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Abstract: Based on sample data which may be correlated and have certain ergodic property, a finite
element estimator with multi-stage adaptive filters is designed to estimate the associated
(stationary) density function. Numerical examples are presented to show the effectiveness
of the estimator. Meanwhile, the stability property of the estimator is also discussed.
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1 Introduction

In this paper, we design a finite element estimator with adaptive filters to estimate the
(stationary) probability density from a sequence of observed sample data, and at the same time,
we present numerical implementation experiences to show the effectiveness of the estimator.
Compared with the well studied kernel methods such as those summarized in [1], the designed
estimator has some flexibility and advantages in estimating densities with certain non-smooth
corners and/or discontinuous jump points, and in handling boundary bias. Some related works,
which use finite element and wavelet interpolations to estimate (stationary) density functions,
can be found, for examples, in [2,3,4].

In our numerical implementations and stability study for the estimator, we allow the se-
quence of observations to be correlated in certain way. Specifically, it is assumed that the ob-
served sample data denoted by {X1, X5, , X,} have the following ergodic property (strong
law of large numbers),

F(X1) + f(X2) 4+ + f(Xn)

— Ef(X) = /es f(x)dm(z), asn — oo, as. (1)

where () is some unknown probability measure with density function p(z), X is a random
variable associated with 7(-), E.f(X) denotes the expectation of f(X) under 7 and f is a
continuous (or more generally, Borel integrable) function. There are a number of applications
which have the average convergence property as described in (1). For examples, independent
and identically distributed (i.i.d.) observations drawn from an unknown probability density
p(z) (to be estimated); {X1, X5, ,X,,} are sample data or are generated from a stationary
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process (sequence), in this case, 7 will be the stationary distribution of the process or sequence
(see corresponding Ergodic Theorems in [5] for details); {X;, X2, --,X,} are sample data
generated from some Harris recurrent Markovian process, namely, the probability of an infinite
number of returns to an arbitrary set A C S is one, in this case, 7 is the stationary distribution
for the process (the associated Ergodic Theorem can be found in [6]).

The rest of the paper is organized as follows. In Section 2, we present the estimator and
discuss its related stability. In Section 3, several numerical examples are presented to illustrate
the usage and effectiveness of the estimator. Finally, in Section 4, we prove the stability theorem.

2 Density Estimator with Multi-stage Adaptive Filters

In this section, we design a finite element algorithm to estimate p(z) and present the asso-
ciated weak convergence theorem. To define our finite element global basis, we introduce the
following shape function

$(z) =1 |z| for z € [-1,1]. 2)

For m € {1,2,---}, let b, = m and h = by, /m?, or b,,/(am?) with a being some suitable
positive constant, moreover, subdivide the interval [—bp,, b,,] into a union of elements by the
uniform mesh by, = z_3 < -+ <21 <TE=0< Ty < Ty = b, then we define the
following chapeau or hat functions (see, for example, [7])

¢ (Z2) if z € [(i — 1)k, (i + )R] N [~bm, by],

s@=q PO oel " ®
0 otherwise,

where the index i € {~m? —(m3 —1),---,-1,0,1,--- ,(m® — 1),m®}. Thus, the probability

density p(x) can be approximated by the below finite element interpolation

3

m
@) = Y i), (4)
1=—m3
where the coefficient ¢; for each i is constant. Hence, from the sample data {Xj,- - - , Xn} and

each integer d > 1, we can design the following density estimator

3

m
Prmn,d(Z) = Pmma(® Xu, o, Xn) = Y &gi(a), (5)
i=—m3
where ¢ is the dth (d > 1) estimated coefficient for each i € {—m3,--- ,m3} via the following
adaptive smoothing filter,
i+0; i n
sd+l _ o mee 2w
&= ‘Zﬁ ;¢ with & = Ejzld)i(Xj)’ (6)
=t =

where (24;+1) is the moving average window size of the filter in (6), the integer-valued constant
Bi can be chosen dynamically with the variation of the index 4, moreover, the coefficients {aj}
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are the associated moving average weights satisfying
i+53;

Z a; = 1 and Qi >0, Qi—j = it j for all j€ {0,1," i ,,81'}. (7)
J=i—p;

From our numerical examples presented in the next section, one can see that DPm,n,d(T) is
indeed a good approximation to p(z) for suitable chosen integer d. Moreover, the estimator
(5) has some flexibility and advantages in estimating densities with non-smooth corners and/or
discontinuous jump points, and in handling boundary bias. As for the stability of the estimator,
we have the following limit theorem.

Theorem 1 1If E|X| < oo, then for each m and d 2 1, pmma(-) in (5) converges to
a unique Borel measure p,,(-) weakly in the sense that, for each f € C,(R) (the space of
continuous real-valued functions with compact support on R = (—o0, o0)),

/ F()Pmm a(x)d — / ) 8 1 (8)
R R

Remark We conjecture that, for suitable chosen d, the Radon Nikodym deriveative of
Km in terms of the Lebesgue measure dz equals p(z) almost everywhere as m tends to infinite.
Here we leave this conjecture as an open problem for future study.

3  Numerical Examples

In this section, we present several examples as given in Figure 1 and Figure 2 to compare
the estimating performance among the finite element density estimator (5), exact density and
the widely discussed kernel method (see, for example, [1]). Here, we also point out that, from
our simulation experiences, we believe that estimation errors appeared in our examples are due
to generated pseudo random numbers which are treated as treated sample data. In fact, how
to generate accurate random numbers is also an active research area.

To be convenient for readers, we recall here the kernel estimation formula

ﬁn<x>=%;§;K<ﬁnX"). )

In (9), the kernel K(-) has various choices and the standard normal density is chosen in our
implementation. In addition, h,, should also be carefully selected such that it satisfies hn —0
and nh, — oco. From existed numerical results and our own simulation experience, we find that
hn =1/(1.05 % n%2) is a good choice.

Example 1 In this example, the following standard normal density is discussed

1 22

p(z) = \/—276 7, =—oo<z<oo. (10)

Based on two uniform random number sequences 7, and r2 derived from the Kiss generator

(see, for example, [6]), we use the transformation method to generate associated normal sample
data {z,}.
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Figure 1: Estimated densities by Kernel method with h,, = 1/(1.05 * n®2).
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Figure 2: Estimated densities by finite element method with m =5 and d = 4.
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Example 2 In this example, we consider an ergodic Markovian process whose stationary
density is the standard normal one given by (10). The sample data for the process can be
generated from a Markov Chain Monte Carlo (MCMC) method. In our simulation, we employed
the following independent Metropolis-Hastings algorithm (see, for example, [6]). Concretely,
for the given standard normal sample data {z,} in Example 1, we used the following procedure
to generate Markovian sample data {z,}.

1) Given z,, generate a random number y,, from u(y) which is the uniform density function
over [0, 1].
2) Take

P(yn)u(zy) 1} ’

Yn with probability min{p(wn)u(yn),

a4l =
z, otherwise.

Example 3 In this example, the following exponential density is considered,

e=® ifw >0,
p(z) = ,
0 otherwise.

Example 4 In this example, we deal with the following density with non-smooth corners

and discontinuous jump points,

-~

$(-4-2z) if —3<z< -2,
$(2+2z) if —1<x<0,
p(r)=1q $(2-2z) if0<z<l,
%e_(z_l) R g
. 0 otherwise.

4 Proof of Theorem 1
For any given function f € C.(R), let K be the compact set
K = the closure of the set {z : f(x) # 0}. (11)

Thus, there exists a sufficiently large positive integer M such that K C [—-M, M]. Moreover, for
a given sample sequence { X1, Xo, - - - } satisfying (1) and a given € > 0, there exists a sufficiently
large N such that

#i(X1) + ¢s(X2) + - - - + i (Xy)
n

— Er¢i(X)| <e (12)
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for alln > N and all i € {-m3, —(m®-1),---,-1,0,1,---,(m3 —1),m3}. It follows from (3),
(5)-(7) and (12) that
/ Ml (13)
L -
m® M Abp,
= > & f(@)i(z)dz
= —MVby,
m?2(MAby,) i+ J2+Bi, M Abyy,
= Z Z O gmees # Z ajléjl / f(x)¢z(x)dx
i=—m2(MVbpm) ja—1=i—0; F1=d2—Bi, ~MVbm
m2(MAby,) i+8; J2+B8j, -
= Z Z Qjg_1 " Z <_}%E¢j1 (X)+
i=—m2(M Vb, ) ja—1=1—0: J1=Jj2—Bj,
1 1 MAby,
0@+ 3500@) [ 7 fl)outada,
—MVby,

where for each n > N, O,(€) denotes the quantity of the same order as the value ¢, i.e.,
On(€) = c,e for some constant ¢, independent of €, and o, (¢€) is infinitesimal in terms of €, and
in (13), we used the following convention that, if d =1,

i+B; J1+Bi,
E Qe E %5 = G:
Ja—1=1—P0; J1=J2—Bjq

In (13), let € — 0, we know that the following claim holds for each given d and m,
oo

—co < I(f) = nan;o N f(@)Pmn,a(x)dz < 0. (14)
Since 0 < ¢;(z) < 1, we have that I(f) > 0 if f > 0. Moreover, one can easily show that
I(af + Bg) = al(f) + BI(g) for all @, 8 and all functions f,g € C.(S), that is, I(:) is a
positive linear functional on C.(S). Notice that the space S = R = (—o0,00) is a locally
compact Hausdorff space, then by Riesz-Markov representation theorem (see, for example, [8]),
there exists a Borel measure y,, for each m on the Borel measurable space (S, B(S)) with B(S)
denoting the Borel o-field of S, such that,

I(f) = /S Fdtim, (15)

for each f € C.(S). Furthermore, since S is both locally compact and o-compact separable
metric space, every Borel set of S is a Baire set and the converse is also true by the argument
on page 332 in [8], and thus, all Borel measures on S are regular (and hence inner regular)
by Corollary 12 in [8]. Therefore, the Borel measure p,, appeared in (15) is unique by the
Riese-Markov representation theorem again. Hence, for each m, we have

o0

im [ f@)pmma(@)de = I(f) = /S i (16)

—
n=200.f .o

for each f € C.(S). Hence we complete the proof of the theorem.
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