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We consider a queueing network of d single server stations. Each station has a finite
capacity waiting buffer, and all customers served at a station are homogeneous in terms
of service requirements and routing. The routing is assumed to be deterministic and hence
feedforward. A server stops working when the downstream buffer is full. We show that
a properly normalized d-dimensional queue length process converges in distribution to a
d-dimensional semimartingale reflecting Brownian motion (RBM) in a d-dimensional box
under a heavy traffic condition. The conventional continuous mapping approach does not
apply here because the solution to our Skorohod problem may not be unique. Our proof
relies heavily on a uniform oscillation result for solutions to a family of Skorohod problems.
The oscillation result is proved in a general form that may be of independent interest. It
has the potential to be used as an important ingredient in establishing heavy traffic limit
theorems for general finite buffer networks.
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1. Introduction

This paper proves a heavy traffic limit theorem for an open queueing network
with finite buffers. The queueing network has d single server stations. Each station
has a finite capacity waiting buffer, and all customers served at a station are homo-
geneous in terms of service requirements and routing. The routing is assumed to be
deterministic and hence feedforward. Since there is a single customer class associated
with each station, our network is a single class queueing network as opposed to the
multiclass queueing networks widely discussed in the literature in recent years (see,
e.g., Harrison [24]).
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Queueing networks have been used to model telecommunication networks and
manufacturing systems. All these networks have finite buffers in practice. See, e.g.,
Bertsekas and Gallager [3], Buzacott [9], Mitra and Mitrani [31], Perros and Al-
tiok [32], and Yao [40]. In some applications, notably in some manufacturing systems
like existing wafer fabrication facilities, buffer constraints have not been a major
problem. Therefore, it is safe to ignore buffer constraints in the analysis of these
networks. However, in telecommunication networks, more recently in asynchronous
transfer mode (ATM) networks, buffer constraints have a major impact on system
performances (see, e.g., Elwalid and Mitra [20] or Kroner et al. [29]). Thus, it is
imperative to model the finiteness of the buffer sizes in these networks.

In our network the interarrival times and service times at each station are assumed
to be independent, identically distributed (iid) sequences with finite first two moments.
We show that the normalized d-dimensional queue length process converges in dis-
tribution to a d-dimensional reflecting Brownian motion (RBM) under a heavy traffic
condition. The RBM lives in a d-dimensional box. The Brownian data, including
the drift vector, covariance matrix and reflection matrix, can be calculated explicitly
from the moments, network topology and the blocking mechanism employed. There
are algorithms to numerically compute the stationary distribution of the RBM. There-
fore, one can obtain performance estimates for the queueing network, like blocking
probabilities and average queue lengths, from their Brownian counterparts [15].

The normalization of the queue length involves a scaling in time by a factor n and
a scaling in space by a factor 1/

√
n for large n. Thus the heavy traffic limit theorem

provides qualitative insight for the queueing network when it is operated for a long
period of time, and each individual customer’s movement is not of primary concern.
The heavy traffic condition assumes that the traffic intensity ρi at each station i is
close to 1 so that 1 − ρi is of order 1/

√
n. In addition, it requires the buffer size at

a station is of order
√
n. The limit theorem suggests that this is the magnitude of the

buffer size for the network to experience a “moderate level” of blocking.
Although many blocking mechanisms can be employed for a finite buffer net-

work, we will focus on the “block-and-hold-0” mechanism. Under such a blocking
mechanism, a server will stop working whenever an immediate downstream buffer is
full. Therefore, the number of blocked customers that have completed services is 0.
Readers are referred to Cheng and Yao [13] or Cheng [12] for the definition of the
general “block-and-hold-k” mechanism. We note that the terms “manufacturing block-
ing” and “communication blocking” may not have a standard meaning in the literature;
see, e.g., Cheng [12], and Konstantopoulos and Walrand [28]. A loss mechanism will
be briefly discussed in section 9.

Due to the finiteness of the buffer sizes and the blocking mechanism used, the
Skorohod problem associated with the queueing network may not have a unique solu-
tion (see the example at the end of section 5). Therefore the conventional continuous
mapping approach, as used in Iglehart and Whitt [25,26] for feedforward single class
networks, in Reiman [34] for single class networks with feedback and in Peterson [33]
for feedforward multiclass queueing networks, does not apply here, although some
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authors, such as Bardhan and Mithal [1], attempted such an extension. Instead we
establish a uniform oscillation result for solutions to a sequence of Skorohod prob-
lems. Using this result, one can establish that the sequence of normalized queue length
processes is precompact in the space of right continuous paths with left limits. Each
limit point of the sequence is shown to be an RBM. Care has been taken to show
that the limit satisfies a martingale property which is a defining property of the RBM.
(Lemma 7.1 of this paper plays a key role in proving this martingale property. The
proof of this lemma is adapted from Williams [38].) Finally, the heavy traffic limit
theorem follows from the uniqueness (in distribution) of the RBM [18].

Almost all prior proofs of heavy traffic limit theorems for open networks assume
the buffer sizes are infinite. For multiclass queueing networks, the mapping associated
with the Skorohod problem is not well defined in general, as illustrated by an example
of Dai et al. [17] which is included as appendix A of Williams [38]. The nonuniqueness
excludes the usage of the continuous mapping theorem used in Iglehart and Whitt [25,
26], Reiman [34], Johnson [27], Peterson [33], and Chen and Zhang [10] to prove
heavy traffic limit theorems. Reiman [35] proved a heavy traffic limit theorem for
a multiclass station; see Dai and Kurtz [16] for an alternative proof and extension.
Chen and Zhang [11] showed a heavy traffic limit theorem for a multiclass FIFO
network with a restrictive spectral radius condition on a certain matrix. Although
these three works went beyond the conventional continuous mapping paradigm, until
very recently, we have not seen a viable approach to the proof of general heavy
traffic limit theorems. The contemporaneous, independent works of Bramson [7] and
Williams [38,39] provided sufficient conditions for a heavy traffic limit theorem for
multiclass queueing networks under many conventional queueing disciplines, including
the FIFO discipline, static buffer priority discipline, and head-of-the-line proportional
processor sharing (HLPPS) discipline. These results represent a major breakthrough for
proving heavy traffic limit theorems for infinite buffer multiclass queueing networks.
In fact, using the sufficient conditions and Bramson [5,6], they established new heavy
traffic limit theorems for FIFO networks of Kelly type and open multiclass queueing
networks under the HLPPS discipline. The two key ingredients in establishing their
heavy traffic limit theorems are oscillation result [38] and “state space collapse” [7].

Although the oscillation result in this paper looks similar to the oscillation result
in [38], neither one implies the other. Our oscillation result deals with the Skorohod
problem in a general state space and requires some control on the jump sizes of
the pushing process, whereas Williams’ result deals with a more general family of
perturbed Skorohod problems in an orthant. Our oscillation result, which is proved
in a much more general setting than needed in this paper, has the potential to be
used as an important ingredient to prove a heavy traffic limit theorem for a general
finite buffer queueing network, although other important ingredients, like deadlock in
feedback networks and “state space collapse” in multiclass networks, have to be dealt
with separately.

We now introduce the notation to be used in the paper. The number of stations
in the network is assumed to be d > 1. Let I = {1, . . . , d}. The set of nonnegative
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integers is denoted by Z+, and the k-dimensional nonnegative lattice is denoted by Zk+.
We use Rk to denote the k-dimensional Euclidean space. Let R+ = [0,∞). Unless
stated otherwise, all vectors are envisioned as column vectors. The prime symbol on
a vector or a matrix denotes transpose. For a = (a1, . . . , ak)′ ∈ Rk, |a| = maxki=1 |ai|.
For an n × k matrix A, ||A|| = maxni=1

∑k
j=1 |Aij |. For a vector a ∈ Rk, we use

diag(a) to denote the k × k diagonal matrix whose diagonal entries are given by the
components of a. Vector inequalities are interpreted componentwise. We use e to
denote the d-dimensional vector of ones.

For k > 1, the k-dimensional path space D([0,∞),Rk) is the set of func-
tions x : [0,∞) → Rk that are right continuous on [0,∞) and have finite left lim-
its on (0,∞). For a path x ∈ D([0,∞),Rk), we sometimes use x(·) to denote the
path. For a vector a ∈ Rk and a path x ∈ D([0,∞),Rk), x(a·) is the path with
x(at) = (x1(a1t), . . . ,xk(akt))′. More generally, for an h ∈ D([0,∞),Rk+), x(h(·))
is the path with x(h(t)) = (x1(h1(t)), . . . ,xd(hd(t)))′. A path x ∈ D([0,∞),Rk) is
nondecreasing if each component is. We use x(s−) to denote the left limit at s > 0.
The space D([0,∞),Rk) is endowed with the Skorohod J1-topology (see, e.g., Ethier
and Kurtz [21]). For a sequence of paths {fn}, for each n > 1 the paths f̄n and f̃n

are defined by

f̄n(·) =
1
n
fn(n·) and f̃n(·) =

1√
n
fn(n·).

The sequence {fn} is said to converge to f uniformly on compact sets if for each
T > 0

sup
06t6T

|fn(t)− f (t)| → 0

as n→∞. We denote such converge by fn → f u.o.c.
In section 2, the queueing network model is introduced. The heavy traffic limit

theorem is stated in section 3. The Skorohod problem is stated in section 4, where a
general oscillation result is established. In section 5, we represent the queue length
process as a solution to a Skorohod problem. In section 6 we prove a fluid limit theorem
which will be used in the proof of the heavy traffic limit theorem. In section 7 we
prove a stopping time property that is needed to prove a martingale property. The
proof of the heavy traffic limit theorem is completed in section 8. Extensions will be
discussed in section 9.

2. The queueing network model

The queueing network under consideration has d single server stations indexed
by i ∈ I ≡ {1, . . . , d}. Customers visiting station i are homogeneous in terms of
service time distribution and routing. We assume that routing is deterministic. That is,
customers leaving station i all go next to station σ(i) ∈ I or leave the system. In the
latter case we let σ(i) = 0. Because all customers leaving station i are deterministically
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Figure 1. A five station network.

routed to a station, the routing must be feedforward. The network is sometimes
called an in-tree network. This routing assumption is quite restrictive by conventional
standards. An example of such a network is pictured in figure 1. (Other routing
assumptions will be discussed in section 9.) We assume that the size bi of the buffer
associated with each station i is finite, i ∈ I. Therefore, at each station i there are
at most bi customers, including the one possibly being served. We assume that the
network is open. That is, all customers eventually leave the network.

Associated with each station i, there are two sequences of iid positive random
variables {uik, k > 1} and {vik, k > 1}, defined on some probability space (Ω,F ,P).
We assume that

E(ui1) = 1, Var(ui1) = cai <∞, i ∈ I,

E(vi1) = 1, Var(vi1) = csi <∞, i ∈ I.

Also associated with each station i, there are two numbers: αi > 0 and mi > 0. The
iid random variables {vik, k > 1} are the normalized service times and the iid random
variables {uik, k > 1} are the normalized interarrival times. The actual service times
for the kth customer at station i is mivik. If αi = 0, there are no external customer
arrivals to station i. If αi > 0, the interarrival between the kth and the (k − 1)th
customer is uik/αi. Although it is not necessary, for notational convenience, we
assume that αi > 0 for each i ∈ I.

An important feature in the network is that the sizes of buffers are finite. When the
buffer at a downstream station σ(i) is full, server i stops working although a customer
may still occupy station i. This phenomenon is called the “block-and-hold-0” blocking;
see Cheng and Yao [13] for a discussion of general blocking mechanisms. One can
envision that when the kth customer enters service at station i, a service time clock
(stopwatch) is set to mivik. The service is completed when the clock reading reaches
zero. During the service period, the clock is turned off or on depending on whether the
server is blocked or not. Our blocking mechanism applies to arrivals too. Upon the
kth external arrival to station i, an arrival clock at station i is set to ui,k+1/αi. When
the clock reading reaches zero, the k + 1 customer arrives at station i. During this
interarrival period, the arrival clock is turned off or on depending on whether buffer i
is full or not.
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We admit that our blocking mechanism for external arrivals is restrictive for some
applications. However, in many manufacturing applications, external arrivals can be
controlled. Our blocking mechanism represents one way of modeling arrival processes.
In section 9, we will discuss other blocking mechanisms, including loss networks. In
heavy traffic analysis, the blocking in our network introduces complications that do
not exist in networks with infinite buffers.

For i ∈ I, let Zi(t) be the number of customers at station i at time t, including
possibly the one being served. Note that Zi(0) is the initial number of customers at
station i at time 0. It represents part of an initial network configuration. Let Yi(t) be
the amount of time that server i has been idle while server i is not blocked in time
interval [0, t], and let Yi+d(t) be the amount of time that buffer i has been full in time
interval [0, t]. That is,

Yi(t) =

∫ t

0
1{Zi(s)=0,Zσ(i)(s)<bσ(i)} ds, Yi+d(t) =

∫ t

0
1{Zi(s)=bi} ds. (2.1)

Hereafter, whenever σ(i) = 0 condition {aσ(i) < bσ(i)} always holds for any a, b ∈ Rd.
Let Z(t) = (Z1(t), . . . ,Zd(t))′ and Y (t) = (Y1(t), . . . ,Y2d)′. The process Z =
{Z(t), t > 0} is called the queue length process and the process Y = {Y (t), t > 0} is
called the allocation process. Clearly, Y is a nondecreasing, continuous process. Given
the iid interarrival time sequences and service time sequences, one can uniquely con-
struct the queue length process and the allocation process. Such detailed construction,
though not attempted here, is implicitly assumed in section 7.

For each i ∈ I and t > 0, let

Fi(t) = t− Yi+d(t), Bi(t) = t− Yi(t)− Yσ(i)+d(t). (2.2)

Hereafter, whenever σ(i) = 0, Yσ(i)+d(t) is understood to be 0.
It is clear that Bi(t) is the cumulative amount of time that server i has been busy

in [0, t] and Fi(t) is the cumulative amount of time that buffer i has not been full in
[0, t]. That is,

Fi(t) =

∫ t

0
1{Zi(s)<bi} ds, Bi(t) =

∫ t

0
1{Zi(s)>0,Zσ(i)(s)<bσ(i)} ds.

3. A heavy traffic limit theorem

To state a heavy traffic limit theorem, we need to consider a sequence of networks
indexed by n. The network depends on the index n through the external arrival rates
αn, mean service times mn and buffer sizes bn, where

αn =
(
αn1 , . . . ,αnd

)′
, mn =

(
mn

1 , . . . ,mn
d

)′
, bn =

(
bn1 , . . . , bnd

)′
.

We let µni = 1/mn
i be the mean service rate at station i. The normalized interarrival

and service times, and the routing do not depend on n. Let Zn =
{
Zn(t), t > 0

}
be the queue length process and Y n =

{
Y n(t), t > 0

}
be the allocation process
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associated with the nth network. In the following theorem, P is the d × d routing
matrix, i.e., Pij = 1 if station i customers go next to station j and Pij = 0, otherwise.

Theorem 3.1. Assume that as n→∞,

αn → α > 0 and mn → m > 0, (3.1)
bn√
n
→ b > 0, (3.2)

√
n
(
αn −

(
I − P ′

)
µn
)
→ θ. (3.3)

Assume that for each n, Zn(0) is defined on the probability space (Ω,F ,P) and Zn(0)
is independent of the interarrival and service time sequences such that

1√
n
Zn(0) =⇒ ξ, n→∞. (3.4)

Assume further that

Γ = diag
(
α1c

a
1 , . . . ,αdc

a
d

)
+
(
I − P ′

)
diag

(
µ1c

s
1, . . . ,µdc

s
d

)
(I − P ) (3.5)

is (strictly) positive definite. Then(
1√
n
Zn(n·), 1√

n
Y n(n·)

)
=⇒

(
Z∗(·),Y ∗(·)

)
, as n→∞, (3.6)

where Z∗, together with Y ∗, is a semimartingale reflecting Brownian motion (RBM)
defined on a filtered probability space (Ω∗, {F∗t },F∗,P∗). The process (Z∗,Y ∗) is
uniquely determined in distribution from the following equations:

P∗-a.s., Z∗(t) = Z∗(0) +X∗(t) +RY ∗(t) for all t > 0, (3.7)

P∗-a.s., 0 6 Z∗(t) 6 b for all t > 0, (3.8)

Z∗(0) has the same distribution as ξ, (3.9)

Z∗(·) and Y ∗(·) are{F∗t }-adapted, (3.10)

P∗-a.s., Y ∗(0) = 0, Y ∗(·) is continuous and nondecreasing, (3.11)

P∗-a.s., for i ∈ I, Y ∗i (·) increases only at times t when Z∗i (t) = 0, (3.12)

P∗-a.s., for i ∈ I, Y ∗i+d(·) increases only at times t when Z∗i (t) = bi, (3.13)

X∗ is a Brownian motion with drift θ and covariance matrix Γ, (3.14){
X∗(t)− θt

}
is an

{
F∗t
}

-martingale, (3.15)

where θ is defined in (3.3), Γ is defined in (3.5) and

R =
((
I − P ′

)
diag(µ),

[(
I − P ′

)
diag(µ)

]
σ
− diag(α)

)
. (3.16)

For a d× d matrix A and a vector x ∈ Rd,

xσ = (xσ(1), . . . ,xσ(d))
′ and Aσx = Axσ. (3.17)
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The theorem will be proved in section 8. The vector θ, the matrix Γ and the
d× 2d matrix R are called the drift, the covariance matrix and the reflection matrix of
the RBM Z∗, respectively. For i ∈ I , the ith column of R is the direction of reflection
used when Z∗i (t) = 0, and the (i+d)th column of R is the direction of reflection used
when Z∗i (t) = bi. Because of (3.8), the RBM Z∗ lives in the d-dimensional box S
defined by

S ≡
{
x = (x1, . . . ,xd)

′ ∈ Rd: 0 6 xi 6 bi for i ∈ I
}
. (3.18)

Therefore, the RBM Z∗ in the theorem has state space S. From now on, we call
the RBM Z∗ a (Γ, θ,R,S)-RBM. The process Y ∗ is the pushing processes associated
with the RBM Z∗. In the stochastic differential equation terminology, the process
(Z∗,Y ∗) is a weak solution to (3.7)–(3.14). Because the corresponding Skorohod
problem may not have a unique solution (see the example at the end of section 5), it
is not known whether a (strong) solution exists for each Brownian motion X∗ defined
on a probability space. The uniqueness of (Z∗,Y ∗) (in distribution) follows from Dai
and Williams [18] that generalized an earlier result of Taylor and Williams [37] for
RBM’s in an orthant.

4. The Skorohod problem and an oscillation theorem

In this section, we define the Skorohod problem and establish an oscillation result
for solutions to a family of Skorohod problems. We choose to prove our results in a
general polyhedral state space S, instead of the d-dimensional box introduced in (3.18).
We believe our oscillation result in a general state space is of independent interest.

In this section we follow most of the notation introduced in section 1 of Dai and
Williams [18]. Symbols m and F are reused in this section. In the subsequent sections,
they retain the original meaning. The polyhedron is defined in terms of m (m > 1)
d-dimensional unit vectors {ni, i ∈ J}, J ≡ {1, . . . ,m}, and an m-dimensional
vector a = (a1, . . . , am)′. The state space S is defined by

S ≡
{
x ∈ Rd: ni · x > ai for all i ∈ J

}
, (4.1)

where ni · x = n′ix denotes the inner product of the vectors ni and x. It is assumed
that the interior of S is non-empty and that the set {(n1, a1), . . . , (nm, am)} is minimal
in the sense that no proper subset defines S. That is, for any strict subset K ⊂ J , the
set {x ∈ Rd: ni · x > ai ∀i ∈ K} is strictly larger than S. This is equivalent to the
assumption that each of the faces

Fi ≡ {x ∈ S: ni · x = ai}, i ∈ J , (4.2)

has dimension d − 1 (cf. [8, theorem 8.2]). As a consequence, ni is the unit normal
to Fi that points into the interior of S. Let N denote the m× d matrix whose ith row
is given by the row vector n′i for each i ∈ J .
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For each face Fi, i ∈ J , we associate a d-dimensional vector vi with it. We use
R to denote the d×m matrix whose ith column vi. Let us first define the Skorohod
problem associated with the data (S,R). The matrix R is called the reflection matrix.

In the following, for a Borel set U ⊂ Rk, k > 1, we define D([0,T ],U ) =
{w : [0,T ]→ U , w is right continuous in [0,T ) having left limits in (0,T ]}.

Definition 4.1 (The Skorohod problem). Given T > 0 and x ∈ D([0,T ],Rd) with
x(0) ∈ S, an (S,R)-regulation of x over [0,T ] is a pair (z, y) ∈ D([0,T ], S) ×
D([0,T ], Rm+ ) such that

(i) z(t) = x(t) +Ry(t) for all t ∈ [0,T ],

(ii) z(t) ∈ S for all t ∈ [0,T ],

(iii) for each i ∈ J ,

(a) yi(0) = 0,

(b) yi is nondecreasing,

(c)
∫

(0,T ](ni · z(t)− ai) dyi(t) = 0.

Remarks. (a) Although in the rest of this paper, y is known to be continuous, we
allow y to have jumps in the definition of the Skorohod problem.

(b) The integral
∫

(0,T ](ni ·z(t)−ai) dyi(t) is well defined as a Lebesgue–Stieltjes
integral, because any path z ∈ D([0,T ],Rd) is bounded in [0,T ]. Loosely speaking,
condition (iii)(c) says that yi can increase only at times t ∈ [0,T ] for which z(t) ∈ Fi.
(See lemma 4.4 for a more precise statement.)

The existence and uniqueness of an (S,R)-regulation heavily depends on the
reflection matrix R.

Definition 4.2. For each ∅ 6= K ⊂ J , define FK =
⋂
i∈K Fi. Let F∅ = S. A set

K ⊂ J is maximal if K 6= ∅, FK 6= ∅, and FK 6= F
K̃

for any K̃ ⊃ K such that

K̃ 6= K.

Now we introduce an assumption on N and R.

Completely-S assumption. For each maximal K ⊂ J ,

(S.a) there is a positive linear combination v =
∑

i∈K civi (ci > 0 ∀i ∈ K) of the
{vi, i ∈K} such that ni · v > 0 for all i ∈K;

(S.b) there is a positive linear combination η =
∑

i∈K cini (ci > 0 ∀i ∈ K) of the
{ni, i ∈K} such that η · vi > 0 for all i ∈K.

The labels (S.a) and (S.b) stand for S-condition (a) and (b), respectively. The
origin of these labels becomes apparent when the conditions are written in matrix form
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as below. For a vector x ∈ Rk, the notation x > 0 indicates that all coordinates of
x are strictly positive, and the notation x > 0 indicates that all coordinates of x are
nonnegative.

Definition 4.3. A matrix A is called an S-matrix if there is a vector x > 0 such that
Ax > 0.

For an m × m matrix A and K ⊂ J , let AK denote the |K| × |K| matrix
obtained from A by deleting those rows and columns with indices in J\K.

Conditions (S.a) and (S.b) are equivalent to the following:

(S.a) the matrix (NR)K is an S matrix;

(S.b) the matrix (NR)′K is an S matrix.

Definition 4.4. The convex polyhedron S is simple if for each K ⊂ J such that
K 6= ∅ and FK 6= ∅, exactly |K| distinct faces contain FK .

The convex polyhedron S is simple if and only if for each K ⊂ J , FK 6= ∅
implies that K is maximal. One can check that the d-dimensional box in (3.18) is a
simple polyhedron. The following proposition was proved in Dai and Williams [18,
proposition 1.1]. It is a straightforward generalization of Reiman and Williams [36,
lemma 3].

Proposition 1. Suppose that S is simple. Then (S.a) holds for all maximal K ⊂ J if
and only if (S.b) holds for all maximal K ⊂ J .

The following oscillation result is concerned with paths in a family of (Sr,Rr)-
regulations indexed by r > 0. In the case that S = Rd+, and all paths are continuous
and from a single (S,R)-regulation, this result was proved previously by Bernard and
El Kharroubi [2]. Dai and Williams [18] generalized the result to a general polyhedral
state space. Our proof here is adapted from [18].

For any f ∈ D([t1, t2],Rk) with some k > 1, let

Osc
(
f , [t1, t2]

)
= sup
t16s6t6t2

∣∣f (t)− f (s)
∣∣,

Osc
(
f , [t1, t2)

)
= sup
t16s6t<t2

∣∣f (t)− f (s)
∣∣,

||∆f ||(t1,t2] = sup
t1<s6t2

∣∣∆f (s)
∣∣,

where, as before, ∆f (s) = f (s) − f (s−) and f (s−) is the left limit at s. Note that
when f is left continuous at t2, Osc(f , [t1, t2]) = Osc(f , [t1, t2)).
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We consider a sequence of state spaces Sr indexed by r > 0. The shape of the
space state does not change with r. That is, the normal vectors {ni, i ∈ J} do not
depend on r. However, the size (ar1, . . . , arm)′ of the state space depends on r. Hence,

Sr ≡
{
x ∈ Rd: ni · x > ari for all i ∈ J

}
.

The reflection matrix associated with each state space Sr is Rr, whose ith column is
denoted by vri . Recall that N is a matrix whose ith row is given by n′i.

Theorem 4.2. Assume that Rr → R as r →∞ and (N ,R) satisfies the Completely-S
assumption. There exist constants κ > 0 and r̂ > 0 that depend only on (N ,R)
such that for any T > 0, r > r̂, x ∈ D([0,T ],Rd) with x(0) ∈ Sr, and an (Sr,Rr)-
regulation (y, z) of x over [0,T ], the following holds for each interval [t1, t2] ⊂ [0,T ]:

Osc
(
y, [t1, t2]

)
6 κ
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
,

Osc
(
z, [t1, t2]

)
6 κ
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
.

We leave the lengthy proof to the end of this section. To prepare for the proof,
we need a few lemmas.

Lemma 4.3. Let f ∈ D([0,∞),R). Suppose f is of bounded variation on each finite
time interval, and assume that f (0) = 0. Then for each t > 0:

f 2(t) +
∑

0<s6t

[
∆f (s)

]2
= 2

∫
(0,t]

f (s) df (s).

Proof. The result is quite standard. See, for example, Last and Brandt [30, theo-
rem A.4.6]. �

Let g ∈ D([0,∞),R) be a nondecreasing function. The function g is said to
increase at time t > 0 if there exists a δ > 0 such that g(u) < g(v) for each t− δ <
u < t < v < t+ δ. The following lemma should also be standard. For completeness,
we provide a direct proof.

Lemma 4.4. Let g ∈ D([0,∞,R) be a nondecreasing function and f ∈ D([0,∞),R)
be a nonnegative function. For t > 0, if

∫
(0,t] f (s) dg(s) = 0 and f (s) > 0 for s ∈ [0, t),

then g(s) = g(0) for s ∈ [0, t).

Proof. Suppose that there is an s ∈ (0, t) such that g(s) > g(0). If g has jump at a
point t′ ∈ (0, t), then ∫

(0,t]
f (s) dg(s) > f

(
t′
)
∆g
(
t′
)
> 0,
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contradicting the fact that
∫

(0,t] f (s) dg(s) = 0. Thus g must be continuous on (0, t).
Let

t′ = inf
{
s ∈ (0, t): g(s) > g(0)

}
.

By the continuity of g, g(t′) = g(0). By the definition of t′, for any s > t′, g(s) >
g(t′). Because f (t′) > 0 and f is right continuous, there is a δ > 0 such that
inft′6s6t′+δ f (s) > 0. Now,∫

(0,t]
f (s) dg(s) >

∫
(t′,t′+δ]

f (s) dg(s) > inf
t′6s6t′+δ

f (s)
(
g
(
t′ + δ

)
− g
(
t′
))
> 0,

contradicting the fact that
∫

(0,t] f (s) dg(s) = 0. Therefore, g(s) = g(0) for 0 6 s < t. �

Lemma 4.5. Let S = [0,∞) and R = 1. Then the (S,R)-regulation of x with
x(0) > 0 has a unique solution (z, y) given by

y(t) = sup
06s6t

x−(s) for 0 6 t 6 T ,

z(t) = x(t) + y(t),

where x−(t) = max{−x(t), 0}.

Proof. We first show the uniqueness. Suppose there are two solutions (z, y) and (ẑ, ŷ)
to the (S,R)-regulation of x. Then z− ẑ = y− ŷ. Now let f = y− ŷ. By lemma 4.3,
we have for each t > 0

06 f 2(t) +
∑

0<s6t

[
∆f (s)

]2
= 2

∫
(0,t]

f (s) df (s)

= 2
∫

(0,t]

(
z(s)− ẑ(s)

)
d
(
y(s)− ŷ(s)

)
=−2

∫
(0,t]

ẑ(s) dy(s)− 2
∫

(0,t]
z(s) dŷ(s) 6 0.

Hence, f (t) = 0, thus proving uniqueness.
For existence, let y(t) = sup06s6t x

−(s). Since x(0) > 0, x−(0) = 0 and so
y(0) = 0. Clearly,

z(t) ≡ x(t) + y(t) > x(t) + x−(t) > 0 for all t > 0,

y is nondecreasing, and, hence, it has left limits on (0,T ]. Since x(·) is right continu-
ous, y is right continuous. It remains to be verified that y satisfies property (iii)(c) in
the definition of the Skorohod problem. Suppose y has a jump at time t. Because

y
(
t−
)

= sup
06s<t

x−(s) and y(t) = max
{
y
(
t−
)
,x−(t)

}
> y
(
t−
)
,

we have y(t) = x−(t) = −x(t). Thus, z(t) = x(t) + y(t) = x(t) + x−(t) = 0.
Therefore, without loss of generality, we assume that y is continuous. If y increases
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at time t, it follows from the proof of lemma 8.1 in Chung and Williams [14] that
z(t) = 0. Therefore, by Graves [22, p. 269],∫ t

0
z(s) dy(s) = lim

n→∞

2nt∑
k=1

(
inf

s∈[(k−1)t/2n, kt/2n]
z(s)

)(
y

(
kt

2n

)
− y
(

(k − 1)t
2n

))
= 0.

�

Let C be the constant determined in Dai and Williams [18, lemma B.1]. It
depends on {ni, i ∈ J} only, not on (ar1, . . . , arm)′. For each ε > 0 and K ⊂ J
(including the empty set), define

F r,ε
K =

{
x ∈ Rd: 0 6 nix− ari 6 Cε for all i ∈K
and nix− ari > ε for all i ∈ J\K

}
, (4.3)

where Cε = Cmε. The following lemma, which was proved in [18, lemma 4.1], plays
a key role in the proof of the oscillation theorem.

Lemma 4.6. For each ε > 0,

Sr =
⋃
K∈C

F r,ε
K , (4.4)

where C denotes the collection of subsets of J consisting of all maximal sets in J
together with the empty set.

Proof of theorem 4.2. Our proof is adapted from that of lemma 4.3 in Dai and
Williams [18] who generalized lemma 1 of Bernard and El Kharroubi [2]. We proceed
via an induction on the size of J , the index set for the faces of S. Throughout this
proof, T , x, y, z, t1, t2 will be as in the statement of the theorem. In general, z and
y depend on the index r, but we suppress the dependence in the proof.

First consider the case |J | = 1. Then Rr = vr1 is a vector in Rd and vr1 → v1 as
r →∞. By (S.a), n1 · v1 > 0. Take r0 such that

n1 · vr1 >
1
2

(n1 · v1) and
||vr1 ||

(n1 · vr1)
6 2||v1||
n1 · v1

for r > r0. Fix r > r0. In this case, y is uniquely given by the one-dimensional
regulator mapping for n1 · x− ar1 in lemma 4.5:

y(t) =
(
− min

06s6t

(
n1 · x− ar1

)
(s)
)+/(

n1 · vr1
)

for all t ∈ [0,T ]. (4.5)

Together with

n1 · z(t) = n1 · x(t) + n1 · vr1y(t) for all t ∈ [0,T ],
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this defines a ([ar1,∞),n1 ·vr1)-regulation of n1 ·x over [0,T ]. The oscillation estimates
in the theorem then follow easily from (4.5) and the fact that z = x + vr1y. That is,
for r > r0,

Osc
(
y, [t1, t2]

)
6 1
n1 · vr1

Osc
(
x, [t1, t2]

)
6 2
n1 · v1

Osc
(
x, [t1, t2]

)
,

Osc
(
z, [t1, t2]

)
6 1 +

||vr1 ||
(n1 · vr1)

Osc
(
x, [t1, t2]

)
6 1 +

2||v1||
(n1 · v1)

Osc
(
x, [t1, t2]

)
.

Thus the theorem holds for |J | = 1 with r̂ = r0 and

κ = max

{(
1 +

2||v1||
n1 · v1

)
,

2
n1 · v1

}
.

For the induction step, suppose that the theorem is true for 1 6 |J | < m. Now
consider a state space S with |J | = m. Our proof of the induction step is separated
into several parts.

Part (a). We claim that there exists a constant C1 that depends only on (N ,R) and
a constant r0 > 0 such that for r > r0 and each K ∈ C\{J} (see lemma 4.6 for the
definition of C), if yJ\K does not increase on [t1, t2), then one has:

Osc
(
y, [t1, t2]

)
6C1

(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
, (4.6)

Osc
(
z, [t1, t2]

)
6C1

(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
. (4.7)

To see this, note that under the assumptions of the claim, for t ∈ [0, t2 − t1),

z(t+ t1) = z(t1) + x(t+ t1)− x(t1) +
∑
i∈K

vri
(
yi(t+ t1)− yi(t1)

)
. (4.8)

For any t′2 such that t1 6 t′2 < t2, it follows that (z(·+ t1), yK(·+ t1)− yK(t1)) is an
(SrK ,RrK)-regulation of z(t1) + x(· + t1) − x(t1) over [0, t′2 − t1]. If K = ∅, then y
does not increase on [t1, t′2] and the oscillation estimate trivially holds with C1 = 1.
If K 6= ∅, then K is maximal and so by Dai and Williams [18, lemma 4.2], (S.a)
and (S.b) hold for (NK ,RK). Then, by the induction assumption, since |K| < m, we
have that there exist constants CK > 1 and r0,K > 0 that depend only on (NK , RK),
such that for r > r0,K

Osc
(
y, [t1, t′2]

)
= Osc

(
yK(·+ t1), [0, t′2 − t1]

)
6CK

(
Osc
(
x(·+ t1)− x(t1),

[
0, t′2 − t1

])
+ sup
t1<s6t′2

∣∣∆yK(s)
∣∣)

6CK
(

Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

∣∣∆y(s)
∣∣).

Letting t′2 ↑ t2,

Osc
(
y, [t1, t2)

)
6 CK

(
Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

|∆y(s)|
)
.
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Therefore,

Osc
(
y, [t1, t2]

)
6Osc

(
y, [t1, t2)

)
+
∣∣∆y(t2)

∣∣
6 2CK

(
Osc
(
x, [t1, t2]

)
+ sup
t1<s6t2

∣∣∆y(s)
∣∣).

It follows from z(t) = x(t) +Rry(t) that

Osc
(
z, [t1, t2]

)
6Osc

(
x, [t1, t2]

)
+ ||Rr||Osc

(
y, [t1, t2]

)
6
(
1 + ‖Rr‖2CK

)
Osc
(
x, [t1, t2]

)
.

Because Rr → R as r →∞, we can choose r0 such that r0 is at least the maximum
of the r0,K’s for K running through C\{J} and ||Rr|| 6 ||R|| + 1 for r > r0. Let
C1 be the maximum of 1 + (||R|| + 1)2CK for K running through C\{J}. Then
inequalities (4.6) and (4.7) follow.

For parts (b) and (c), we let

ε =
(
Osc
(
x, [t1, t2]

)
+ ||∆y||(t1,t2]

)
.

Without loss of generality we assume that ε > 0. By lemma 4.6, z(t1) ∈ FC1ε
K for

some K ∈ C.

Part (b). Suppose that the K found above is not J . Then, for all i ∈ J\K,

d
(
z(t1),Fi

)
> ni · z(t1)− ari > C1ε,

where d(x,F ) is the distance from a point x to a set F . We claim that ni ·z(s)−ari > 0
for s ∈ [t1, t2] and i ∈ J\K. Assume, on the contrary, that there exist i ∈ J\K and
s ∈ [t1, t2] such that ni · z(s)− ari = 0. Let

t′2 = inf
{
s ∈ [t1, t2]: ni · z(s)− ari = 0

}
.

By the right continuity of z, ni · z(t′2)− ari = 0. From the definition of t′2, ni · z(s)−
ari > 0 for s ∈ [t1, t′2), and hence yi does not increase on [t1, t′2) by lemma 4.4. By
part (a), we have

ni · z
(
t′2
)
− ari =ni ·

(
z
(
t′2
)
− z(t1)

)
+ ni · z(t1)− ari

>−C1
(

Osc
(
x,
[
t1, t′2

])
+ sup
t1<s6t′2

∣∣∆y(s)
∣∣)+ C1ε > 0

contradicting ni · z(t′2)− ari = 0. Thus, z does not reach F ri for any i ∈ J\K during
the interval [t1, t2] and therefore yJ\K does not increase on [t1, t2].

Then part (a) implies that (4.6) holds in this case.

Part (c). Suppose that the K described before part (b) is equal to J . Since z(t1) ∈
FC1ε
J , by [18, lemma B.1], d(z(t1),Fi) 6 C2ε, where C2 = C1Cm. Now one of the

following two situations holds.
(i) For every i ∈ J , d(z(t),Fi) 6 2C2 ε for all t ∈ [t1, t2]. Then for each i ∈ J ,

0 6 ni · z(t)− ari 6 d
(
z(t),Fi

)
6 2C2ε for all t ∈ [t1, t2], (4.9)
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and so

Osc
(
ni · z, [t1, t2]

)
6 2C2ε. (4.10)

Now, since K = J is maximal, there is an x0 ∈ FJ and by (S.b) there exists a positive
linear combination η =

∑
i∈J γini (γi > 0 for all i) of the {ni, i ∈ J} such that

η · vi > 0 for all i ∈ J . Then

η ·
(
z(t)− x0

)
= η ·

(
x(t)− x0

)
+
∑
i∈J

(
η · vri

)
yi(t) for all t ∈ [0,T ]. (4.11)

Thus,

min
i∈J

(
η · vri

)
Osc
(
y1 + · · ·+ ym, [t1, t2]

)
6 Osc

(
η · z, [t1, t2]

)
+ Osc

(
η · x, [t1, t2]

)
6
∑
i∈J

γi
(
Osc
(
ni · z, [t1, t2]

)
+ Osc

(
ni · x, [t1, t2]

))
. (4.12)

Since

min
i∈J

(
η · vri

)
→ min

i∈J
(η · vi) > 0

as r →∞, using (4.10) and z = x+Rry, we see that one can choose a constant C3

depending only on (N , R) and an r1 > r0 such that

Osc
(
y, [t1, t2]

)
6 C3ε, Osc

(
z, [t1, t2]

)
6 C3ε.

(ii) There is an i ∈ J and t3 ∈ [t1, t2] such that d(z(t3),Fi) > 2C2ε. Define

t′1 = inf
{
t > t1: d

(
z(t),Fi

)
> 2C2ε for some i ∈ J

}
.

By the definition of t′1, for any δ > 0, over [t1, t′1−δ] we have the situation in part (c)(i)
above. That is,

Osc
(
y,
[
t1, t′1 − δ

])
6 C3ε, Osc

(
z, [t1, t′1 − δ

])
6 C3ε.

Letting δ → 0+, we have

Osc
(
y,
[
t1, t′1

))
6 C3ε, Osc

(
z,
[
t1, t′1

))
6 C3ε.

Over [t′1, t2], by lemma 4.6, we have z(t′1) ∈ FC1ε
K for some K ∈ C\{J}, and then

we have the situation in part (b). Thus,

Osc
(
y,
[
t′1, t2

])
6 C1ε, Osc

(
z,
[
t′1, t2

])
6 C1ε.
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Therefore,

Osc
(
y, [t1, t2]

)
6 Osc

(
y,
[
t1, t′1

))
+
∣∣∆y(t′1)∣∣+ Osc

(
y,
[
t′1, t2

])
6 (1 + C1 + C3)ε.

Hence, there is a constant C4 depending only on (N , R) such that

Osc
(
y, [t1, t2]

)
6 C4ε, Osc

(
z, [t1, t2]

)
6 C4ε.

Thus, the theorem holds for κ = max{C1,C3,C4} and r̂ = r1. �

5. Network dynamics and preliminaries

For each t > 0, i ∈ I and j > 0 let Ui(0) = Vi(0) = 0,

Ui(j) = ui1 + · · ·+ uij , Vi(j) = vi1 + · · · + vij ,

Ei(t) = max{k > 0: ui1 + · · ·+ uik 6 t},

Si(t) = max{k > 0: vi1 + · · · + vik 6 t}.
Let

Êi(t) = Ei(t)− t and Ŝi(t) = Si(t)− t for i ∈ I.
Let

Ê(t) =
(
Ê1(t), . . . , Êd(t)

)′
and Ŝ(t) =

(
Ŝ1(t), . . . , Ŝd(t)

)′
.

The two d-dimensional processes {Ê(t), t > 0} and {Ŝ(t), t > 0} contain all the
randomness in the queueing network. It is known that they satisfy the Functional
Strong Law of Large Numbers [23, lemma V.2.1]: P-a.s, as r→∞,

1
r
Ê(r·)→ 0 u.o.c.,

1
r
Ŝ(r·)→ 0 u.o.c. (5.1)

and the Functional Central Limit Theorem [4, section 17]: as r →∞,(
1√
r
Ê(r·), 1√

r
Ŝ(r·)

)
=⇒

(
E∗,S∗

)
, (5.2)

where E∗ and S∗ are two independent, d-dimensional Brownian motions with drift
zero and covariance matrices diag(ca1 , . . . , cad) and diag(cs1, . . . , csd), respectively.

Recall that we are considering a sequence of networks indexed by n. In particular,
αni and µni are the external arrival rate to station i and the service rate of server i for
the nth network. Let

Eni (t) = Ei
(
αni t
)
, Sni (t) = Si

(
µni t
)
.

If server i has been busy all the time in [0, t], Sni (t) is the number of services completed
by time t at station i. Similarly, if buffer i has never been full in [0, t], Eni (t) is the
number of arrivals by time t to station i. Recall that Fni (t) is the cumulative amount
of time that buffer i is not full by time t. From our model assumption, Eni (Fni (t))
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is the number of external arrivals to station i by time t in the nth network. Also,
Bn
i (t) is the cumulative amount of time that server i has been working by time t and

Sni (Bn
i (t)) is the number of departures from station i by time t in the nth network.

Now we can write down the main equation that governs the dynamics of the queue
length process. Namely,

Zni (t) = Zni (0) +Eni
(
Fni (t)

)
+

∑
j∈I,σ(j)=i

Snj
(
Bn
j (t)
)
− Sni

(
Bn
i (t)
)
, i ∈ I, (5.3)

where Zni (0) is the initial queue length at station i. Let

En
(
Fn(t)

)
=
(
En1
(
Fn1 (t)

)
, . . . ,End

(
Fnd (t)

))′
and

Sn
(
Bn(t)

)
=
(
Sn1
(
Bn

1 (t)
)
, . . . ,Snd

(
Bn
d (t)
))′
.

Recall that the routing matrix is defined as

Pij =
{

1 if station i customers go to station i,
0 otherwise.

Then we have the vector form of (5.3):

Zn(t) = Zn(0) +En
(
Fn(t)

)
− (I − P ′)Sn

(
Bn(t)

)
. (5.4)

Following Harrison [24], we introduce the centered processes

Ên(t) =
(
Ên1 (t), . . . , Ênd (t)

)′
and Ŝn(t) =

(
Ŝn1 (t), . . . , Ŝnd (t)

)′
,

where

Êni (t) = Eni (t)− αni t = Êi
(
αni t
)

and Ŝni (t) = Sni (t)− µni t = Ŝi
(
µni t
)
, i ∈ I.

(5.5)
It follows from (5.4) that

Zn(t) =Zn(0) + Ên
(
Fn(t)

)
−
(
I − P ′

)
Ŝn
(
Bn(t)

)
+ diag

(
αn
)
Fn(t)−

(
I − P ′

)
diag

(
µn
)
Bn(t). (5.6)

It follows from (5.6) and (2.2) that

Zn(t) = Zn(0) +Xn(t) +RnY n(t), (5.7)

where

Xn(t) = Ên
(
Fn(t)

)
−
(
I − P ′

)
Ŝn
(
Bn(t)

)
+
(
αn −

(
I − P ′

)
µn
)
t, (5.8)

Rn is the d× 2d matrix given by

Rn =
((
I − P ′

)
diag

(
µn
)
,
[(
I − P ′

)
diag

(
µn
)]
σ
− diag

(
αn
))
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and for a matrix A, Aσ is defined in (3.17). Let Sn be the d-dimensional box defined
by

Sn =
{
x ∈ Rd: 0 6 xi 6 bni ∀i ∈ I

}
.

One can check that for each sample path:

(i) Zn(t) = Zn(0) +Xn(t) +RnY n(t) for all t > 0,

(ii) Zn(t) ∈ Sn for all t > 0,

(iii) for each i = 1, . . . , 2d,

(a) Y n
i (0) = 0,

(b) Y n
i is nondecreasing and continuous,

(c) for i = 1, . . . , d, Yi increases only when Zni (t) = 0 and for i = d + 1,
. . . , 2d, Y n

i increases only when Zni (t) = bni .

It follows that for each sample path, the pair (Zn(·),Y n(·)) is an (Sn,Rn)-
regulation of Zn(0) +Xn(·).

Using the notion in section 4, for each boundary face of Sn, there is a unit
vector ni that is normal to the face. (We number faces such that the ith face is
{x ∈ Sn: xi = 0} for i = 1, . . . , d and {x ∈ Sn: xi = bni } for i = d + 1, . . . , 2d.)
Recall that N is a 2d × d matrix whose ith row is the row vector n′i. It is easy to
check that

N = (I ,−I)′,

where I is the d×d identity matrix. Under the assumptions (3.1), as n→∞, Rn → R
as defined in (3.16).

Lemma 5.1. The completely-S assumption in theorem 4.2 holds for (N ,R).

Proof. Because the state space Sn is simple, by proposition 1, it is enough to show
that for each maximal K ⊂ J ≡ {1, . . . , 2d}, (NR)K is an S-matrix. Let R0 and Rb
be two d× d submatrices of R such that R = (R0,Rb). It is easy to check that

NR =

(
R0 Rb
−R0 −Rb

)
.

A K ⊂ J is maximal if
⋂
i∈K Fni is non-empty. Because Fni and Fni+d are parallel

to each other, a non-empty K is maximal if and only if for each i ∈K, i+ d /∈ K.
Let M = (NR)K . Then M has the following form:

M =

(
M1 M2

M3 M4

)
=

(
M1 0
0 M4

)
+

(
0 M2

M3 0

)
,

where M1 is a principal submatrix of R0, M4 is a principal submatrix of −Rb, M2

is a submatrix of Rb and M3 is a submatrix of −R0. Because K is maximal, M3
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does not contain any diagonal elements of −R0. Hence, M3 is a nonnegative matrix.
Similarly, M2 is a nonnegative matrix. Because R0 is a completely-S matrix, hence,
M1 is an S-matrix. Because −Rb is an upper triangular matrix with positive diagonal
elements, M4 is an S-matrix. Thus, M is an S-matrix. �

We end this section by presenting an example in which the associated Skorohod
problem does not have a unique solution. Consider, for example, a network of two
stations in tandem. The routing matrix

P =

(
0 1
0 0

)
.

Assume that αn = (1, 0)′ and µn = (1, 1)′ for each n. Then the corresponding
reflection matrix

R =

(
1 0 −1 1
−1 1 0 −1

)
.

We claim that the (S,R)-regulation of x(·) is not unique for some path x(·). Here
the state space S is a box, say, {x ∈ R2: 0 6 xi 6 1 for i = 1, 2}. Note that the
directions of reflection that correspond to the corner (0, 1)′ are parallel, both being
(1,−1)′. Let x1(t) = −t and x2(t) = 1 + t for t > 0. One can check that both (z, y)
and (ẑ, ŷ) are (S,R)-regulations of x(·), where, for t > 0,

z1(t) = 0, z2(t) = 1, y1(t) = t, y2(t) = y3(t) = y4(t) = 0,

ẑ1(t) = 0, ẑ2(t) = 1, ŷ1(t) = ŷ2(t) = ŷ3(t) = 0, and ŷ4(t) = t.

Thus, the conventional continuous mapping approach for proving heavy traffic
limit theorems cannot be applied to the network.

6. Fluid limits

Theorem 6.1 (Fluid limit theorem). Assume that (3.1)–(3.3) in theorem 3.1 hold.
Then, for each sample path such that (5.1) holds,

1
n
Fn(n·) −→ et u.o.c., and

1
n
Bn(n·) −→ et u.o.c. (6.1)

Proof. Fix a sample path such that (5.1) holds. For a sequence of paths fn, recall
that

f̄n(t) =
1
n
fn(nt).

By (5.1),

Ên(nt)
n

=
Ê(αnt)
n

→ 0 u.o.c. and
Ŝn(nt)
n

=
Ŝ(µnt)
n

→ 0 u.o.c. (6.2)
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Let ω be a fixed sample path such that (6.2) holds. We claim that as n→∞,

X
n

(t)→ 0 u.o.c.

In fact, for s > 0,∣∣X n
(s)
∣∣ 6 1

n

∣∣Ên(Fn(ns)
)∣∣+

∥∥(I − P ′)∥∥ 1
n

∣∣Ŝn(Bn(ns)
)∣∣+

∣∣αn − (I − P ′)µn∣∣s,
where for a matrix A, ||A|| = maxi

∑
j |Aij |. Thus,

sup
06s6t

∣∣X n
(s)
∣∣ 6 1

n
sup

06s6t

∣∣Ên(ns)
∣∣+∥∥(I−P ′)∥∥ 1

n
sup

06s6t

∣∣Ŝn(ns)
∣∣+∣∣αn−(I−P ′)µn∣∣t

and sup06s6t |X
n

(s)| → 0 as n→∞.
It is easy to check that (Z

n
(·),Y n

(·)) is an (S
n

,Rn)-regulation of Z
n

(0)+X
n

(·),
where

S
n

=
{
x ∈ Rd: 0 6 xi 6 bni /n ∀i ∈ I

}
.

By lemma 5.1, theorem 4.2 and the fact that Y
n

(·) is continuous, there exist constants
κ > 0 and n0 > 0 such that for each t1 < t2 and n > n0,

Osc
(
Y
n

(·,ω), [t1, t2]
)
6 κOsc

(
X

n
(·), [t1, t2]

)
. (6.3)

Since |Y n
(t) − Y n

(s)| 6 2d(t− s) for all n and t > s > 0, the sequence {Y
n

(·)} is
precompact in C([0,∞),R2d). Let Y be a limit of this sequence. Because X

n
(·,ω)→

0 u.o.c. as n→∞, it follows from (6.3) that Osc(Y , [t1, t2]) = 0 for any 0 6 t1 < t2.
Since Y (0) = 0, Y (t) = 0 for all t > 0. Because each limit point Y is identically
zero, Y

n
(·)→ 0 u.o.c. as n→∞. The lemma then follows from (2.2). �

7. A stopping time property

In this section we prove a stopping time property that is essential to the proof
of the main theorem. Let p, q ∈ Zd+ be d-dimensional indexes. We use Ui(· ∧ j)
to denote process {Ui(k ∧ j), k > 0}. For a d-dimensional index p, let U (· ∧ p) =
(U1(· ∧ p1), . . . ,Ud(· ∧ pd)). For any p, q ∈ Zd+, let

Gnp,q = σ
{
U
(
· ∧ (p+ e)

)
,V
(
· ∧ (q + e)

)
,Zn(0)

}
, (7.1)

where e is the d-dimensional vector of ones. We assume that Gnp,q has been augmented
with all P-null sets. Recall that Eni (Fni (t)) is the number of external arrivals to station i
by time t and Sni (Bn

i (t)) is the number of departures from station i by time t.

Lemma 7.1 (Stopping time property). For any p, q ∈ Zd+ and t > 0,{
En
(
Fn(t)

)
= p, Sn

(
Bn(t)

)
= q
}
∈ Gnp,q. (7.2)
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Proof. Since we are going to prove (7.2) is true for each n > 1, we drop the
superscript n in this proof. Let

A(t) = E
(
F (t)

)
and D(t) = S

(
B(t)

)
.

When the event Ai(t) = pi occurs, the dynamics of the network in [0, t] does not
depend on the interarrival times ui` for ` > pi+1. Similarly, when the event Di(t) = qi
occurs, the dynamics of the network in [0, t] does not depend on the service times vi`
for ` > qi + 1. Thus, the lemma is intuitively obvious. However, a rigorous proof
is needed to show that A(t) and D(t) measurably depend on interarrival and service
times. The proof essentially requires us to go through the detailed construction of A(t)
and D(t) from the primitive interarrival and service times.

We mimic the proof in Williams [38], where open multiclass queueing networks
with unlimited buffer size were considered. An event time is the instant when a
service completion or an arrival has just occurred. Let e0 = 0 and el be the lth event
time. Because the mean interarrival times and mean service times are positive, with
probability one, el →∞ as l→∞. Thus, we have, with probability one,{

A(t) = p, D(t) = q
}

=
⋃
k>1

⋂
l>k

{
A(t ∧ el) = p, D(t ∧ el) = q

}
.

Therefore, to show (7.2), it is enough to show{
A(t ∧ el) = p, D(t ∧ el) = q

}
∈ Gp,q.

for each t > 0, l > 0 and p, q ∈ Zd+. (Here we used the fact that each Gp,q has been
augmented with all P-null sets.) For each t > 0 and i ∈ I , let Rai (t) be the remaining
time (from time t) for the next external arrival to station i to occur if the arrival will
never be turned off. Similarly, let Rsi (t) be the remaining time for the next service at
station i to complete if the service will never be interrupted. If there is no customer
in service at time t, Rsi (t) = ∞. We adopt the convention that ∞ − a = ∞ and
min{∞, a} = a for any constant a. We want to use induction to show that for each
l > 0

Cl,p,q ≡
{
A(t ∧ el) = p, D(t ∧ el) = q

}
∈ Gp,q, (7.3)

1{A(t∧el)=p,D(t∧el)=q}ξl ∈ Gp,q (7.4)

hold for each t > 0 and p, q ∈ Zd+, where

ξl =
(
Z(t ∧ el), Ra(t ∧ el), Rs(t ∧ el), t ∧ el

)
.

From our model assumption, Ai(0) = 0 and Di(0) = 0, Rai (0) = ui1/αi and

Rsi (0) =

{
mivi1 if Zi(0) > 0,

∞ if Zi(0) = 0.

Thus, ξ0 = (Z(0),Ra(0),Rs(0), 0) ∈ G0,0. For any (p, q) 6= (0, 0),

1{A(t∧e0)=p,D(t∧e0)=q}ξ0 = 0 ∈ Gp,q.



J.G. Dai, W. Dai / A heavy traffic limit theorem 27

Therefore, (7.3) and (7.4) hold for l = 0.
We now make the induction assumption that Cl,p,q ∈ Gp,q and 1Cl,p,qξl ∈ Gp,q

for all p, q ∈ Zd+ and t > 0. We would like to show that Cl+1,p,q ∈ Gp,q and
1Cl+1,p,qξl+1 ∈ Gp,q for all p, q ∈ Zd+ and t > 0. We first show that 1Cl+1,p,qξl+1 ∈ Gp,q.
Note that

1Cl+1,p,qξl+1 = 1Cl+1,p,qξl+11{t6el} + 1Cl+1,p,qξl+11{el<t}.

It is clear that

1Cl+1,p,qξl+11{t6el} = 1Cl,p,qξl1{t=t∧el} ∈ Gp,q

by the induction assumption. It remains to be shown that

1Cl+1,p,qξl+11{el<t} ∈ Gp,q.

On {t > el},

el+1 = t ∧ el + min
i∈I\F , j∈I\B

{
Rai (t ∧ el), Rsj (t ∧ el)

}
, (7.5)

where F ⊂ I is the set of buffers that are full at time t ∧ el, i.e.,

F ≡
{
i ∈ I: Zi(t ∧ el) = bi

}
,

and B ⊂ I is the set of stations are blocked at time t ∧ el, i.e.,

B ≡
{
i ∈ I: Zσ(i)(t ∧ el) = bσ(i)

}
.

It follows from (7.5) and the induction assumption that

1Cl,m,n1{t>el}el+1 ∈ Gm,n (7.6)

for all m,n ∈ Zd+.
Now,

1Cl+1,p,qξl+11{t>el} =
∑
(a,s)

1Cl,p̃,q̃ξl+11{t>el}1Ba,s ,

where

Ba,s=
⋂
i∈a

{
Rai (t ∧ el) = el+1 − t ∧ el

}
×
⋂
i/∈a

({
Rai (t ∧ el) > el+1 − t ∧ el

}
∪
{
Zi(t ∧ el) = bi

})
×
⋂
i∈s

{
Rsi (t ∧ el) = el+1 − t ∧ el

}
×
⋂
i/∈s

({
Rsi (t ∧ el) > el+1 − t ∧ el

}
∪
{
Zσ(i)(t ∧ el) = bσ(i)

})
,
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p̃i =

{
pi − 1 if i ∈ a,

pi if i /∈ a,
q̃i =

{
qi − 1 if i ∈ s,

qi if i /∈ s,

Zi(t ∧ el+1) =


Zi(t ∧ el) + 1 if i ∈ a \ s,

Zi(t ∧ el)− 1 if i ∈ s \ a,

Zi(t ∧ el) otherwise,

Rai (t ∧ el+1) =

{
ui,pi if i ∈ a,

Rai (t ∧ el)− (t ∧ el+1 − t ∧ el) if i ∈ I \ a,

Rsi (t ∧ el+1) =

{
vi,qi if i ∈ s,

Rsi (t ∧ el)− (t ∧ el+1 − t ∧ el) if i ∈ I \ s,

and the summation is over all pairs (a, s) with a ⊂ I and s ⊂ I. The set a∪s is the set
of indexes whose clocks “expire” exactly at el+1. If a∪s = ∅, then the (l+1)th event
has not yet happened by time t. It follows from (7.6) and the induction assumption
that 1Cl+1,p,qξl+1 is Gp,q measurable. Similarly, we can show that 1Cl+1,p,q ∈ Gp,q. �

8. Proof of the heavy traffic limit theorem

For a sequence of functions fn, recall that

f̃n(t) =
1√
n
fn(nt).

Lemma 8.1. Under the assumptions (3.1)–(3.3) in theorem 3.1, as n→∞,(
Ẽn, S̃n, X̃n

)
=⇒

(
E∗,S∗,X∗

)
,

where E∗ and S∗ are independent Brownian motions as in (5.2),

X∗(t) = E∗(αt)−
(
I − P ′

)
S∗(µt) + θt, (8.1)

and X∗ is a Brownian motion with drift θ and covariance matrix Γ given in (3.16).

Proof. Let Ẽn(t) = (1/
√
n)Ê(αnnt) and S̃n(t) = (1/

√
n)Ŝ(µnnt). It follows

from (5.2), (3.1), (6.1) and the Random Change of Time Theorem [4, section 17]
that (

Ẽn
(
F
n

(·)
)
, S̃ n

(
B
n

(·)
))

=⇒
(
E∗(α·),S∗(µ·)

)
.

By the continuous mapping theorem,

X̃n(·) = Ẽn
(
F
n

(·)
)
−
(
I − P ′

)
S̃n(B

n
(·)
)
−
(
I − P ′

)
µn ·

=⇒E∗(α·)−
(
I − P ′

)
S∗(µ·) + θ · .
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It is easy to check that X∗ is a Brownian motion with drift θ and covariance matrix Γ
given in (3.16). �

A sequence of stochastic processes {Xn} in D([0,∞),Rk) is said to be relatively
compact if for every sequence {nk}, there is a subsequence {nkj} such that Xnkj

converges in distribution.

Lemma 8.2. Under the assumptions (3.1)–(3.4) in theorem 3.1, the sequence
{X̃n, Z̃n, Ỹ n} is relatively compact.

Proof. To prove the lemma it suffices to verify conditions (a) and (b) in corollary 7.4
in chapter 3 of Ethier and Kurtz [21]. To state the conditions, we need to define the
modulus of continuity of a path x(·). For T > 0 and δ > 0, let

w
(
x(·), δ,T

)
= inf

ti
max
i

Osc
(
x(·), [ti−1, ti)

)
, (8.2)

where the infimum extends over the finite sets {ti} of points satisfying 0 = t0 < t1 <
· · · < tr = T and tj − tj−1 > δ for j = 1, . . . , r.

(a) For every η > 0 and rational t > 0, there exists a constant c(η, t) > 0 such that

lim inf
n→∞

P
{∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)∣∣ 6 c(η, t)
}
> 1− η.

(b) For every η > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P
{
w
((
X̃n, Z̃n, Ỹ n), δ,T

)
> η
}
6 η.

To verify condition (a), by lemma 8.1, X̃n converges in distribution. Hence, it
follows from remark 7.3 in chapter 3 of Ethier and Kurtz [21] that {X̃n} satisfies the
following compact containment condition: for every η > 0 and T > 0, there is a
constant M1 > 0 such that

inf
n
P
{∣∣X̃n(t)

∣∣ 6M1, 0 6 t 6 T
}
> 1− η/2.

By assumption (3.4), there exists a constant M2 > 0 such that supn P{|Z̃n(0)| >
M2} 6 η/2. It is easy to check that for each sample path, (Z̃n, Ỹ n) is an (S̃n,Rn)-
regulation of Z̃n(0) + X̃n, where

S̃
n

=
{
x ∈ Rd: 0 6 xi 6 bni /

√
n ∀i ∈ I

}
.

Therefore by theorem 4.2 and the continuity of Ỹ n, there exist constants κ > 0 and
n0 > 0 such that for all 0 6 t1 < t2 and all n > n0,

Osc
((
X̃n, Z̃n, Ỹ n

)
, [t1, t2]

)
6 κOsc

(
X̃n, [t1, t2]

)
. (8.3)
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Thus, we have, for n > n0,∣∣(X̃n(t), Z̃n(t), Ỹ n(t)
)∣∣

6
∣∣(X̃n(0), Z̃n(0), Ỹ n(0)

)∣∣+
∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)
−
(
X̃n(0), Z̃n(0), Ỹ n(0)

)∣∣
6
∣∣Z̃n(0)

∣∣+ Osc
((
X̃n, Z̃n, Ỹ n

)
, [0, t]

)
6
∣∣Z̃n(0)

∣∣+ κOsc
(
X̃n, [0, t]

)
6
∣∣Z̃n(0)

∣∣+ κ sup
06t6T

∣∣X̃n(t)
∣∣.

Hence, for n > n0

P
{∣∣(X̃n(t), Z̃n(t), Ỹ n(t)

)∣∣ > M2 + κM1 for some t ∈ [0,T ]
}

6 P
{∣∣Z̃n(0)

∣∣ > M2
}

+ P
{∣∣X̃n(t)

∣∣ > M1 for some t ∈ [0,T ]
}
6 η.

Therefore, {(X̃n, Z̃n, Ỹ n)} satisfies the containment condition. Thus, condition (a) in
corollary 7.4 holds.

To verify condition (b) in corollary 7.4, because {X̃n} is relatively compact, for
each η > 0 and T > 0, there exists a δ > 0 such that

lim sup
n→∞

P
{
w
(
X̃n, δ,T

)
> η

κ+ 1

}
6 η

κ+ 1
.

From (8.3), for n > n0,

w
((
X̃n, Z̃n, Ỹ n

)
, δ,T

)
6 κw

(
X̃n, δ,T

)
.

Therefore, for n > n0,

P
{
w
(((

X̃n, Z̃n, Ỹ n), δ,T
)
> η
}
6P
{
κw
(
X̃n, δ,T

)
> η
}

6P
{
w
(
X̃n, δ,T

)
> η

κ+ 1

}
6 η

κ+ 1
6 η.

Thus, condition (b) in corollary 7.4 holds. �

Lemma 8.3. Suppose zn converges to z in D([0,∞),Rd), yn converges to y in
D([0,∞),R+) and y is continuous. Assume that for each n, yn(·) is nondecreas-
ing. Then, for any f ∈ Cb(Rd), we have∫ t

0
f
(
zn(s)

)
dyn(s)→

∫ t

0
f
(
z(s)

)
dy(s) as n→∞ (8.4)

uniformly for t in any compact subset of [0,∞).

Proof. Noting that zn → z in D([0,∞),Rd), by proposition 3.5.3 and remark 3.5.4
in Ethier and Kurtz [21] or Billingsley [4, p. 112], there exists a sequence {γn}



J.G. Dai, W. Dai / A heavy traffic limit theorem 31

of continuous, strictly increasing functions from [0,∞) onto [0,∞) such that, as
n→∞,

zn
(
γn(t)

)
→ z(t) u.o.c. and γn(·)→ t u.o.c. (8.5)

Now, fix t > 0 and observe that for each u ∈ [0, t],∫ u

0
f
(
zn(s)

)
dyn(s)−

∫ u

0
f
(
z(s)

)
dy(s)

=

∫ γ−1
n (u)

0

(
f
(
zn
(
γn(s)

))
− f

(
z(s)

))
dyn
(
γn(s)

)
+

∫ γ−1
n (u)

u
f
(
z(s)

)
dyn
(
γn(s)

)
+

∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s). (8.6)

The first term on the right side of (8.6) is bounded by

max
06s6γ−1

n (t)

∣∣f(zn(γn(s)
))
− f

(
z(s)

)∣∣ yn(t),

which converges to zero as n→∞ uniformly on u ∈ [0, t] because f ∈ Cb(Rd), y(t)
is continuous, and yn(t)→ y(t).

The second term on the right side of (8.6) is dominated by

‖f‖∞ sup
06u6t

∣∣yn(u)− yn
(
γn(u)

)∣∣
6 ‖f‖∞

(
sup

06u6t

∣∣yn(u)− y(u)
∣∣+ sup

06u6t

∣∣y(u)− y
(
γn(u)

)∣∣
+ sup

06u6t

∣∣y(γn(u)
)
− yn

(
γn(u)

)∣∣),

which converges to zero because y(t) is continuous, and yn(t)→ y(t) u.o.c.
Finally, we claim that the third term on the right side of (8.6) converges to

zero. In fact, since f (z(·)) ∈ D([0,∞),R), by theorem 3.5.6, proposition 3.5.3 and
remark 3.5.4 of Ethier and Kurtz [21], there is a sequence of step functions {gk(·)}∞k=1
of the form

gk(·) =

lk∑
i=1

gk
(
tki
)
I[tki ,tki+1)(·), (8.7)

where 0 = tk1 < tk2 < · · · < tklk+1
<∞, I[s,t) is the indicator function on [s, t), and

sup
06s6t

∣∣f(z(s)
)
− gk(s)

∣∣→ 0 as k →∞.
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Notice that∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣
6
∣∣∣∣ ∫ u

0

(
f
(
z(s)

)
− gk(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣+

∣∣∣∣ ∫ u

0
gk(s) d

(
yn(γn)− y

)
(s)

∣∣∣∣
6 sup

06s6t

∣∣f(z(s)
)
− gk(s)

∣∣(yn(γn)(t) + y(t)
)

+ sup
06u6t

lk∑
i=1

∣∣gk(tki ∧ u)∣∣
×
∣∣(yn(γn)− y

)(
tki+1 ∧ u

)
−
(
yn(γn)− y

)(
tki ∧ u

)∣∣. (8.8)

Because yn(·) → y(·) u.o.c. and y is continuous, for each t > 0, there exists M > 0
such that

lim sup
n→∞

sup
06s6t

∣∣yn(s)
∣∣ 6M.

Letting n →∞ in (8.8), noticing that for fixed k, the last term of (8.8) converges to
zero, we have

lim sup
n→∞

sup
06u6t

∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣ 6 2M sup
06s6t

∣∣f(z(s)
)
− gk(s)

∣∣. (8.9)

Let k →∞, we have

lim sup
n→∞

sup
06u6t

∣∣∣∣ ∫ u

0
f
(
z(s)

)
d
(
yn(γn)− y

)
(s)

∣∣∣∣ = 0, (8.10)

thus proving the lemma. �

Lemma 8.4. For i ∈ I and any t > 0,
(a)

E
[

1√
n

max
16j6Ei(nt)+1

uij

]
→ 0 as n→∞.

(b) {
1√
n

sup
06s61

∣∣Ei(ns)− ns∣∣: n > 1

}
is uniformly integrable.

Proof. Noting that Ei(t) + 1 is a stopping time for the discrete filtration {Gj} with

Gj = σ{ui1, . . . ,uij},
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we can write

Ei(nt)− nt√
n

=
Ei(nt) + 1− Ui(Ei(nt) + 1)√

n
− 1√

n
+
Ui(Ei(nt) + 1)− t√

n
. (8.11)

The first term on the right, denoted by Mn
i (t), is a square integrable martingale with

E
[
Mn
i (t)2] = cai

E[Ei(nt) + 1]
n

. (8.12)

Since the right-hand side of (8.12) is bounded in n [23, theorem II.5.1], by [21,
corollary 2.2.17] the sequence E[sup06t61 |Mn

i (t)|]2 is bounded, hence,{
sup

06t61

∣∣Mn
i (t)

∣∣, n > 1
}

is uniformly integrable. Using the fact that

sup
06t61

∣∣Mn
i (t)−Mn

i (t−)
∣∣ 6 2 sup

06t61

∣∣Mn
i (t)

∣∣,
for 0 6 t 6 1, the last term on the right of (8.11) (the overshoot of the renewal
process) is bounded by

max
06j6Ei(n)+1

uij√
n
6 2 sup

06t61

∣∣Mn
i (t)

∣∣+
1√
n
.

We then have

sup
06t61

∣∣∣∣Ei(nt)− nt√
n

∣∣∣∣ 6 3 sup
06t61

∣∣Mn
i (t)

∣∣+
2√
n

,

and (a) and (b) follow from the uniform integrability of {sup06t61 |Mn
i (t)|, n > 1}. �

Proof of theorem 3.1. By lemma 8.2 the sequence{(
Z̃n, X̃n, Ỹ n

)
, n > n0

}
is precompact. Therefore,{(

Ẽn, S̃n, Z̃n, X̃n, Ỹ n
)
, n > n0

}
is precompact. Let (E∗,S∗,Z∗,X∗,Y ∗) be a weak limit defined on a probability space
(Ω∗,F∗,P∗). That is, there is a sequence {nk} such that as nk →∞(

Ẽnk , S̃nk , Z̃nk , X̃nk , Ỹ nk
)

=⇒
(
E∗,S∗,Z∗,X∗,Y ∗

)
.

By lemma 8.1,

X∗(t) = E∗(αt)−
(
I − P ′

)
S∗(µt) (8.13)

is a d-dimensional Brownian motion with drift θ and covariance matrix Γ. We will
show that Z∗, together with Y ∗, is an RBM associated with the Brownian motion X∗.



34 J.G. Dai, W. Dai / A heavy traffic limit theorem

Because the (Γ, θ,R,S)-RBM with initial distribution P∗Z∗(0)−1 is unique in distrib-
ution (see Dai and Williams [18]), we have(

Z̃n, X̃n, Ỹ n
)

=⇒
(
Z∗,X∗,Y ∗

)
,

as n→∞, thus proving the theorem.
To show Z∗ is an RBM, notice that

(i) Z̃n(t) = Z̃n(0) + X̃n(t) +RnỸ n(t) for all t > 0,

(ii) 0 6 Z̃ni (t) 6 bni /
√
n for all t > 0 and i = 1, . . . , d,

(iii) for each i = 1, . . . , 2d,

(a) Ỹ n
i (0) = 0,

(b) Ỹ n
i is nondecreasing,

(c) for i = 1, . . . , d, Ỹ n
i increases only when Z̃ni (t) = 0 and for i = d + 1,

. . . , 2d, Ỹ n
i increases only when Z̃ni (t) = bni /

√
n.

To show that the limit process (Z∗,X∗,Y ∗) satisfies (3.7)–(3.15), we invoke the
Skorohod representation theorem [21, theorem 3.1.8]. Therefore, we assume that
{(Z̃nk , X̃nk , Ỹ nk ), n > n0} and (Z∗,X∗,Y ∗) are defined on the same probability
space (Ω∗,F∗,P∗) such that P∗-a.s., (i)–(iii) hold and(

Z̃nk , X̃nk , Ỹ nk
)
→
(
Z∗,X∗,Y ∗

)
u.o.c. as nk →∞. (8.14)

It follows from (3.4) that Z∗(0) has the same distribution as ξ. Clearly, (3.10) is
satisfied with

F∗t ≡ σ
{(
Z∗(s),X∗(s),Y ∗(s)

)
, 0 6 s 6 t

}
.

It easy to check that (3.7), (3.8), and (3.11) follow from (i), (ii), (iii)(a) and (iii)(b).
Because Ỹ n

i+d(t) increases only at times t such that Z̃ni (t) = bni /
√
n, we have for each

T > 0 ∫ T

0

(
bni√
n
− Z̃ni (t)

)
∧ 1 dỸ n

i+d(t) = 0. (8.15)

Let

f : (b, z) ∈ R2 → f (b, z) = (b− z) ∧ 1.

Clearly, f ∈ Cb(R2). By lemma 8.3 and (8.14),∫ T

0

(
bi − Z∗i (t)

)
∧ 1 dỸ ∗i+d(t) = 0, for all T > 0.

Therefore, Y ∗i+d(·) increases only at times t such that Z∗i (t) = bi, showing (3.13).
Similarly, we can show that Y ∗i (·) increases only at times t when Z∗i (t) = 0, i.e.,
(3.12) holds.
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It remains to prove (3.15), i.e., {X∗(t)− θt, t > 0} is an {F∗t }-martingale. It is
enough to show that for each i ∈ I, each r > 1, any 0 6 s1 < s2 < · · · < sr 6 s < t,
and any fk, gk,hk ∈ Cb(Rd),

E∗
[(
X∗i (t+ s)−X∗i (s)− θit

) r∏
k=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0. (8.16)

Let p, q ∈ Zd+ be d-dimensional indexes. Let

Ûni (pi) =

pi+1∑
k=2

uik − 1
αni

, V̂ n
i (qi) =

qi+1∑
k=2

vik − 1
µni

.

Recall the definition of Gnp,q in (7.1). Because Zn(0) is assumed to be independent of
the interarrival time and service time sequences, it easy to check that{(

Ûn(p), V̂ n(q)
)
, Gnp,q, (p, q) ∈ Zd+ × Zd+

}
is a multiparameter martingale (see [21, section 2.8] for the definition). Let

An(t) = En
(
Fn(t)

)
, Dn(t) = Sn

(
Bn(t)

)
, τn(t) =

(
An(t),Dn(t)

)
.

By lemma 7.1, for each fixed t, τn(t) is a multidimensional stopping time with respect
to the filtration {Gnp,q}. Define

Gnτn(t) ≡
{
B ∈ F , B ∩

{
τn(t) 6 (p, q)

}
∈ Gnp,q for all (p, q) ∈ Zd+ × Zd+

}
.

It is clear that τn(t) ∈ Fnτn(t). Because Zn(0) ∈ Gn0,0, it follows from (5.4) that
Zn(t) ∈ Gnτn(t). From (2.1) Y n(t) ∈ Gnτn(t) and from (5.7) Xn(t) ∈ Gnτn(t). Let

Ûn,k(p) =
(
Ûn1 (p1 ∧ k), . . . , Ûnd (pd ∧ k)

)
,

V̂ n,k(q) =
(
V̂ n

1 (q1 ∧ k), . . . , V̂ n
d (qd ∧ k)

)
.

By the multiparameter optional stopping theorem [21, theorem 2.8.7] we have that for
each n > n0 and k > 1,{(

Ûn,k(An(t)
)
, V̂ n,k(Dn(t)

))
,Gnτn(t), t > 0

}
is a martingale, or{(

1√
n
Ûn,k(An(nt)

)
,

1√
n
V̂ n,k(Dn(nt)

))
,Gnτn(nt), t > 0

}
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is a martingale. Therefore, for each n > n0 and k > 1,

E

[(
1√
n
Ûn,k
i

(
Ani
(
n(t+ s)

))
− 1√

n
Ûn,k
i

(
Ani (ns)

))

×
r∏
j=1

fj
(
X̃n(sj)

)
gj
(
Ỹ n(sj)

)
hj
(
Z̃n(sj)

)]
= 0. (8.17)

For a fixed n and for each k > 1,

∣∣Ûn,k
i

(
Ani (ns)

)∣∣6 (Ani (ns)∧k)+1∑
j=2

uij
αni

+
Ani (ns) ∧ k

αni

6
Ani (ns)+1∑
j=1

uij
αni

+
Ani (ns)
αni

6
Eni (ns)+1∑
j=1

uij
αni

+
Eni (ns)
αni

.

Letting k →∞ in (8.17), by [23, theorem III.3.1],

E

[Eni (ns)+1∑
j=1

uij
αni

+
Eni (ns)
αni

]
<∞,

it follows from the dominated convergence theorem that for each n > 1,

E

[(
1√
n
Ûni
(
Ani
(
n(t+ s)

))
− 1√

n
Ûni
(
Ani (ns)

))

×
r∏
j=1

fj
(
X̃n(sj)

)
gj
(
Ỹ n(sj)

)
hj
(
Z̃n(sj)

)]
= 0. (8.18)

Ûni
(
Ani (ns)

)
=

Ani (ns)+1∑
j=2

uij
αni
− Ani (ns)

αni
=

Eni (Fni (ns))+1∑
j=2

uij
αni
− Eni (Fni (ns))

αni

=

Eni (Fni (ns))+1∑
j=2

uij
αni
− Fni (ns) + Fni (ns)− Eni (Fni (ns))

αni

= εn − Êni (Fni (ns))
αni

,

where

εn =

Eni (Fni (ns))+1∑
j=2

uij
αni
− Fni (ns).
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Because ∣∣εn∣∣6 ui1
αni

+ max
16j6En

i
(Fn
i

(ns))+1

ui,j
αni
6 ui1
αni

+ max
16j6En

i
(ns)+1

ui,j
αni

6 ui1
αni

+ max
16j6Ei(nαni s)+1

ui,j
αni

,

it follows from part (a) of lemma 8.4 that as n→∞,

E
[

1√
n

∣∣εn∣∣]→ 0.

Because αni → αi, by part (b) of lemma 8.4,{
1√
n

sup
06t6s

∣∣Êi(αni nt)∣∣, n > 1

}
is uniformly integrable. Notice that∣∣Êni (Fni (ns)

)∣∣ 6 sup
06t6s

∣∣Êni (nt)
∣∣

and, therefore, {
1√
n

∣∣Êni (Fni (ns)
)∣∣, n > 1

}
is uniformly integrable. Because(

1
√
nk
Ênki

(
Fnki (nks)

)
, X̃nk (·), Z̃nk(·), Ỹ nk (·)

)
=⇒

(
E∗i (αis),X

∗(·),Z∗(·),Y ∗(·)
)
,

we have

E

[(
1√
nk
Ûnki

(
Anki (nks)

)) r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk(sj)

)
hj
(
Ỹ nk(sj)

)]

→ E∗
[
− E∗i (αis)

αi

r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.

Similarly, we can show that

E

[(
1√
nk
Ûnki

(
Anki

(
nk(t+ s)

))) r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk (sj)

)
hj
(
Ỹ nk(sj)

)]

→ E∗
[
−
E∗i
(
αi(t+ s)

)
αi

r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.
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Therefore, we have

E

[(
1
√
nk
Ûnki

(
Anki

(
nk(t+ s)

))
− 1
√
nk
Ûnki

(
Anki (nks)

))

×
r∏
j=1

fj
(
X̃nk (sj)

)
gj
(
Ỹ nk(sj)

)
hj
(
Ỹ nk(sj)

)]

→ − 1
αi
E∗
[(
E∗i (αi(t+ s)−E∗i (αis)

)) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
.

From (8.18), we have

E∗
[(
E∗i
(
αi(t+ s)

)
−E∗i (αis)

) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0.

By the exact same proof, we have

E∗
[(
S∗i
(
µi(t+ s)

)
− S∗i (µis)

) r∏
j=1

fj
(
X∗(sj)

)
gj
(
Y ∗(sj)

)
hj
(
Z∗(sj)

)]
= 0.

Therefore, (8.16) follows from the fact that

X∗i (t+ s)−X∗i (s)− θit = E∗i
(
αi(t+ s)

)
−E∗i (αis)−

(
S∗i
(
µi(t+ s)

)
−S∗i (µis)

)
. �

9. Extensions

Consider the queueing network described in section 2, except that probabilistic
routing is allowed. Assume that a customer leaving station i ∈ I goes to station j ∈ I
with probability Pij or exits the network with probability 1−

∑
j∈I Pij , independent

of all previous history. Assume the network is feedforward, i.e., the stations can be
numbered so that Pij = 0 for j 6 i. Furthermore, we assume that each station has at
most one predecessor. That is,

σ(i) ∩ σ(j) = ∅ for any i 6= j,

where σ(i) = {j ∈ I: Pij > 0}.
For this network, using the techniques developed in this paper, we can show that

the heavy traffic limit theorem in theorem 3.1 holds with Γ replaced by the formula

Γ = diag
(
α1c

a
1 , . . . ,αdc

a
d

)
+
(
I−P ′

)
diag

(
µ1c

s
1, . . . ,µdc

s
d

)
(I−P )+

∑
j∈I

µjΓj , (9.1)

where

Γjlk =

{
Pjl(1− Pjl) if l = k,
−PjlPjk if l 6= k.
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See [19, sections 2.2, 4.3] for more discussion on this network.
Consider another modification to the network in section 2, where general proba-

bilistic routing is allowed, but a customer arriving at a full buffer is lost. Therefore,
the network is a generalized Jackson network [40] except that a customer arriving at
a full buffer station is lost. It can be shown that the heavy traffic limit theorem in
theorem 3.1 holds with

R =
(
I − P ′,−I

)
,

and Γ given in (9.1).
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Abstract. This paper proposes an algorithm, referred to as BNAfm (Brownian network analyzer with finite
element method), for computing the stationary distribution of a semimartingale reflecting Brownian motion
(SRBM) in a hypercube. The SRBM serves as an approximate model of queueing networks with finite
buffers. Our BNAfm algorithm is based on the finite element method and an extension of a generic algo-
rithm developed by Dai and Harrison [14]. It uses piecewise polynomials to form an approximate subspace
of an infinite-dimensional functional space. The BNAfm algorithm is shown to produce good estimates
for stationary probabilities, in addition to stationary moments. This is in contrast to the BNAsm algorithm
(Brownian network analyzer with spectral method) of Dai and Harrison [14], which uses global polynomi-
als to form the approximate subspace and which sometimes fails to produce meaningful estimates of these
stationary probabilities. Extensive computational experiences from our implementation are reported, which
may be useful for future numerical research on SRBMs. A three-station tandem network with finite buffers
is presented to illustrate the effectiveness of the Brownian approximation model and our BNAfm algorithm.
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1. Introduction

This paper proposes a numerical algorithm for computing the stationary distribution of
a semimartingale reflecting Brownian motion (SRBM). The SRBM is a certain diffu-
sion process that lives in a hypercube state space. Such an SRBM often serves as an
approximate model for finite buffer queueing networks.

Queueing networks have long been used to model manufacturing systems and com-
munication networks, and have provided a very useful tool for the design and the oper-
ations management of these systems. (See, for example, [6,29,31,42].) In modeling
and analyzing these systems, one of the fundamental issues is the performance analy-
sis of queueing networks. Despite much effort, exact analysis of queueing networks
has been largely limited to exponential networks with infinite buffers. (See, for exam-
ple, [30,38,42].) Almost all real-world systems modeled by queueing networks have
finite buffer capacity. In many applications, buffer constraints are not essential (or are
not hard constraints); in this case, analytically simpler queueing networks with infinite
buffers have been used. But in some other applications, buffer constraints have an impor-
tant impact on the performance of the systems and may not be ignored. (See examples
in [5,6,42].)

For certain queueing networks with finite buffers, Brownian models can be formu-
lated for approximate analysis of these networks. See, for example, [14,19]. A Brownian
model of a three-station tandem network is given in section 6 of this paper. In the Brown-
ian model of a queueing network with finite buffers, an SRBM in a hypercube is used to
approximate the queue length process. The data specifying the SRBM can be computed
explicitly from certain parameters of the queueing network. The parameters involved
are the first and second moments of the interarrival time and service time distributions,
and the routing probabilities.

The theoretic foundation for our SRBM is the work of Dai and Williams [18],
which provides a necessary and sufficient condition for the existence of an SRBM in a
convex polyhedron. For a given SRBM, one would like to compute its certain character-
istics. Motivated by queueing network applications, one often focuses on the stationary
distribution of an SRBM. Computed quantities from the stationary distribution are used
to estimate certain performance measures of the corresponding queueing network. Only
in some special cases (see [28]) does the SRBM have an explicit formula for stationary
distributions.

In this paper, we propose an algorithm for computing the stationary distribution of
an SRBM in a hypercube. In general, we shall use a Brownian network analyzer (BNA)
to refer to an algorithm for computing the stationary distribution of an SRBM. (This is
motivated by Whitt [40], who uses a queueing network analyzer (QNA) to refer to an
algorithm for computing the stationary distribution of a queueing network.) Our algo-
rithm is closely related to a numeric algorithm developed by Dai and Harrison [14] for
computing the stationary distribution in a two-dimensional rectangle. Their algorithm
consists of two parts: the first part requires a finite dimensional approximation of an
infinite-dimensional functional space, and the second part uses a specific sequence of
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global polynomials to form the approximation subspace. For convenience, we will refer
to the first part of their algorithm as a generic algorithm, and the second part as a BNAsm
algorithm (a BNA algorithm with a spectral method). (The latter follows a convention in
numerical literature [7].) The specific BNA algorithm we propose is based on an exten-
sion of the generic algorithm of Dai and Harrison [14], and uses a finite element method
or piecewise polynomials to form the approximation subspace. We shall refer to it as a
BNAfm algorithm.

The BNAsm algorithm has been shown to often produce accurate estimates of the
stationary mean of an SRBM. However, it sometimes fails to produce good estimates
for stationary probabilities. Stationary probabilities and tail probabilities are important
quantities of an SRBM that can be used to answer some important questions regarding
quality of service for the system modeled by the corresponding queueing network. Even
in computing the stationary mean of an SRBM, there have been cases where BNAsm
fails to provide a meaningful estimate. See case A.1 in table 2 of [17], although we point
out that the case is for an SRBM living in a high-dimensional orthant, not a hypercube.
Our BNAfm algorithm is shown to produce accurate estimates of the stationary mean as
well as the stationary probabilities. (See section 4.4 for more comparisons between the
two algorithms.)

Implementing the BNAfm algorithm in arbitrary dimensions has been a long, dif-
ficult project. An exploratory implementation was done in [15] by Dai for SRBMs in
one and two dimensions. W. Dai [19] implemented a version in his thesis for SRBMs in
two and three dimensions with uniform mesh. Finally, Shen [36] implemented a version
for SRBMs in arbitrary dimensions with general lattice mesh. His general implementa-
tion, in C++ programming language, supersedes all the previous implementations. The
numerical results and experiments reported in this paper are from his implementation.
In addition to developing the BNAfm algorithm and reporting its successful implemen-
tation, we also summarize our numerical experiences from our extensive computations
using the implementation. It is hoped that these experiences can guide further numerical
research on SRBMs.

Once an approximating subspace is chosen, there is still a choice of which basis
to use to represent the subspace. With a fixed subspace, choice of a basis can affect
the computational accuracy significantly due to round-off errors in numerical computa-
tion. We should point out that the sometimes poor performance of BNAsm in [14] may
not be intrinsic to the algorithm. It may be due to the poor choice of basis for global
polynomials.

Both the generic and BNAsm algorithms were generalized to an SRBM living in
a high-dimensional orthant and simplex in [14,15]. In a companion paper, Chen and
Shen [10] extended the BNAfm algorithm to compute the stationary distribution of an
SRBM in an orthant. Schwerer [35] proposed to use a linear program to compute sta-
tionary moments of an SRBM.

Brownian approximation, a version of diffusion approximation or the functional
central limit theorem, has long been used for approximating the queueing network. The
SRBMs arise as the limits of certain performance processes of queuing networks with
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appropriate scaling in time and space under a heavy traffic condition. Most of these
limit theorems, known as functional central limit theorems or heavy traffic limit theo-
rems, have been focused on the queueing networks with infinite buffers, where the corre-
sponding SRBMs are defined in a nonnegative orthant. For a survey in this area, readers
are referred to [9,11,23,27,32,39,41]. Relatively much less effort has been made on the
Brownian approximation for the network with finite buffers. Bardhan and Mithal [3] first
attempted to establish such a theorem. Dai and W. Dai [13] established a limit theorem
for certain feedforward finite buffer networks that identifies the SRBM in a hypercube
as its limit.

As will be discussed in section 4.2, our BNAfm algorithm, like the BNAsm of Dai
and Harrison, has the “curse of dimensionality”. The complexity of the algorithm grows
exponentially in the dimension of the state space. In most Brownian approximation of
a queueing network, the dimension corresponds to the number of stations of the queue-
ing network. For a queueing network with a large number of stations, we admit that it
may be more efficient to simulate the queueing network itself than to use the Brown-
ian model. On the other hand, for a multiclass queueing network, the network can get
“large” by having a large number of job classes but a small number of stations. In such
a case, performance analysis based on formulating the Brownian model and solving the
stationary density is an attractive alternative to brute force simulation of the queueing
network.

The rest of the paper is organized as follows. In the next section, we define the
semimartingale reflecting Brownian motion (SRBM) in a hypercube. We also present the
basic adjoint relationship that characterizes the stationary density of the SRBM. In sec-
tion 3, we start with recapitulating the generic algorithm of Dai and Harrison [14] with
an extension to multi-dimensional hypercube, and then propose our BNAfm algorithm.
In section 4, we report several important issues emerging from our implementation of the
algorithm. Some numerical experiments are presented in section 5 to show the accuracy
of the BNAfm algorithm. In section 6, we present a three-station tandem network with
finite buffers, and show how SRBMs, armed with the BNAfm algorithm, can effectively
be used for its performance analysis. We conclude the paper with section 7.

Finally, we introduce some notation to be used in this paper. Let �k denote the
k-dimensional Euclidean space, and �k+ denote the nonnegative k-dimensional orthant.
For a subset S of �k, let C2

b(S) be the functional space of twice differentiable functions
whose first and second order partial derivatives are continuous and bounded on S, and
let B(S) be the set of functions which are Borel measurable.

2. SRBM in a hypercube

Let K � 1 be a fixed integer. A K-dimensional hypercube S is defined as

S ≡ {x ∈ �K : 0 � x � b
}
, (1)

where b is a K-dimensional strictly positive vector. In this section, we define a semi-
martingale reflecting Brownian motion (SRBM) that lives in the state space S. We then



FINITE ELEMENT METHOD FOR COMPUTING THE STATIONARY DISTRIBUTION 37

state the basic adjoint relationship that characterizes the stationary distribution of the
SRBM (theorem 2.5). The characterization is the starting point for computing the sta-
tionary distribution which is the primary quantity that we wish to compute in this paper.

Given a K-dimensional vector θ , a K × K symmetric and strictly positive definite
matrix �, and a K × 2K matrix R, we now define an SRBM associated with the data
(θ, �,R) on the hypercube state space S. Readers who choose to work with the analyt-
ical problem associated with data (S, θ, �,R) without going through SRBMs may go
directly to theorem 2.5 at the end of this section.

Definition 2.1. For x ∈ S, an (S, θ , �, R)-SRBM that starts from x is an {Ft}-adapted,
K-dimensional process Z defined on some filtered probability space (�, F , {Ft }, P x)
such that

Z = X + RY, (2)

where

1. Z has continuous paths in S, P x-a.s.,

2. under P x , X is a K-dimensional Brownian motion with drift θ and covariance matrix
� such that {X(t) − θt , Ft , t � 0} is a martingale, and X(0) = x, P x-a.s.,

3. Y is an {Ft}-adapted, 2K-dimensional process such that P x-a.s.,

(a) Y (0) = 0,

(b) Y is continuous and nondecreasing,

(c) for i = 1, . . . , 2K, Yi can increase only when Z is on the face Fi ,

and Fi ≡ {x ∈ S: xi = 0} and FK+i ≡ {x ∈ S: xi = bi} are the ith lower and upper
boundary face of the hypercube S, respectively.

In (3c), we mean that, for each t > 0, Z(t) /∈ Fi implies Yi(t − δ) = Yi(t + δ) for
some δ > 0. This is equivalent to

∫∞
0 1{Z(s)∈Fi} dYi(s) = 0 for all i. Loosely speaking,

an SRBM behaves like a Brownian motion with drift vector θ and covariance matrix �

in the interior of the hypercube S, with the processes being confined to the hypercube
by instantaneous “reflection” (or “pushing”) at the boundary, where the direction of “re-
flection” on the ith face Fi is given by the ith column of R. The parameters θ , �,
and R are called the drift vector, covariance matrix, and reflection matrix of the SRBM,
respectively.

The existence of an SRBM depends on the properties of the reflection matrix R.
Dai and Williams [18] provided a sufficient condition on R for the existence of an SRBM
in a general polyhedron state space. For convenience, we partition R as R = (R1, R2),
where both R1 and R2 are K × K matrices formed by the first and the last K columns
of R, respectively. To specialize their condition into our case, we introduce the notion
of reflection matrix associated with a vertex. Note that our hypercube has 2K vertexes,
and each vertex is given by

⋂
i∈α Fi

⋂
i∈β FK+i for a (unique) index set α ⊂ {1, . . . , K}
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with β = {1, . . . , K} \α. For each vertex α, the reflection matrix Rα associated with the
vertex is the K × K matrix, given by

Rα = (Iα − Iβ)[R1Iα + R2Iβ],
where Iα is a K × K diagonal matrix whose ith component equals one if i ∈ α and
equals zero otherwise, and Iβ is similarly defined.

Definition 2.2. A square matrix A is said to be an S matrix if there is a vector x � 0
such that Ax > 0. The matrix A is said to be completely-S if each principal submatrix
of A is an S-matrix.

Definition 2.3. The K × 2K reflection matrix R is said to satisfy the completely-S con-
dition if for each vertex α, Rα is a completely-S matrix.

It follows from propositions 1.1 and 1.2 of [18] that a necessary condition for
the existence of the SRBM Z associated with (S, θ, �,R), for each initial x ∈ S, is
that the reflection matrix R satisfy the completely-S condition. When R satisfies the
completely-S condition, it follows from theorem 1.3 of [18] that there exist processes
(Z,X, Y ) defined on a common filtered probability space (�, F , {Ft}), on which a
family of probability measures {P x} is defined, such that for each x ∈ S, under P x , Z is
an (S, θ, �,R)-SRBM starting from x. Furthermore, Z is a strong Markov process that
is Feller continuous.

Definition 2.4. A probability measure π0 on S is called a stationary distribution for Z if
for each bounded Borel measurable function f on S∫

S

Ex

[
f
(
Z(t)

)]
dπ0(x) =

∫
S

f (x) dπ0(x) for all t � 0. (3)

Here, Ex denotes the expectation under P x .

Using the same argument as in section 7 of [28], one can show that the stationary
distribution π0 is unique and has a density p0 with respect to Lebesgue measure dx
on S. As stated in the introduction, the primary purpose of this paper is to compute the
stationary density p0. We now provide an analytical characterization for p0. To this end,
for each k = 1, . . . 2K, define the measure πk on boundary face Fk via

πk(·) = 2Eπ0

[∫ 1

0
1{Z(s)∈·} dYk(s)

]
, (4)

where Eπ0 denotes the expectation under probability measure P π0(·) = ∫
S
P x(·) π0(dx).

It then follows again from the arguments in [28] that πk has a density pk with respect
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to the surface Lebesgue measure dσk on Fk . Furthermore, p0, p1, . . . , p2K satisfy the
following basic adjoint relationship (BAR):

∫
S

(
Lf (x) p0(x)

)
dx +

2K∑
k=1

∫
Fk

(
Dkf (x) pk(x)

)
dσk = 0, ∀f ∈ C2

b(S), (5)

where

Lf (x)= 1

2

K∑
j,k=1

�j,k

∂2f (x)

∂xj ∂xk
+

K∑
j=1

θj
∂f (x)

∂xj
, (6)

Dkf (x)= v′
k∇f (x), (7)

vk is the kth column of the reflection matrix R, and ∇f is the gradient of f .
The following theorem is a special case of [16], where general polyhedron state

space was considered. As before, θ is a K-dimensional vector, � is a K ×K symmetric
and strictly positive definite matrix, and R is a K × 2K matrix.

Theorem 2.5. Assume that R satisfies the completely-S condition in definition 2.3.
There exists a unique nonnegative function p = (p0, p1, . . . , p2K) with

∫
S
p0(x) dx = 1

and
∫
Fk
pk(x) dσk < ∞ for k = 1, . . . , 2K that satisfies the basic adjoint relation-

ship (5). Furthermore, π0(·) = ∫· p0(x) dx is the stationary distribution of the SRBM Z

associated with data (S, θ , �, R), and πk(·) = ∫· pk(x) dσk is the measure on Fk defined
in (4).

Theorem 2.5 provides an analytical characterization of the stationary density of an
SRBM. One would hope to find an analytical solution from the characterization. This has
been possible only for some very special cases. Harrison et al. [24] derived an analytical
expression for a two-dimensional driftless SRBM. Harrison and Williams [28] identi-
fied a certain skew symmetry condition for an SRBM to have a product-form stationary
distribution. In general, a numerical algorithm is needed to compute the stationary distri-
bution. As we will see in the next section, the characterization provides a starting point
for a generic algorithm for computing the stationary density p.

We now define some quantities related to the stationary distribution of an SRBM.
For i = 1, . . . , K and k = 1, . . . , 2K, define

qi =
∫
S

xip0(x) dx, (8)

δk =
∫
Fk

pk(x) dσk. (9)

The vector q = (q1, . . . , qK) is called the stationary mean. It is also the long-run average
value of Z. The quantity δk represents the long-run average amount of pushing per unit of
time needed on boundary Fk in order to keep the SRBMZ inside the state space S. These
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quantities, along with stationary probabilities, are of interest in the queueing network
applications.

3. The BNAfm algorithm

In this section, we develop the BNAfm algorithm for computing the stationary density p

of an SRBM. Dai and Harrison [14] developed a BNAsm algorithm for computing the
stationary distribution of an SRBM in a two-dimensional rectangle. Both their BNAsm
and our BNAfm algorithms are specialized versions of a generic algorithm, which in-
volves a finite dimensional approximation of an infinite-dimensional functional space.
It is in the schemes of approximations that BNAsm and BNAfm differ. In BNAsm,
global polynomials are used to form approximating subspaces, whereas in our BNAfm
algorithm, piecewise polynomials are used. A piecewise polynomial is defined through
a partition of state space; within each subdomain of the partition it is a polynomial.
A global polynomial is one defined on the entire state space. The spectral algorithm
achieves its accuracy by increasing the maximum degree of polynomials, whereas the
BNAfm algorithm achieves its accuracy by refining the partition of the state space.

Pros and cons of both the spectral method and the finite element method in many
problem domains, notably in fluid dynamics, are well documented; see, for exam-
ple, [4,7]. As it was discussed in the introduction, the BNAsm of Dai and Harrison [14]
generally produces a good estimate of the stationary mean of an SRBM. However, it
sometimes produces poor estimates of stationary probabilities. As will be shown in sec-
tion 5, our BNAfm algorithm produces accurate estimates for stationary probabilities as
well.

In the remainder of this section, we first recapitulate the generic algorithm of Dai
and Harrison [14] with an extension to a multi-dimensional hypercube. We also extend
their framework by allowing approximating functions not necessarily C2 smooth. Such
extension is essential when we propose our BNAfm algorithm in section 3.2.

3.1. The generic algorithm

3.1.1. Functional space L2(S)

To facilitate the description of the generic algorithm, we adopt some new notation to
present the basic adjoint relationship (5) in a compact form.

First we define a linear space of functions:

L2(S)≡
{
g = (g0, g1, . . . , g2K) ∈ B(S) × B(F1) × · · · × B(F2K):

∫
S

|g0|2 dx +
2K∑
k=1

∫
Fk

|gk|2 dσk < ∞
}
.
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The space L2(S) is a tensor product of the L2 space in the interior and the L2 spaces on
boundaries. For u, v ∈ B(S) × B(F1) × · · · × B(F2K), define

(u, v) ≡
∫
S

u0v0 dx +
2K∑
k=1

∫
Fk

ukvk dσk

whenever the right side is well defined. When u, v ∈ L2(S), (u, v) defines a proper inner
product on L2(S). The norm of a function u ∈ L2(S) is defined as a nonnegative real
number ‖u‖ given by

‖u‖ = √(u, u). (10)

For two functions u, v ∈ L2(S), we say that u and v are orthogonal in L2(S) if
(u, v) = 0. With new notation, basic adjoint relationship (5) can be rewritten as

(Af, p) = 0 for all f ∈ C2
b(S), (11)

where p = (p0, p1, . . . , p2K) and Af = (Lf,D1f, . . . ,D2Kf ).

3.1.2. The least square problem
Since the hypercube S is compact, it is easy to verify that Af ∈ L2(S) for each f ∈
C2
b(S). Thus, we can define

H = closure of
{
Af : f ∈ C2

b(S)
}
,

where the closure is taken with respect to norm (10) in L2(S). If we assume that the
unknown density p is in L2(S), then (11) implies that p is orthogonal to Af for all
f ∈ C2

b(S), and thus for all f ∈ H . In other words, if we assume that p ∈ L2(S), then
that p satisfies the basic adjoint relationship (5) is equivalent to p ∈ H⊥, where H⊥
denotes the orthogonal space of H in L2(S).

Let us assume for the moment that the unknown density function p is in L2(S).
For any h0 /∈ H , h0 − h̄0 ∈ H⊥, where h̄0 is the projection of h0 onto H or

h̄0 = arg min
h∈H
∥∥h0 − h

∥∥2
.

Thus, h0 − h̄0, in place of p, satisfies the basic adjoint relationship (11). If the function
h0 − h̄0 does not change sign, it follows from theorem 2.5 that

p = κ
(
h0 − h̄0

)
, (12)

where κ is a constant such that the integral of p0 on S equals one. The question of
whether function h0 − h̄0 changes sign remains an open research problem. It was con-
jectured by Dai and Harrison [14] that the function does not change sign. We state their
conjecture, adapted to the high-dimensional hypercube, in the following.

Conjecture 3.1. Suppose that p0 is an integrable Borel function in S and pk, k =
1, . . . , 2K are finite Borel measures on F1, . . . , F2K , respectively. If they jointly sat-
isfy the basic adjoint relationship (5), then p0 does not change sign in S.
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Supporting the numerical experiences of Dai and Harrison [14], we found that the
function h0 − h̄0 does not change sign in all our numerical experiments.

For all numerical examples shown in this paper, we choose h0 = (1, 0, . . . , 0) ∈
L2(S). If we assume that p is in L2, then∫

S

(
h0 · p) dλ = 1;

this immediately implies h0 /∈ H .
At several points in this section, we have made the assumption that p ∈ L2(S).

Unfortunately, this assumption does not hold for some (S, θ, �,R)-SRBMs. See, for
example, [24]. When p /∈ L2(S), the key relation (12) fails to hold. However, the algo-
rithm to estimate p proposed later in this section remains valid. (Also see the example
in section 5.1.)

3.1.3. Galerkin approximations
Let us again assume that p ∈ L2(S) and fix h0 = (1, 0, . . . , 0). To find p using equa-
tion (12), one needs to compute h̄0, i.e., the projection of h0 onto H . The space H is lin-
ear and infinite-dimensional. (By infinite dimensionality of H , we mean that it is nec-
essary to have infinite many functions to form a basis for the space.) Solving the least
square problem exactly in an infinite-dimensional space is in general impossible. Instead
we seek an approximate solution to (11) by using a finite-dimensional subspace Hn to
approximate the space H . This is known as Galerkin approximation in numerical analy-
sis (cf. [4]).

Suppose that we have a sequence of finite-dimensional subspaces {Hn} that satisfies
Hn → H in L2(S) as n → ∞. (By Hn → H we mean that, for any h ∈ H , there exists
a sequence {hn} with hn ∈ Hn such that ‖hn − h‖ → 0 as n → ∞.) Let

hn = arg min
h∈Hn

∥∥h0 − h
∥∥2
.

Since Hn → H , we have ‖hn − h̄0‖ → 0, as n → ∞. Let

wn(x) = κn
[
h0(x) − hn(x)

]
, (13)

where κn is a normalizing constant that makes the integral of wn
0 on S equal one. Dai

and Harrison [14] proposed to use wn to approximate the stationary density p. Indeed,
when p ∈ L2(S), it was proved that∥∥wn − p

∥∥→ 0 as n → ∞, (14)

assuming that conjecture 3.1 holds. When p /∈ L2(S), convergence (14) in L2 cannot be
expected. However, wn in (13) is still well defined. Dai and Harrison [14] conjectured
that wn converges to p in a certain weaker sense.

As in [14], our choice of finite-dimensional subspace Hn will be of the form

Hn = {Af : f ∈ Cn} (15)
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for some finite-dimensional space Cn. However, there is an important difference. In [14],
Cn was chosen as a subspace of C2

b(S), whereas in the current exposition we do not make
such restriction. For a function f that is not in C2, the operator Af is undefined in the
conventional sense because the second order derivatives of f do not exist at some point.
In such cases, Af in (15) will be interpreted through general derivatives as described
in [34].

To introduce the general derivatives, let us define the norm ‖ · ‖H 2 via

‖f ‖2
H 2 = max

1�i,j�K

∫
S

(
∂2f

∂xi∂xj

)2

dx + max
1�i�K

∫
S

(
∂f

∂xi

)2

dx +
∫
S

f 2 dx

+ max
1�i,j�k

∫
Fi

(
∂f

∂xi

)2

dσj + max
1�i�K

∫
Fi

f 2 dσi

for f ∈ C2
b(S). One can check that there exists a constant κ1 > 0 such that

‖Af ‖ � κ1‖f ‖H 2 (16)

for any f ∈ C2
b(S). We use C

2
b(S) to denote the closure of C2

b(S) under the norm ‖ ·‖H 2 .
A standard procedure can be used to define the first-order and second-order derivatives

for each f ∈ C
2
b(S). Thus, the operator Af can be extended to f ∈ C

2
b(S). The inequal-

ity (16) can be extended for any f ∈ C
2
b(S).

Suppose that one is given a sequence of finite-dimensional subspaces {Cn} ofC
2
b(S)

with Cn → C
2
b(S) in the sense that for every f ∈ C

2
b(S), one can find a sequence {fn}

with fn ∈ Cn such that ‖f − fn‖H 2 → 0 as n → ∞. One can then verify that Hn → H

via (16).
To numerically compute hn, let f n

i , i = 1, . . . , Nn, be a finite set of linearly inde-
pendent basis functions of Cn, where Nn is the dimension of subspace Cn. Then, we can
express hn as

hn =
Nn∑
i=1

uiAf n
i (17)

for some scalars {ui}. To find the coefficients {ui}, observing that (h0 − hn,Af n
i ) = 0

for i = 1, . . . , Nn, we obtain the following linear equations:

Au = y, (18)

where

Ai,j = (Af n
i ,Af n

j

)
, u = (u1, . . . , uNn

)′, y = ((h0,Af n
1

)
, . . . ,

(
h0,Af n

Nn

))′
.

(19)
The matrix A is symmetric and semi-positive definite. By deleting some redundant basis
functions if necessary, we can and will assume that the matrix A is positive definite.
Thus there exists a unique solution to the linear system of equations (18).
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To summarize the generic algorithm, let Cn be a given finite-dimensional subspace

of C
2
b(S). First solve u from the system of linear equations (18) with coefficients com-

puted via formulas in (19). Then form projection hn using u via (17). Finally, construct
function wn via (13). The resulting function wn is proposed to be an estimate of the
unknown density p.

Each choice of Cn, and consequently Hn, yields an approximation wn of p. Even
for a fixed Cn, different choice of a basis produces a different set of coefficients A and y

in (19). Because of numerical round-off error, the resulting hn, and hence wn, depends
on the choice of basis. In the next section, we propose to use the finite element method
to generate the approximate sequence {Cn} for which a natural choice of basis exists.

3.2. The BNAfm algorithm

In this section, we construct a sequence of functional subspaces Cn using the finite el-
ement method (FEM). The resulting algorithm to compute wn is called the BNAfm al-
gorithm. The BNAfm algorithm differs significantly from BNAsm used in [14]. As
evidenced in section 5, our BNAfm algorithm is able to produce accurate approxima-
tions of stationary probabilities.

A mesh is a partition of the state space into a finite number of subdomains called
finite elements. Since the domain S is a hypercube, it is natural to use lattice mesh to
divide the domain S, where each finite element is again a hypercube. The lattices are
allowed to be non-uniform so that we can choose the sizes of lattices freely. Each corner
of a finite element is called a node. Figure 1 shows, for example, the domain of a two-
dimensional hypercube (rectangle) that is partitioned into 8 × 6 elements with 9 × 7
nodes.

Let x = (x1, . . . , xK) denote a free variable in S. For every dimension j =
1, . . . , K, we divide interval [0, bj ] into nj subintervals. Let y0

j = 0 < y1
j < · · · <

y
nj
j = bj be the partition points in dimension j . We have

∏K
j=1(nj + 1) nodes with∏K

j=1 nj finite elements. The corresponding mesh is denoted as n1 × n2 × · · · × nK .
We use 1 to denote a generic mesh. Also, we label nodes in such a way that node

Figure 1. A finite element mesh of a two-dimensional hypercube state space.
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(i1, . . . , iK) corresponds to spatial coordinate (y
i1
1 , . . . , y

iK
K ). For future reference, we

define

hkj = yk+1
j − ykj , k = 0, . . . , nj − 1 and j = 1, . . . , K,

and ‖1‖ = maxk,j hkj .
For each mesh 1, we now construct the finite dimensional space C1. The corre-

sponding H1 is constructed via (15). Each function f in C1 is a polynomial when it
is restricted in each finite element. It is C2 in the interior of each element and is C1

globally. With these requirements, we use third order Hermit functions to construct the
basis for the subspace C1. See [8] for some basic properties of Hermit functions and
other possibilities for constructing bases.

The one-dimensional Hermit basis functions over interval [−1, 1] are

φ(x)= (|x| − 1
)2(

2|x| + 1
)
, for − 1 � x � 1,

ψ(x)= x
(|x| − 1

)2
, for − 1 � x � 1.

For an interval [yk−1
j , yk+1

j ] in the j th dimension, define

φk(xj ) =




φ

(
xj − ykj

hk−1
j

)
if xj ∈ [yk−1

j , ykj
]

and k > 0,

φ

(
xj − ykj

hkj

)
if xj ∈ [ykj , yk+1

j

]
and k < nj ,

0 otherwise,

and

ψk(xj ) =




hk−1
j ψ

(
xj − ykj

hk−1
j

)
if xj ∈ [yk−1

j , ykj
]

and k > 0,

hkjψ

(
xj − ykj

hkj

)
if xj ∈ [ykj , yk+1

j

]
and k < nj ,

0 otherwise.

Now by using tensor product, we are able to construct tensor-product Hermit basis
functions for each node in high dimensions. At node (i1, . . . , iK), the basis functions are
of the form

fi1,...,iK ,r1,...,rK (x1, . . . , xK) =
K∏
j=1

gij ,rj (xj ),

where rj is 0 or 1, and

gij ,rj (xj ) =
{
φij (xj ), if rj = 0,
ψij (xj ), if rj = 1. (20)
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Each node has 2K tensor-product basis functions. Hence, we have a total of n =
2K
∏K

i=1(ni + 1) basis functions. Furthermore, for ease of programming, we re-index
these basis functions as

fi(x1, . . . , xK) = fi1,...,iK ,r1,...,rK (x1, . . . , xK), (21)

where

i = 2K
K∑
k=1

ik

k−1∏
i=1

(nk + 1) +
K∑
k=1

2k−1rk. (22)

Now we have completed the construction of finite-dimensional subspaces C1. One

can check that C1 ⊂ C
2
b(S). The following theorem is needed to justify the use of the

BNAfm algorithm.

Theorem 3.2. As ‖1‖ → 0,

C1 → C
2
b(S)

in the ‖ · ‖H 2 norm.

Proof. Let f ∈ C
2
b(S) be fixed. For any ε > 0, we would like to show the following

assertion: there exists δ > 0 such that for any partition 1 with ‖1‖ < δ,

‖g − f ‖H 2 < ε (23)

for some g ∈ C1.

By the definition of the Sobolev space C
2
b(S), it is enough to prove the assertion

for f ∈ C2
b(S). It follows from proposition 7.1 in the appendix of [22] that for any ε > 0

there exists a polynomial f1 such that ‖f1 − f ‖H 2 < ε. Thus, it is enough to prove the
assertion for a polynomial f .

For each partition 1, let g be the finite element interpolation of f . Since any
polynomial function is C4 smooth, the theorem follows from the following interpolation
error estimate in theorem 6.6 of [34]:

‖f − g‖H 2 � κ max
x∈S

max
0�|α|�4

∣∣∣∣ ∂αf (x)

∂x
α1
1 . . . ∂x

αK
K

∣∣∣∣ ‖1‖2,

where κ is a constant independent of 1 and f , α = (α1, . . . , αK), and |α| =∑k αk. �

The implementation of the BNAfm algorithm requires us to solve the system of
linear equations (18) with matrix A and vector y constructed as in (19). The computation
of Aij and yi can be quite tedious. Explicit formulas for their computation were given
in (4.11), (4.12), and section 5.4.2 of [19] when the mesh is uniform. Extension to
non-uniform mesh is provided in [36].
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4. Computational issues of the BNAfm algorithm

We have implemented the BNAfm algorithm in a software package using the C++ pro-
gramming language. The software runs in both Linux and Sun Solaris operating systems.
Although the algorithm itself is easy to understand, it is a big challenge to program the
algorithm because of the complexity of BNAfm implementation. In this section, we dis-
cuss several important issues emerging from our implementation. They are very critical
to the success of applying our BNAfm algorithm to solve practical problems. Some of
challenges such as the curse of dimensionality apply to other algorithms as well.

4.1. Solving linear systems of equations

Recall that the BNAfm algorithm uses the subspace C1 constructed in section 3.2 for a
given mesh 1. The total number of basis functions is

n = 2K
K∏
j=1

(nj + 1), (24)

where K is the dimension of the state space S and nj is the number of partition points
in the j th dimension. To obtain a numerical estimate of the density function p, we must
solve the system of linear equations (18), Au = y, where the n × n matrix A and the
n-vector y are given in (19). The most computationally expensive part of the BNAfm
algorithm is to solve the linear system of equations (18).

In general, there are two types of methods to solve a system of linear equations:
direct methods and iterative methods. A direct method would yield an exact solution
in a finite number of steps if all calculations were exact (without round-off error). An
iterative computation ends when a solution with a prescribed precision is found. There
is no prior knowledge of the number of steps needed in an iterative method. Because of
the round-off error, there is no guarantee that the iterative method will converge at all.
There has been a huge literature in studying the pros and cons of both methods. Whether
one method dominates the other is often problem-specific, and depends on fine tuning
such as pivoting and preconditioning that is performed.

In the software, we have implemented both the iterative methods and direct meth-
ods. Users can experiment with both methods and choose a better one depending on a
specific problem when they run the software. As mentioned above, both of these meth-
ods have their own advantages and disadvantages. Interested readers are referred to [36]
for more details.

4.2. Computational complexity

The size of matrix A is n × n. Because of the sparseness of matrix A, it may take O(n)
calculations to generate matrix A. But the number of arithmetic operations needed to
solve the linear system is O(n3) via either LU factorization or Gaussian elimination. For
example, if we set ni = 5 for i = 1, . . . , K, then n = O(12K). Thus, the computational
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complexity increases exponentially with the number of dimensions K. In other words,
the computing time needed may increase exponentially as the dimension of the problem
increases. For example, to solve a 3-dimensional problem with a 4 × 4 × 4 mesh,
it takes our software about 9 seconds to obtain an estimate on a computer. But for a
4-dimensional problem with a 4 × 4 × 4 × 4 mesh, it takes our software more than
24 minutes to obtain an estimate with similar accuracy on the same computer.

4.3. Mesh selection

As motivation, consider a special case of one-dimensional (S, θ, σ 2, R)-SRBM, where
S = [0, b] and R = (1,−1). Such an SRBM is also called a two-sided regulated
Brownian motion by Harrison [25]. It is known that the stationary density is given by

p(x) = (2θ/σ 2)e2θx/σ 2

e2θb/σ 2 − 1
for x ∈ [0, b],

if θ �= 0, and p(x) = 1/b for x ∈ [0, b] if θ = 0. (See, for example, [25].) When θ < 0,
it is clear that the peak of the derivative of the density is at x = 0. In this case, intuitively
the numerical algorithm would do better by selecting mesh with smaller subintervals
near the origin and (relatively) larger subintervals near the upper bound b. Similarly,
when θ > 0, the smaller subintervals would be preferred near the upper bound b for
mesh selection. For the boundary case θ = 0, a uniform mesh would be the best. This is
indeed the case with the actual implementation of our numerical algorithm.

Unfortunately, determining where the density makes the quick changes itself is
a difficult problem. For a driftless (θ = 0) SRBM in a two-dimensional rectangle,
Harrison et al. [24] have a conformal mapping representation of the stationary density.
In particular, they were able to explicitly identify which corner has a singular pole. Prior
information on the location of singularities can be used to build a more refined mesh.

4.4. Ill-conditioned system matrix

In using our computed wn to approximate the stationary density p, there are two sources

of error. The first source is due to the fact that C1 is an approximate of C
2
b(S). Such an

error is called the approximation error. Even when the computation of wn can be carried
out using infinite precision, this error exists. It decreases when the mesh gets finer. The
other source is from the numerical round-off error in computing wn once an approximate
subspace C1 is given. Round-off error occurs because only finite precision arithmetic is
carried on a computer.

Our numerical computation of wn consists primarily of two parts: the system gen-
eration, i.e., calculating coefficient matrix A, and system solution, i.e., solving linear
equations. There can be some round-off errors in the calculation of A. But significantly
more round-off errors occur in computing the solution to the large linear system (18),
Au = y. The accuracy of u depends on the property of A. If A is nearly singular, the
solution u is extremely sensitive to small changes in the coefficient matrix A and the
right-hand side y. In this case, A or the system is said to be ill-conditioned.
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The degree of ill-conditioning of linear systems is measured by the condition num-
ber of matrix A. The larger the condition number is, the worse-conditioned the system
is. The condition number can be determined using the extreme eigenvalues of A. The
formal mathematical definition of the condition number is

Cond(A) = ‖A‖ · ∥∥A−1
∥∥,

where ‖ · ‖ is the usual matrix norm. Estimating the condition number of A is not an
easy task since it involves obtaining the inverse of A, which takes much more effort than
solving the linear system directly.

As the mesh is refined, the size of the system increases, and so does the condition
number of the system as we have observed in our numerical experiments. From some
experiments we performed, we note that as mesh is refined, the system becomes pro-
gressively more ill-conditioned, and the round-off error increases. At some point, the
round-off error can completely dominate the approximation error. In such cases, further
refining the mesh actually decreases the quality of approximation wn. We note that in
running the current implementation of the BNAsm algorithm of [15], we sometimes ob-
serve that their algorithm fails to produce positive numbers when the maximum degree
of polynomials used is as small as 8. In such cases, we believe that the round-off error
dominates the approximation error even when a moderate accuracy of the final estimate
is attempted. In all of our cases, the final estimate degrades only after it reaches a high
level degree of accuracy.

There are several other factors that affect the conditioning number in our BNAfm
algorithm. The uniform or non-uniform mesh has an effect, as does the basis function
chosen. We have used third order Hermite functions. Other orders or hybrid polynomials
are possible. See, for example, [8].

Currently, the entry Aij = (Afi,Afj), where A involves second order deriva-
tives. Such construction of A follows naturally from the current form of the basic ad-
joint relationship (5) that characterizes the stationary density. The condition number for
such A is several orders of magnitude larger than the one for a matrix formed by (fi, fj ).
See p. 197 of [8] for a similar observation. If one can find an alternative characterization
of the stationary density, for example, by carrying out integration by parts once in the
basic adjoint relationship (5), one may be able to formulate a system matrix that has
a much smaller condition number. Such an investigation is a possible future research
direction.

4.5. Scaling

For an (S, θ, �,R)-SRBM, our computational experiences show that the proper scale
of the data (S, θ, �,R) has a significant effect on the accuracy and efficiency of our
numerical approximation of the stationary density. The fact that the data can be scaled is
based on the following proposition whose proof readily follows from (3), definition 2.1,
and theorem 1.3 of [18]. Dai and Harrison [15] have a similar proposition for SRBM in
an orthant.
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Proposition 4.1. Suppose that Z is a K-dimensional SRBM with data (S, θ, �,R), and
that Z has a stationary distribution π with mean vector m. Let S be the hypercube as
defined in (1), D be a positive diagonal matrix, and α be a positive scalar. The new
process Z∗ defined by

Z∗(t) = DZ(αt), (25)

is also an SRBM with data (S∗, θ∗, �∗, R∗), where

θ∗ = αDθ, �∗ = αD�D, R∗ = DR, (26)

and

S∗ ≡ {x ∈ �K : 0 � x � Db
}
.

Moreover, Z∗ has a stationary distribution π∗ with a finite mean vector m∗; they are
related to π and m via

π∗(x)= π
(
D−1x

)
, (27)

m∗ =Dm. (28)

To illustrate the scaling effects, we consider a two-dimensional SRBM example
which has a product form stationary density function. The data associated with this
SRBM are

R =
(

1 −1 −1 1
1 1 −1 −1

)
,

θ ′ = (10,−10), � = I , and S = [0, 1] × [0, 1]. As in chapter 2 of [12], one can check
that the data satisfy a skew symmetry condition of [28]. Thus, this SRBM has a product
form stationary density function and the mean vector of the stationary distribution can be
computed to be (0.5, 0.95). Following from proposition 28, if we scale Z by D = I and
a scalar α, we will get a different SRBM Z∗ but with the same stationary distribution as
SRBM Z. We list our numerical approximation of the means of stationary distribution
of Z∗ in table 1 for several different α by using the uniform 10 × 10 mesh. From this
table, it can be observed that the smaller α is, the more accurate estimates the results are.
However, this does not mean that the BNAfm algorithm gives poor estimates for this
problem when α is large. Instead, it indicates that a mesh denser than 10 × 10 should
be used in order to produce good approximations when α is large. In this table, we also
show the number of iterations needed for the iterative method. Loosely speaking, more
iterations means that the system matrix A is more ill-conditioned. Thus, we can conclude
partially that smaller � and θ would give better approximations in our algorithm. In
practice, if some elements of θ or some diagonal elements of matrix � are large, we
should scale them properly before carrying out the numerical computation.
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Table 1
Comparisons of different scaling.

α q1 q2 Iterations

50.00 0.399164 0.783404 530
10.00 0.521410 0.955050 330
1.00 0.513462 0.95336 116
0.10 0.500231 0.950072 88
0.01 0.499998 0.950001 407

Exact 0.50000 0.950000

5. Numerical examples

In this section, we present two SRBMs whose stationary distributions can be obtained
through methods other than the algorithm proposed in this paper. We compare the ac-
curacy of our algorithm with those known methods. In the first case, we show that the
BNAfm algorithm produces estimates as good as the BNAsm algorithm. In the second
case, we show that the BNAfm algorithm produces good estimates of stationary proba-
bilities. We also present empirical evidence of the complexity of our algorithm.

5.1. Comparison with SC solution

In this subsection we apply our BNAfm algorithm to a two-dimensional SRBM that
was studied by Dai and Harrison [14]. The data of this SRBM are θ = 0, � = 2I ,
S = [0, a] × [0, 1], and

R =
(

1 0 −1 1
−1 1 0 −1

)
.

As discussed in section 2.5 of [14], the density function p /∈ L2(S). However the
BNAfm algorithm still gives a very accurate approximation that is consistent with the
results obtained by Dai and Harrison [14] using the BNAsm algorithm.

As in [14], we fix the height of the rectangle and vary the length a of the rectan-
gle. For the various values of the length parameter a, table 2 compares three different
estimates of q1 and q2. The BNAfm is obtained by our algorithm with a 9 × 9 uniform
mesh. The SC estimates were obtained by Trefethen and Williams [37] using an explicit
expression of the stationary density. The expression was obtained by Harrison et al. [24]
for general two-dimensional driftless SRBMs, and is based on the Schwarz–Christoffel
(SC) transformation in complex variables. BNAsm and SC estimates are taken from [14].

It is clear from the table that the accuracy of our BNAfm algorithm is at least
as good as BNAsm in [14]. It takes less than 1 second CPU time and 800 Kilobyte of
memory for both iterative and direct methods to obtain BNAfm estimates for every value
of length parameter a.

A very coarse estimate of the condition number of matrix A is 4.7 × 1011, which
is very large. Because of the ill-conditioning, we have observed that the number of
iterations performed in order to get 6-decimal precision is very close to the size of the
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Table 2
Estimates of stationary means from different al-
gorithms for a special two-dimensional SRBM.

a Method q1 q2

0.5 BNAsm 0.258229 0.380822
BNAfm 0.258548 0.380244

SC 0.258585 0.380018

1.0 BNAsm 0.551325 0.448675
BNAfm 0.551511 0.448571

SC 0.551506 0.448494

1.5 BNAsm 0.878800 0.471640
BNAfm 0.879476 0.471676

SC 0.879534 0.471624

2.0 BNAsm 1.238442 0.483103
BNAfm 1.239767 0.482937

SC 1.239964 0.482830

linear system. For example, the number of iterations for a = 1 is 374 while the size of
the linear system is 400 when using a 9 × 9 mesh.

5.2. A 3-dimensional SRBM with product form solution

One of the main reasons that we develop the BNAfm algorithm is to approximate the
stationary distribution function, not just its mean values. To see how effective this algo-
rithm is, we introduce a special 3-dimensional SRBM whose stationary density has an
explicit product form solution. Then we compare numerical results from our BNAfm
algorithm with analytical solutions.

The data of the SRBM are given as

R =
( 1 −1 0 −1 1 0

1 1 0 −1 −1 0
0 0 1 0 0 −1

)
,

θ ′ = (1,−1,−0.5), � = I , and S = [0, 1] × [0, 1] × [0, 1]. Since the data satisfies the
skew symmetry condition in [28], the stationary density function p0 is of exponential
form,

p0(x) = 2 exp(−2x2 − x3)

(1 − e−2)(1 − e−1)
, for x ∈ S. (29)

Table 3 compares the exact means of the stationary distribution with the approx-
imate results obtained by our BNAfm algorithm. In this numerical example, we use
uniform mesh. The index i in the table denotes the total number of partitions at each
dimension, and the index n denotes the size of the linear system for each different mesh.
In this table, we also show the computing time and memory usage for both iterative and
direct methods. The computing time is measured by second and the memory is measured
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Table 3
Comparisons for a 3-dimensional SRBM with product form stationary density.

Means LU method Iterative method n

q1 q2 q3 Time Memory Time Memory

i = 4 0.500043 0.344660 0.418012 9 4.1 15 3.1 1,000
i = 6 0.500033 0.343893 0.418021 33 13.6 62 8.4 2,744
i = 8 0.500021 0.343677 0.418023 86 35.9 180 17.6 5,832
i = 10 0.500013 0.343592 0.418023 200 76.7 420 33.2 10,648
i = 12 0.500009 0.343551 0.418023 441 149.0 930 57.4 17,576
Exact 0.500000 0.343482 0.418023

Figure 2. Percentage errors of approximate marginal stationary distribution P 1.

by Megabytes. The approximate results obtained by both direct and iterative methods
are very close, so we only list the results obtained by the direct method. A very coarse
estimate of the condition number of matrix A is 6.7 × 1014 for i = 10 and 9.6 × 1014 for
i = 12, which is much larger than the case for the previous two-dimensional example
(section 5.1).

Table 3 shows that if we require 1% accuracy (which is usually good enough in
queueing network applications), the convergence is very fast (i = 4 is good enough).
It also shows that when the mesh is refined, the accuracy of approximate means in-
creases slowly, while the required computing time and memory increase exponentially.
Compared with the direct method, the iterative method takes almost twice as much com-
puting time but only takes about half as much memory as the direct method. Using less
memory will definitely help us to solve large-scale practical problems although it will
take longer computing time.

Figures 2–4 are plots regarding the computation of three two-dimensional marginal
stationary distributions P 1, P 2, and P 3, where P 1, P 2, and P 3 are defined as

P 1(x1, x2)=
∫

0�s1�x1,0�s2�x2

p0(s) ds,
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Figure 3. Percentage errors of approximate marginal stationary distribution P 2.

Figure 4. Percentage errors of approximate marginal stationary distribution P 3.

P 2(x1, x3)=
∫

0�s1�x1,0�s3�x3

p0(s) ds,

P 3(x2, x3)=
∫

0�s2�x2,0�s3�x3

p0(s) ds.

The vertical axes represent the percentage errors of our computation results compared
against the exact results. As can be seen from these three figures, the BNAfm algorithm
provides very accurate estimations for the stationary distribution.

6. A queueing network application

In this section, we show how our BNAfm algorithm, proposed for solving the stationary
distribution of SRBMs, can be used to predict the performance of a 3-station finite-buffer
queueing network.
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Figure 5. Finite queues in tandem.

Pictured in figure 5 is a queueing network of 3 stations in series. Each station has
a single server with a first-in-first-out service discipline. The buffer size at each station
is assumed to be finite. We use bi to denote the buffer size (the number of waiting
rooms plus 1) at station i, i = 1, 2, 3. Jobs arrive at station 1 according to a Poisson
process with rate λ = 1. After completing services at station 1, they go to station 2,
and after completing services there, they proceed to station 3. They exit the system after
completing services at station 3. To deal with the finiteness of buffers, we make the
convention that a job entering a full buffer is simply discarded (or lost). Such a network
is referred to as a loss network, which is commonly used to model computer networks.

The service times at each station are assumed to be i.i.d. positive random variables,
and service times at different stations are assumed to be independent. The service time
distribution at station 1 is taken to be Erlang of order 4. Thus, the squared coefficient
of variation (variance divided by the mean squared) of the service time distribution is
c2

1 = 1/4 = 0.25. The service time distribution at station 2 is taken to be exponential,
and thus c2

2 = 1. The service time distribution at station 3 is taken to be a Gamma
distribution with c2

3 = 2. The service rate µi and the buffer size bi at each station i,
i = 1, 2, 3, are shown in table 4.

Let Zi(t) be the queue length, including possibly the one being served, at station i

at time t , i = 1, 2, 3. Following the approach in [26], W. Dai [19] proposed an SRBM
in the 3-dimensional box to approximate the queue length process Z = {Z(t), t � 0},
where Z(t) = (Z1(t), Z2(t), Z3(t)). The SRBM has the following data: S = {z ∈ �3+:
0 � zi � bi, i = 1, 2, 3}, θ = (1 − µ1, µ1 − µ2, µ2 − µ3)

′,

R =
( 1 0 0 −1 0 0

−1 1 0 0 −1 0
0 −1 1 0 0 −1

)
,

and

� =




1 + µ1

4
−µ1

4
0

−µ1

4

µ1

4
+ µ2 −µ2

0 −µ2 µ2 + 2µ3


 . (30)

Using the BNAfm algorithm proposed in section 3, one can compute the stationary
distribution and the stationary mean of the SRBM. The stationary mean is then used to
estimate the long-run average queue lengths of the loss network. The SRBM rows in
table 5 lists the estimates of average queue lengths, q1, q2, and q3, for different cases.

For comparison, we have simulated the loss network in each case. The correspond-
ing estimates are given in the simulation rows. In each case, the simulation estimates are
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Table 4
The parameters of the queueing network.

System b1 b2 b3 µ1 µ2 µ3

1 10 10 10 1/0.9 1/0.9 1/0.9
2 20 25 25 0.9 0.9 0.9
3 10 15 15 0.9 0.9 0.9
4 3 5 5 1/0.9 1/0.9 1/0.9

Table 5
The average queue lengths of the queueing network.

System Approximate method q1 q2 q3

1 BNAfm 3.619 (1.4%) 3.651 (3.2%) 4.172 (12.5%)

Simulation 3.669 (0.7%) 3.539 (1.1%) 3.709 (0.6%)

2 BNAfm 14.669 (1.6%) 12.137 (1.7%) 11.565(2.5%)

Simulation 14.912 (0.5%) 12.344 (1.5%) 11.286 (0.9%)

3 BNAfm 6.304 (2.2%) 6.731 (2.2%) 6.780 (4.1%)

Simulation 6.443 (0.4%) 6.883 (1.1%) 6.515 (1.2%)

4 BNAfm 1.370 (0.4%) 1.795 (10.2%) 2.086 (22.6%)

Simulation 1.364 (0.2%) 1.629 (0.5%) 1.701 (0.5%)

based on 10 batches of 200,000 units of time, with the simulation in the first 10,000
units of time truncated. The numbers in parentheses after the simulation figures show
95% confidence intervals as the percentage of the simulation figures. The numbers in
parentheses following all other figures are percentage errors (in absolute values) as com-
pared to simulation results.

For this loss network, there are other performance measures that are important in
practice. For example, one might be interested in the throughput at each station. (The
throughput γi at station i is the long-run average number of jobs leaving station i per unit
of time.) The throughput γi at station i is related to the utilization rate ρi at the station via

γi = µiρi, i = 1, 2, 3.

Let mi = 1/µi . Note the definition of δk (k = 1, . . . , 6) in (9). Then the Brownian
estimate of ρk is given by

ρi = 1 − miδi, i = 1, 2, 3. (31)

Also, the long-run fraction of jobs lost at station i can be estimated via δ3+i , i = 1, 2, 3.
Tables 6 and 7 list the simulation results and SRBM estimates of average throughput
rates and job loss rates for different cases.

In obtaining the Brownian model with the covariance matrix given in (30), we im-
plicitly assumed that the actual utilization rate ρi can be replaced by 1. This assumption
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Table 6
The average throughput rates of the queueing network.

System Approximate method γ1 γ2 γ3

1 BNAfm 0.976 (0.3%) 0.947 (0.4%) 0.859 (3.9%)

Simulation 0.973 (0.2%) 0.951 (0.2%) 0.894 (0.3%)

2 BNAfm 0.896 (0.0%) 0.875 (0.1%) 0.836 (0.3%)

Simulation 0.896 (0.0%) 0.876 (0.1%) 0.839 (0.2%)

3 BNAfm 0.876 (0.3%) 0.848 (0.8%) 0.788 (1.9%)

Simulation 0.879 (0.2%) 0.855 (0.3%) 0.803 (0.2%)

4 BNAfm 0.838 (0.1%) 0.784 (3.2%) 0.611 (17.2%)

Simulation 0.837 (0.0%) 0.810 (0.2%) 0.738 (0.3%)

Table 7
The average job loss rates of the queueing network.

System Approximate method δ4 δ5 δ6

1 BNAfm 0.024 (4.0%) 0.030 (25.0%) 0.088 (63.0%)

Simulation 0.025 (3.1%) 0.024 (3.1%) 0.054 (2.3%)

2 BNAfm 0.104 (0.0%) 0.021 (0.0%) 0.039 (11.4%)

Simulation 0.104 (2.1%) 0.021 (4.4%) 0.035 (3.1%)

3 BNAfm 0.124 (2.5%) 0.028 (3.7%) 0.061 (27.1%)

Simulation 0.121 (1.1%) 0.027 (3.3%) 0.048 (3.0%)

4 BNAfm 0.162 (1.3%) 0.054 (80.0%) 0.173 (162.1%)

Simulation 0.160 (0.5%) 0.030 (1.6%) 0.066 (1.2%)

requires that each station is heavily loaded and each buffer size is large. As discussed
in [14], one can refine the Brownian model by replacing the covariance matrix by

� =




1 + ρ1µ1

4
−ρ1µ1

4
0

−ρ1µ1

4

ρ1µ1

4
+ ρ2µ2 −ρ2µ2

0 −ρ2µ2 ρ2µ2 + 2ρ3µ3


 . (32)

Since the utilization rate ρ = (ρ1, ρ2, ρ3) itself is unknown, we denote the covariance
in (32) by �(ρ). We now use an iterative procedure to find ρ and other performance
measures simultaneously. We initialize ρ(0) = (1, 1, 1). Assume that ρ(n−1) is known.
We use the BNAfm algorithm to find the stationary density corresponding to covariance
matrix �(ρ(n − 1)). The associated δ(n − 1) can be obtained at the same time using
formula (9). Then we use (31) to get an update for ρ(n). The iterations, along with the
refined Brownian estimates, are given in tables 8–10. The case n = 1 corresponds to the
original Brownian model whose results have been shown in tables 5–7.

By observing the numerical results in tables 8–10, we can see that the above iter-
ative procedure provides a slightly better Brownian model for performance evaluation
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Table 8
The iterations of the SRBM approximation for average queue lengths.

System n q1(n) q2(n) q3(n)

1 1 3.619 (1.4%) 3.651 (3.2%) 4.172 (12.5%)

2 3.585 (2.3%) 3.507 (0.9%) 4.022 (8.4%)

3 3.585 (2.3%) 3.515 (0.7%) 4.046 (9.1%)

Simulation 3.669 (0.7%) 3.539 (1.1%) 3.709 (0.6%)

2 1 14.669 (1.6%) 12.137 (1.7%) 11.565 (2.5%)

2 14.671 (1.6%) 12.170 (1.4%) 11.534 (2.2%)

3 14.671 (1.6%) 12.141 (1.6%) 11.532 (2.2%)

Simulation 14.912 (0.5%) 12.344 (1.5%) 11.286 (0.9%)

3 1 6.304 (2.2%) 6.731 (2.2%) 6.780 (4.1%)

2 6.310 (2.1%) 6.700 (2.7%) 6.730 (3.3%)

3 6.310 (2.1%) 6.702 (2.7%) 6.733 (3.3%)

Simulation 6.443 (0.4%) 6.883 (1.1%) 6.515 (1.2%)

4 1 1.370 (0.4%) 1.795 (10.2%) 2.086 (22.6%)

2 1.363 (0.0%) 1.634 (0.3%) 1.896 (11.5%)

3 1.363 (0.0%) 1.656 (1.7%) 1.967 (15.6%)

Simulation 1.364 (0.2%) 1.629 (0.5%) 1.701 (0.5%)

Table 9
The iterations of the SRBM approximation for average throughput rates.

System n γ1(n) γ2(n) γ3(n)

1 1 0.976 (0.3%) 0.947 (0.4%) 0.859 (3.9%)

2 0.978 (0.5%) 0.955 (0.4%) 0.892 (0.2%)

3 0.978 (0.5%) 0.954 (0.3%) 0.889 (0.6%)

Simulation 0.973 (0.2%) 0.951 (0.2%) 0.894 (0.3%)

2 1 0.896 (0.0%) 0.875 (0.1%) 0.836 (0.3%
2 0.897 (0.1%) 0.876 (0.0%) 0.839 (0.0%)

3 0.896 (0.0%) 0.876 (0.0%) 0.839 (0.0%)

Simulation 0.896 ().0%) 0.876 (0.1%) 0.839 (0.2%)

3 1 0.876 (0.3%) 0.848 (0.8%) 0.788 (1.9%)

2 0.876 (0.3%) 0.850 (2.6%) 0.797 (0.7%)

3 0.876 (0.3%) 0.850 (2.6%) 0.797 (0.7%)

Simulation 0.879 (0.2%) 0.855 (0.3%) 0.803 (0.2%)

4 1 0.838 (0.1%) 0.784 (3.2%) 0.611 (17.2%)

2 0.849 (1.4%) 0.819 (1.1%) 0.744 (0.8%)

3 0.848 (1.3%) 0.816 (0.7%) 0.717 (2.8%)

Simulation 0.837 (0.0%) 0.810 (0.2%) 0.738 (0.3%)

compared to the original Brownian model, especially for system No. 4. By comparing
numerical results to simulation results, the SRBM model gives fairly good approxima-
tions. Performance approximation to station 3 is not as good as that to stations 1 and 2.
This may be due to the large variation of service time at station 3.
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Table 10
The iterations of the SRBM approximation for average job loss rates.

System n δ4(n) δ5(n) δ6(n)

1 1 0.024 (4.0%) 0.030 (25.0%) 0.088 (63.0%)

2 0.022 (12.0%) 0.023 (4.3%) 0.062 (14.8%)

3 0.022 (12.0%) 0.0233 (4.3%) 0.065 (20.4%)

Simulation 0.025 (3.1%) 0.024 (3.1%) 0.054 (2.3%)

2 1 0.104 (0.0%) 0.021 (0.0%) 0.039 (11.4%)

2 0.104 (0.0%) 0.020 (2.0%) 0.037 (5.7%)

3 0.104 (0.0%) 0.020 (2.0%) 0.037 (5.7%)

Simulation 0.104 (2.1%) 0.021 (4.4%) 0.035 (3.1%)

3 1 0.124 (2.5%) 0.028 (3.7%) 0.061 (27.1%)

2 0.124 (2.5%) 0.026 (3.7%) 0.053 (10.4%)

3 0.124 (2.5%) 0.026 (3.7%) 0.053 (10.4%)

Simulation 0.121 (1.1%) 0.027 (3.3%) 0.048 (3.0%)

4 1 0.162 (1.3%) 0.054 (80.0%) 0.173 (162.1%)

2 0.151 (0.6%) 0.030 (0.0%) 0.075 (13.6%)

3 0.152 (5.0%) 0.032 (6.7%) 0.099 (50.0%)

Simulation 0.160 (0.5%) 0.030 (1.6%) 0.066 (1.2%)

Table 11
The comparison of tail probabilities of system No. 1.

k 1 − P 1(k) 1 − P 2(k) 1 − P 3(k)

BNAfm Simul. BNAfm Simul. BNAfm Simul.

1 0.8035 0.7232 0.7850 0.6846 0.8421 0.6675
2 0.6391 0.5802 0.6190 0.5446 0.6988 0.5547
3 0.5016 0.4566 0.4846 0.4290 0.5702 0.4561
4 0.3866 0.3519 0.3742 0.3324 0.4553 0.3689
5 0.2905 0.2633 0.2827 0.2519 0.3532 0.2920
6 0.2100 0.1877 0.2063 0.1839 0.2627 0.2237
7 0.1427 0.1238 0.1421 0.1260 0.1830 0.1628
8 0.0864 0.0702 0.0878 0.0764 0.1130 0.1092
9 0.0394 0.0248 0.0412 0.0345 0.0521 0.0614

10 0 0 0 0 0 0

Another performance measure related to the queueing network is the (tail) prob-
ability that the total number of jobs in the system is at least k for a positive integer k.
Such performance measures are needed to assess the quality of service for a queueing
network. In tables 11 and 12, we use systems No. 1 and 2 to compare (tail) probabilities
for each station calculated from both SRBM and simulation. From these two tables, we
find that the SRBM estimates are not very close to simulation results, but they are rea-
sonably good enough in practice when high precision is not required. We note that there
are two possible errors here: one is from the BNAfm algorithm itself; the other results
from using SRBMs to approximate original queueing networks. We strongly believe that
the main error here is the SRBM approximation error.
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Table 12
The comparison of tail probabilities of system No. 2.

k 1 − P 1(k) 1 − P 2(k) 1 − P 3(k)

BNAfm Simul. BNAfm Simul. BNAfm Simul.

1 0.9930 0.9898 0.9566 0.9336 0.9525 0.8818
2 0.9847 0.9817 0.9135 0.8935 0.9054 0.8353
4 0.9635 0.9600 0.8283 0.8128 0.8123 0.7477
6 0.9340 0.9298 0.7441 0.7307 0.7211 0.6638
8 0.8932 0.8868 0.6611 0.6484 0.6322 0.5831

10 0.8367 0.8263 0.5791 0.5667 0.5459 0.5048
12 0.7583 0.7421 0.4983 0.4864 0.4623 0.4298
14 0.6495 0.6258 0.4186 0.4084 0.3817 0.3575
16 0.4988 0.4658 0.3401 0.3310 0.3042 0.2881
18 0.2898 0.2430 0.2627 0.2553 0.2300 0.2219
19 0.1567 0.1005 0.2238 0.2178 0.1942 0.1897
20 0 0 0.1864 0.1804 0.1593 0.1583
22 0 0 0.1113 0.1054 0.0924 0.0979
24 0 0 0.0370 0.0328 0.0296 0.0406
25 0 0 0 0 0 0

7. Concluding remarks

In this paper, we have proposed the finite element method algorithm to compute the
stationary distribution of a semimartingale reflecting Brownian motion in a hypercube.
This algorithm extends and complements previous algorithms. In particular, we find
this algorithm accurate, stable, and capable of computing the stationary density function
(in addition to the mean of the stationary distribution). Computing the density function
would allow us to predict some important performance measures in real applications
such as the service level in a production or communication network. We have applied
the algorithm to a finite buffer queueing network, and our numerical results indicate that
the algorithm in general provides very good approximations.
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