d) = diag(µ)diag(c2

s),

Γj
lk =





Pjl(1− Pjl), if l = k,

−PjlPjk, if l 6= k.

where Pj denotes the jth row of P and P̄j denotes the jth row of P̄ .

Theorem 4.5 Under assumptions (4.1)-(4.8), we have

(
1√
n

Qn(n·), 1√
n

Y 0,n(·), 1√
n

Y b,n(n·)
)
⇒

(
Q̃(·), Ỹ 0(·), Ỹ b(·)

)
as n →∞ (4.9)

where Q̃(·) together with Ỹ 0(·) and Ỹ b(·) is an (S, θ, Γ, R)-semimartingale reflecting

Brownian motion with the initial distribution PQ̃−1(0) = π on the filtered probability

space (Ω,F ,Ft,P). {Ft} is the filtration generated by X̃, Ỹ 0 and Ỹ b, augmented with

all P -null sets. The process (Q̃, Ỹ 0, Ỹ b) is uniquely determined in distribution from

the following equations.

Q̃i(t) = X̃i(t) +
∑

j∈J

R0
ijµjỸ

0
j (t) +

∑

j∈J

Rb
ijỸ

b
j (t), P−a.s., t ≥ 0,

0 ≤ Q̃i(t) ≤ bi, t ≥ 0, i ∈ J,

Q̃(·), Ỹ 0(·) and Ỹ b are {Ft}−adapted,

Ỹ 0
i (0) = 0, Ỹ 0

i (·) is continuous and nondecreasing, i ∈ J,
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Ỹ b
i (0) = 0, Ỹ b

i (·) is continuous and nondecreasing, i ∈ J,

Ỹ 0(·) increases only at times t when Q̃i(t) = 0, i ∈ J,

Ỹ b
i (·) increases only at times t when Q̃i(t) = bi, i ∈ J,

where

X̃i(t) = Q̃i(0) + Ẽi(t) +
∑

j 6=i

Φ̃ji(t)− S̃i(t) +
∑

j 6=i

PjiS̃j(t) + θit.

R0 = (I −P ′), Rb = −(I − P̄ ′), and X̃(t) is an d-dimensional Brownian motion with

drift θ and covariance matrix

Γ = Γa + (I − P ′)Γs(I − P ) +
d∑

i=1

µiΓ
i.

2

The proof of this theorem is similar to the proof for intree-like network. Here

we only give two remarks concerning the reflection matrix R = (R0, Rb).

Remark. The matrix NR satisfies condition (A.1) and (NR)′ satisfies (A.2), where

N is defined in (1.20). In fact, the 2d× 2d matrix NR can be written as

NR =




I − P ′ −(I − P̄ ′)

−(I − P ′) I − P̄ ′


 . (4.10)

Then, notice that there is a unique solution of (Rd
+, I − P ) -regulation problem for

each x ∈ CRd [0,∞) with x(0) ≥ 0 since the spectral radius is less than 1, see Harrison

and Reiman [24]. Then by Theorem 1 in Bernard and EL Kharaibi [1], we know that

I−P is completely-S. Moreover, by Lemma 3 in Reiman and Williams [37], I−P ′ is

also completely-S. The same argument applies to matrix I − P̄ ′. Then by the same

procedure used in proving Lemma 2.1, we know that NR satisfies (A.1).

Remark. Consider a two station network with P21 = 1,P12 = 0 and P̄12 = 1,P̄21 = 0,

the reflection matrix around the vertex formed by faces F2, F3 is

R23 =




1 1

−1 −1


 .



72

Then by the same explanation as in intree-like case, the uniqueness of solution for

the corresponding (S, R)-regulation problem fails.
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CHAPTER 5

Computing the Stationary Distribution of

SRBM

5.1 A Basic Adjoint Relationship

Let θ be a d-dimensional vector, Γ be a d × d positive definite matrix and R be a

d× 2d matrix. Let {Px, x ∈ S} denote the unique family of probability measures on

(Ω̃, F̃) which makes W̃ an SRBM associated with the data (S, θ, Γ, R) as before. For

each x ∈ S, let Ex be the expectation operator under Px. For a probability measure

π on S, define

Pπ(·) ≡
∫

S
Px(·)π(dx) (1.1)

and let Eπ be the corresponding expectation operator. The integral in (1.1) is well

defined due to the Feller continuity of {Px, x ∈ S}; see Theorem 1.3 in Dai and

Williams [16].

Definition 5.1.1 A stationary distribution for W̃ is a probability measure π on

(S,BS) such that for every bounded Borel function f on S and every t ≥ 0,

∫

S
Ex

[
f(W̃ (t))

]
π(dx) =

∫

S
f(x)π(dx). (1.2)

Two measures will be called equivalent if they are mutually absolutely continuous.

The symbol ≈ will be used to denote the equivalence of measures.
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Proposition 5.1 There exists a unique stationary distribution π for the (S, θ, Γ, R)-

SRBM W̃ . Furthermore π is equivalent to Lebesgue measure on S.

Proof. Since the state space S is compact, the stationary distribution for W̃ exists,

see Theorem 4.9.3 and the following remark in Ethier and Kurtz [18]. The rest of the

proof is the same as in Harrison and Williams [25]. 2

The following proposition establishes a basic adjoint relationship (BAR) for the

stationary distribution of W̃ . The basic adjoint relationship is the starting point

for us to compute the stationary distribution numerically. First, we introduce more

notation. Let C2
b (S) be the space of twice differentiable functions whose first and

second order partials are continuous and bounded on S. For each f ∈ C2
b (S), define

the following differential operators

Lf ≡ 1

2

d∑

i=1

d∑

j=1

Γij
∂2f

∂xixj

+
d∑

i=1

θi
∂f

∂xi

, (1.3)

Dif(x) ≡ vi · ∇f(x), for x ∈ Fi (i = 1, ...2d) (1.4)

where vi is the ith column of the reflection matrix R. Finally, let σi denote (d− 1)-

dimensional Lebesgue measure (surface measure) on face Fi and BFi
be the Borel

σ-field of Fi. Then, we have the following proposition.

Proposition 5.2 Let π be the stationary distribution for the (S, θ, Γ, R)-SRBM W̃ .

Then for each i = 1, ..., 2d, there is a finite Borel measure βi on face Fi such that

βi ≈ σi and

Eπ

{∫ t

0
IA(W̃ (s))dỸi(s)

}
= tβi(A), t ≥ 0, A ∈ BFi

, (1.5)

Furthermore, defining dπ/dx ≡ p0 and dβi/dσi ≡ pi, p ≡ (p0, p1, ..., p2d) satisfies the

following basic adjoint relationship:

∫

S
(Lf p0)dx +

2d∑

i=1

∫

Fi

(Dif pi)dσi = 0, for all f ∈ C2
b (S). (1.6)
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Conversely, if p0 is a probability density function on S and pi is an nonnegative

integrable (with respect to σi) Borel function on Fi such that (1.6) holds, then p0 is

the stationary density of W̃ and βi given by dβi ≡ pidσi is the boundary measure

defined in (1.5).

Proof. The necessary part is a direct generalization of results in Section 7 of Harrison

and Williams [25]. The converse part is proved by Dai and Kurtz [14]. 2

Finally, we rewrite (1.6) as a compact form which will be used in the next section.

For f ∈ C2
b (S), let

Af ≡ (Lf ;D1f, ...,D2df) , (1.7)

dλ ≡ (dx; dσ1, ..., dσ2d) . (1.8)

For a subset E of Rd, let BE be the Borel σ-field of E and B(E) denote the set of

functions which are B-measurable. Let

Lj(S, dλ) ≡ {g = (g0; g1, ..., g2d) ∈ B(S)× B(F1)× · · · × B(F2d) : (1.9)
∫

S
| g0 |j dx +

2d∑

i=1

∫

Fi

| gi |j dσi < ∞}, j = 1, 2, ...

∫

S
gdλ ≡

∫

S
g0dx +

2d∑

i=1

∫

Fi

gidσi, for g ∈ L1(S, dλ). (1.10)

For g, h ∈ B(S) × B(F1) × · · · × B(F2d), we put g · h ≡ (g0h0; g1h1, ..., g2dh2d), and

for h > 0, we put g/h ≡ (g0/h0; g1/h1, ..., g2d/h2d). With these notation, the basic

adjoint relationship (1.6) can be rewritten as
∫

S
(Af · p)dλ = 0, for f ∈ C2

b (S). (1.11)

5.2 A Least Squares Problem

In this section, we develop a least squares procedure to determine the stationary

density p for an SRBM in a d-dimensional box. The procedure involves two major



76

steps. We first convert the problem of solving (1.11) into a least squares problem,

and then propose an algorithm to solve the least squares problem.

We begin with the compact form (1.11) of the basic adjoint relationship (1.6).

Denote by L2 ≡ L2(S, dλ) all the square integrable functions on S with respect to dλ,

taken with the usual inner product 〈·, ·〉 and norm ‖ · ‖. Obviously, Af ∈ L2 for any

f ∈ C2(S). Hence, we can define

H ≡ the closure of
{
Af : f ∈ C2

b (S)
}

, (2.1)

where the closure is taken in L2. If one assumes that the unknown density p is in L2,

then (1.6) simply means that Af is orthogonal to p for all f ∈ C2(S), or equivalently

p ∈ H⊥, where H⊥ is the orthogonal space of H. Conversely, if w ∈ H⊥, then w

satisfies (1.11) and hence (1.6).

Let us suppose for the moment that the unknown density function p defined in

Proposition 1.2 is in L2. Namely, assume p0 is square integrable in terms of Lebesgue

measure in S, and pi is square integrable in terms of (d − 1)-dimensional Lebesgue

measure on Fi (i = 1, 2, ..., 2d). For any h0 /∈ H, let h̄0 be the projection of h0 onto

H, that is,

h̄0 ≡ argminh∈H‖h0 − h‖2.

Such choice of h0 exists because for h0 = (1, 1, ..., 1), we have

∫

S
(h0 · p)dλ ≥

∫

S
p0dx = 1,

and therefore p is not orthogonal to h0. It was conjectured in Dai and Harrison [13]

that h0 − h̄0 is almost surely nonnegative with respect to measure λ. It will be

seen later that our numerical experiments support this conjecture. Then it follows

Proposition 3 in Dai and Harrison [12] that

p = κ(h0 − h̄0), (2.2)
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provided that h0 − h̄0 ≥ 0, and κ is some constant.

As we will see later, the assumption that p is in L2 is not satisfied in all cases

of practical interest. However, when that assumption is satisfied and if h0 − h̄0 ≥ 0,

then the unknown stationary density is given by (2.2). We now define some quantities

that are of interest in the queueing network applications of SRBM. Let

qi =
∫

S
(xi p0(x))dx, (i = 1, 2, ..., d), (2.3)

δi =
∫

Fi

pi(x)dσi, (i = 1, 2, ..., 2d). (2.4)

where qi denotes the long-run average value of Zi, and δi represents the long-run

average amount of pushing per unit of time needed on boundary Fi in order to keep

Z inside the state space S. That is, for each x ∈ S (i = 1, 2, ..., 2d)

Ex[Yi(t)]

t
→ δi as t →∞.

5.3 An Algorithm

Suppose that we can construct a sequence of finite dimensional subspaces Hn of H

such that Hn ↑ H as n ↑ ∞ ( Hn ↑ H means that H1, H2 , ... are increasing and

every h ∈ H can be approximated by a sequence of hn with hn ∈ Hn for each n). Let

hn ≡ argminh∈Hn
‖h0 − h‖2. (3.1)

Again assume p is in L2. It follows Proposition 4 in Dai and Harrison [12] that as

n →∞,

‖h̄0 − hn‖2 → 0, (3.2)

wn ≡ h0 − hn → p ∈ L2(S, dλ). (3.3)

If p /∈ L2, as conjectured in Harrison and Dai [12], wn converges to p weakly. Namely,

for all f ∈ Cb(S), as n →∞, we have
∫

S
f · wndλ →

∫

S
f · pdλ.
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In the examples presented later, it will be seen that the algorithm works well even in

this case.

There are many ways to choose the approximating subspaces Hn. Each of choice

yields a different version of the algorithm. Here we choose Hn spanned by some finite

element base functions, namely, some piecewise polynomials. To be specific and

simple, we let S ≡ [0, 1]d = [0, 1] × [0, 1] × · · · × [0, 1] and partition S into nd equal

d-dimensional boxes. Each box is called an element. Let h = 1/n, then we have

(n + 1)d grid points (i1h, i2h, ..., idh) in S with ij = 0, 1, ..., n and j = 1, 2, ..., d.

We choose 2d piecewise polynomials as base functions at each grid point

(i1h, i2h, ..., idh). Thus the total number of base functions is N = 2d(n + 1)d in

S. The basis is denoted by {fi(x1, x2, ..., xd)} (i = 1, ..., N). From (3.1) and (3.2), we

know that wn is the orthogonal complement of h0 onto Hn and hn is the projection

of h0 onto Hn. Thus there exist constants a1, a2, ..., aN such that

wn = h0 −
N∑

i=1

aiAfi.

Notice that 〈wn,Afi〉 = 0 for i = 1, ..., N , and hence we obtain the following linear

equation:

Aa = b, (3.4)

where

A = (〈Afi,Afj〉)1≤i,j≤N , a = (a1, ..., aN)′, b = (〈h0,Af1〉, ..., 〈h0,AfN〉)′.

The matrix A is positive definite, therefore, (3.4) has a unique solution a. Once we

solve (3.4), we get an approximating value wn of density p.
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5.4 Finite Element Implementation

In this section, we describe a detailed procedure for the algorithm designed above.

The whole procedure is to concretely compute the matrix A and the vector b in the

linear equation (3.4).

5.4.1 The Hermite Base Functions

We choose the base functions {fi(x1, x2, ..., xd)}N
i=1 as follows. First, let

φ(x) = (|x| − 1)2(2|x|+ 1), (−1 ≤ x ≤ 1), (4.1)

ψ(x) = x(|x| − 1)2, (−1 ≤ x ≤ 1). (4.2)

It is easy to check that φ and ψ are C1 functions on [−1, 1], with φ(−1) = φ(1) =

φ′(−1) = φ′(1) = 0, φ(0) = 1 and ψ(−1) = ψ(1) = ψ′(−1) = ψ′(1) = 0, ψ′(0) = 1.

For i = 0, 1, ..., n− 1, define

φi(x) =





φ(x−ih
h

), if, x ∈ [(i− 1)h, (i + 1)h] ∩ [0, 1]

0, otherwise,
(4.3)

and

ψi(x) =





hψ(x−ih
h

), if, x ∈ [(i− 1)h, (i + 1)h] ∩ [0, 1]

0, otherwise.
(4.4)

Functions φi and ψi are C1 on [0, 1] with φi(ih) = 1, φ′i(ih) = 0 and ψi(ih) = 0,

ψ′i(ih) = 1. Then for each grid point (i1h, i2h, ..., idh) (ij = 0, 1, ..., n, j = 1, 2, ..., d),

there are 2d base functions of the form

fi1,...,id(x1, ..., xd) =
d∏

j=1

gij ,rj
(xj),

where rj is either 0 or 1, and

gij ,rj
(xj) =





φij(xj), if rj = 0,

ψij(xj), if rj = 1.
(4.5)
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There are (n + 1)d grid points in S. Hence we have a total of N = 2d(n + 1)d base

functions. Still we use the same notation f1(x1, ..., xd), ... , fN(x1, ..., xd) as before to

denote these particular base functions. Furthermore, these base functions fi(x1, ..., xd)

can be ordered as

fN(n;i1,...,id;r1,...,rd)
(x1, ..., xd) =

d∏

j=1

gij ,rj
(xj)

where

N(n;i1,...,id;r1,...,rd) = 2d
(
id(n + 1)d−1 + id−1(n + 1)d−2 + ... + i2(n + 1) + i1

)

+2d−1rd + 2d−2rd−1 + ... + 2r2 + r1. (4.6)

Let

Hn = span{Afi(x1, x2, ..., xd), i = 1, ..., N}. (4.7)

Proposition 5.3

Hn → H in L2. (4.8)

Proof. Without loss of generality, we only consider the case that f ∈ C2
b (S). Follow-

ing Proposition 7.1 in the appendices of Ethier and Kurtz [18], for any given ε > 0,

there exists a polynomial g such that

‖Af −Ag‖ < ε

where the norm ‖ · ‖ is taken in L2 as before. For each n, let g̃n ∈ Hn be the finite

element interpolation polynomial of g. Then by the interpolation error estimates

given by Theorem 6.6 in page 269 of Oden and Reddy [33], we conclude that

‖Ag −Ag̃n‖ ≤ C‖g‖C4(S)h
2

where C is a constant independent of h, the norm ‖ · ‖ is taken in L2, and

‖g‖C4(S) = max
x∈S

max
0≤α≤4

∣∣∣∣∣
∂αg(x)

∂xα1 · · · ∂xαd

∣∣∣∣∣
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with α1 + α2 + α3 + α4 = α. Therefore, for large enough n, we have

‖Af −Ag̃n‖ ≤ 2ε.

Thus we finish the proof of the proposition. 2

Definition 5.4.1 Two nodes (i1h, ..., idh) and (j1h, ..., jdh) are neighbors if

max1≤k≤d |ik − jk| ≤ 1. Two indexes i and j for base functions fi(x1, ..., xd) and

fj(x1, ..., xd) are neighbors if their corresponding nodes are neighboring each other.

(i,j,k)
(i,j-1,k)

(i+1,j+1,k-1)

(i-1,j,k-1)

(i-1,j-1,k+1) (i-1,j,k+1) (i-1,j+1,k+1)

(i,j-1,k+1) (i,j,k+1)

(i+1,j-1,k+1) (i+1,j,k+1)

(i-1,j-1,k) (i-1,j,k)

(i+1,j-1,k) (i+1,j,k)

(i,j+1,k)

(i-1,j+1,k)

(i-1,j-1,k-1)

(i,j+1,k-1)
(i,j,k-1)

(i+1,j,k-1)
(i+1,j-1,k-1)

(i-1,j+1,k-1)

(i,j-1,k-1)

(i,j+1,k+1)

(i+1,j+1,k+1)

(i+1,j+1,k)

Figure 5.1: Nearest neighbors and next nearest neighbors of node (i, j, k)

It is obvious that Aij = 0 if i and j are not neighbors. Therefore, A is a sparse

matrix. Now suppose that i and j for base functions fi(x1, ..., xd) and fj(x1, ..., xd)

are neighbors, where fi(x1, ..., xd) and fj(x1, ..., xd) are given, as before, by

fi(x1, ..., xd) = fN(n;i1,...,id;r1,...,rd)
(x1, ..., xd) =

d∏

u=1

giu,ru(xu), (4.9)

fj(x1, ..., xd) = fN(n;j1,...,jd;s1,...,sd)
(x1, ..., xd) =

d∏

u=1

gju,su(xu), (4.10)



82

where N(n;i1,...,id;r1,...,rd) and N(n;j1,...,jd;s1,...,sd) are defined as (4.6). From the definitions

of operators L and Dk (k = 1, ..., 2d), Aij can be rewritten as

Aij = 〈Afi,Afj〉

=
1

4

d∑

k,l=1

d∑

p,q=1

ΓklΓpq

∫

S

∂2fi(x)

∂xk∂xl

∂2fj(x)

∂xp∂xq

dx

+
1

2

d∑

k,l=1

d∑

p=1

Γklθp

∫

S

∂2fi(x)

∂xk∂xl

∂fj(x)

∂xp

dx

+
1

2

d∑

k=1

d∑

p,q=1

Γpqθk

∫

S

∂fi(x)

∂xk

∂2fj(x)

∂xp∂xq

dx

+
d∑

k=1

d∑

p=1

θkθp

∫

S

∂fi(x)

∂xk

∂fj(x)

∂xp

dx

+
2d∑

k=1

d∑

p,q=1

vkpvkq

∫

Fk

∂fi(x)

∂xp

∂fj(x)

∂xq

dx (4.11)

Each term in Aij can be calculated explicitly. For notational convenience, define

I1 =
∫

S

∂2fi(x)

∂xk∂xl

∂2fj(x)

∂xp∂xq

dx.

I2 =
∫

S

∂2fi(x)

∂xk∂xl

∂fj(x)

∂xp

dx

I3 =
∫

S

∂fi(x)

∂xk

∂2fj(x)

∂xp∂xq

dx

I4 =
∫

S

∂fi(x)

∂xk

∂fj(x)

∂xp

dx

Ibk =
∫

Fk

∂fi(x)

∂xp

∂fj(x)

∂xq

dx

Finally, we can calculate b using the same idea. The value of b depends on the

choice of h0. In our implementation, we use h0 = (1, 1, ..., 1). Then, we have

bi = 〈h0,Afi〉

=
1

2

d∑

k,l=1

Γkl

∫

S

∂2fi(x)

∂xk∂xl

dx +
d∑

k=1

θk

∫

S

∂fi

∂xk

dx +
2d∑

k=1

d∑

l=1

vkl

∫

S

∂fi(x)

∂xl

dx.(4.12)
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5.4.2 Calculation of Basic Integrals

In order to explicitly calculate the integrals I1, I2, I3, I4 and Ibk, we first calculate

some basic one variable integrals. Noticing (4.9) and (4.10), we have

∂2fi(x)

∂xk∂xl

=





g′′ik,rk
(xk)

∏d
u6=k giu,ru(xu), if k = l,

g′ik,rk
(xk)g

′
il,rl

(xl)
∏d

u6=k,u 6=l giu,ru(xu), if k 6= l,
(4.13)

∂fi(x)

∂xk

= g′ik,rk
(xk)

d∏

u6=k

giu,ru(xu). (4.14)

Similarly, we have

∂2fj(x)

∂xp∂xq

=





g′′jp,sp
(xp)

∏d
u 6=p gju,ru(xu), if p = q,

g′jp,sp
(xp)g

′
jq ,sq

(xq)
∏d

u6=p,u 6=q gju,su(xu), if p 6= q,
(4.15)

∂fj(x)

∂xp

= g′jp,sp
(xp)

d∏

u 6=p

gju,su(xu). (4.16)

Then the following basic integrals will be used to determine I1, I2, I3, I4 and Ibk.

∫ 1

0
giu,ru(xu)gju,su(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 giu,ru(xu)giu+1,su(xu) dxu, if ju = iu + 1,

∫ 1
0 giu,ru(xu)giu,su(xu) dxu, if ju = iu,

∫ 1
0 giu,ru(xu)giu−1,su(xu) dxu, if ju = iu − 1.

(4.17)

Then, by (4.3)-(4.5), we have

∫ 1

0
giu,ru(xu)giu+1,su(xu) dxu

=
∫ (iu+1)h

iuh
giu,ru(xu)giu+1,su(xu) dxu

=





h
∫ 1
0 φ(y)φ(y − 1) dy = 9

70
h, if ru = 0, su = 0,

h2
∫ 1
0 φ(y)ψ(y − 1) dy = − 13

420
h2, if ru = 0, su = 1,

h2
∫ 1
0 ψ(y)φ(y − 1) dy = 13

420
h2, if ru = 1, su = 0,

h3
∫ 1
0 ψ(y)ψ(y − 1) dy = − 1

140
h3, if ru = 1, su = 1.
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∫ 1

0
giu,ru(xu)giu,su(xu) dxu

=
∫ iuh

((iu−1)h)∧0
giu,ru(xu)giu,su(xu) dxu +

∫ ((iu+1)h)∨1

iuh
giu,ru(xu)giu,su(xu) dxu

=





2h
∫ 1
0 φ(y)φ(y) dy = 26

35
h, if ru = 0, su = 0, iu 6= 0, n,

h
∫ 1
0 φ(y)φ(y) dy = 13

35
h, if ru = 0, su = 0, iu = 0, n,

h2
∫ 1
−1 φ(y)ψ(y) dy = 0, if ru = 0, su = 1, or ru = 1, su = 0, iu 6= 0, n

h2
∫ 1
0 φ(y)ψ(y) dy = 11

210
h2, if ru = 0, su = 1, or ru = 1, su = 0, iu = 0

h2
∫ 0
−1 φ(y)ψ(y) dy = − 11

210
h2, if ru = 0, su = 1, or ru = 1, su = 0, iu = n

2h3
∫ 1
0 ψ(y)ψ(y) dy = 2

105
h3, if ru = 1, su = 1, xu 6= 0, n,

h3
∫ 1
0 ψ(y)ψ(y) dy = 1

105
h3, if ru = 1, su = 1, xu = 0, n.

∫ 1

0
giu,ru(xu)giu−1,su(xu) dxu

=
∫ iuh

(iu−1)h
giu,ru(xu)giu−1,su(xu) dxu

=





h
∫ 1
0 φ(y − 1)φ(y) dy = 9

70
h, if ru = 0, su = 0,

h2
∫ 1
0 φ(y − 1)ψ(y) dy = 13

420
h2, if ru = 0, su = 1,

h2
∫ 1
0 ψ(y − 1)φ(y) dy = − 13

420
h2, if ru = 1, su = 0,

h3
∫ 1
0 ψ(y − 1)ψ(y) dy = − 1

140
h3, if ru = 1, su = 1.

Similarly, one can explicitly calculate the following integrals.

∫ 1

0
giu,ru(xu)g

′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 giu,ru(xu)g

′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 giu,ru(xu)g

′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 giu,ru(xu)g

′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.18)

By (4.3)-(4.5), we have

∫ 1

0
giu,ru(xu)g

′
iu+1,su

(xu) dxu
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=
∫ (iu+1)h

iuh
giu,ru(xu)g

′
iu+1,su

(xu) dxu

=





∫ 1
0 φ(y)φ′(y − 1) dy = 1

2
, if ru = 0, su = 0,

h
∫ 1
0 φ(y)ψ′(y − 1) dy = − 1

10
h, if ru = 0, su = 1,

h
∫ 1
0 ψ(y)φ′(y − 1) dy = 1

10
h, if ru = 1, su = 0,

h2
∫ 1
0 ψ(y)ψ′(y − 1) dy = − 1

60
h2, if ru = 1, su = 1.

∫ 1

0
giu,ru(xu)g

′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
giu,ru(xu)g

′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
giu,ru(xu)g

′
iu,su

(xu) dxu

=





∫ 1
−1 φ(y)φ′(y) dy = 0, if ru = 0, su = 0, iu 6= 0, n,

∫ 1
0 φ(y)φ′(y) dy = −1

2
, if ru = 0, su = 0, iu = 0,

∫ 0
−1 φ(y)φ′(y) dy = 1

2
, if ru = 0, su = 0, iu = n,

h
∫ 1
−1 φ(y)ψ′(y) dy = 1

5
h, if ru = 0, su = 1, iu 6= 0, n

h
∫ 1
0 φ(y)ψ′(y) dy = 1

10
h, if ru = 0, su = 1, iu = 0

h
∫ 0
−1 φ(y)ψ′(y) dy = 1

10
h, if ru = 0, su = 1, iu = n

h
∫ 1
−1 ψ(y)φ′(y) dy = −1

5
h, if ru = 1, su = 0, iu 6= 0, n

h
∫ 1
0 ψ(y)φ′(y) dy = − 1

10
h, if ru = 1, su = 0, iu = 0

h
∫ 0
−1 ψ(y)φ′(y) dy = − 1

10
h, if ru = 1, su = 0, iu = n

h2
∫ 1
−1 ψ(y)ψ′(y) dy = 0, if ru = 1, su = 1, xu 6= 0, n,

h2
∫ 1
0 ψ(y)ψ′(y) dy = 0, if ru = 1, su = 1, xu = 0,

h2
∫ 1
0 ψ(y)ψ′(y) dy = 0, if ru = 1, su = 1, xu = n.

∫ 1

0
giu,ru(xu)g

′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
giu,ru(xu)g

′
iu−1,su

(xu) dxu
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=





∫ 1
0 φ(y − 1)φ′(y) dy = −1

2
, if ru = 0, su = 0,

h
∫ 1
0 φ(y − 1)ψ′(y) dy = − 1

10
h, if ru = 0, su = 1,

h
∫ 1
0 ψ(y − 1)φ′(y) dy = 1

10
h, if ru = 1, su = 0,

h2
∫ 1
0 ψ(y − 1)ψ′(y) dy = 1

60
h2, if ru = 1, su = 1.

Now we calculate the following integral.

∫ 1

0
giu,ru(xu)g

′′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 giu,ru(xu)g

′′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 giu,ru(xu)g

′′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 giu,ru(xu)g

′′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.19)

By (4.3)-(4.5), we have

∫ 1

0
giu,ru(xu)g

′′
iu+1,su

(xu) dxu

=
∫ (iu+1)h

iuh
giu,ru(xu)g

′′
iu+1,su

(xu) dxu

=





1
h

∫ 1
0 φ(y)φ′′(y − 1) dy = 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ(y)ψ′′(y − 1) dy = − 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ(y)φ′′(y − 1) dy = 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ(y)ψ′′(y − 1) dy = 1

30
h, if ru = 1, su = 1.

∫ 1

0
giu,ru(xu)g

′′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
giu,ru(xu)g

′′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
giu,ru(xu)g

′′
iu,su

(xu) dxu
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=





1
h

∫ 1
−1 φ(y)φ′′(y) dy = − 12

5h
, if ru = 0, su = 0, iu 6= 0, n,

1
h

∫ 1
0 φ(y)φ′′(y) dy = − 6

5h
, if ru = 0, su = 0, iu = 0,

1
h

∫ 0
−1 φ(y)φ′(y) dy = − 6

5h
, if ru = 0, su = 0, iu = n,

∫ 1
−1 φ(y)ψ′′(y) dy = 0, if ru = 0, su = 1, iu 6= 0, n

∫ 1
0 φ(y)ψ′′(y) dy = −11

10
, if ru = 0, su = 1, iu = 0

∫ 0
−1 φ(y)ψ′′(y) dy = 11

10
, if ru = 0, su = 1, iu = n

∫ 1
−1 ψ(y)φ′′(y) dy = 0, if ru = 1, su = 0, iu 6= 0, n

∫ 1
0 ψ(y)φ′′(y) dy = − 1

10
, if ru = 1, su = 0, iu = 0

∫ 0
−1 ψ(y)φ′′(y) dy = 1

10
, if ru = 1, su = 0, iu = n

h
∫ 1
−1 ψ(y)ψ′′(y) dy = − 4

15
h, if ru = 1, su = 1, xu 6= 0, n,

h
∫ 1
0 ψ(y)ψ′′(y) dy = − 2

15
h, if ru = 1, su = 1, xu = 0,

h
∫ 0
−1 ψ(y)ψ′′(y) dy = − 2

15
h, if ru = 1, su = 1, xu = n.

∫ 1

0
giu,ru(xu)g

′′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
giu,ru(xu)g

′′
iu−1,su

(xu) dxu

=





1
h

∫ 1
0 φ(y − 1)φ′′(y) dy = 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ(y − 1)ψ′′(y) dy = 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ(y − 1)φ′′(y) dy = − 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ(y − 1)ψ′′(y) dy = 1

30
h, if ru = 1, su = 1.

Now we compute the following integral.

∫ 1

0
g′iu,ru

(xu)gju,su(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′iu,ru

(xu)giu+1,su(xu) dxu, if ju = iu + 1,
∫ 1
0 g′iu,ru

(xu)giu,su(xu) dxu, if ju = iu,
∫ 1
0 g′iu,ru

(xu)giu−1,su(xu) dxu, if ju = iu − 1.

(4.20)
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By (4.3)-(4.5), we have

∫ 1

0
g′iu,ru

(xu)giu+1,su(xu) dxu

=
∫ (iu+1)h

iuh
g′iu,ru

(xu)giu+1,su(xu) dxu

=





∫ 1
0 φ′(y)φ(y − 1) dy = −1

2
, if ru = 0, su = 0,

h
∫ 1
0 φ′(y)ψ(y − 1) dy = 1

10
h, if ru = 0, su = 1,

h
∫ 1
0 ψ′(y)φ(y − 1) dy = − 1

10
h, if ru = 1, su = 0,

h2
∫ 1
0 ψ′(y)ψ(y − 1) dy = 1

60
h2, if ru = 1, su = 1.

∫ 1

0
g′iu,ru

(xu)giu,su(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′iu,ru

(xu)giu,su(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′iu,ru

(xu)giu,su(xu) dxu

=





∫ 1
−1 φ′(y)φ(y) dy = 0, if ru = 0, su = 0, iu 6= 0, n,

∫ 1
0 φ′(y)φ(y) dy = −1

2
, if ru = 0, su = 0, iu = 0,

∫ 0
−1 φ′(y)φ(y) dy = 1

2
, if ru = 0, su = 0, iu = n,

h
∫ 1
−1 φ′(y)ψ(y) dy = −1

5
h, if ru = 0, su = 1, iu 6= 0, n

h
∫ 1
0 φ′(y)ψ(y) dy = − 1

10
h, if ru = 0, su = 1, iu = 0

h
∫ 0
−1 φ′(y)ψ(y) dy = − 1

10
h, if ru = 0, su = 1, iu = n

h
∫ 1
−1 ψ′(y)φ(y) dy = 1

5
h, if ru = 1, su = 0, iu 6= 0, n

h
∫ 1
0 ψ′(y)φ(y) dy = 1

10
h, if ru = 1, su = 0, iu = 0

h
∫ 0
−1 ψ′(y)φ(y) dy = 1

10
h, if ru = 1, su = 0, iu = n

h2
∫ 1
−1 ψ′(y)ψ(y) dy = 0, if ru = 1, su = 1, xu 6= 0, n,

h2
∫ 1
0 ψ′(y)ψ(y) dy = 0, if ru = 1, su = 1, xu = 0,

h2
∫ 1
0 ψ′(y)ψ(y) dy = 0, if ru = 1, su = 1, xu = n.

∫ 1

0
g′iu,ru

(xu)giu−1,su(xu) dxu

=
∫ iuh

(iu−1)h
g′iu,ru

(xu)giu−1,su(xu) dxu
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=





∫ 1
0 φ′(y − 1)φ(y) dy = 1

2
, if ru = 0, su = 0,

h
∫ 1
0 φ′(y − 1)ψ(y) dy = 1

10
h, if ru = 0, su = 1,

h
∫ 1
0 ψ′(y − 1)φ(y) dy = − 1

10
h, if ru = 1, su = 0,

h2
∫ 1
0 ψ′(y − 1)ψ(y) dy = − 1

60
h2, if ru = 1, su = 1.

Now we calculate the following integral.

∫ 1

0
g′′iu,ru

(xu)gju,su(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′′iu,ru

(xu)giu+1,su(xu) dxu, if ju = iu + 1,
∫ 1
0 g′′iu,ru

(xu)giu,su(xu) dxu, if ju = iu,
∫ 1
0 g′′iu,ru

(xu)giu−1,su(xu) dxu, if ju = iu − 1.

(4.21)

By (4.3)-(4.5), we have

∫ 1

0
g′′iu,ru

(xu)giu+1,su(xu) dxu

=
∫ (iu+1)h

iuh
g′′iu,ru

(xu)giu+1,su(xu) dxu

=





1
h

∫ 1
0 φ′′(y)φ(y − 1) dy = 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ′′(y)ψ(y − 1) dy = − 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ′′(y)φ(y − 1) dy = 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ′′(y)ψ(y − 1) dy = 1

30
h, if ru = 1, su = 1.

∫ 1

0
g′′iu,ru

(xu)giu,su(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′′iu,ru

(xu)giu,su(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′′iu,ru

(xu)giu,su(xu) dxu
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=





1
h

∫ 1
−1 φ′′(y)φ(y) dy = − 12

5h
, if ru = 0, su = 0, iu 6= 0, n,

1
h

∫ 1
0 φ′′(y)φ(y) dy = − 6

5h
, if ru = 0, su = 0, iu = 0,

1
h

∫ 0
−1 φ′′(y)φ(y) dy = − 6

5h
, if ru = 0, su = 0, iu = n,

∫ 1
−1 φ′′(y)ψ(y) dy = 0, if ru = 0, su = 1, iu 6= 0, n

∫ 1
0 φ′′(y)ψ(y) dy = − 1

10
, if ru = 0, su = 1, iu = 0

∫ 0
−1 φ′′(y)ψ(y) dy = 1

10
, if ru = 0, su = 1, iu = n

∫ 1
−1 ψ′′(y)φ(y) dy = 0, if ru = 1, su = 0, iu 6= 0, n

∫ 1
0 ψ′′(y)φ(y) dy = −11

10
, if ru = 1, su = 0, iu = 0

∫ 0
−1 ψ′′(y)φ(y) dy = 11

10
, if ru = 1, su = 0, iu = n

h
∫ 1
−1 ψ′′(y)ψ(y) dy = − 4

15
h, if ru = 1, su = 1, xu 6= 0, n,

h
∫ 1
0 ψ′′(y)ψ(y) dy = − 2

15
h, if ru = 1, su = 1, xu = 0,

h
∫ 0
−1 ψ′′(y)ψ(y) dy = − 2

15
h, if ru = 1, su = 1, xu = n.

∫ 1

0
g′′iu,ru

(xu)giu−1,su(xu) dxu

=
∫ iuh

(iu−1)h
g′′iu,ru

(xu)giu−1,su(xu) dxu

=





1
h

∫ 1
0 φ′′(y − 1)φ(y) dy = 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ′′(y − 1)ψ(y) dy = 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ′′(y − 1)φ(y) dy = − 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ′′(y − 1)ψ(y) dy = 1

30
h, if ru = 1, su = 1.

Now we begin to calculate the following integral.

∫ 1

0
g′iu,ru

(xu)g
′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′iu,ru

(xu)g
′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 g′iu,ru

(xu)g
′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 g′iu,ru

(xu)g
′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.22)
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By (4.3)-(4.5), we have

∫ 1

0
g′iu,ru

(xu)g
′
iu+1,su

(xu) dxu

=
∫ (iu+1)h

iuh
g′iu,ru

(xu)g
′
iu+1,su

(xu) dxu

=





1
h

∫ 1
0 φ′(y)φ′(y − 1) dy = − 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ′(y)ψ′(y − 1) dy = 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ′(y)φ′(y − 1) dy = − 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ′(y)ψ′(y − 1) dy = − 1

30
h, if ru = 1, su = 1.

∫ 1

0
g′iu,ru

(xu)g
′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′iu,ru

(xu)g
′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′iu,ru

(xu)g
′
iu,su

(xu) dxu

=





1
h

∫ 1
−1 φ′(y)φ′(y) dy = 12

5h
, if ru = 0, su = 0, iu 6= 0, n,

1
h

∫ 1
0 φ′(y)φ′(y) dy = 6

5h
, if ru = 0, su = 0, iu = 0,

1
h

∫ 0
−1 φ′(y)φ′(y) dy = 6

5h
, if ru = 0, su = 0, iu = n,

∫ 1
−1 φ′(y)ψ′(y) dy = 0, if ru = 0, su = 1, or ru = 1, su = 0, iu 6= 0, n

∫ 1
0 φ′(y)ψ′(y) dy = 1

10
, if ru = 0, su = 1, or ru = 1, su = 0, iu = 0

∫ 0
−1 φ′(y)ψ′(y) dy = − 1

10
, if ru = 0, su = 1, or ru = 1, su = 0, iu = n

h
∫ 1
−1 ψ′(y)ψ′(y) dy = 4

15
h, if ru = 1, su = 1, xu 6= 0, n,

h
∫ 1
0 ψ′(y)ψ′(y) dy = 2

15
h, if ru = 1, su = 1, xu = 0,

h
∫ 1
0 ψ′(y)ψ′(y) dy = 2

15
h, if ru = 1, su = 1, xu = n.

∫ 1

0
g′iu,ru

(xu)g
′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
g′iu,ru

(xu)g
′
iu−1,su

(xu) dxu
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=





1
h

∫ 1
0 φ′(y − 1)φ′(y) dy = − 6

5h
, if ru = 0, su = 0,

∫ 1
0 φ′(y − 1)ψ′(y) dy = − 1

10
, if ru = 0, su = 1,

∫ 1
0 ψ′(y − 1)φ′(y) dy = 1

10
, if ru = 1, su = 0,

h
∫ 1
0 ψ′(y − 1)ψ′(y) dy = − 1

30
h, if ru = 1, su = 1.

Now we start to calculate the following integral

∫ 1

0
g′iu,ru

(xu)g
′′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 g′iu,ru

(xu)g
′′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 g′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.23)

By (4.3)-(4.5), we have

∫ 1

0
g′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu

=
∫ (iu+1)h

iuh
g′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu

=





1
h2

∫ 1
0 φ′(y)φ′′(y − 1) dy = 0, if ru = 0, su = 0,

1
h

∫ 1
0 φ′(y)ψ′′(y − 1) dy = − 1

h
, if ru = 0, su = 1,

1
h

∫ 1
0 ψ′(y)φ′′(y − 1) dy = 1

h
, if ru = 1, su = 0,

∫ 1
0 ψ′(y)ψ′′(y − 1) dy = −1

2
, if ru = 1, su = 1.

∫ 1

0
g′iu,ru

(xu)g
′′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′iu,ru

(xu)g
′′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′iu,ru

(xu)g
′′
iu,su

(xu) dxu
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=





1
h2

∫ 1
−1 φ′(y)φ′′(y) dy = 0, if ru = 0, su = 0, iu 6= 0, n,

1
h2

∫ 1
0 φ′(y)φ′′(y) dy = 0, if ru = 0, su = 0, iu = 0,

1
h2

∫ 0
−1 φ′(y)φ′′(y) dy = 0, if ru = 0, su = 0, iu = n,

1
h

∫ 1
−1 φ′(y)ψ′′(y) dy = 2

h
, if ru = 0, su = 1, iu 6= 0, n

1
h

∫ 1
0 φ′(y)ψ′′(y) dy = 1

h
, if ru = 0, su = 1, iu = 0

1
h

∫ 0
−1 φ′(y)ψ′′(y) dy = 1

h
, if ru = 0, su = 1, iu = n

1
h

∫ 1
−1 ψ′(y)φ′′(y) dy = − 2

h
, if ru = 1, su = 0, iu 6= 0, n

1
h

∫ 1
0 ψ′(y)φ′′(y) dy = − 1

h
, if ru = 1, su = 0, iu = 0

1
h

∫ 0
−1 ψ′(y)φ′′(y) dy = − 1

h
, if ru = 1, su = 0, iu = n

∫ 1
−1 ψ′(y)ψ′′(y) dy = 0, if ru = 1, su = 1, xu 6= 0, n,

∫ 1
0 ψ′(y)ψ′′(y) dy = −1

2
, if ru = 1, su = 1, xu = 0,

∫ 1
0 ψ′(y)ψ′′(y) dy = 1

2
, if ru = 1, su = 1, xu = n.

∫ 1

0
g′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
g′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu

=





1
h2

∫ 1
0 φ′(y − 1)φ′′(y) dy = 0, if ru = 0, su = 0,

1
h

∫ 1
0 φ′(y − 1)ψ′′(y) dy = − 1

h
, if ru = 0, su = 1,

1
h

∫ 1
0 ψ′(y − 1)φ′′(y) dy = 1

h
, if ru = 1, su = 0,

∫ 1
0 ψ′(y − 1)ψ′′(y) dy = 1

2
, if ru = 1, su = 1.

Now we start to calculate the following integral

∫ 1

0
g′′iu,ru

(xu)g
′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′′iu,ru

(xu)g
′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 g′′iu,ru

(xu)g
′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 g′′iu,ru

(xu)g
′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.24)
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By (4.3)-(4.5), we have

∫ 1

0
g′′iu,ru

(xu)g
′
iu+1,su

(xu) dxu

=
∫ (iu+1)h

iuh
g′′iu,ru

(xu)g
′
iu+1,su

(xu) dxu

=





1
h2

∫ 1
0 φ′′(y)φ′(y − 1) dy = 0, if ru = 0, su = 0,

1
h

∫ 1
0 φ′′(y)ψ′(y − 1) dy = 1

h
, if ru = 0, su = 1,

1
h

∫ 1
0 ψ′′(y)φ′(y − 1) dy = − 1

h
, if ru = 1, su = 0,

∫ 1
0 ψ′′(y)ψ′(y − 1) dy = 1

2
, if ru = 1, su = 1.

∫ 1

0
g′′iu,ru

(xu)g
′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′′iu,ru

(xu)g
′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′′iu,ru

(xu)g
′
iu,su

(xu) dxu

=





1
h2

∫ 1
−1 φ′′(y)φ′(y) dy = 0, if ru = 0, su = 0, iu 6= 0, n,

1
h2

∫ 1
0 φ′′(y)φ′(y) dy = 0, if ru = 0, su = 0, iu = 0,

1
h2

∫ 0
−1 φ′′(y)φ′(y) dy = 0, if ru = 0, su = 0, iu = n,

1
h

∫ 1
−1 φ′′(y)ψ′(y) dy = − 2

h
, if ru = 0, su = 1, iu 6= 0, n

1
h

∫ 1
0 φ′′(y)ψ′(y) dy = − 1

h
, if ru = 0, su = 1, iu = 0

1
h

∫ 0
−1 φ′′(y)ψ′(y) dy = − 1

h
, if ru = 0, su = 1, iu = n

1
h

∫ 1
−1 ψ′′(y)φ′(y) dy = 2

h
, if ru = 1, su = 0, iu 6= 0, n

1
h

∫ 1
0 ψ′′(y)φ′(y) dy = 1

h
, if ru = 1, su = 0, iu = 0

1
h

∫ 0
−1 ψ′′(y)φ′(y) dy = 1

h
, if ru = 1, su = 0, iu = n

∫ 1
−1 ψ′′(y)ψ′(y) dy = 0, if ru = 1, su = 1, xu 6= 0, n,

∫ 1
0 ψ′′(y)ψ′(y) dy = −1

2
, if ru = 1, su = 1, xu = 0,

∫ 1
0 ψ′′(y)ψ′(y) dy = 1

2
, if ru = 1, su = 1, xu = n.

∫ 1

0
g′′iu,ru

(xu)g
′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
g′′iu,ru

(xu)g
′
iu−1,su

(xu) dxu
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=





1
h2

∫ 1
0 φ′′(y − 1)φ′(y) dy = 0, if ru = 0, su = 0,

1
h

∫ 1
0 φ′′(y − 1)ψ′(y) dy = 1

h
, if ru = 0, su = 1,

1
h

∫ 1
0 ψ′′(y − 1)φ′(y) dy = − 1

h
, if ru = 1, su = 0,

∫ 1
0 ψ′′(y − 1)ψ′(y) dy = −1

2
, if ru = 1, su = 1.

Finally, we compute the following integral

∫ 1

0
g′′iu,ru

(xu)g
′′
ju,su

(xu) dxu

=





0, if |iu − ju| > 1,
∫ 1
0 g′′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu, if ju = iu + 1,
∫ 1
0 g′′iu,ru

(xu)g
′′
iu,su

(xu) dxu, if ju = iu,
∫ 1
0 g′′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu, if ju = iu − 1.

(4.25)

By (4.3)-(4.5), we have

∫ 1

0
g′′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu

=
∫ (iu+1)h

iuh
g′′iu,ru

(xu)g
′′
iu+1,su

(xu) dxu

=





1
h3

∫ 1
0 φ′′(y)φ′′(y − 1) dy = − 12

h3 , if ru = 0, su = 0,

1
h2

∫ 1
0 φ′′(y)ψ′′(y − 1) dy = 6

h2 , if ru = 0, su = 1,

1
h2

∫ 1
0 ψ′′(y)φ′′(y − 1) dy = − 6

h2 , if ru = 1, su = 0,

1
h

∫ 1
0 ψ′′(y)ψ′′(y − 1) dy = 2

h
, if ru = 1, su = 1.

∫ 1

0
g′′iu,ru

(xu)g
′′
iu,su

(xu) dxu

=
∫ iuh

((iu−1)h)∧0
g′iu,ru

(xu)g
′′
iu,su

(xu) dxu +
∫ ((iu+1)h)∨1

iuh
g′iu,ru

(xu)g
′′
iu,su

(xu) dxu
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=





1
h3

∫ 1
−1 φ′′(y)φ′′(y) dy = 24

h3 , if ru = 0, su = 0, iu 6= 0, n,

1
h3

∫ 1
0 φ′′(y)φ′′(y) dy = 12

h3 , if ru = 0, su = 0, iu = 0,

1
h3

∫ 0
−1 φ′′(y)φ′′(y) dy = 12

h3 , if ru = 0, su = 0, iu = n,

1
h2

∫ 1
−1 φ′′(y)ψ′′(y) dy = 0, if ru = 0, su = 1, or ru = 1, su = 0, iu 6= 0, n

1
h2

∫ 1
0 φ′′(y)ψ′′(y) dy = 6

h2 , if ru = 0, su = 1, or ru = 1, su = 0, iu = 0

1
h2

∫ 0
−1 φ′′(y)ψ′′(y) dy = − 6

h2 , if ru = 0, su = 1, or ru = 1, su = 0, iu = n

1
h

∫ 1
−1 ψ′′(y)ψ′′(y) dy = 8

h
, if ru = 1, su = 1, xu 6= 0, n,

1
h

∫ 1
0 ψ′′(y)ψ′′(y) dy = 4

h
, if ru = 1, su = 1, xu = 0,

1
h

∫ 1
0 ψ′′(y)ψ′′(y) dy = 4

h
, if ru = 1, su = 1, xu = n.

∫ 1

0
g′′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu

=
∫ iuh

(iu−1)h
g′′iu,ru

(xu)g
′′
iu−1,su

(xu) dxu

=





1
h3

∫ 1
0 φ′′(y − 1)φ′′(y) dy = − 12

h3 , if ru = 0, su = 0,

1
h2

∫ 1
0 φ′′(y − 1)ψ′′(y) dy = − 6

h2 , if ru = 0, su = 1,

1
h2

∫ 1
0 ψ′′(y − 1)φ′′(y) dy = 6

h2 , if ru = 1, su = 0,

1
h

∫ 1
0 ψ′(y − 1)ψ′′(y) dy = 2

h
, if ru = 1, su = 1.

5.4.3 Calculating Integral I1

Recall the definition of integral I1

I1 =
∫

S

∂2fi(x)

∂xk∂xl

∂2fj(x)

∂xp∂xq

dx.

Then we can divide the calculation into the following several cases.

Case 1. k = l and p = q. Then if k = p, we have

I1 =




d∏

u6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)g
′′
jk,sk

(xk) dxk

)
,
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and if k 6= p, we have

I1 =




d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′′
jp,sp

(xp) dxp

)
,

Case 2. k = l, p 6= q. Then if k = p, we have

I1 =




d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
,

and if k = q, we have

I1 =




d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
,

Case 3. k 6= l, p = q. Then if k = p, we have

I1 =




d∏

u6=k,l

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′′
jk,sk

(xk) dxk

∫ 1

0
g′il,rl

(xl)gjl,sl
(xl) dxl

)
,

and if l = p, we have

I1 =




d∏

u6=k,l

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′il,rl

(xl)g
′′
jl,sl

(xl) dxl

∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

)
,

Case 4. k 6= l, p 6= q. Then if k = p and l = q, or k = q and l = p, we have

I1 =




d∏

u6=k,l

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
g′il,rl

(xl)g
′
jl,sl

(xl) dxl

)
,
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and if k = p and l 6= q, we have

I1 =




d∏

u6=k,l,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′il,rl

(xl)g
′
jl,sl

(xl) dxl

)

×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
,

and if k 6= p and l = q, we have

I1 =




d∏

u6=k,l,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′il,rl

(xl)g
′
jl,sl

(xl) dxl

)

×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
,

and if k = q and l 6= p, we have

I1 =




d∏

u6=k,l,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

)

×
(∫ 1

0
g′il,rl

(xl)gjl,sl
(xl) dxl

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
,

and if k 6= q and l = p, we have

I1 =




d∏

u6=k,l,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′il,rl

(xl)g
′
jl,sl

(xl) dxl

)

×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
,

finally if k 6= p, q and l 6= p, q, we have

I1 =




d∏

u6=k,l,p,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
g′il,rl

(xl)gjl,sl
(xl) dxl

)

×
(∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

5.4.4 Calculating Integral I2

Recall the definition of integral I2

I2 =
∫

S

∂2fi(x)

∂xk∂xl

∂fj(x)

∂xp

dx.
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Then the calculation can be divided into the following several cases.

Case 1. k = l = p. Then we have

I2 =




d∏

u6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)g
′
jk,sk

(xk) dxk

)
.

Case 2. k = l 6= p. Then we have

I2 =




d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
.

Case 3. k 6= l and k = p. Then we have

I2 =




d∏

u6=k,l

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
g′il,rl

(xl)gjl,sl
(xl) dxl

)
.

Case 4. k 6= l and l = p. Then we have

I2 =




d∏

u6=k,l

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
g′il,rl

(xl)g
′
jl,sl

(xl) dxl

)
.

Case 5. k 6= l 6= p. Then we have

I2 =




d∏

u6=k,l,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

)

×
(∫ 1

0
g′il,rl

(xl)gjl,sl
(xl) dxl

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
.

5.4.5 Calculating Integral I3

Recall the definition of integral I3

I3 =
∫

S

∂fi(x)

∂xk

∂f 2
j (x)

∂xp∂xq

dx.
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Then the calculation can be divided into the following several cases.

Case 1. k = p = q. Then we have

I3 =




d∏

u6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′′
jk,sk

(xk) dxk

)
.

Case 2. k 6= p = q. Then we have

I3 =




d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
.

Case 3. k = p and p 6= q. Then we have

I3 =




d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

Case 4. k = q and p 6= q. Then we have

I3 =




d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
.

Case 5. k 6= p 6= q. Then we have

I3 =




d∏

u 6=k,p,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

)

×
(∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

5.4.6 Calculating Integral I4

Recall the definition of integral I4

I4 =
∫

S

∂fi(x)

∂xk

∂fj(x)

∂xp

dx.
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Then the calculation can be divided into the following several cases.

Case 1. k = p. Then we have

I4 =




d∏

u6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)g
′
jk,sk

(xk) dxk

)
.

Case 2. k 6= p. Then we have

I4 =




d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ik,rk

(xk)gjk,sk
(xk) dxk

∫ 1

0
gip,rp(xp)g

′
jp,sp

(xp) dxp

)
.

5.4.7 Calculating Integral Ibk

Recall the definition of integral Ibk

Ibk =
∫

Fk

∂fi(x)

∂xp

∂fj(x)

∂xq

dx

For boundaries k = 1 to k = d, the calculation can be divided into the following

several cases.

Case 1. p = q = k. Then we have

Ibk =
(
g′ik,rk

(0)g′jk,sk
(0)

)



d∏

u 6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




Case 2. p = q 6= k. Then we have

Ibk = (gik,rk
(0)gjk,sk

(0))




d∏

u 6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ip,rp

(xp)g
′
jp,sp

(xp) dxp

)
.

Case 3. p = k, q 6= k. Then we have

Ibk =
(
g′ik,rk

(0)gjk,sk
(0)

)



d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.
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Case 4. p 6= k, q = k. Then we have

Ibk =
(
gik,rk

(0)g′jk,sk
(0)

)



d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ip,rp

(xp)gjp,sp(xp) dxp

)
.

Case 5. p 6= q, p 6= k and q 6= k. Then we have

Ibk = (gik,rk
(0)gjk,sk

(0))




d∏

u 6=k,p,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ip,rp

(xp)gjp,sp(xp) dxp

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

For boundaries k = d to k = 2d, the calculation can be divided into the following

several cases.

Case 1. p = q = k. Then we have

Ibk =
(
g′ik,rk

(1)g′jk,sk
(1)

)



d∏

u 6=k

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




Case 2. p = q 6= k. Then we have

Ibk =
(
g′ik,rk

(1)g′jk,sk
(1)

)



d∏

u6=k,p

∫ 1

0
giu,ru(xu)gju,su(xu) dxu


 ,

×
(∫ 1

0
g′ip,rp

(xp)g
′
jp,sp

(xp) dxp

)

Case 3. p = k, q 6= k. Then we have

Ibk =
(
g′ik,rk

(1)gjk,sk
(1)

)



d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

Case 4. p 6= k, q = k. Then we have

Ibk =
(
gik,rk

(1)g′jk,sk
(1)

)



d∏

u6=k,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ip,rp

(xp)gjp,sp(xp) dxp

)
.
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Case 5. p 6= q, p 6= k and q 6= k. Then we have

Ibk = (gik,rk
(1)gjk,sk

(1))




d∏

u 6=k,p,q

∫ 1

0
giu,ru(xu)gju,su(xu) dxu




×
(∫ 1

0
g′ip,rp

(xp)gjp,sp(xp) dxp

∫ 1

0
giq ,rq(xq)g

′
jq ,sq

(xq) dxq

)
.

5.5 Numerical Comparisons

5.5.1 Comparison with SC Solutions

In this subsection we compare results obtained with our algorithm against a known

analytic solution for a special case of SRBM. In this special case, we take θ = 0 and

Γ = 2I (I is the 2× 2 identity matrix. The corresponding reflection matrix is

R =




1 0 −1 1

−1 1 0 −1




As discussed in Section 2.5 of Dai and Harrison [11], the density p /∈ L2. Readers

will see that our algorithm gives accurate approximations even in this case. This is

consistent with the conjecture in Dai and Harrison [12].

Table 5.1 compares two different estimates of q1, q2, δ1, δ2, δ3 and δ4. The FEM

estimate is obtained with our algorithm, using n = 14. The SC estimate was obtained

by Trefethen and Williams [39] using a software package called SCPACK. The row

DIFF gives the differences between the SC estimates and our finite element estimates.

5.5.2 Comparisons with 2D Exponential Solutions.

We first give a criterion for the stationary density p to be of exponential form in a two-

dimensional RBM. Under the criterion, the stationary density is of exponential form

and all of the performance measures have explicit formulas. Thus, we can compare our
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Γ = 2I, θ = 0.0, n = 14

q1 q2 δ1 δ2 δ3 δ4

FEM 0.551442 0.448558 0.805350 1.610701 1.610701 0.805350

SC 0.551506 0.448494 0.805295 1.610589 1.610589 0.805295

DIFF −0.000054 0.000064 0.000065 0.000112 0.000112 0.000065

Table 5.1: Comparisons with SCPACK.

finite element estimates with these densities and corresponding performance measures.

Let the reflection matrix R be

R =




1 t2 −1 t4

t1 1 t3 −1


 (5.1)

Then we have the following Proposition proved in Chapter 2 of Dai [11].

Proposition 5.4 The stationary density p0 is of exponential form if and only if




t1Γ11 + t2Γ22 = 2Γ21,

t3 = −t1, t4 = −t2.
(5.2)

In this case, the stationary density is an exponential function

x → c · exp(λ · x), (5.3)

where

λ =




λ1

λ2


 with λ1 =

2(θ1 − t2θ2)

(1− t1t2)Γ11

and λ2 =
2(θ2 − t1θ1)

(1− t1t2)Γ22

(5.4)

and c is a normalizing constant such that
∫
S p0(x)dx = 1.

Remark. The denominators in the expressions for λ1 and λ2 are not zero because

1− t1t2 = (t21Γ11 − 2t1Γ12 + Γ22)/Γ22 > 0 by the positive definiteness of Γ.

Let k1 and k2 satisfy

c1

∫ 1

0
eλ1x1dx1 = 1, c2

∫ 1

0
eλ2x2dx2 = 1.
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Where c1c2 is the normalizing constant for the density p0 and the mean vector (q1, q2)
′

is given by

q1 = c1

∫ 1

0
x1e

λ1x1dx1, q2 = c2

∫ 1

0
x2e

λ2x2dx2. (5.5)

In the case that Γ = I, (5.2) shows that one must choose t1 = t4, t2 = −t4

and t3 = −t4 to assure an exponential stationary distribution. Tables 5.2 through

5.3 give computational results for t4 = 0.0. Table 5.2 presents the estimates of q1

and q2 with our algorithm for various test problems having exponential stationary

distributions. The columns of θ1 and θ2 correspond to different choices of the drift

vector θ = (θ1, θ2)
′, and the columns labeled q1−error and q2−error give differences

between estimates computed with our algorithm and the exact values derived from

(5.5). Table 5.3 gives the density estimates with our algorithm for θ1 = −1.0 and

θ2 = 1.0, and table 5.4 is the corresponding error estimates with the exact values

derived from (5.3). Table 5.5 through 5.7 repeat the above procedure for t4 = 1.0.

In the case that Γ 6= I, we select a positive definite matrix Γ with Γ11 = 4.0,

Γ22 = 1.0 and Γ12 = 0.5, and t4 = 1.0. Considering condition (5.2), we have t1 = 0.5,

t2 = −1, and t3 = −0.5. Under these parameters, tables 5.8 through 5.10 repeat the

procedure in previous paragraph.

5.5.3 Comparisons with 3D Exponential Solutions

In this subsection, we use some special 3-dimensional SRBM whose stationary density

has explicit formula to compare with our finite element estimates. Let the reflection

matrix be

R =




0 1 t3 0 −1 t6

0 t2 1 0 t5 −1

1 0 0 −1 0 0


 (5.6)
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Suppose Γi3 = 0 (i = 1, 2) and





t2Γ11 + t3Γ22 = 2Γ21,

t5 = −t2, t6 = −t3.
(5.7)

Then we have the stationary density p0 for the SRBM is an exponential function

x → c · exp(λ · x), (5.8)

where

λ =




λ1

λ2

λ3


 with λ1 =

2(θ1 − t2θ2)

(1− t3t2)Γ11

, λ2 =
2(θ2 − t3θ1)

(1− t3t2)Γ22

, λ3 =
2θ3

Γ33

, (5.9)

and k is a normalizing constant such that
∫
S p0(x)dx = 1. Let c1, c2 and c3 satisfy

c1

∫ 1

0
eλ1x1dx1 = 1, c2

∫ 1

0
eλ2x2dx2 = 1, c3

∫ 1

0
eλ3x3dx3 = 1.

Where c1c2c3 is the normalizing constant for the density p0 and the mean vector

(q1, q2, q3)
′ is given by

q1 = c1

∫ a

0
x1e

λ1x1dx1, q2 = c2

∫ b

0
x2e

λ2x2dx2, q3 = c3

∫ c

0
x3e

λ3x3dx3. (5.10)

For Γ = I, t2 = 1.0, Table 5.11 gives the estimates of q1, q2 and q3 with our

algorithm for various test problems having exponential stationary distributions. The

columns θ1, θ2 and θ3 correspond to different choices of the drift vector θ. In Table

5.12, the columns q1−error, q2−error and q3−error present differences between esti-

mates computed with our algorithm and the exact values derived from (5.10). Tables

5.13 and 5.14 present the estimated density function with our algorithm for θ1 = 1.0,

θ2 = 1.0 and θ3 = −0.5. Tables 5.15 and 5.16 give the corresponding error estimates

with the exact values derived from (5.8).

Finally, it should be mentioned that currently, we use a solver for the linear

equation (3.4). It requires large run-time memory and limits our implementation for
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d = 3 and n > 6. As mentioned before, our coefficient matrix A is a large sparse

matrix. The solver did not take advantage of the sparsity of matrix A. If we employ

a sparse matrix solver, we expect to solve large problems.
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Γ = I, t4 = 0.0, n = 14

θ1 θ2 q1 q2 q1−error q2−error

0.0 0.0 0.500000 0.500000 −9.436896e−16 −7.771561e−16

0.5 0.5 0.581977 0.581977 5.727013e−08 5.727194e−08

−0.5 −0.5 0.418023 0.418023 −5.726244e−08 −5.725044e−08

−0.5 0.0 0.418023 0.500000 −1.806236e−09 −5.512535e−11

1.0 1.0 0.656518 0.656518 8.955172e−07 8.954953e−07

−1.0 1.0 0.343482 0.656518 −8.954984e−07 8.954621e−07

2.0 2.0 0.768663 0.768663 4.513523e−05 4.513522e−05

2.0 −2.0 0.768663 0.231337 4.513523e−05 −4.513551e−05

0.0 −2.0 0.500000 0.231342 −1.841194e−10 −4.056480e−05

3.0 −3.0 0.835867 0.164133 4.259646e−04 −4.259631e−04

4.0 −4.0 0.875610 0.124390 1.744794e−03 −1.744796e−03

Table 5.2: Mean comparisons with exponential solutions in unit square.

Γ = I, t4 = 0.0, θ1 = −1.0, θ2 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 0.71469 0.47628 0.31792 0.21004 0.13639 0.10476

1/5 1.08675 0.72428 0.48517 0.32605 0.21767 0.13639

2/5 1.61456 1.08014 0.72458 0.48687 0.32605 0.21004

3/5 2.40837 1.61284 1.08135 0.72458 0.48517 0.31792

4/5 3.58309 2.40321 1.61284 1.08014 0.72428 0.47628

1.0 5.37019 3.58309 2.40837 1.61456 1.08675 0.71469

Table 5.3: Estimated density function.



109

Γ = I, t4 = 0.0, θ1 = −1.0, θ2 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 −9.37e−03 −9.07e−03 −7.41e−03 −8.04e−03 −9.79e−03 6.76e−03

1/5 6.58e−03 2.20e−04 −1.83e−04 7.03e−04 −4.13e−04 −9.79e−03

2/5 3.12e−03 −3.57e−05 5.20e−04 1.51e−03 7.03e−04 −8.04e−03

3/5 4.39e−03 1.41e−03 1.17e−03 5.20e−04 −1.83e−04 −7.41e−03

4/5 −3.21e−03 −7.57e−04 1.41e−03 −3.57e−05 2.20e−04 −9.07e−03

1.0 2.00e−02 −3.21e−03 4.39e−03 3.12e−03 6.58e−03 −9.37e−03

Table 5.4: Error estimates with exponential solutions.

Γ = I, t4 = 1.0, n = 14

θ1 θ2 q1 q2 q1-error q2-error

0.0 0.0 0.500000 0.500000 −9.436896e−16 2.220446e−16

0.5 0.5 0.581972 0.500006 −4.894779e−06 6.089591e−06

−0.5 −0.5 0.418028 0.499994 4.894780e−06 −6.089590e−06

−0.5 0.0 0.458506 0.541489 7.895435e−08 −5.417237e−06

1.0 1.0 0.656511 0.500016 −5.823915e−06 1.617267e−05

−1.0 1.0 0.499984 0.656511 −1.617269e−05 −5.823903e−06

2.0 2.0 0.768675 0.500073 5.786730e−05 7.318189e−05

2.0 −2.0 0.500073 0.231325 7.318187e−05 −5.786730e−05

0.0 −2.0 0.343498 0.343480 1.501171e−05 −3.024782e−06

3.0 −3.0 0.500265 0.164066 2.654667e−04 −4.934022e−04

4.0 −4.0 0.500808 0.124316 8.077718e−04 −1.819233e−03

Table 5.5: Mean comparisons with exponential solutions.
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Γ = I, t4 = 0.0, θ1 = −1.0, θ2 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 0.32207 0.46686 0.69633 1.03875 1.54635 2.34062

1/5 0.31354 0.46704 0.69670 1.03951 1.55054 2.31367

2/5 0.31372 0.46772 0.69753 1.04007 1.55053 2.31165

3/5 0.31375 0.46847 0.69856 1.04134 1.55129 2.31184

4/5 0.31203 0.46680 0.69666 1.03983 1.54957 2.31728

1.0 0.30405 0.46033 0.68705 1.02518 1.51806 2.20096

Table 5.6: Estimated density function.

Γ = I, t4 = 1.0, θ1 = −1.0, θ2 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 9.03e−03 −1.36e−04 −3.40e−04 −5.67e−04 −4.12e−03 2.75e−02

1/5 5.00e−04 4.90e−05 2.88e−05 1.99e−04 6.95e−05 6.35e−04

2/5 6.84e−04 7.28e−04 8.52e−04 7.55e−04 5.79e−05 −1.38e−03

3/5 7.13e−04 1.47e−03 1.89e−03 2.02e−03 8.12e−04 −1.20e−03

4/5 −1.01e−03 −1.97e−04 −1.67e−05 5.20e−04 −9.03e−04 4.24e−03

1.0 −8.98e−03 −6.66e−03 −9.62e−03 −1.41e−02 −3.24e−02 −1.12e−01

Table 5.7: Error estimates with exponential solution.
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Γ11 = 4.0, Γ22 = 1.0, Γ12 = 0.5, t4 = 1.0, n = 14

θ1 θ2 q1 q2 q1-error q2-error

0.0 0.0 0.500000 0.500000 2.258027e−12 1.094236e−12

0.5 1.0 0.541468 0.581922 −2.635217e−05 −5.460376e−05

−1.0 1.0 0.499949 0.656425 −5.084222e−05 −9.202287e−05

2.0 −1.0 0.527794 0.300438 6.736003e−05 1.064767e−04

Table 5.8: Mean estimations for Γ 6= I.

Γ11 = 4.0, Γ22 = 1.0, Γ12 = 0.5, t4 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 0.23825 0.46667 0.69202 1.03394 1.54391 2.49797

1/5 0.21623 0.46844 0.69551 1.03969 1.55041 2.39347

2/5 0.30060 0.46708 0.69772 1.04296 1.55377 2.34769

3/5 0.31754 0.46714 0.69826 1.04517 1.55947 2.36926

4/5 0.33629 0.46708 0.69751 1.04326 1.54681 2.68646

1.0 0.36964 0.46996 0.69665 1.03855 1.53722 2.28198

Table 5.9: Estimated density function for Γ 6= I.
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Γ11 = 4.0, Γ22 = 1.0, Γ12 = 0.5, t4 = 1.0, n = 14

p0(i, j) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 −7.47e−02 −3.22e−04 −4.65e−03 −5.37e−03 −6.56e−03 1.84e−01

1/5 −9.68e−02 1.44e−03 −1.16e−03 3.74e−04 −5.98e−05 8.04e−02

2/5 −1.24e−02 8.89e−05 1.04e−03 3.65e−03 3.29e−03 3.46e−02

3/5 4.50e−03 1.51e−04 1.58e−03 5.85e−03 9.00e−03 5.62e−02

4/5 2.32e−02 9.01e−05 8.36e−04 3.94e−03 −3.66e−03 3.73e−01

1.0 5.66e−02 2.97e−03 −2.39e−05 −7.62e−04 −1.32e−02 −3.10e−02

Table 5.10: Error estimates for Γ 6= I.

Γ = I, t2 = 1.0, n = 6

θ1 θ2 θ3 q1 q2 q3

0.0 0.0 0.0 0.500014 0.500002 0.499972

1.0 0.5 0.0 0.620499 0.458605 0.499905

1.0 0.5 −0.5 0.620459 0.458601 0.417985

−1.0 0.5 0.5 0.458568 0.620454 0.581826

−1.0 0.5 1.0 0.458660 0.620471 0.656142

1.0 −1.0 −0.5 0.500177 0.343629 0.417883

Table 5.11: Estimated means in unit cube.
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Γ = I, t2 = 1.0, n = 6

θ1 θ2 θ3 q1−error q2−error q3−error

0.0 0.0 0.0 1.390652e−05 1.549133e−06 −2.817109e−05

1.0 0.5 0.0 −5.131732e−05 9.894971e−05 −9.500724e−05

1.0 0.5 −0.5 −9.070568e−05 9.469117e−05 −3.851720e−05

−1.0 0.5 0.5 6.201958e−05 −9.627116e−05 −1.506037e−04

−1.0 0.5 1.0 1.539639e−04 −7.880091e−05 −3.748214e−04

1.0 −1.0 −0.5 1.773108e−04 1.463151e−04 −1.403901e−04

Table 5.12: Mean comparisons with exponential solutions.
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Γ = I, t2 = 1.0, θ1 = 1.0, θ2 = −1.0, θ3 = −0.5, n = 6

k = 0.0

p0(i, j, k) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 3.26886 2.56206 1.66711 1.10260 0.68539 0.12973

1/5 3.61918 2.38741 1.63753 1.10459 0.77480 0.44912

2/5 3.65398 2.42186 1.65617 1.11847 0.77158 0.51030

3/5 3.65419 2.42323 1.65606 1.11866 0.77248 0.50295

4/5 3.62649 2.45744 1.68804 1.14275 0.79836 0.50589

1.0 3.78717 2.46150 1.66640 1.10520 0.69802 0.72862

k = 1/5

0.0 2.52478 1.88806 1.30120 0.87792 0.44751 0.61430

1/5 3.02124 2.00631 1.35274 0.90251 0.60701 0.42035

2/5 3.00395 2.01298 1.35780 0.90818 0.60974 0.41414

3/5 3.00219 2.00934 1.35102 0.90252 0.60801 0.41585

4/5 3.00301 2.00943 1.34848 0.89828 0.60680 0.41479

1.0 2.89777 1.96249 1.31048 0.87536 0.59243 0.65070

k = 2/5

0.0 2.03619 1.53155 1.05199 0.71012 0.48055 0.40018

1/5 2.46541 1.64030 1.10584 0.73890 0.49254 0.33165

2/5 2.45118 1.64817 1.11220 0.74579 0.49846 0.33035

3/5 2.44974 1.64802 1.10914 0.74315 0.49861 0.33092

4/5 2.44493 1.64732 1.10770 0.74087 0.49865 0.32857

1.0 2.33145 1.65065 1.10220 0.73714 0.49680 0.42950

Table 5.13: Estimated density function in unit cube
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Γ = I, t2 = 1.0, θ1 = 1.0, θ2 = −1.0, θ3 = −0.5, n = 6

k = 3/5

p0(i, j, k) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 1.64555 1.24513 0.85511 0.57658 0.38585 0.27220

1/5 2.02015 1.34121 0.90575 0.60753 0.40562 0.26480

2/5 2.00725 1.34917 0.91309 0.61564 0.41223 0.26564

3/5 2.00543 1.34932 0.91059 0.61351 0.41163 0.26326

4/5 1.99618 1.34559 0.90702 0.61024 0.41012 0.25973

1.0 1.84864 1.35894 0.90590 0.60726 0.40752 0.24593

k = 4/5

0.0 1.32575 1.01985 0.70195 0.46938 0.30918 0.17769

1/5 1.68021 1.10049 0.74238 0.49642 0.32959 0.20545

2/5 1.66644 1.10747 0.74947 0.50469 0.33614 0.20794

3/5 1.66421 1.10660 0.74564 0.50119 0.33346 0.20351

4/5 1.65192 1.10192 0.74111 0.49708 0.33035 0.19941

1.0 1.44717 1.11511 0.73710 0.49216 0.32635 0.12909

k = 1.0

0.0 1.07242 0.97887 0.62491 0.41554 0.27873 0.15892

1/5 1.32177 0.83866 0.57767 0.38268 0.24795 0.19181

2/5 1.34791 0.86288 0.59208 0.39503 0.25801 0.18995

3/5 1.35774 0.86234 0.58843 0.39137 0.25489 0.18722

4/5 1.39311 0.85596 0.58567 0.38931 0.25151 0.18662

1.0 1.19958 0.88265 0.60937 0.41392 0.28677 0.14216

Table 5.14: Estimated density function in unit cube (continued)
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Γ = I, t2 = 1.0, θ1 = 1.0, θ2 = −1.0, θ3 = −0.5, n = 6

k = 0.0

p0(i, j, k) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 −3.90e−01 1.09e−01 2.29e−02 4.80e−04 −5.34e−02 −3.65e−01

1/5 −4.00e−02 −6.54e−02 −6.64e−03 2.47e−03 3.60e−02 −4.61e−02

2/5 −5.19e−03 −3.10e−02 1.20e−02 1.64e−02 3.28e−02 1.51e−02

3/5 −4.98e−03 −2.96e−02 1.19e−02 1.65e−02 3.37e−02 7.74e−03

4/5 −3.27e−02 4.63e−03 4.39e−02 4.06e−02 5.96e−02 1.07e−02

1.0 1.28e−01 8.69e−03 2.22e−02 3.08e−03 −4.07e−02 2.33e−01

k = 1/5

0.0 −4.71e−01 −1.20e−01 −4.49e−02 −2.44e−02 −1.57e−01 2.09e−01

1/5 2.54e−02 −1.88e−03 6.61e−03 1.71e−04 2.15e−03 1.49e−02

2/5 8.08e−03 4.79e−03 1.17e−02 5.84e−03 4.88e−03 8.70e−03

3/5 6.32e−03 1.15e−03 4.89e−03 1.76e−04 3.15e−03 1.04e−02

4/5 7.13e−03 1.24e−03 2.35e−03 −4.06e−03 1.95e−03 9.35e−03

1.0 −9.81e−02 −4.57e−02 −3.57e−02 −2.70e−02 −1.24e−02 2.45e−01

k = 2/5

0.0 −4.17e−01 −1.13e−01 −5.01e−02 −2.86e−02 −1.47e−02 6.82e−02

1/5 1.26e−02 −3.87e−03 3.72e−03 1.24e−04 −2.68e−03 −3.01e−04

2/5 −1.63e−03 4.00e−03 1.01e−02 7.02e−03 3.24e−03 −1.60e−03

3/5 −3.08e−03 3.85e−03 7.02e−03 4.38e−03 3.39e−03 −1.04e−03

4/5 −7.88e−03 3.15e−03 5.58e−03 2.10e−03 3.44e−03 −3.39e−03

1.0 −1.21e−01 6.48e−03 8.46e−05 −1.63e−03 1.59e−03 9.75e−02

Table 5.15: Error estimations with exponential solutions
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Γ = I, t2 = 1.0, θ1 = 1.0, θ2 = −1.0, θ3 = −0.5, n = 6

k = 3/5

p0(i, j, k) 0.0 1/5 2/5 3/5 4/5 1.0

0.0 −3.63e−01 −1.01e−01 −4.72e−02 −2.83e−02 −1.96e−02 4.24e−04

1/5 1.20e−02 −4.92e−03 3.41e−03 2.67e−03 1.75e−04 −6.98e−03

2/5 −9.42e−04 3.04e−03 1.07e−02 1.08e−02 6.78e−03 −6.14e−03

3/5 −2.76e−03 3.19e−03 8.25e−03 8.65e−03 6.18e−03 −8.52e−03

4/5 −1.20e−02 −5.41e−04 4.68e−03 5.39e−03 4.67e−03 −1.21e−02

1.0 −1.60e−01 1.28e−02 3.56e−03 2.40e−03 2.07e−03 −2.59e−02

k = 4/5

0.0 −3.18e−01 −8.23e−02 −3.68e−02 −2.58e−02 −2.28e−02 −4.48e−02

1/5 3.60e−02 −1.63e−03 3.61e−03 1.20e−03 −2.36e−03 −1.71e−02

2/5 2.23e−02 5.35e−03 1.07e−02 9.47e−03 4.19e−03 −1.46e−02

3/5 2.00e−02 4.48e−03 6.87e−03 5.97e−03 1.51e−03 −1.90e−02

4/5 7.75e−03 −1.98e−04 2.33e−03 1.87e−03 −1.60e−03 −2.31e−02

1.0 −1.97e−01 1.30e−02 −1.67e−03 −3.06e−03 −5.61e−03 −9.34e−02

k = 1.0

0.0 −2.74e−01 7.65e−02 2.01e−02 1.01e−02 6.95e−03 −2.33e−02

1/5 −2.44e−02 −6.37e−02 −2.72e−02 −2.28e−02 −2.38e−02 9.63e−03

2/5 1.78e−03 −3.95e−02 −1.28e−02 −1.04e−02 −1.38e−02 7.77e−03

3/5 1.16e−02 −4.00e−02 −1.64e−02 −1.41e−02 −1.69e−02 5.04e−03

4/5 4.70e−02 −4.64e−02 −1.92e−02 −1.61e−02 −2.03e−02 4.44e−03

1.0 −1.47e−01 −1.97e−02 4.52e−03 8.47e−03 1.50e−02 −4.00e−02

Table 5.16: Error estimations with exponential solutions (continued).



118

Bibliography

[1] A.Bernard and A.El Kharroubi. Regulations deterministes et stochastiques dans

le premier “orthant” de Rn. Stochastics and Stochastics Reports, 34:149–167,

1991.

[2] A.Brondstred. An Introduction to Convex Polytopes. Springer, New York, 1983.

[3] Patrick Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

[4] Pierre Bremaud. Point Processes and Queues: Martingale Dynamics. Springer-

Verlag, 1981.

[5] Hong Chen and Avi Mandelbaum. Discrete flow networks: Bottlenecks analy-

sis and fluid approximations. Mathematics of Operations Research, 16:408–446,

1991.

[6] Hong Chen and Avi Mandelbaum. Stochastic discrete flow networks: Diffusion

approximation and bottlenecks. Annals of Probability, 19:1463–1519, 1991.

[7] Hong Chen and J. George Shanthikumar. Fluid limits and diffusion approxima-

tions for networks of multi-server queues in heavy traffic. Journal of Discrete

Event Dynamic Systems: Theory and Applications, to appear.

[8] Y.S. Chow and H. Teicher. Probability theory: Independence, interchangeability,

martingales. Springer-Verlag, Second Edition, 1988.



119

[9] Kai Lai Chung. A Course in Probability. Wiley, 1974.

[10] Kai Lai Chung and Ruth J.Williams. Introduction to Stochastic Integration.

Birkhauser, Boston, 1983.

[11] J. G. Dai. Steady-state analysis of reflected Brownian motions: characteriza-

tion, numerical methods and queueing applications. PhD thesis, Department of

Mathematics, Stanford University, 1990.

[12] J. G. Dai and J. Michael Harrison. Steady-state analysis of RBM in a rectangle:

numerical methods and a queueing application. Annals of Applied Probability,

1:16–35, 1991.

[13] J. G. Dai and J. Michael Harrison. Reflected Brownian motion in an orthant:

numerical methods for steady-state analysis. Annals of Apploied Probability,

2:65–86, 1992.

[14] J. G. Dai and Thomas G. Kurtz. Characterization of the stationary distribu-

tion for a semimartingale reflecting Brownian motion in a convex polyhedron.

Preprint.

[15] J. G. Dai and Thomas G. Kurtz. A multiclass station with Markovian feedback

in heavy traffic. Mathematics of Operations Research, 20:721–742, 1995.

[16] J. G. Dai and Ruth J. Williams. Existence and uniqueness of semimaringale

reflecting brownian motions in convex polyhedrons. Theory of Probability and

its Applications, to appear, 1994.

[17] P. Dupuis and H. Ishii. On Lipschitz continuity of the solution mapping to the

skorohod problem, with applications. Stochatics, 35:31–62, 1991.



120

[18] Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization

and Convergence. Wiley, New York, 1986.

[19] M. Gerla, T.Y. Tai, and G. Gallassi. Internetting LANs and MANs to B-ISDNs

for connectionless traffic support. Preprint, 1993.

[20] Allen Gut. Stopped Random Walks: Limit Theorems and Applications. Springer-

Verlag, 1988.

[21] J. M. Harrison. Brownian models of queueing networks with heterogeneous cus-

tomer populations. Proceedings of the IMA Workshop on Stochastic Differential

Systems, 1988. Springer-Verlag.

[22] J. Michael Harrison. The heavy traffic approximation for single server queues in

series. J. Appl. Prob., 10:613–629, 1973.

[23] J. Michael Harrison. The diffusion approximation for tandem queues in heavy

traffic. Advances in Applied Probability, 10:886–905, 1978.

[24] J. Michael Harrison and Martin I. Reiman. Reflected Brownian motion on an

orthant. Annals of Probability, 9:302–308, 1981.

[25] J. Michael Harrison and Ruth J. Williams. Brownian models of open queueing

networks with homogeneous customer populations. Stochastics, 22:77–115, 1987.

[26] Donald L. Iglehart and Ward Whitt. Multiple channel queues in heavy traffic I.

Advances in Applied Probability, 2:150–177, 1970.

[27] Donald L. Iglehart and Ward Whitt. Multiple channel queues in heavy traffic II.

Advances in Applied Probability, 2:355–364, 1970.

[28] J. R. Jackson. Networks of waiting lines. Operations Research, 5:518–521, 1957.



121

[29] D. P. Johnson. Diffusion Approximations for Optimal Filtering of Jump Pro-

cesses and for Queueing Networks. PhD thesis, University of Wisconsin, 1983.

[30] H. Kroner, M. Eberspacher, T.H. Theimer, P.J. Kuhn, and U. Briem. Approxi-

mate analysis of the end to end delay in ATM networks. Proceedings of the IEEE

INFOCOM’92, pages 978–986, Florence, Italy, 1992.

[31] Avi Mandelbaum. The dynamic complementary problem. Preprint, 1992.

[32] Ioanis Nikolaidis and Ian F. Akyildiz. Source characterization and statistical

multiplexing in ATM networks. Preprint, 1993.

[33] J.T. Oden and J.N. Reddy. An introduction to the mathematical theory of finite

elements. A Wiley-Interscience Publication, 1976.

[34] William P. Peterson. A heavy traffic limit theorem for networks of queues with

multiple customer types. Mathematics of Operatons Reseach, 16, February 1991.

[35] Martin I. Reiman. Open queueing networks in heavy traffic. Mathematics of

Operations Research, 9:441–458, 1984.

[36] Martin I. Reiman. A multiclass feedback queue in heavy traffic. Advances in

Applied Probability, 20:179–207, 1988.

[37] Martin I. Reiman and Ruth J. Williams. A boundary property of semimartingale

reflecting Brownian motions. Probability Theory and Related Fields, 77:87–97,

1988 and 80, 633, 1989.

[38] Lisa M. Taylor and Ruth J. Williams. Existence and uniqueness of semimartin-

gale reflecting Brownian motions in an orthant. Probability Theory and Related

Fields, 96:283–317, 1993.



122

[39] L.M. Trefethen and R.J. Williams. Conformal mapping solution of Laplace’s

equation on a polygon with oblique derivative boundary conditions. Journal of

Computational and Applied Mathematics, 14:227–249, 1986.

[40] Jia Gang Wang. Foundamental Theory to Modern Probability Theory (in Chi-

nese). Fudan Uni. Press, 1986.



123

Vita

Wanyang Dai was born on June 22, 1963 in Yanchen City, Jiangsu Province, P.R.

China. In 1985, he graduated from Nanjing Normal University with a Bachelor of

Science degree in Mathematics. In January 1988, he graduated from Shanghai Uni-

versity of Science and Technology with a Master of Science degree in Operations

Research and Control Theory. From February 1988 to August 1992, he was an assis-

tant professor in Probability and Statistics at Nanjing University. In September 1992,

he entered the Ph.D program at the Georgia Institute of Technology. In August 1996,

he became a Member of Technical Research and Development in Network Systems at

Lucent Technologies/Bell Labs.


