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We iteratively derive the product-form solutions of stationary distributions for a type of preemptive priority multiclass queueing
networks with multiserver stations. This type of queueing systems can typically be used to model the stochastic dynamics of some
large scale backbone networks withmultiprocessor shared-memory switches or local (edge) cloud computing centers with parallel-
server pools. The queueing networks are Markovian with exponential interarrival and service time distributions. The obtained
iterative solutions can be used to conduct performance analysis or as comparison criteria for approximation and simulation studies.
Numerical comparisons with existing Brownian approximating model (BAM) related to general interarrival and service times are
provided to show the effectiveness of our current designed algorithm and our previous derived BAM. Furthermore, based on the
iterative solutions, we can also give some analysis concerning network stability for some cases of these queueing systems, which
provides some insight for more general study.

1. Introduction

At present, integrated services packet networks (ISPN) are
widely used to transport a wide range of information such
as voice, video, and data. It is foreseeable that this integrated
services pattern will be one of the major techniques in the
future cloud computing based communication systems and
Internet (see, e.g., Mullender and Wood [1]). The intro-
duction of concept and architecture of cloud computing
can be found in, for example, Mell and Grance [2] and
Rhoton and Haukioja [3]. A possible cloud computing based
telecommunication network architecture (i.e., a large-scale
network infrastructure as a service) is designed in Figure 1,
where an end-user may require service (or services) from
single local cloud computing center or multiple local and
remote cloud computing centers. Among these centers, they
communicate each other by using core switching network
system (note that the switching system itself can also be
independently viewed and handled as a cloud computing
system with multiple service pools).

The speed and efficiency of core switching network sys-
tems are the bottleneck in realizing high speed owing to the

drastic improvement in transmission speed and reliability of
optical fiber. In an ISPN network, information is partitioned
into packets depending on the employed protocol such as
Internet protocol (IP). For the purpose of transmission, each
packet consists of user’s data payload to be transmitted, a
header containing control information (e.g., source and desti-
nation addresses, packet type, priority, etc.), and a checksum
used for error control.The high-speed ISPNnetworks require
fast packet switches to move packets along their respective
virtual paths.The switches are computers with processing and
storage capabilities. The main objective of a switch is to route
an incoming packet arriving along a particular input link to
a specified output link. More precisely, once the incoming
packet is entirely received, the switch examines its header and
selects the next outgoing link. In other words, packets are
transmitted in a store-and-forwardmanner.

Various pieces of information can be classified into a
fixed number of different types with separate requirements of
quality of service (e.g., different end-to-end delays and packet
loss ratios). Real time traffic packets with stringent delay
constraint (e.g., interactive audio/video) are endowed service
priority. In the meanwhile, it is imperative to size buffers for

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 767651, 16 pages
http://dx.doi.org/10.1155/2014/767651

http://dx.doi.org/10.1155/2014/767651


2 Mathematical Problems in Engineering

Cloud 
service
center

Cloud
service 
center

Cloud 
service
center

Switch Switch

Switch

End 
users

End 
users

End 
users

End 
users

Figure 1: An integrated services cloud computing based network.

nonreal time traffic packets (e.g., data), which can tolerate
higher delay but demand much smaller packet loss ratios.
Hence, efficient switching and buffer management schemes
are needed for switches.

Currently, three basic techniques (see, e.g., Tobagi [4]
and Rao and Tripathi [5]) are designed to realize the switch-
ing function: space-division, shared-medium, and shared-
memory. In our switches, the shared-memory technique
is employed, which is comprised of a single dual-ported
memory shared by all input and output lines. Packets arriving
along input lines are multiplexed into a single stream that is
fed to the common memory for storage. Inside the memory,
packets are organized into different output buffers, one for
each output line. In each output buffer, memory can be
further divided into priority output queues, one for each
type of traffic. In the meantime, an output stream of packets
is formed by retrieving packets from the output queues
sequentially, one per queue. Among different traffic types,
packets are retrieved according to their priorities. Inside each
type, packets are retrieved under the first-in first-out (FIFO)
service discipline. Then, the output stream is demultiplexed
and packets are transmitted on the output lines. There are
some other ways to deal with the output queues such as
processor sharing among output lines (see, e.g., Tobagi [4]
and Rao and Tripathi [5]). We will address these issues
elsewhere (see, e.g., Dai [6]).

In addition to switching, queueing is another main func-
tionality of packet switches. The introduction of queueing
function is owing tomultiple packets arriving simultaneously
from separate input lines and owing to the randomness of
packet arrivals fromboth outside routing and internal routing
of the network. There are three possibilities for queueing in a
switch: input queueing, output queueing, and shared-memory
queueing (see, e.g., Schwarz [7] and Rao and Tripathi [5]).
Shared-memory-queueing mechanism is employed in our
switches since it has numerous advantages with respect to
switching and queueing over other schemes. For example,
both switching and queueing functions can be implemented
together by controlling the memory read and write properly.
Furthermore, modifying the memory read and write control
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Figure 3: A two-stage switchwith four dual-ported shared-memory
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circuit makes the shared-memory switch sufficiently flexible
to perform functions such as priority control and other
operations.

Nevertheless, no matter what technology is employed
in implementing the switch, it places certain limitations
on the size of the switch and line speeds. Currently, two
possible ways can be used to build large switches tomatch the
transmission speed of optical fiber. The first one is to adopt
parallel processors (see, e.g., Figure 2). The second one is to
interconnect many switches (known as switch modules) in
a multistage configuration to build large switches (see, e.g.,
Figure 3). The remaining issue is how to reasonably allocate
resources of these switches and efficiently evaluate the system
performance.

The statistical characteristics of packet interarrival times
and packet sizes have a major impact on switch hardware
and software designs owing to the consideration of network
performance. How to more effectively identify packet traffic
patterns is a very active and involved research field (see, e.g.,
Nikolaidis and Akyildiz [8] and Dai [6, 9, 10]). Independent
and identical distribution (i.i.d.) is the popular assumption
for these times and packet sizes. Doubly stochastic renewal
process introduced in Dai [6] is the latest definition and
generalization related to input traffic and service processes
for a wireless network under random environment. The
effectiveness of these characteristics is supported by recent
discoveries in Cao et al. [11] and Dai [9, 10].
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In all circumstances, it is imperative to find product-
form solutions for those queueing networks under suit-
able conditions to conduct performance analysis or provide
comparison criteria to show the effectiveness of approxi-
mation and/or simulation studies (see, e.g., Dai et al. [6,
12–15]). Furthermore, note that the stochastic dynamics of
the backbone networks with multiprocessor shared-memory
switches and the local (edge) cloud computing centers with
parallel-server pools in Figure 1 can both be described by a
multiclass queueing networks with parallel servers at each
station. Hence, in this paper, we aim to derive the product-
form solutions iteratively for one particular type of related
queueing networks, that is, a type of particular preemptive
priority multiclass queueing networks when the interarrival
and service times are exponentially distributed. In addition,
we also aim to provide some numerical comparisons with
existing Brownian approximating model (BAM) related to
general interarrival and service times to show the effec-
tiveness of our current designed algorithm and our former
derived BAM.

Next, we provide some review of the existing literature
associated with the current study. Comparisons between the
existing studies and our current discussion are also presented.

Under a general Whittle network framework, the
product-form solutions are presented in Serfozo [16] for
some multiclass networks, which include those with sector-
dependent (e.g., Example 3.3) and class-station-dependent
service rates (e.g., BCMP networks in Section 3.3, which
are introduced by Baskett et al. [17]). Without considering
the interaction among different stations, the distinguishing
feature of these networks is that a job’s service rate at a
station may consist of two intensities: one referred to as
station intensity is a function of the total queue length at
the station and the other one referred to as class intensity is
a function of the queue length in the same class as the job
being served. Some specific single-class queueing systems of
BCMP networks in Section 3.3 of Serfozo [16] are revisited in
Harrison [18, 19] by developing some Reversed Compound
Agent Theorem (RCAT) based method. The corresponding
product-form and non-product-form solutions are derived.
Nevertheless, as claimed inHarrison [18, 19], heavier notation
will be involved as long as a multiclass BCMP network is
concerned.

Although our networks are of a form of those networks
withmultiple types of units as introduced in Serfozo [16], our
networks are beyond those with sector-dependent and class-
station-dependent service rates as introduced previously.
More precisely, for a station in our networks, the station
intensity is not only a function of the total queue length but
also a function of combinations of queue lengths of various
classes. The class intensity depends on not only the queue
length of itself and/or the total queue length but also the
numbers of jobs in other classes at the station. Therefore,
how to find suitable functionΦ and how to prove our service
rates to be Φ-balanced as defined in Chapter 3 of Serfozo
[16] are not obvious. Moreover, how to apply the RCAT
basedmethod developed inHarrison [18, 19] to ourmulticlass
network cases is also not trivial. Thus, in this paper, we use
the method of solving Kolmogorov (balance) equations to

get the product-form solutions iteratively, which are more
engineering and computationally friendly. Furthermore, by
this method, we can also give some analysis concerning
network stability for some cases of these systems, which
provides some insight for more general study.

The remainder of this paper is organized as follows. The
open priority multiclass queueing network associated with
high-speed ISPN is described in Section 2. Our main results
including product-form solutions and performance compar-
isons are presented in Section 3. Numerical comparisons
are given in Section 4. The proofs of our main theorems
are provided in Section 5. The conclusion of the paper is
presented in Section 6.

2. The Queueing Network Model

Note that the stochastic dynamics of the backbone core
networks with multiprocessor shared-memory switches and
the local (edge) cloud computing centers with parallel-server
pools in Figure 1 can both be described by multiclass queue-
ing networks with parallel servers at each station. Therefore,
we consider a queueing network that has 𝐽 multiserver
stations. Each station indexed by 𝑗 ∈ {1, . . . , 𝐽} owns 𝑐𝑗 servers
and has an infinite capacity waiting buffer. In the network,
there are 𝐼 job types. Each type consists of 𝐽 job classes that
are distributed at different stations. Therefore, the network
is populated by 𝐾 (= 𝐼𝐽) job classes which are labeled by
𝑘 ∈ {1, . . . , 𝐾}. Upon the arrival of a job of a type from
outside the network, it may only receive service for part of
𝐽 classes and may visit a particular class more than once (but
at most finite many times). Then, it leaves the network (i.e.,
the network is open). At any given time during its lifetime in
the network, the job belongs to one of the classes and changes
classes at each time a service is completed. All jobs within a
class are served at a unique station and more than one class
might be served at a station (so-called multiclass queueing
network). The ordered sequence of classes that a job visits in
the network is named a route. Interrouting among different
job types is not allowed throughout the entire network.

We use C(𝑗) to denote the set of classes belonging to
station 𝑗. Let 𝑠(𝑘) denote the station to which class 𝑘 belongs.
We implicitly set 𝑗 = 𝑠(𝑘) when 𝑗 and 𝑘 appear together.
Associated with each class 𝑘, there are two i.i.d sequences
of random variables (r.v.), 𝑢𝑘 = {𝑢𝑘(𝑖), 𝑖 ≥ 1} and V𝑘 =
{V𝑘(𝑖), 𝑖 ≥ 1}, an i.i.d sequence of 𝐾-dimensional random
vectors, 𝜙𝑘 = {𝜙𝑘(𝑖), 𝑖 ≥ 1}, and two real numbers, 𝛼𝑘 ≥ 0
and𝑚𝑘 = 1/𝜇𝑘 > 0. We suppose that the 3𝐾 sequences

𝑢1, . . . , 𝑢𝐾, V1, . . . , V𝐾, 𝜙
1
, . . . , 𝜙

𝐾 (1)

are mutually independent. The initial r.v.s 𝑢𝑘(1) and V𝑘(1)
have means 𝐸[𝑢𝑘(1)] = 1/𝛼𝑘 and 𝐸[V𝑘(1)] = 𝑚𝑘, respectively.
For each 𝑖 ∈ {1, 2, . . .}, 𝑢𝑘(𝑖) denotes the interarrival time
between the (𝑖 − 1)th and the 𝑖th externally arrival job at class
𝑘. Furthermore, V𝑘(𝑖) denotes the service time for the 𝑖th class
𝑘 job. In addition, 𝜙𝑘(𝑖) denotes the routing vector of the 𝑖th
class 𝑘 job. We allow 𝛼𝑘 = 0 for some classes 𝑘 ∈ E ≡ {𝑘 :

𝛼𝑘 ̸= 0}.Then, it follows that 𝛼𝑘 and 𝜇𝑘 are the external arrival
rate and service rate for class 𝑘, respectively. We assume that
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the routing vector 𝜙𝑘(𝑖) takes values in {𝑒0, 𝑒1, . . . , 𝑒𝐾}, where
𝑒0 is the 𝐾-dimensional vector of all 0’s. For 𝑙 = 1, . . . , 𝐾, 𝑒𝑙
is the 𝐾-dimensional vector with 𝑙th component 1 and other
components 0. When 𝜙𝑘(𝑖) = 𝑒𝑙, the 𝑖th job departing class 𝑘
becomes a class 𝑙 job. Let𝑝𝑘𝑙 = 𝑃{𝜙

𝑘
(𝑖) = 𝑒𝑙} be the probability

that a job departing class 𝑘 becomes a class 𝑙 job (of the same
type). Thus, the corresponding 𝐾 × 𝐾 matrix 𝑃 = (𝑝𝑘𝑙) is
routing matrix of the network. Furthermore, the matrix

Q = 𝐼 + 𝑃
󸀠
+ (𝑃
󸀠
)
2
+ ⋅ ⋅ ⋅ (2)

is finite; that is, (𝐼 − 𝑃󸀠) is invertible with Q = (𝐼 − 𝑃󸀠)−1 since
the network is open. The symbol 󸀠 on a vector or a matrix
denotes the transpose and 𝐼 denotes the identity matrix.

We use 𝜆𝑘 for 𝑘 ∈ {1, . . . , 𝐾} to denote the overall arrival
rate of class 𝑘, including both external arrivals and internal
transitions. Then, we have the following traffic equation:

𝜆𝑘 = 𝛼𝑘 +

𝐾

∑

𝑙=1

𝜆𝑙𝑝𝑙𝑘, (3)

or in its vector form: 𝜆 = 𝛼+𝑃󸀠𝜆 (all vectors in this paper are
to be interpreted as column vectors unless explicitly stated
otherwise). Note that the unique solution 𝜆 of (3) is given by
𝜆 = Q𝛼. For each 𝜆𝑘, if there is a long-run average rate of
flow into the class which equals the long-run average rate out
of that class, this rate will equal 𝜆𝑘. Furthermore, we define
the traffic intensity 𝜌𝑗 for station 𝑗 as follows:

𝜌𝑗 = ∑

𝑘∈C(𝑗)

𝜆𝑘

𝑐𝑗𝜇𝑘

, (4)

where 𝜌𝑗 with 𝜌𝑗 ≤ 1 is also referred to as the nominal fraction
of time that station 𝑗 is nonidle.

The order of jobs being served at each station is dictated
by a service discipline. In the current research, we restrict
our attention to static buffer priority (SBP) service disciplines
under which the classes at each station are assigned a fixed
rank (with no ties). In our queueing network, each type of
jobs is assigned the same priority rank at every station where
it possibly receives service. When a server within a station
switches from one job to another, the new job will be taken
from the leading (or longest waiting) job at the highest rank
nonempty class at the server’s station. Within each class, it is
assumed that jobs are served on the first-in first-out (FIFO)
basis. We suppose that the discipline employed is nonidling;
that is, a server is never idle when there are jobs waiting to
be served at its station. We also assume that the discipline
is preemptive resume; that is, when a job arrives at a station
with all servers busy and if the job is with a higher rank than
at least one of the jobs currently being served, one of the
lower rank job services is interrupted; when there is a server
available to the interrupted service, it continues fromwhere it
left off. For convenience and without loss of generality, we use
consecutive numbers to index the classes that have the same
priority rank at stations 1 to 𝐽. In other words, the highest
priority classes for station 1 to 𝐽 are indexed by 1 to 𝐽, the
second highest priority classes are indexed by 𝐽 + 1 to 2𝐽, . . .,

and the lowest priority classes are indexed by𝐾−𝐽+1 to𝐾. An
example of such a two-station network is given in Figure 2. In
the network, type 1 traffic possibly requires class 1 and class
2 services, type 2 traffic possibly requires class 3 and class 4
services, and classes in type 1 have the higher priority at their
corresponding stations.

Finally, we define the cumulative arrival, cumulative
service, and cumulative routing processes by the following
sums:

𝑈𝑘 (𝑛) =

𝑛

∑

𝑖=1

𝑢𝑘 (𝑖) , 𝑉𝑘 (𝑛) =

𝑛

∑

𝑖=1

V𝑘 (𝑖) ,

Φ
𝑘
(𝑛) =

𝑛

∑

𝑖=1

𝜙
𝑘
(𝑖) ,

(5)

where the 𝑙th component Φ𝑘𝑙 (𝑛) of Φ
𝑘
(𝑛) is the cumulative

number of jobs to class 𝑙 for the first 𝑛th jobs leaving class 𝑘
with 𝑛 = 1, 2, . . . and 𝑘, 𝑙 ∈ {1, . . . , 𝐾}. Then, we define

𝐸𝑘 (𝑡) ≡ max {𝑛 ≥ 0, 𝑈𝑘 (𝑛) ≤ 𝑡} ,

𝑆𝑘 (𝑡) ≡ max {𝑛 ≥ 0, 𝑉𝑘 (𝑛) ≤ 𝑡} ,

𝐴𝑘 (𝑡) ≡ 𝐸𝑘 (𝑡) +

𝐾

∑

𝑙=1

Φ
𝑙
𝑘 (𝑆𝑙 (𝑡)) .

(6)

Note that 𝐸𝑘(𝑡) denotes the total number of external arrivals
to class 𝑘 in time interval [0, 𝑡]. 𝑆𝑘(𝑡) represents the total
number of class 𝑘 jobs which have finished service in [0, 𝑡].
𝐴𝑘(𝑡) is the total arrivals to class 𝑘 in [0, 𝑡] including both
external arrivals and internal transitions.

3. Steady-State Queue Length Distributions

We use 𝑄𝑘(𝑡) to denote the number of class 𝑘 jobs in station
𝑗 = 𝑠(𝑘) with 𝑗 ∈ {1, 2, . . . , 𝐽} and 𝑘 ∈ {1, 2, . . . , 𝐾} at time
𝑡. It is called the queue length process for class 𝑘 jobs. For
convenience, let𝑄(𝑖,𝑗)(𝑡) and 𝑛(𝑖,𝑗) be the (𝑗−𝑖+1)-dimensional
queue length process and (𝑗−𝑖+1)-dimensional state vectors,
respectively. They are given by

𝑄(𝑖,𝑗) (𝑡) = (𝑄𝑖 (𝑡) , . . . , 𝑄𝑗 (𝑡)) , 𝑛(𝑖,𝑗) = (𝑛𝑖, . . . , 𝑛𝑗) (7)

for 𝑗 > 𝑖 and 𝑖, 𝑗 ∈ {1, 2, . . . , 𝐾} and nonnegative integers
𝑛𝑖, . . . , 𝑛𝑗. Then, we use 𝑃𝑛(1,𝐾)(𝑡) to denote the probability of
system at state 𝑛(1,𝐾) = (𝑛1, . . . , 𝑛𝐾) and at time 𝑡; that is,

𝑃𝑛(1,𝐾)
(𝑡) = 𝑃 {𝑄(1,𝐾) (𝑡) = 𝑛(1,𝐾)} . (8)

Furthermore, let

𝑃𝑛(1,𝐾)
= 𝑃 {𝑄(1,𝐾) (∞) = 𝑛(1,𝐾)} (9)

denote the corresponding steady-state probability of system
at state (𝑛1, . . . , 𝑛𝐾) if the network exists in a stationary
distribution. In addition, let 𝑃𝑠(𝑖𝐽+𝑘)𝑛𝑖𝐽+𝑘

denote the probability
at state 𝑛𝑖𝐽+𝑘 for class 𝑖𝐽 + 𝑘 with 𝑖 ∈ {0, 1, . . . , 𝐼 − 1} and
𝑘 ∈ {1, 2, . . . , 𝐽}.
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Under the usual convention, let 𝑥 ∧ 𝑦 denote the smaller
one of any two real numbers 𝑥 and 𝑦. Let 𝑥 ∨ 𝑦 denote the
larger one of 𝑥 and 𝑦; that is, 𝑥 ∧ 𝑦 ≡ min{𝑥, 𝑦} and 𝑥 ∨
𝑦 ≡ max{𝑥, 𝑦}. Then, for each 𝑘 ∈ {1, . . . , 𝐾}, we have the
following notation:

𝑎 (𝑥, 𝑦) ≡ (𝑥 ∧ (𝑐𝑠(𝑘) − 𝑦)) ∨ 0. (10)

Finally, for 𝑖 > 0, define

𝜅 (𝑛𝑖𝐽+𝑘) ≡

{{{{{{{{

{{{{{{{{

{

0 if 𝑛𝑖𝐽+𝑘 = 0,

∑

∑
𝑖−1
𝑢=0 𝑛𝑢𝐽+𝑘<𝑐𝑠(𝑘)

𝑎(𝑛𝑖𝐽+𝑘,

𝑖−1

∑

𝑢=0

𝑛𝑢𝐽+𝑘)

×

𝑖−1

∏

𝑢=0

𝑃
𝑠(𝑢𝐽+𝑘)
𝑛𝑢𝐽+𝑘

if 𝑛𝑖𝐽+𝑘 > 0.

(11)

Furthermore, for 𝑖 = 0, define 𝜅(𝑛𝑘) ≡ 𝑛𝑘 ∧ 𝑐𝑠(𝑘).

Theorem 1 (steady-state distribution). Assume that all of the
service times and external interarrival times are exponentially
distributed with rates as before and the traffic intensity 𝜌𝑗 < 1
for all 𝑗 ∈ {1, . . . , 𝐽}. Furthermore, suppose that

𝜆𝑖𝐽+𝑘

𝜅 (𝑛𝑖𝐽+𝑘) 𝜇𝑖𝐽+𝑘

< 1 (12)

for 𝑛𝑖𝐽+𝑘 > 0, 𝑖 ∈ {0, . . . , 𝐼 − 1}, and 𝑘 ∈ {1, . . . , 𝐽}. Then, for
each ℎ ∈ {1, 2, . . . , 𝐼}, the steady-state distribution is given by
the following product form:

𝑃𝑛(1,ℎ𝐽)
=

ℎ−1

∏

𝑖=0

𝐽

∏

𝑘=1

𝑃
𝑠(𝑖𝐽+𝑘)
𝑛𝑖𝐽+𝑘

. (13)

More precisely, for 𝑛𝑖𝐽+𝑘 ≥ 1,

𝑃
𝑠(𝑖𝐽+𝑘)
𝑛𝑖𝐽+𝑘

= 𝑃
𝑠(𝑖𝐽+𝑘)
0

𝑛𝑖𝐽+𝑘

∏

𝑟𝑖𝐽+𝑘=1

𝜆𝑖𝐽+𝑘

𝜅 (𝑟𝑖𝐽+𝑘) 𝜇𝑖𝐽+𝑘

, (14)

and, for 𝑛𝑖𝐽+𝑘 = 0, the initial distribution 𝑃
𝑠(𝑖𝐽+𝑘)
0 is determined

by

𝑃
𝑠(𝑖𝐽+𝑘)
0 =

1

1 + ∑
∞
𝑛𝑖𝐽+𝑘=1

∏
𝑛𝑖𝐽+𝑘
𝑟𝑖𝐽+𝑘=1

(𝜆𝑖𝐽+𝑘/𝜅 (𝑟𝑖𝐽+𝑘) 𝜇𝑖𝐽+𝑘)

. (15)

The following theorem relates condition (12) to primitive
interarrival time and service rates for some cases of these
systems, which provides some insight for more general study.

Proposition 2 (network stability condition). Under the expo-
nential assumptions as stated in Theorem 1, if 𝜌𝑗 < 1, for each
𝑗 ∈ {1, . . . , 𝐽}, the stability condition (12) holds for the following
networks.

Net I. Multiclass networks with single-server stations, that is,
the number 𝑐𝑗 of servers is one for all stations 𝑗 ∈ {1, . . . , 𝐽}
while the number 𝐼 of job types can be arbitrary.

Net II. The number 𝑐𝑗 of servers can be arbitrary for all stations
𝑗 ∈ {1, . . . , 𝐽} while the number of job types equals two (𝐼 = 2).

Table 1: Numerical tests for network stability condition (12).

1 < 𝜆𝑘/𝜇𝑘 < 2, 𝜌𝑠(𝑘) < 1
𝜆2𝐽+𝑘/𝜅(𝑛2𝐽+𝑘)𝜇2𝐽+𝑘 𝜆𝑘/𝜇𝑘 𝜆𝐽+𝑘/𝜇𝐽+𝑘 𝜆2𝐽+𝑘/𝜇2𝐽+𝑘

0.16748 1.10 0.30 0.10
0.98814 1.10 0.30 0.59
0.99111 1.50 0.30 0.19
0.85890 1.90 0.05 0.04

We conjecture that 𝜌𝑗 < 1 for 𝑗 ∈ {1, . . . , 𝐽} implies
the condition (12) for our general network. Nevertheless,
owing to complex computation involved, the corresponding
analytical illustration is not a trivial task.

Example 3. Consider a network with three job types (𝐼 = 3)
and at least one station 𝑗 = 𝑠(𝑘) having two servers (𝑐𝑠(𝑘) = 2
for 𝑘 ∈ {1, . . . , 𝐽}) while other stations have at most two
servers (𝑐𝑠(𝑙) ≤ 2 for 𝑙 ∈ {1, 2, . . . , 𝐽} \ {𝑘}). For a station
𝑠(𝑘) with three servers, the condition (12) can be explicitly
expressed as follows:

(
𝜆2𝐽+𝑘

𝜇2𝐽+𝑘

×(1 +
𝜆𝑘

𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

− (
𝜆𝑘

2𝜇𝑘

)

2

−
1

4
(
𝜆𝑘

𝜇𝑘

)

3

+
𝜆𝑘𝜆𝐽+𝑘

4𝜇𝑘𝜇𝐽+𝑘

))

× (2(1 −
𝜆𝑘

2𝜇𝑘

−
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

)

× (1 +
𝜆𝑘

𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

− (
𝜆𝑘

2𝜇𝑘

)

2

−
1

4
(
𝜆𝑘

𝜇𝑘

)

3

+ 2(1 −
𝜆𝑘

2𝜇𝑘

)
𝜆𝑘𝜆𝐽+𝑘

4𝜇𝑘𝜇𝐽+𝑘

))

−1

< 1

(16)

for 𝑛2𝐽+𝑘 ≥ 2. Under 𝜌𝑗 < 1, it is easy to see that the above
inequality is true if 𝜆𝑘/𝜇𝑘 ≤ 1. Numerical tests in Table 1
have also been conducted and show that the inequality is true
even for 1 < 𝜆𝑘/𝜇𝑘 < 2, but the corresponding analytic
demonstration could be nontrivial. The detailed illustration
of the example will be provided at the end of this paper.

Remark 4. The justifications of Theorem 1 and Proposition 2
are postponed to Section 5. Instead, we will first use these
results as comparison criteria to illustrate the effectiveness
of the diffusion approximation models developed in Dai
[13] and answer the question on when these approximation
models can be employed.

4. Numerical Comparisons

First of all, we note that partial results presented in this
section were briefly reported in the short conference version
(Dai [20]) of this paper. More precisely, we consider a
network with single-server station and under preemptive
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priority service discipline. By employing the exact solutions
developed in previous sections, we conduct performance
comparisons between these product-form solutions and the
approximating ones of Brownian network models.

Brownian network models, which are also known as
semimartingale reflecting Brownian motions (SRBM), have
been widely employed as approximating models for multi-
class queueing networks with general interarrival and service
time distributions when the traffic intensity defined in (4)
is suitably large or close to one (see, e.g., Dai [13]). The
effectiveness of the Brownian network models has been
justified in numerical cases by comparing their solutions with
either exact solutions or simulation results (see, e.g., Dai [13],
Chen and Yao [21], and Dai et al. [22]). Thus, it is meaningful
to illustrate the correctness of our newly derived formula by
comparing it with the Brownian network models.

For the network with exponential interarrival and service
time distributions, by using Theorem 1, we get the steady-
state mean queue length for each class 𝑘 ∈ {1, . . . , 𝐾} as

𝐸𝑄𝑘 (∞) =

∞

∑

𝑛𝑘=0

𝑛𝑘𝑃
𝑠(𝑘)
𝑛𝑘

=
𝜆𝑘𝑚𝑘

1 − ∑
𝑘
𝑖=1 𝜆𝑖𝑚𝑖

=
𝛼𝑘𝑚𝑘/ (1 − 𝑝𝑘𝑘)

1 − ∑
𝑘
𝑖=1 𝛼𝑖𝑚𝑖/ (1 − 𝑝𝑖𝑖)

(17)

and the expected total time (sojourn time) a job had to spend
in the system as

𝐸𝑇𝑘 (∞) =
𝑚𝑘

1 − ∑
𝑘
𝑖=1 𝜆𝑖𝑚𝑖

=
𝑚𝑘

1 − ∑
𝑘
𝑖=1 𝛼𝑖𝑚𝑖/ (1 − 𝑝𝑖𝑖)

. (18)

For the networkwith general interarrival and service time
distributions, owing to the nature of our network routing
structure, the higher priority classes are independent of lower
ones. Then, it follows from the studies in Dai [13], Harrison
[23], and Chen and Yao [21] that the steady-state mean
sojourn time and mean queue length for each class 𝑘 can
iteratively be calculated with respect to priority order as
follows:

𝐸𝑇𝑘 (∞) =
𝐸𝑊𝑘 (∞) + 𝑚𝑘

1 − ∑
𝑘−1
𝑖=1 𝜆𝑖𝑚𝑖

, 𝐸𝑄𝑘 (∞) = 𝜆𝑘𝐸𝑇𝑘 (∞) ,

(19)

where 𝐸𝑊𝑘(∞) is the steady-state mean total workload for
all classes 𝑖 ∈ {1, . . . , 𝑘} and 𝑘 = 1, . . . , 𝐾. More precisely, it is
given by

𝐸𝑊𝑘 (∞) =
𝜎
2
𝑘

2
󵄨󵄨󵄨󵄨𝜃𝑘
󵄨󵄨󵄨󵄨

, (20)

where

𝜃𝑘 = (1 − 𝑝𝑘𝑘)(

𝑘

∑

𝑖=1

𝜆𝑖𝑚𝑖 − 1) ,

𝜎
2
𝑘 = (1 − 𝑝𝑘𝑘)

2
𝑘

∑

𝑖=1

(𝜆𝑖𝑏𝑖 +

𝑚
2
𝑖 (𝛼
3
𝑖 𝑎𝑖 + 𝜆𝑖𝑝𝑖𝑖 (1 − 𝑝𝑖𝑖))

(1 − 𝑝𝑖𝑖)
2

) ,

(21)

and 𝑎𝑖, 𝑏𝑖 are the variances of interarrival and service time
sequences for each class 𝑖.

In our numerical comparisons, we consider an exponen-
tial networkwith𝐾 = 3. For this case, our corresponding data
are listed in Table 2. In the table, ERROR = SRBM − EXACT
and RATIO = (|ERROR|/EXACT) ∗ 100%, 𝐸𝑄(∞) =

∑
3
𝑖=1 𝐸𝑄𝑖(∞) and 𝐸𝑇̂𝑘(∞) = ∑

𝑘
𝑖=1 𝑇𝑖(∞) for 𝑘 = 1, 2, 3.

From the table, we can see that SRBMs are more reasonable
approximations of their physical queueing counterpartswhen
traffic intensities for the lowest priority jobs are relatively
large.

5. Proofs of Theorem 1 and Proposition 2

5.1. Proof of Theorem 1. For convenience, we introduce some
additional notations. Let Δ𝐸𝑘(𝑡), Δ𝑆𝑘(𝑡), and Δ𝐴𝑘(𝑡) be
defined by

Δ𝐸𝑘 (𝑡) ≡ 𝐸𝑘 (𝑡 + Δ𝑡) − 𝐸𝑘 (𝑡) ,

Δ𝑆𝑘 (𝑡) ≡ 𝑆𝑘 (𝑡 + Δ𝑡) − 𝑆𝑘 (𝑡) ,

Δ𝐴𝑘 (𝑡) ≡ 𝐴𝑘 (𝑡 + Δ𝑡) − 𝐴𝑘 (𝑡) ,

(22)

which denote the cumulative external arrivals to class 𝑘, the
cumulative number of jobs finished services at class 𝑘, and
the total arrivals to class 𝑘 in [𝑡, 𝑡 + Δ𝑡]. Then, we can justify
Theorem 1 by induction as in the following several steps.

Step 1. We consider the steady-state distribution for the
highest rank classes with each index 𝑘 ∈ {1, 2, . . . , 𝐽}. In
this case, the type index 𝑖 = 0 is used in Theorem 1. Owing
to the preemptive-resume service discipline and the class
routing structure, we know that these 𝐽 classes form a Jackson
network. Then, by the theorem in Jackson [24], we have the
following product form:

𝑃𝑛(1,𝐽)
= 𝑃
𝑠(1)
𝑛1
𝑃
𝑠(2)
𝑛2

⋅ ⋅ ⋅ 𝑃
𝑠(𝐽)
𝑛𝐽
, (23)

where 𝑃𝑠(𝑘)𝑛𝑘 denotes the steady-state probability at state 𝑛𝑘 for
class 𝑘 (∈ {1, 2, . . . , 𝐽}) at station 𝑠(𝑘). More precisely, it is
given by

𝑃
𝑠(𝑘)
𝑛𝑘

=

{{{{

{{{{

{

𝑃
𝑠(𝑘)
0 (𝜆𝑘/𝜇𝑘)

𝑛𝑘

𝑛𝑘!
, if 0 ≤ 𝑛𝑘 < 𝑐𝑘,

𝑃
𝑠(𝑘)
0 (𝜆𝑘/𝜇𝑘)

𝑛𝑘

𝑛𝑘!(𝑛𝑘)
𝑛𝑘−𝑐𝑘

, if 𝑛𝑘 ≥ 𝑐𝑘
(24)

with 𝑃𝑠(𝑘)0 being determined by equation ∑∞𝑛𝑘=0 𝑃
𝑠(𝑘)
𝑛𝑘

= 1; that
is,

𝑃
𝑠(𝑘)
0

= (

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

1

𝑛𝑘!
(
𝜆𝑘

𝜇𝑘

)

𝑛𝑘

+
(𝜆𝑘/𝜇𝑘)

𝑐𝑠(𝑘)

𝑐𝑠(𝑘)! (1 − 𝜆𝑘/𝑐𝑠(𝑘)𝜇𝑘)
)

−1

.

(25)

Step 2. We derive the steady-state distribution for the high-
est rank and the second highest rank classes with 𝑘 ∈
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Table 2: Performance comparisons for a priority multiclass network with three job types.

𝐾 = 3,𝑚1 = 1,𝑚2 = 2,𝑚3 = 3, 𝑝11 = 0.1, 𝑝22 = 0.2, 𝑝33 = 0.3
𝜆1 𝜆2 𝜆3 𝜌 𝐸𝑄(∞) 𝐸𝑇̂1(∞) 𝐸𝑇̂2(∞) 𝐸𝑇̂3(∞)

EXACT 0.20 0.20 0.06 0.78 2.0682 1.2500 6.2500 14.8864
SRBM 0.20 0.20 0.06 0.78 2.2410 1.2500 6.4722 17.0253
ERROR −0.1728 0.0000 0.2222 2.1389
RATIO 8.35% 0.00% 3.56% 14.37%
EXACT 0.20 0.20 0.085 0.855 3.0086 1.2500 6.2500 21.9397
SRBM 0.20 0.20 0.085 0.855 3.2349 1.2500 6.4722 24.0785
ERROR −0.2263 0.0000 0.2222 2.1389
RATIO 7.52% 0.00% 3.56% 9.75%
EXACT 0.20 0.20 0.115 0.945 7.5227 1.2500 6.2500 55.7955
SRBM 0.20 0.20 0.115 0.945 7.8131 1.2500 6.4722 57.9344
ERROR −0.2904 0.0000 0.2222 2.1389
RATIO 3.86% 0.00% 3.56% 3.83%
EXACT 0.10 0.15 0.115 0.745 1.9641 1.1111 4.4444 12.8758
SRBM 0.10 0.15 0.115 0.745 2.0944 1.1111 4.5432 13.8804
ERROR −0.1303 0.0000 0.0988 1.0046
RATIO 6.64% 0.00% 2.22% 7.80%
EXACT 0.10 0.15 0.15 0.85 3.6111 1.2500 4.4444 21.1111
SRBM 0.10 0.15 0.15 0.85 3.7766 1.2500 4.5432 22.1157
ERROR −0.1655 0.0000 0.0988 1.0046
RATIO 4.58% 0.00% 2.22% 4.76%
EXACT 0.10 0.15 0.185 0.955 12.9445 1.2500 4.4444 67.7778
SRBM 0.10 0.15 0.185 0.955 13.1451 1.2500 4.5432 68.7824
ERROR −0.2007 0.0000 0.0988 1.0046
RATIO 1.55% 0.00% 2.22% 1.48%
EXACT 0.45 0.22 0.02 0.95 6.0182 1.8182 20.0000 61.8182
SRBM 0.45 0.22 0.02 0.95 6.3818 1.8182 20.7273 72.0000
ERROR −0.3636 0.0000 0.7273 10.1818
RATIO 6.04% 0.00% 3.64% 16.47%
EXACT 0.45 0.22 0.03 0.98 9.3182 1.8182 20.0000 151.8181
SRBM 0.45 0.22 0.03 0.98 9.7836 1.8182 20.7273 161.9999
ERROR −0.4655 0.0000 0.7273 10.1818
RATIO 5.00% 0.00% 3.64% 6.71%

{1, 2, . . . , 2𝐽}. Owing to the preemptive-resume service disci-
pline and the job routing structure, we have

𝑃𝑛(1,2𝐽)
(𝑡) = 𝑃𝑛(1,𝐽)/𝑛(𝐽+1,2𝐽)

(𝑡) 𝑃𝑛(𝐽+1,2𝐽)
(𝑡)

= 𝑃𝑛(1,𝐽)
(𝑡) 𝑃𝑛(𝐽+1,2𝐽)

(𝑡) ,

(26)

where the second equality follows from the preemptive
assumption and 𝑃𝑛(1,𝐽)/𝑛(𝐽+1,2𝐽)(𝑡) is the conditional probability
at time 𝑡 for classes with 𝑘 ∈ {1, . . . , 𝐽} at state 𝑛(1,𝐽) in terms
of classes with 𝑘 ∈ {𝐽 + 1, . . . , 2𝐽} at state 𝑛(𝐽+1,2𝐽); that is,

𝑃𝑛(1,𝐽)/𝑛(𝐽+1,2𝐽)
(𝑡)

= 𝑃 {𝑄(1,𝐽) (𝑡) = 𝑛(1,𝐽) | 𝑄(𝐽+1,2𝐽) (𝑡) = 𝑛(𝐽+1,2𝐽)} .

(27)

In order to get the steady state distribution for 𝑃𝑛(𝐽+1,2𝐽)(𝑡), we
consider each state 𝑛(𝐽+1,2𝐽) at time 𝑡 for the second highest

rank class jobs.There are several ways inwhich the system can
reach it. They can be summarized in the following formula:

𝑃𝑛(𝐽+1,2𝐽)
(𝑡 + Δ𝑡)

= (1 −

𝐽

∑

𝑘=1

𝛼𝐽+𝑘Δ𝑡

−

𝐽

∑

𝑘=1

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝜇𝐽+𝑘 (1 − 𝑝𝐽+𝑘,𝐽+𝑘)

× 𝑃𝑛(1,𝐽)
(𝑡) Δ𝑡)

× 𝑃𝑛(𝐽+1,2𝐽)
(𝑡)
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+

𝐽

∑

𝑘=1

(

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘 + 1, 𝑛𝑘) 𝜇𝐽+𝑘

× (1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝑃𝑛(1,𝐽)
(𝑡) Δ𝑡)

× 𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽
(𝑡)

+

𝐽

∑

𝑘=1

(𝑛𝐽+𝑘 ∧ 1) 𝛼𝐽+𝑘Δ𝑡𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽
(𝑡)

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

(

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑟 + 1, 𝑛𝑟)

× 𝜇𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠𝑃𝑛(1,𝐽)
(𝑡))

× (𝑛𝐽+𝑠 ∧ 1) Δ𝑡𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽
(𝑡)

+ 𝑜 (Δ𝑡) ,

(28)

where 𝑎(𝑛𝐽+𝑘, 𝑛𝑘) = (𝑛𝐽+𝑘 ∧ (𝑐𝑠(𝑘) − 𝑛𝑘)) ∨ 0 as defined in (10).
𝑜(Δ𝑡) is infinitesimal in terms of Δ𝑡; that is, 𝑜(Δ𝑡)/Δ𝑡 → 0 as
Δ𝑡 → ∞. Equation (28) can be illustrated in the following
disjoint events.

EventA. The 𝐽-dimensional queue length process𝑄(𝐽+1,2𝐽)(𝑡)
keeps at state 𝑛(𝐽+1,2𝐽) unchanging at times 𝑡 and 𝑡 + Δ𝑡; that
is,

𝑄(𝐽+1,2𝐽) (𝑡) = 𝑛(𝐽+1,2𝐽), 𝑄(𝐽+1,2𝐽) (𝑡 + Δ𝑡) = 𝑛(𝐽+1,2𝐽).

(29)

This event involves the following two parts.

Part One. Suppose Δ𝑆𝐽+𝑘(𝑡) = Δ𝐴𝐽+𝑘(𝑡) = 0 for all 𝑘 ∈

{1, 2, . . . , 𝐽}; that is, no external jobs arrive to classes with
indices belonging to {𝐽 + 1, . . . , 2𝐽} during [𝑡, 𝑡 + Δ𝑡] while no
jobs finish their services, either because the jobs being served
at time 𝑡 require longer service times than Δ𝑡 or because the
services are blocked or interrupted by higher rank class jobs.
Then, the probability for Part One can be expressed in the
following product form:

𝑃{

𝐽

∑

𝑘=1

Δ𝑆𝐽+𝑘 (𝑡) =

𝐽

∑

𝑘=1

Δ𝐴𝐽+𝑘 (𝑡) = 0}

= 𝑃{

𝐽

∑

𝑘=1

Δ𝑆𝐽+𝑘 (𝑡) =

𝐽

∑

𝑘=1

Δ𝐸𝐽+𝑘 (𝑡) = 0}

=

𝐽

∏

𝑘=1

𝑃{Δ𝑆𝐽+𝑘 (𝑡) = Δ𝐸𝐽+𝑘 (𝑡) = 0 |

𝐽

∑

𝑠=𝑘

Δ𝑆𝐽+𝑠+1 (𝑡) =

𝐽

∑

𝑠=𝑘

Δ𝐸𝐽+𝑠+1 (𝑡) = 0}

=

𝐽

∏

𝑘=1

𝑃 {E𝐽+𝑘 (𝑡)}

=

𝐽

∏

𝑘=1

(1 − 𝛼𝐽+𝑘Δ𝑡 − 𝑎𝐽+𝑘 (𝑡) 𝜇𝐽+𝑘Δ𝑡 + 𝑜 (Δ𝑡))

= 1 −

𝐽

∑

𝑘=1

𝛼𝐽+𝑘Δ𝑡 −

𝐽

∑

𝑘=1

𝑎𝐽+𝑘 (𝑡) 𝜇𝐽+𝑘Δ𝑡 + 𝑜 (Δ𝑡) ,

(30)

where 𝑎𝐽+𝑘(𝑡) is defined to be

𝑎𝐽+𝑘 (𝑡) ≡ (𝑄𝐽+𝑘 (𝑡) ∧ (𝑐𝑠(𝑘) − 𝑄𝑘 (𝑡))) ∨ 0. (31)

The event E𝐽+𝑘(𝑡) in the third equality of (30) is defined as
follows:

E𝐽+𝑘 (𝑡) = {Δ𝑆𝐽+𝑘 (𝑡) = Δ𝐸𝐽+𝑘 (𝑡) = 0 |

𝐽

∑

𝑠=𝑘

Δ𝑆𝐽+𝑠+1 (𝑡) =

𝐽

∑

𝑠=𝑘

Δ𝐸𝐽+𝑠+1 (𝑡) = 0} .

(32)

To explain the fourth equality of (30), we introduce more
notations. Let 𝑏𝑘(𝑡)Δ𝑡 denote the probability that Δ𝐴𝑘(𝑡) = 1
for 𝑘 ∈ {1, . . . , 𝐽}, and let 𝑐𝐽+𝑘(𝑡)Δ𝑡 be the probability that
∑
𝑘−1
𝑠=1 Δ𝑆𝐽+𝑠(𝑡) = 1 for 𝑘 ∈ {2, 3, . . . , 𝐽}; that is,

𝑏𝑘 (𝑡) Δ𝑡 ≡ 𝑃 {Δ𝐴𝑘 (𝑡) = 1} ,

𝑐𝐽+𝑘 (𝑡) Δ𝑡 ≡ 𝑃{

𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 1} .

(33)

These probabilities can be explicitly expressed in terms of the
external arrival rates, service rates, and network states; for
example,

𝑏𝑘 (𝑡) Δ𝑡 = (𝛼𝑘 + ∑

𝑙∈{1,...,𝐽}

𝑝𝑙𝑘𝜇𝑙 (𝑐𝑠(𝑙) ∧ 𝑄𝑙 (𝑡)))Δ𝑡. (34)

Thus, by the independent assumptions on external arrival and
service processes among different stations and classes, and for
each 𝑘 ∈ {2, 3, . . . , 𝐽}, we have

𝑃 {E𝐽+𝑘 (𝑡)}

=

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑃{E𝐽+𝑘 (𝑡) | Δ𝐴𝑘 (𝑡) = 𝑛,
𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 𝑚}

× 𝑃 {Δ𝐴𝑘 (𝑡) = 𝑛} 𝑃{

𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 𝑛}
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= 𝑃{E𝐽+𝑘 (𝑡) | Δ𝐴𝑘 (𝑡) = 0,
𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 0}

× 𝑃 {Δ𝐴𝑘 (𝑡) = 0} 𝑃{

𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 0}

+ 𝑃{E𝐽+𝑘 (𝑡) | Δ𝐴𝑘 (𝑡) = 1,
𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 0}

× 𝑃 {Δ𝐴𝑘 (𝑡) = 1} 𝑃{

𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 0}

+ 𝑃{E𝐽+𝑘 (𝑡) | Δ𝐴𝑘 (𝑡) = 0,
𝑘−1

∑

𝑠=1

Δ𝑆𝐽+𝑠 (𝑡) = 1}

× 𝑃 {Δ𝐴𝑘 (𝑡) = 0} 𝑃{

𝑘−1

∑

𝑠=0

Δ𝑆𝐽+𝑠 (𝑡) = 1}

+ 𝑜 (Δ𝑡)

= (1 − 𝑎𝐽+𝑘 (𝑡) 𝜇𝐽+𝑘Δ𝑡) (1 − 𝛼𝐽+𝑘Δ𝑡)

× (1 − 𝑏𝑘 (𝑡) Δ𝑡) (1 − 𝑐𝐽+𝑘 (𝑡) Δ𝑡)

+ (1 − ((𝑄𝐽+𝑘 (𝑡) ∧ (𝑐𝑠(𝑘) − (𝑄𝑘 (𝑡) + 1))) ∨ 0) 𝜇𝐽+𝑘Δ𝑡)

× (1 − 𝛼𝐽+𝑘Δ𝑡)

× (𝑏𝑘 (𝑡) Δ𝑡 − 𝑝𝑘𝑘𝜇𝑘 (𝑐𝑠(𝑘) ∧ 𝑄𝑘 (𝑡)) Δ𝑡)

× (1 − 𝑐𝐽+𝑘 (𝑡) Δ𝑡)

+ (1 − ((𝑄𝐽+𝑘 (𝑡) ∧ (𝑐𝑠(𝑘) − 𝑄𝑘 (𝑡))) ∨ 0) 𝜇𝐽+𝑘Δ𝑡)

× (1 − 𝛼𝐽+𝑘Δ𝑡)

× 𝑝𝑘𝑘𝜇𝑘 (𝑐𝑠(𝑘) ∧ 𝑄𝑘 (𝑡)) Δ𝑡 (1 − 𝑐𝐽+𝑘 (𝑡) Δ𝑡)

+ (1 − (((𝑄𝐽+𝑘 (𝑡) + 1) ∧ (𝑐𝑠(𝑘) − 𝑄𝑘 (𝑡))) ∨ 0) 𝜇𝐽+𝑘Δ𝑡)

× (1 − 𝛼𝐽+𝑘Δ𝑡) (1 − 𝑏𝑘 (𝑡) Δ𝑡) 𝑐𝐽+𝑘 (𝑡) Δ𝑡

+ 𝑜 (Δ𝑡)

= 1 − 𝛼𝐽+𝑘Δ𝑡 − 𝑎𝐽+𝑘 (𝑡) 𝜇𝐽+𝑘Δ𝑡 + 𝑜 (Δ𝑡) .

(35)

For the case 𝑘 = 1, one can use the similar way to check that
the result in the above equation is also true.

Part Two. Suppose Δ𝑆𝐽+𝑘(𝑡) = Δ𝐴𝐽+𝑘(𝑡) ≥ 1 for at least one
𝑘 ∈ {1, 2, . . . , 𝑗}; that is, the number (at least one) of jobs

that finished their services for class 𝐽 + 𝑘 in [𝑡, 𝑡 + Δ𝑡] equals
that of jobs that arrived at the class. It is easy to see that the
probability corresponding part one is given by

𝑃 {Δ𝑆𝐽+𝑘 (𝑡) = Δ𝐴𝐽+𝑘 (𝑡) ≥ 1

for at least one 𝑘 ∈ {1, 2, . . . , 𝑗} }

=

𝐽

∑

𝑘=1

𝑎𝐽+𝑘 (𝑡) 𝜇𝐽+𝑘𝑝𝐽+𝑘,𝐽+𝑘Δ𝑡 + 𝑜 (Δ𝑡) ,

(36)

where 𝑎𝐽+𝑘(𝑡) is defined in (31).
Then, it follows from (30) and (36) that the probability for

Event 𝐴 is given by

𝑃 {𝑄(𝐽+1,2𝐽) (𝑡) = 𝑛(𝐽+1,2𝐽); 𝑄(𝐽+1,2𝐽) (𝑡 + Δ𝑡) = 𝑛(𝐽+1,2𝐽)}

=

∞

∑

𝑛1,...,𝑛𝐽=0

𝑃 {𝑄(𝐽+1,2𝐽) (𝑡 + Δ𝑡) = 𝑛(𝐽+1,2𝐽) |

𝑄(1,2𝐽) (𝑡) = 𝑛(1,2𝐽)}

× 𝑃 {𝑄(1,𝐽) (𝑡) = 𝑛(1,𝐽)}

× 𝑃 {𝑄(𝐽+1,2𝐽) (𝑡) = 𝑛(𝐽+1,2𝐽)} + 𝑜 (Δ𝑡)

= (1 −

𝐽

∑

𝑘=1

𝛼𝐽+𝑘Δ𝑡

−

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝜇𝐽+𝑘 (1 − 𝑝𝐽+𝑘,𝐽+𝑘) 𝑃𝑛(1,𝐽)
(𝑡) Δ𝑡)

× 𝑃𝑛(𝐽+1,2𝐽)
(𝑡) + 𝑜 (Δ𝑡) .

(37)

EventB.There is a 𝑘 ∈ {1, . . . , 𝐽} such that𝑄𝐽+𝑘(𝑡) = 𝑛𝐽+1+1,
𝑄𝐽+𝑘(𝑡 + Δ𝑡) = 𝑛𝐽+1 and for all 𝑙 ∈ {1, . . . , 𝐽} \ {𝑘}, 𝑄𝐽+𝑙(𝑡) =
𝑄𝐽+𝑙(𝑡 + Δ𝑡) = 𝑛𝐽+𝑙. Similar to the discussion in EventA, we
can obtain the probability for EventB as follows:

𝐽

∑

𝑘=1

𝑃 {𝑄𝐽+𝑘 (𝑡) = 𝑛𝐽+𝑘 + 1, 𝑄𝐽+𝑘 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑘,

𝑄𝐽+𝑙 (𝑡) = 𝑄𝐽+𝑙 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑙, 𝑙 ∈ {1, . . . , 𝐽} \ {𝑘}}

=

𝐽

∑

𝑘=1

𝑃{Δ𝑆𝐽+𝑘 (𝑡) = 1, Δ𝐴𝐽+𝑘 (𝑡) = 0,

𝐽

∑

𝑙=1,𝑙 ̸=𝑘

Δ𝑆𝐽+𝑙 (𝑡) =

𝐽

∑

𝑙=1,𝑙 ̸=𝑘

Δ𝐴𝐽+𝑙 (𝑡) = 0,

𝑄𝐽+𝑘 (𝑡) = 𝑛𝐽+𝑘 + 1, 𝑄𝐽+𝑙 (𝑡) = 𝑛𝐽+𝑙

∀𝑙 ∈ {1, . . . , 𝐽} \ {𝑘} } + 𝑜 (Δ𝑡)
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=

𝐽

∑

𝑘=1

𝑃{

𝐽

∑

𝑙=1,𝑙 ̸=𝑘

Δ𝑆𝐽+𝑙 (𝑡) = Δ𝐴𝐽+𝑙 (𝑡) = 0, Δ𝐴𝐽+𝑘 (𝑡) = 0,

𝑄𝐽+𝑘 (𝑡) = 𝑛𝐽+𝑘 + 1, 𝑄𝐽+𝑙 (𝑡) = 𝑛𝐽+𝑙,

𝑙 ∈ {1, . . . , 𝐽} \ {𝑘} | Δ𝑆𝐽+𝑘 (𝑡) = 1}

× 𝑃 {Δ𝑆𝐽+𝑘 (𝑡) = 1} + 𝑜 (Δ𝑡)

=

𝐽

∑

𝑘=1

(

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘 + 1, 𝑛𝑘) 𝜇𝐽+𝑘

×(1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝑃𝑛(1,𝐽)
(𝑡) Δ𝑡)

× 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽
(𝑡) + 𝑜 (Δ𝑡) .

(38)

EventC. There is a 𝑘 ∈ {1, . . . , 𝐽} such that𝑄𝐽+𝑘(𝑡) = 𝑛𝐽+𝑘 −1,
𝑄𝐽+𝑘(𝑡 + Δ𝑡) = 𝑛𝐽+𝑘 and for all 𝑙 ∈ {1, . . . , 𝐽} \ {𝑘}, 𝑄𝐽+𝑙(𝑡) =
𝑄𝐽+𝑙(𝑡 +Δ𝑡) = 𝑛𝐽+𝑙. Then, we can get the probability for Event
C as follows:
𝐽

∑

𝑘=1

𝑃 {𝑄𝐽+𝑘 (𝑡) = 𝑛𝐽+𝑘 − 1, 𝑄𝐽+𝑘 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑘,

𝑄𝐽+𝑙 (𝑡) = 𝑄𝐽+𝑙 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑙, 𝑙 ∈ {1, . . . , 𝐽} \ {𝑘}}

=

𝐽

∑

𝑘=1

𝑃{Δ𝑆𝐽+𝑘 (𝑡) = 0, Δ𝐸𝐽+𝑘 (𝑡) = 1,

𝐽

∑

𝑙=1,𝑙 ̸=𝑘

Δ𝑆𝐽+𝑙 (𝑡) =

𝐽

∑

𝑙=1,𝑙 ̸=𝑘

Δ𝐴𝐽+𝑙 (𝑡) = 0,

𝑄𝐽+𝑘 (𝑡) = 𝑛𝐽+𝑘 − 1,

𝑄𝐽+𝑙 (𝑡) = 𝑛𝐽+𝑙 ∀𝑙 ∈ {1, . . . , 𝐽} \ {𝑘} } + 𝑜 (Δ𝑡)

=

𝐽

∑

𝑘=1

(𝑛𝐽+𝑘 ∧ 1) 𝛼𝐽+𝑘Δ𝑡𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽
(𝑡) + 𝑜 (Δ𝑡) .

(39)

EventD.There exist 𝑟, 𝑠 ∈ {1, . . . , 𝐽} such that𝑄𝐽+𝑟(𝑡) = 𝑛𝐽+𝑟+
1,𝑄𝐽+𝑟(𝑡+Δ𝑡) = 𝑛𝐽+𝑠,𝑄𝐽+𝑠(𝑡) = 𝑛𝐽+𝑠−1, and𝑄𝐽+𝑠(𝑡+Δ𝑡) = 𝑛𝐽+𝑠
and for all 𝑙 ∈ {1, . . . , 𝐽} \ {𝑟, 𝑠}, 𝑄𝐽+𝑙(𝑡) = 𝑄𝐽+𝑙(𝑡 + Δ𝑡) = 𝑛𝐽+𝑙.
Then, we can get the probability for EventD as follows:

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

𝑃 {𝑄𝐽+𝑟 (𝑡) = 𝑛𝐽+𝑟 + 1, 𝑄𝐽+𝑟 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑟;

𝑄𝐽+𝑠 (𝑡) = 𝑛𝐽+𝑠 − 1, 𝑄𝐽+𝑠 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑠;

𝑄𝐽+𝑙 (𝑡) = 𝑄𝐽+𝑙 (𝑡 + Δ𝑡) = 𝑛𝐽+𝑙

∀𝑙 ∈ {1, . . . , 𝐽} \ {𝑟, 𝑠} }

=

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

𝑃{Δ𝑆𝐽+𝑟 (𝑡) = 1, Δ𝐴𝐽+𝑟 (𝑡) = 0; Δ𝑆𝐽+𝑠 (𝑡) = 0,

Δ𝐴𝐽+𝑠 (𝑡) = 1;

𝐽

∑

𝑙=1,𝑙 ̸=𝑟,𝑠

Δ𝑆𝐽+𝑙 (𝑡) =

𝐽

∑

𝑙=1,𝑙 ̸=𝑟,𝑠

Δ𝐴𝐽+𝑙 (𝑡) = 0;

𝑄𝐽+𝑟 (𝑡) = 𝑛𝐽+𝑟 + 1, 𝑄𝐽+𝑠 (𝑡) = 𝑛𝐽+𝑠 − 1,

𝑄𝐽+𝑙 (𝑡) = 𝑛𝐽+𝑙 ∀𝑙 ∈ {1, . . . , 𝐽} \ {𝑟, 𝑠} }

+ 𝑜 (Δ𝑡)

=

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

(

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑟 + 1, 𝑛𝑟) 𝜇𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠𝑃𝑛(1,𝐽)
(𝑡))

× (𝑛𝐽+𝑠 ∧ 1) 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽
(𝑡)

+ 𝑜 (Δ𝑡) .

(40)

Now we go back to discuss (28). After transferring the
𝑃𝑛(𝐽+1,2𝐽)

(𝑡) from right to left, dividing by Δ𝑡, and taking the
limit as Δ𝑡 tends to zero, we get the following differential
equations:

𝑃̇𝑛(𝐽+1,2𝐽)
(𝑡)

= (−

𝐽

∑

𝑘=1

𝛼𝐽+𝑘

−

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝜇𝐽+𝑘 (1 − 𝑝𝐽+𝑘,𝐽+𝑘) 𝑃𝑛(1,𝐽)
(𝑡))

× 𝑃𝑛(𝐽+1,2𝐽)
(𝑡)

+

𝐽

∑

𝑘=1

(

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘 + 1, 𝑛𝑘) 𝜇𝐽+𝑘

× (1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝑃𝑛(1,𝐽)
(𝑡))

× 𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽
(𝑡)

+

𝐽

∑

𝑘=1

(𝑛𝐽+𝑘 ∧ 1) 𝛼𝐽+𝑘𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽
(𝑡)

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

(

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑟 + 1, 𝑛𝑟) 𝜇𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠𝑃𝑛(1,𝐽)
(𝑡))

× (𝑛𝐽+𝑠 ∧ 1) 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽
(𝑡) .

(41)



Mathematical Problems in Engineering 11

Next we show that the given distribution corresponding
ℎ = 2 in Theorem 1 is a steady-state solution of those
equations described by (41). It is enough to demonstrate that
the derivatives in the above equations are all made zero by
setting 𝑃𝑛(1,2𝐽)(𝑡) = 𝑃𝑛(1,2𝐽) , that is, to prove that

(

𝐽

∑

𝑘=1

𝛼𝐽+𝑘 +

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃𝑛(1,𝐽)
𝜇𝐽+𝑘)𝑃𝑛(𝐽+1,2𝐽)

=

𝐽

∑

𝑘=1

(

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘 + 1, 𝑛𝑘) 𝑃𝑛(1,𝐽)
𝜇𝐽+𝑘

×(1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙))

× 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽

+

𝐽

∑

𝑘=1

(𝑛𝐽+𝑘 ∧ 1) 𝛼𝐽+𝑘𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

(

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑟 + 1, 𝑛𝑟) 𝑃𝑛(1,𝐽)
𝜇𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠)

× (𝑛𝐽+𝑠 ∧ 1) 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽

+

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃𝑛(1,𝐽)
𝜇𝐽+𝑘𝑝𝐽+𝑘,𝐽+𝑘𝑃𝑛(𝐽+1,2𝐽)

.

(42)

By the definition of 𝜅(⋅) in Theorem 1, that is, for each 𝑘 ∈
{1, . . . , 𝐽},

𝜅 (𝑛𝐽+𝑘) =

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃𝑛(1,𝐽)
, (43)

then, we can rewrite (42) as follows:

(

𝐽

∑

𝑘=1

𝛼𝐽+𝑘 +

𝐽

∑

𝑘=1

𝜅 (𝑛𝐽+𝑘) 𝜇𝐽+𝑘)𝑃𝑛(𝐽+1,2𝐽)

=

𝐽

∑

𝑘=1

𝜅 (𝑛𝐽+𝑘 + 1) 𝜇𝐽+𝑘(1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽

+

𝐽

∑

𝑘=1

(𝑛𝐽+𝑘 ∧ 1) 𝛼𝐽+𝑘𝑃𝑛𝐽+1 ,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

𝜅 (𝑛𝐽+𝑟 + 1) 𝜇𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠 (𝑛𝐽+𝑠 ∧ 1)

× 𝑃𝑛𝐽+1,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽

+

𝐽

∑

𝑘=1

𝜅 (𝑛𝐽+𝑘) 𝜇𝐽+𝑘𝑝𝐽+𝑘,𝐽+𝑘𝑃𝑛(𝐽+1,2𝐽)
.

(44)

From the given distribution inTheorem 1, we have

𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘+1,...,𝑛2𝐽

𝑃𝑛(𝐽+1,2𝐽)

=
𝜆𝐽+𝑘

𝜅 (𝑛𝐽+𝑘 + 1) 𝜇𝐽+𝑘

,

𝑃𝑛𝐽+1,...,𝑛𝐽+𝑘−1,...,𝑛2𝐽

𝑃𝑛(𝐽+1,2𝐽)

=
𝜅 (𝑛𝐽+𝑘) 𝜇𝐽+𝑘

𝜆𝐽+𝑘

,

𝑃𝑛𝐽+1,...,𝑛𝐽+𝑟+1,...,𝑛𝐽+𝑠−1,...,𝑛2𝐽

𝑃𝑛(𝐽+1,2𝐽)

=
𝜅 (𝑛𝐽+𝑠) 𝜆𝐽+𝑟𝜇𝐽+𝑠

𝜅 (𝑛𝐽+𝑟 + 1) 𝜆𝐽+𝑠𝜇𝐽+𝑟

.

(45)

Then, by (44) to (45), we know that it is sufficient to show

𝐽

∑

𝑘=1

𝛼𝐽+𝑘 +

𝐽

∑

𝑘=1

𝜅 (𝑛𝐽+𝑘) 𝜇𝐽+𝑘

=

𝐽

∑

𝑘=1

(1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝜆𝐽+𝑘 +

𝐽

∑

𝑘=1

𝜅 (𝑛𝐽+𝑘) 𝛼𝐽+𝑘𝜇𝐽+𝑘

𝜆𝐽+𝑘

+

𝐽

∑

𝑟,𝑠=1

𝜅 (𝑛𝐽+𝑠) 𝜆𝐽+𝑟𝜇𝐽+𝑠𝑝𝐽+𝑟,𝐽+𝑠

𝜆𝐽+𝑠

.

(46)

Owing to the routing structure and the traffic equation (3),
we have the following observations:

𝐽

∑

𝑘=1

(1 −

𝐽

∑

𝑙=1

𝑝𝐽+𝑘,𝐽+𝑙)𝜆𝐽+𝑘 =

𝐽

∑

𝑘=1

𝛼𝐽+𝑘,

𝐽

∑

𝑟,𝑠=1

𝜅 (𝑛𝐽+𝑠) 𝜆𝐽+𝑟𝜇𝐽+𝑠𝑝𝐽+𝑟,𝐽+𝑠

𝜆𝐽+𝑠

=

𝐽

∑

𝑠=1

(
𝜅 (𝑛𝐽+𝑠) 𝜇𝐽+𝑠

𝜆𝐽+𝑠

)

𝐽

∑

𝑟=1

𝜆𝐽+𝑟𝑝𝐽+𝑟,𝐽+𝑠

=

𝐽

∑

𝑠=1

𝜅 (𝑛𝐽+𝑠) 𝜇𝐽+𝑠 −

𝐽

∑

𝑠=1

𝜅 (𝑛𝐽+𝑠) 𝜇𝐽+𝑠𝛼𝐽+𝑠

𝜆𝐽+𝑠

.

(47)

Then, substituting (47) into (46), we get the necessary
equality.

Next, we derive the initial distribution𝑃𝑠(𝐽+𝑘)0 correspond-
ing to state 𝑛𝐽+𝑘 = 0. By the network stability conditions
(12) and 𝜌𝑗 < 1 for each 𝑗 ∈ {1, . . . , 𝐽}, it follows from
∑
∞
𝑛𝐽+𝑘=0

𝑃
𝑠(𝐽+𝑘)
𝑛𝐽+𝑘

= 1 that the following initial distribution iswell
posed:

𝑃
𝑠(𝐽+𝑘)
0 =

1

1 + ∑
∞
𝑛𝐽+𝑘=1

∏
𝑛𝐽+𝑘
𝑟𝐽+𝑘=1

(𝜆𝐽+𝑘/𝜅 (𝑟𝐽+𝑘) 𝜇𝐽+𝑘)

. (48)

Hence, we complete the proof ofTheorem 1 for priority types
ℎ ∈ {1, 2}.

Step 3. To finish the induction procedure, in this step, we first
suppose that the result described in Theorem 1 is true for all
classes with priority rank ℎ ∈ {1, . . . , 𝐼−1}; then, we show that
it is true for all classes with priority rank ℎ ∈ {1, . . . , 𝐼}. By
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the similar illustration in getting (41), we have the following
differential equations:

𝑃̇𝑛((𝐼−1)𝐽+1,𝐼𝐽)
(𝑡)

= −

𝐽

∑

𝑘=1

𝛼(𝐼−1)𝐽+𝑘𝑃𝑛((𝐼−1)𝐽,𝐼𝐽)
(𝑡)

−

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛𝐼𝐽+𝑘,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)𝜇(𝐼−1)𝐽+𝑘

× (1 − 𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑘)

× 𝑃𝑛(1,(𝐼−1)𝐽)
(𝑡) 𝑃𝑛((𝐼−1)𝐽+1,𝐼𝐽)

(𝑡)

+

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑘 + 1,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)𝜇(𝐼−1)𝐽+𝑘

× (1 −

𝐽

∑

𝑙=1

𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑙)𝑃𝑛(1,(𝐼−1)𝐽)
(𝑡)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘+1,...,𝑛𝐼𝐽
(𝑡)

+

𝐽

∑

𝑘=1

(𝑛(𝐼−1)𝐽+𝑘 ∧ 1) 𝛼(𝐼−1)𝐽+𝑘

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘−1,...,𝑛𝐼𝐽
(𝑡)

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑟 + 1,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑟)

× 𝜇(𝐼−1)𝐽+𝑟𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠

× 𝑃𝑛(1,(𝐼−1)𝐽)
(𝑡) (𝑛(𝐼−1)𝐽+𝑠 ∧ 1)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑟+1,...,𝑛(𝐼−1)𝐽+𝑠−1,...,𝑛𝐼𝐽
(𝑡) .

(49)

Next, we show that the given distribution corresponding the
lowest priority type inTheorem 1 is a steady-state solution of
those equations described by (49). It suffices to demonstrate
that the derivatives in the above equations are all made zero
by setting 𝑃𝑛((𝐼−1)𝐽,𝐼𝐽)(𝑡) = 𝑃𝑛((𝐼−1)𝐽,𝐼𝐽) , that is, to prove that

𝐽

∑

𝑘=1

𝛼(𝐼−1)𝐽+𝑘𝑃𝑛((𝐼−1)𝐽,𝐼𝐽)

+

𝐽

∑

𝑘=1

∞

∑

𝑛1,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑘,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)

× 𝑃𝑛(1,(𝐼−1)𝐽)
𝜇(𝐼−1)𝐽+𝑘𝑃𝑛((𝐼−1)𝐽+1,𝐼𝐽)

=

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑘 + 1,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)𝑃𝑛(1,(𝐼−1)𝐽)

× 𝜇(𝐼−1)𝐽+𝑘(1 −

𝐽

∑

𝑙=1

𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑙)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘+1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑘=1

(𝑛(𝐼−1)𝐽+𝑘 ∧ 1) 𝛼(𝐼−1)𝐽+𝑘𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘−1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

∞

∑

𝑛1,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑟 + 1,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑟)

× 𝑃𝑛(1,(𝐼−1)𝐽)
𝜇(𝐼−1)𝐽+𝑟

× 𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠 (𝑛(𝐼−1)𝐽+𝑠 ∧ 1)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑟+1,...,𝑛(𝐼−1)𝐽+𝑠−1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑘=1

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑘,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)𝑃𝑛(1,(𝐼−1)𝐽)

× 𝜇(𝐼−1)𝐽+𝑘𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑘𝑃𝑛((𝐼−1)𝐽+1,𝐼𝐽)
.

(50)

By the definition of 𝜅(⋅) in Theorem 1, we have

𝜅 (𝑛(𝐼−1)𝐽+𝑘) =

∞

∑

𝑛1 ,...,𝑛(𝐼−1)𝐽=0

𝑎(𝑛(𝐼−1)𝐽+𝑘,

𝐼−2

∑

𝑢=0

𝑛𝑢𝐽+𝑘)𝑃𝑛(1,(𝐼−1)𝐽)
.

(51)

Then, we can rewrite (50) as follows:

(

𝐽

∑

𝑘=1

𝛼(𝐼−1)𝐽+𝑘 +

𝐽

∑

𝑘=1

𝜅 (𝑛(𝐼−1)𝐽+𝑘) 𝜇(𝐼−1)𝐽+𝑘)𝑃𝑛((𝐼−1)𝐽+1,𝐼𝐽)

=

𝐽

∑

𝑘=1

𝜅 (𝑛(𝐼−1)𝐽+𝑘 + 1) 𝜇(𝐼−1)𝐽+𝑘(1 −

𝐽

∑

𝑙=1

𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑙)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘+1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑘=1

(𝑛(𝐼−1)𝐽+𝑘 ∧ 1) 𝛼(𝐼−1)𝐽+𝑘𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘−1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑟,𝑠=1,𝑠 ̸=𝑟

𝜅 (𝑛(𝐼−1)𝐽+𝑘 + 1)

× 𝜇(𝐼−1)𝐽+𝑟𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠 (𝑛(𝐼−1)𝐽+𝑠 ∧ 1)

× 𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑟+1,...,𝑛(𝐼−1)𝐽+𝑠−1,...,𝑛𝐼𝐽

+

𝐽

∑

𝑘=1

𝜅 (𝑛(𝐼−1)𝐽+𝑘) 𝜇(𝐼−1)𝐽+𝑘𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑘𝑃𝑛((𝐼−1)𝐽+1,𝐼𝐽)
.

(52)
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From the given distribution inTheorem 1, we have

𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘+1,...,𝑛2𝐽

𝑃𝑛((𝐼−1)𝐽+1,2𝐽)

=
𝜆(𝐼−1)𝐽+𝑘

𝜅 (𝑛(𝐼−1)𝐽+𝑘 + 1) 𝜇(𝐼−1)𝐽+𝑘

,

𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑘−1,...,𝑛2𝐽

𝑃𝑛((𝐼−1)𝐽+1,2𝐽)

=
𝜅 (𝑛(𝐼−1)𝐽+𝑘) 𝜇(𝐼−1)𝐽+𝑘

𝜆(𝐼−1)𝐽+𝑘

,

𝑃𝑛(𝐼−1)𝐽+1,...,𝑛(𝐼−1)𝐽+𝑟+1,...,𝑛(𝐼−1)𝐽+𝑠−1,...,𝑛2𝐽

𝑃𝑛((𝐼−1)𝐽+1,2𝐽)

=
𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜆(𝐼−1)𝐽+𝑟𝜇(𝐼−1)𝐽+𝑠

𝜅 (𝑛(𝐼−1)𝐽+𝑟 + 1) 𝜆(𝐼−1)𝐽+𝑠𝜇(𝐼−1)𝐽+𝑟

.

(53)

From (52) to (53), it is sufficient to show

𝐽

∑

𝑘=1

𝛼(𝐼−1)𝐽+𝑘 +

𝐽

∑

𝑘=1

𝜅 (𝑛(𝐼−1)𝐽+𝑘) 𝜇(𝐼−1)𝐽+𝑘

=

𝐽

∑

𝑘=1

(1 −

𝐽

∑

𝑙=1

𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑙)𝜆(𝐼−1)𝐽+𝑘

+

𝐽

∑

𝑘=1

𝜅 (𝑛(𝐼−1)𝐽+𝑘) 𝛼(𝐼−1)𝐽+𝑘𝜇(𝐼−1)𝐽+𝑘

𝜆(𝐼−1)𝐽+𝑘

+

𝐽

∑

𝑟,𝑠=1

𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜆(𝐼−1)𝐽+𝑟𝜇(𝐼−1)𝐽+𝑠𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠

𝜆(𝐼−1)𝐽+𝑠

.

(54)

Owing to the routing structure and the traffic equation (3),
we have the following observations:

𝐽

∑

𝑘=1

(1 −

𝐽

∑

𝑙=1

𝑝(𝐼−1)𝐽+𝑘,(𝐼−1)𝐽+𝑙)𝜆(𝐼−1)𝐽+𝑘 =

𝐽

∑

𝑘=1

𝛼(𝐼−1)𝐽+𝑘,

𝐽

∑

𝑟,𝑠=1

𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜆(𝐼−1)𝐽+𝑟𝜇(𝐼−1)𝐽+𝑠𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠

𝜆(𝐼−1)𝐽+𝑠

=

𝐽

∑

𝑠=1

(
𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜇(𝐼−1)𝐽+𝑠

𝜆(𝐼−1)𝐽+𝑠

)

𝐽

∑

𝑟=1

𝜆(𝐼−1)𝐽+𝑟𝑝(𝐼−1)𝐽+𝑟,(𝐼−1)𝐽+𝑠

=

𝐽

∑

𝑠=1

𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜇(𝐼−1)𝐽+𝑠

−

𝐽

∑

𝑠=1

𝜅 (𝑛(𝐼−1)𝐽+𝑠) 𝜇(𝐼−1)𝐽+𝑠𝛼(𝐼−1)𝐽+𝑠

𝜆(𝐼−1)𝐽+𝑠

.

(55)

Then, substituting (55) into (54), we get the necessary
equality.

Next, we derive the initial distribution 𝑃𝑠((𝐼−1)𝐽+𝑘)0 cor-
responding to state 𝑛(𝐼−1)𝐽+𝑘 = 0. By the network stability
conditions (12) and 𝜌𝑗 < 1 for each 𝑗 ∈ {1, . . . , 𝐽}, it follows

from ∑
∞
𝑛(𝐼−1)𝐽+𝑘=0

𝑃
𝑠((𝐼−1)𝐽+𝑘)
𝑛(𝐼−1)𝐽+𝑘

= 1 that the following initial
distribution is well posed:

𝑃
𝑠((𝐼−1)𝐽+𝑘)
0

= (1 +

∞

∑

𝑛(𝐼−1)𝐽+𝑘=1

𝑛(𝐼−1)𝐽+𝑘

∏

𝑟(𝐼−1)𝐽+𝑘=1

𝜆(𝐼−1)𝐽+𝑘

𝜅 (𝑟(𝐼−1)𝐽+𝑘) 𝜇(𝐼−1)𝐽+𝑘

)

−1

.

(56)

Hence, we complete the proof of Theorem 1.

5.2. Proof of Proposition 2

Net I. We justify the stability condition (12) for Net I by
induction in terms of the number of job types; that is, ℎ =
1, 2, . . . , 𝐼.

First, we consider the case that ℎ = 2. Note that 𝑐𝑗 = 1 for
all 𝑗 ∈ {1, 2, . . . , 𝐽} and step one in the proof ofTheorem 1, we
have that, for 𝑛𝐽+𝑘 > 0 with 𝑘 ∈ {1, 2, . . . , 𝐽},

𝜅 (𝑛𝐽+𝑘) = 𝑃
𝑠(𝑘)
0 = 1 −

𝜆𝑘

𝜇𝑘

. (57)

Therefore, condition (12) is true for ℎ = 2. Furthermore, we
have

𝑃
𝑠(𝐽+𝑘)
0 = 1 −

𝜆𝐽+𝑘

(1 − 𝜆𝑘/𝜇𝑘) 𝜇𝐽+𝑘

. (58)

Second, for ℎ ≤ 𝐼 − 1, we suppose that

𝜅 (𝑛(ℎ−1)𝐽+𝑘) = 1 −

ℎ−2

∑

𝑖=0

𝜆𝑖𝐽+𝑘

𝜇𝑖𝐽+𝑘

. (59)

Hence, we have

𝑃
𝑠((ℎ−1)𝐽+𝑘)
0 = 1 −

𝜆(ℎ−1)𝐽+𝑘

(1 − ∑
ℎ−2
𝑖=0 𝜆𝑖𝐽+𝑘/𝜇𝑖𝐽+𝑘) 𝜇(ℎ−1)𝐽+𝑘

. (60)

From the induction assumptions (59) and (60), we know that
(12) is true for ℎ ≤ 𝐼 − 1.

Finally, we show that (12) holds for ℎ = 𝐼. In fact, from
the definition of 𝜅(𝑛(𝐼−1)𝐽+𝑘), we know that, for 𝑛(𝐼−1)𝐽+𝑘 > 0,

𝜅 (𝑛(𝐼−1)𝐽+𝑘) =

𝐼−2

∏

𝑖=0

𝑃
𝑠(𝑖𝐽+𝑘)
0 = 1 −

𝐼−2

∑

𝑖=0

𝜆𝑖𝐽+𝑘

𝜇𝑖𝐽+𝑘

. (61)

Then, we see that (12) is true for ℎ = 𝐼. Hence, we complete
the proof of Net I.
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Net II. Note that, for each 𝑘 ∈ {1, . . . , 𝐽} and 𝑛𝐽+𝑘 ≥ 𝑐𝑠(𝑘), we
have
𝜅 (𝑛𝐽+𝑘)

=

∞

∑

𝑛1 ,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃𝑛(1,𝐽)

=

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃
𝑠(𝑘)
𝑛𝑘

= 𝑃
𝑠(𝑘)
0 (𝑐𝑠(𝑘) + (𝑐𝑠(𝑘) − 1) (

𝜆𝑘

𝜇𝑘

) + ⋅ ⋅ ⋅ +
(𝜆𝑘/𝜇𝑘)

𝑐𝑠(𝑘)−1

(𝑐𝑠(𝑘) − 1)!
)

= (

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

(𝑐𝑠(𝑘) − 𝑛𝑘)
(𝜆𝑘/𝜇𝑘)

𝑛𝑘

𝑛𝑘!
)

× (

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

(𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!
+

(𝜆𝑘/𝜇𝑘)
𝑐𝑠(𝑘)

𝑐𝑠(𝑘)! (1 − 𝜆𝑘/𝑐𝑠(𝑘)𝜇𝑘)
)

−1

= (𝑐𝑠(𝑘) (1 −
𝜆𝑘

𝑐𝑠(𝑘)𝜇𝑘

)

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

(𝑐𝑠(𝑘) − 𝑛𝑘) (𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑐𝑠(𝑘)𝑛𝑘!
)

× (1 +

𝑐𝑠(𝑘)−2

∑

𝑛𝑘=0

(
1

(𝑛𝑘 + 1)!
−

1

𝑐𝑠(𝑘)𝑛𝑘!
) (

𝜆𝑘

𝜇𝑘

)

𝑛𝑘+1

)

−1

= 𝑐𝑠(𝑘) (1 −
𝜆𝑘

𝑐𝑠(𝑘)𝜇𝑘

) .

(62)

Furthermore, for 0 < 𝑛𝐽+𝑘 < 𝑐𝑠(𝑘), we have

𝜅 (𝑛𝐽+𝑘)

=

∞

∑

𝑛1,...,𝑛𝐽=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃𝑛(1,𝐽)

=

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

𝑎 (𝑛𝐽+𝑘, 𝑛𝑘) 𝑃
𝑠(𝑘)
𝑛𝑘

= 𝑃
𝑠(𝑘)
0 (𝑛𝐽+𝑘 (1 +

1

1!
(
𝜆𝑘

𝜇𝑘

)

+ ⋅ ⋅ ⋅ +
1

(𝑐𝑠(𝑘) − 𝑛𝐽+𝑘)!
(
𝜆𝑘

𝜇𝑘

)

𝑐𝑠(𝑘)−𝑛𝐽+𝑘

)

+
𝑛𝐽+𝑘 − 1

(𝑐𝑠(𝑘) − 𝑛𝐽+𝑘 + 1)!
(
𝜆𝑘

𝜇𝑘

)

𝑐𝑠(𝑘)−𝑛𝐽+𝑘+1

+ ⋅ ⋅ ⋅ +
1

(𝑐𝑠(𝑘) − 1)!
(
𝜆𝑘

𝜇𝑘

)

𝑐𝑠(𝑘)−1

)

= (𝑛𝐽+𝑘

𝑐𝑠(𝑘)−𝑛𝐽+𝑘

∑

𝑛𝑘=0

(𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!

+

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=𝑐𝑠(𝑘)−𝑛𝐽+𝑘+1

(𝑐𝑠(𝑘) − 𝑛𝑘) (𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!
)

× (

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=0

(𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!
+

(𝜆𝑘/𝜇𝑘)
𝑐𝑠(𝑘)

𝑐𝑠(𝑘)! (1 − 𝜆𝑘/𝑐𝑠(𝑘)𝜇𝑘)
)

−1

= (𝑛𝐽+𝑘 (1 −
𝜆𝑘

𝑐𝑠(𝑘)𝜇𝑘

)

× (

𝑐𝑠(𝑘)−𝑛𝐽+𝑘

∑

𝑛𝑘=0

(𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!

+

𝑐𝑠(𝑘)−1

∑

𝑛𝑘=𝑐𝑠(𝑘)−𝑛𝐽+𝑘+1

(𝑐𝑠(𝑘) − 𝑛𝑘) (𝜆𝑘/𝜇𝑘)
𝑛𝑘

𝑛𝑘!𝑛𝐽+𝑘

))

× (1 +

𝑐𝑠(𝑘)−2

∑

𝑛𝑘=0

(
1

(𝑛𝑘 + 1)!
−

1

𝑐𝑠(𝑘)𝑛𝑘!
) (

𝜆𝑘

𝜇𝑘

)

𝑛𝑘+1

)

−1

≥ 𝑛𝐽+𝑘 (1 −
𝜆𝑘

𝑐𝑠(𝑘)𝜇𝑘

) .

(63)

Then, we can see that (12) is true. Hence, we complete the
proof of Proposition 2.

5.3. Illustration of Example 3. For each class 𝑘 ∈ {1, 2, . . . , 𝐽},
the initial distribution𝑃𝑠(𝑘)0 can be calculated as follows, since
𝜌𝑠(𝑘) < 1:

𝑃
𝑠(𝑘)
0 =

1 − 𝜆𝑘/2𝜇𝑘

1 + 𝜆𝑘/2𝜇𝑘

. (64)

Then, for 𝑛𝐽+𝑘 = 1, we have

𝜅 (𝑛𝐽+𝑘) = 𝑃
𝑠(𝑘)
0 (1 +

𝜆𝑘

𝜇𝑘

)

=
(1 − 𝜆𝑘/2𝜇𝑘) (1 + 𝜆𝑘/𝜇𝑘)

1 + 𝜆𝑘/2𝜇𝑘

≥ 1 −
𝜆𝑘

2𝜇𝑘

.

(65)

Furthermore, for 𝑛𝐽+𝑘 ≥ 2, we have

𝜅 (𝑛𝐽+𝑘) = 𝑃
𝑠(𝑘)
0 (2 +

𝜆𝑘

𝜇𝑘

) = 2(1 −
𝜆𝑘

2𝜇𝑘

) . (66)
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Therefore, since 𝜌𝑠(𝑘) < 1, we have

𝑃
𝑠(𝐽+𝑘)
0

= (1 +
𝜆𝐽+𝑘

𝜅 (1) 𝜇𝐽+𝑘

+
𝜆𝐽+𝑘

𝜅(1)𝜇𝐽+𝑘

𝜆𝐽+𝑘/𝜇𝐽+𝑘

(1 − 𝜆𝐽+𝑘/𝜅(2)𝜇𝐽+𝑘)𝜅(2)𝜇𝐽+𝑘

)

−1

=
(1 − 𝜆𝑘/2𝜇𝑘 − 𝜆𝐽+𝑘/2𝜇𝐽+𝑘) (1 + 𝜆𝑘/𝜇𝑘)

1 + 𝜆𝑘/2𝜇𝑘 + 𝜆𝐽+𝑘/2𝜇𝐽+𝑘 − (1/2) (𝜆𝑘/𝜇𝑘)
2
.

(67)

Finally, we can compute 𝜅(𝑛2𝐽+𝑘) for 𝑛2𝐽+𝑘 ≥ 2 as follows:

𝜅 (𝑛2𝐽+𝑘)

= 2𝑃
𝑠(𝑘)
0 𝑃
𝑠(𝐽+𝑘)
0 + 𝑃

𝑠(𝑘)
1 𝑃
𝑠(𝐽+𝑘)
0 + 𝑃

𝑠(𝑘)
0 𝑃
𝑠(𝐽+𝑘)
1

= 𝑃
𝑠(𝑘)
0 𝑃
𝑠(𝐽+𝑘)
0 (2 +

𝜆𝑘

𝜇𝑘

+
𝜆𝐽+𝑘

𝜇𝐽+𝑘

)

= (2(1 −
𝜆𝑘

2𝜇𝑘

−
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

)(1 +
𝜆𝑘

𝜇𝑘

)(1 −
𝜆𝑘

2𝜇𝑘

)

× (1 +
𝜆𝑘

2𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

))

× ((1 +
𝜆𝑘

2𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

−
1

2
(
𝜆𝑘

𝜇𝑘

)

2

)(1 +
𝜆𝑘

2𝜇𝑘

))

−1

= (2(1 −
𝜆𝑘

2𝜇𝑘

−
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

)

× (1 +
𝜆𝑘

𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

− (
𝜆𝑘

2𝜇𝑘

)

2

−
1

4
(
𝜆𝑘

𝜇𝑘

)

3

+ 2(1 −
𝜆𝑘

2𝜇𝑘

)
𝜆𝑘𝜆𝐽+𝑘

4𝜇𝑘𝜇𝐽+𝑘

))

× (1 +
𝜆𝑘

𝜇𝑘

+
𝜆𝐽+𝑘

2𝜇𝐽+𝑘

− (
𝜆𝑘

2𝜇𝑘

)

2

−
1

4
(
𝜆𝑘

𝜇𝑘

)

3

+
𝜆𝑘𝜆𝐽+𝑘

4𝜇𝑘𝜇𝐽+𝑘

)

−1

.

(68)

Thus, if 𝜆𝑘/𝜇𝑘 ≤ 1, from the condition 𝜌𝑠(𝑘) < 1, we see that

𝜆2𝐽+𝑘

𝜅 (𝑛2𝐽+𝑘) 𝜇2𝐽+𝑘

≤
𝜆2𝐽+𝑘

2 (1 − 𝜆𝑘/2𝜇𝑘 − 𝜆𝐽+𝑘/2𝜇𝐽+𝑘) 𝜇2𝐽+𝑘

< 1;

(69)

that is, the condition (12) holds.

6. Conclusion

The research conducted in the paper is to iteratively derive
the product-form solutions of stationary distributions for a

particular type of preemptive priority multiclass queueing
networkswithmultiserver stations.This type of queueing sys-
tems can typically be used to model the stochastic dynamics
of some large scale backbone networks with multiprocessor
shared-memory switches or local (edge) cloud computing
centers with parallel-server pools. The queueing networks
are Markovian with exponential interarrival and service
time distributions. The obtained iterative solutions can be
used to conduct performance analysis or as comparison
criteria for approximation and simulation studies. Numerical
comparisons with existing Brownian approximating model
related to general interarrival and service times are provided
to show the effectiveness of our current designed algorithm
and our former derived BAM. Furthermore, based on the
iterative solutions, we also give some analysis concerning
network stability for some cases of these queueing systems,
which provides some insight for more general study.
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