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We study a parallel-server loss channel serving multi-class jobs, which appears in
many real-world systems, e.g., cloud computing, multi-input multi-output (MIMO)
orthogonal frequency division multiplexing (OFDM), and call centre. An α-discounted
optimal control with monotonicity constraints (OCMC) model over infinite time hori-
zon is established by using the physical queueing model with linear revenue function.
Existence of a solution to the OCMC model is proved, whose optimal value provides
an upper bound of the corresponding values of the physical queueing model under
Markovian decision rules. Algorithms with lower complexity in solving the OCMC
model are proposed, which are further used to design an admission control policy for
the loss channel. Furthermore, a simulation algorithm is proposed to implement the
designed policy. Performance comparisons through numerical examples are conducted
among our newly designed policy, the first-in first-out (FIFO) policy, an arbitrarily
selected (AS) policy, and the Markov decision process (MDP) based threshold policy.
Advantages and disadvantages of these policies are identified under different channel
parameters and channel (e.g., Markovian and non-Markovian) conditions. Particularly,
we find out that our designed policy outperforms the other three policies when the traf-
fic intensity is relatively large, and the differences of the revenues per unit of time and
the penalty costs among different classes of jobs are large.

Keywords: optimal control with monotonicity constraints; parallel-server; loss
channel; multi-class jobs; Pontryagin’s maximum principle; linear programming;
Markov decision process; first-in first out

1. Introduction

Parallel-server systems appear in many real-world systems, e.g., cloud computing, multi-
input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM), and call
centre (see, e.g., Bodas et al. [1], Dai [2], Dai and Feng [3], Gans et al. [4], Harrison [5],
Ormeci et al. [6], Ormeci and Wal [7], Zhang et al. [8]). Especially, in the next generation
broadband wireless systems (e.g., WiMax [9]), the MIMO OFDM channel is divided into
a number of parallel sub-channel (sub-band) consisting of a fixed number of sub-carriers.
Each sub-channel is a server that can be assigned to one and at most one user during each
time slot.

Existing parallel-server systems can be classified into three categories: the zero buffer-
regime such as in Dai [2], Dai and Feng [3], Ormeci et al. [6], Ormeci and Wal [7],
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the small-buffer regime such as in Bodas et al. [1], the large-buffer regime such as in
Bassamboo et al. [10,11] and Harrison [5].

The discussions in [3] and [6,7] are both focused on systems with two-classes of jobs
and aim to design optimal threshold policies to conduct Markov decision process (MDP)
based admission controls (see, e.g., Altman [12] and Lippman [13]). One of the main dif-
ferences between the discussions in [3] and [6,7] is the way of receiving rewards. The
policy found in [3] is based on random payments depending on service durations while
the payments in the studies of [6,7] are deterministic constants. Therefore, the study in
[3] is different from the ones in [6,7]. But all the techniques used in [3] and [6,7] are cer-
tain structured value function based MDPs, which implies that certain conditions should
be imposed on related value functions. Although decision-making using a structured value
function based MDP is a popular method in many fields recently, the size of related decision
space is limited owing to these imposed conditions. Furthermore, when the parallel-server
system is used to serve general number (≥3) of job classes, the computation of the cor-
responding MDP algorithm becomes heavy. Hence, in the conference report of Dai [2],
we turn to derive a constrained optimal control (COC) model over infinite time horizon
and with linear revenue function for the general parallel-server channel in which we allow
the service rates to be class-dependent and suppose that each service rate correspond-
ing to an individual job class is a constant. In a wireless system, this condition is often
related to the well-known quasi-static channel, i.e., the channel is assumed to be fixed for
all transmissions over the period of interest.

In the current paper, we will establish an optimal control with monotonicity constraints
(OCMC) model by imposing equality constraints based on non-smooth monotone control
functions to replace the inequality constraints as used in Dai [2]. This newly established
OCMC model is more naturally related to the physical queueing system. Furthermore, we
will provide more detailed analysis and design resolution algorithms for the OCMC model
and the loss channel.

We set up and thoroughly justify an exact connection between the physical queueing
related optimal control model and an OCMC model over infinite time horizon when the
revenue function is linear. This connection transforms the original stochastic optimal con-
trol problem to a deterministic OCMC one whose optimal value provides an upper bound
of the corresponding values of physical queueing model under Markovian decision rules.
Furthermore, the OCMC model is solvable by developing Pontryagin’s maximum princi-
ple and linear programming (LP) combined algorithms that are of tolerable computational
complexity. In addition, these algorithms are further used to design an admission control
policy and to develop a simulation algorithm for the loss channel. Performance compar-
isons through numerical examples are conducted among our newly designed policy, the
first-in first-out (FIFO) policy, an arbitrarily selected (AS) policy, and the MDP based
threshold policy. Advantages and disadvantages of these policies are identified under dif-
ferent channel parameters and channel (e.g., Markovian and non-Markovian) conditions.
Particularly, we find out that our designed policy outperforms the other three policies when
the traffic intensity is relatively large, and the differences of the revenues per unit of time
and the penalty costs among different classes of jobs are large.

One way to interpret the phenomenon is as follows. Although our derived OCMC
model is approximate for a non-Markovian system, it can still be viewed as an approxi-
mating fluid model for both Markovian and non-Markovian parallel-server systems under
suitable time/space re-scaling owing to the functional strong law of large numbers (see,
e.g., the related discussions in Bassamboo et al. [10,11], Bäuerle [14], Dai [15], Dai [16],
etc.).
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286 W. Dai

The fluid approximation is a very simple first-order approximation of the original
queueing system and it has been used to design the optimal polices for various stochas-
tic networks (see, e.g., Bassamboo et al. [10,11], Bäuerle [14], and the references therein).
However, our derived α-discounted OCMC model is subject to the monotonicity and mixed
control-state inequality constraints over infinite time horizon. Hence, it is different from
the so-called separated continuous linear program (SCLP) (see, e.g., Bäuerle [14], Luo
and Bertsimas [17]). Furthermore, our algorithms are iterative ones with respect to time
evolving in an online fashion, which employ the LP as a subroutine at each time instant by
applying Pontryagin’s maximum principle so the algorithms are of lower computational
complexity at each time instant. In addition, our derived OCMC model is also differ-
ent from the so-called pointwise stationary fluid models as studied in Bassamboo et al.
[10,11], where the instantaneous flow-balance conditions are imposed and a stationary
way of time/space re-scaling to the objective functionals is used in designing asymptoti-
cally optimal policies over a fixed and finite planning horizon. Nevertheless, our OCMC
model can capture the non-stationary characteristic of the original α-discounted optimal
control problem, e.g., the feature of the initial warm-up period of the system.

Finally, we provide a proof concerning the existence of solution to our OCMC model,
which provides a theoretical basis for our study. Moreover, the proof generalizes the exist-
ing discussions such as Fleming and Rishel [18], Hellwig [19], Kugelmann and Pesch
[20,21], Portal [22], Tu [23], etc., in several ways since our time horizon is infinite and the
model is with the monotonicity and control-state constraints.

The remainder of the paper is organized as follows. In Section 2, we describe our phys-
ical system and present our main result to establish the OCMC model when the revenue
function is linear. In Section 3, we design an admission control policy through numerical
schemes in solving the OCMC model. In Section 4, we propose a simulation algorithm via
the admission policy and demonstrate the effectiveness of the OCMC model via numerical
examples. In Section 6, we prove the existence of solution to our OCMC model. Finally, in
Section 5, we prove our main theorem.

2. The OCMC model

2.1. Physical description and stochastic dynamics of the channel

We study a loss channel consisting of n identical and independent servers for an incoming
job being either served immediately or discarded. There are K classes of external arriv-
ing jobs to the channel. For each class i ∈ {1, ..., K}, the arrival stream follows a Poisson
process with rate λi. An arrival job for each class i ∈ {1, . . . , K} to the channel is either
rejected from service with penalty cost li or accepted into service experiencing exponen-
tially distributed amount of service time with rate μi according to some admission control
policy that will be addressed later. The arrival processes and service times are assumed to
be mutually independent.

Now, let Xi(t) for each i ∈ {1, . . . , K} be the number of class i jobs being served in
the channel at time t, which takes values in the state space Si = {0, 1, . . . , n}, and let
X (t) = (X1(t), . . . , XK(t)) be the corresponding vector form taking values in the following
K-dimensional set:

S ≡
{

(x1, . . . , xK) :
K∑

i=1

xi ≤ n, xi ∈ Si, i = 1, . . . , K

}
. (1)
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Furthermore, let h(X (t)) be the induced revenue per unit of time and h(x) is assumed to be
a linear function with respect to x ∈ S, i.e., h(x) = ∑K

i=1 rixi. The number ri is the revenue
per unit of time that is induced from class i jobs being served at the channel. In addition,
there is a fixed cost c per unit of time associated with the channel. In the end, let Ni(t)
denote the total number of rejected class i customers at the channel by time t. Then we
can write down the value function (expected infinite horizon discounted profit) for given
discount factor α, initial state x ∈ S, and admission control policy π as follows:

vπ (x) ≡ Eπ
x

[∫ ∞

0
e−αth(X (t))dt −

∫ ∞

0
e−αt

K∑
i=1

lidNi(t) −
∫ ∞

0
e−αtcdt

]
. (2)

An admission control policy π specifies at each time instant whether an arrived job to
the channel is accepted into service or is discarded. Furthermore, we confine our discus-
sions to Markovian policies for which actions taken at a particular decision epoch depend
only on the current state of the system (see, e.g., Sennott [24]). The aim of our study is to
find out an optimal admission control policy π∗ such that

vπ∗
(x) = max

π∈�
vπ (x), (3)

where the set � is the one of all Markov decision policies.
Next, define X π∗

i (t) to be the number of class i jobs being served in the channel at time
t under the optimal policy π∗, Nπ∗

i (t) to be the total number of rejected class i jobs at the
channel by time t, and Sπ∗

i (t) to be the total number of class i jobs that finish services by
time t. Then, the stochastic dynamics of X π∗

i (t) can be written as follows:

{
X π∗

i (t) = Ri(t) − Sπ∗
i (t) − Nπ∗

i (t) + X π∗
i (0),

X π∗
i (0) = xi,

(4)

where Ri(t) is the total number of arrivals of class i jobs by time t, i.e.,

Ri(t) = max

⎧⎨
⎩m :

m∑
j=1

uj
i ≤ t

⎫⎬
⎭ (5)

and uj
i for j ∈ {1, 2, . . .} is the inter-arrival time sequence of class i jobs.

Finally, since an exponentially distributed random variable (r.v.) is memoryless and
because both the inter-arrival times of Poisson processes and service times are exponen-
tially distributed, the above channel system is memoryless (or called Markovian). In the
sequel, such a system is called a Markovian model. Nevertheless, when the inter-arrival
times of an input process and/or service times are not exponentially distributed, these
r.v.s are not memoryless. Hence, even we still employ a Markovian admission control
policy and keep the independence assumption on the arrival processes and service times
unchanged, the corresponding system is not memoryless. Consequently, such a system is
called a non-Markovian model in the following discussion.
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288 W. Dai

2.2. OCMC model formulation

First, we present the value function defined in Equation (2) for an initial state x ∈ S with
policy π∗ as follows:

vπ∗
(x) ≡ Eπ∗

[∫ ∞

0
e−αt

K∑
i=1

riX
π∗
i (t)dt −

∫ ∞

0
e−αt

K∑
i=1

lidNπ∗
i (t) − c

α

]
. (6)

Furthermore, let UK[0, ∞) be the space of all K-vector functions denoted by m(t) =
(m1(t), . . . , mK(t)) that are continuous in t, uniformly bounded by n, and satisfy

|mi(t + �t) − mi(t)| ≤ C�t, i ∈ {1, . . . , K} (7)

for certain constant C ≥ 0. Then, we have the following theorem.

Theorem 2.1 For each t ∈ [0, ∞), let mπ∗
i (t) = E[X π∗

i (t)] be the expectation of X π∗
i (t)

(or call mπ∗
i (·) the mean value function of X π∗

i (·)). Then, under the previous conditions,
mπ∗

i ∈ UK[0, ∞) and the value function in (6) has the following equivalent expression for
each x ∈ S:

vπ∗
(x) =

K∑
i=1

∫ ∞

0
e−αt

[
(ri + αli)m

π∗
i (t) + αliμi

∫ t

0
mπ∗

i (s)ds

]
dt (8)

−
(

K∑
i=1

(
xili + λili

α

)
+ c

α

)
.

Proof. The lengthy proof of Theorem 2.1 is presented in Section 5. �

As pointed in Section 1, the relationship in (8) may be not exactly true for a non-
Markovian model defined at the end of Section 2.1. However, it can still be considered
as a fluid approximating model to the non-Markovian system under suitable time/space
re-scaling. The approximation can be justified by using the functional strong law of large
numbers (see, e.g., the related discussions in Bassamboo et al. [10,11], Bäuerle [14], Dai
[15], and Dai [16], nevertheless, how to exactly justify such an approximation theorem is
not a concern of the current paper). Hence, based on Theorem 2.1, we establish our OCMC
model as follows. First, define

J (m) ≡
∫ ∞

0
f (y(t), m(t), t)dt, (9)

f (y(t), m(t), t) ≡
K∑

i=1

e−αt [(ri + αli)mi(t) + αliμiyi(t)] , (10)

yi(t) =
∫ t

0
mi(s)ds. (11)

Second, let NK[0, ∞) be the set of all the nonnegative non-decreasing continuous functions
that satisfy (7). Third, by considering m = (m1, . . . , mK) ∈ UK[0, ∞), z = (z1, . . . , zK) ∈
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NK[0, ∞) as control functions, and y = (y1, . . . , yK) as state function, we can formulate
the following deterministic linear optimal control problem by employing Theorem 2.1:

sup
(m,z)∈UK [0,∞)×NK [0,∞)

J (m) (12)

subject to the constraints for each i ∈ {1, . . . , K},

ẏi(t) = mi(t), yi(0) = 0, mi(0) = xi, (13)

⎧⎪⎪⎨
⎪⎪⎩

gi(y, z, m, t) ≡ mi(t) ≥ 0,
gK+i(y, z, m, t) ≡ zi(t) ≥ 0,
g2K+i(y, z, m, t) ≡ (xi + λit) − (mi(t) + μiyi(t) + zi(t)) = 0,

g0(y, z, m, t) ≡ n − ∑K
i=1 mi(t) ≥ 0,

(14)

where the third and fourth constraints in (14) are obtained by taking expectations in both
sides of (4) (e.g., zi(t) = E[Ni(t)]), and the fact that the channel has n servers with no
buffering capacity.

Furthermore, we note that the feasible set determined by the constraint in (14) is
nonempty at any time t ∈ [0, ∞). Hence, we can talk about the existence of solution
to the OCMC problem in (12)–(14), which is addressed in Section 2.3. In addition, the
established OCMC model in (12)–(14) requires that some control variables (e.g., zi(·)
with i ∈ {1, . . . , K}) should satisfy monotonicity constraints, which attracts some recent
research interests in both control theory and applications (see, e.g., Hellwig [19] and Ruiz
del Portal [22]).

2.3. Existence of optimal solution and upper bound on Markovian rules

First, consider a time interval [T1, T2] with T1 < T2 and T1, T2 ∈ [0, ∞] (denote it as
[T1, T2] if T2 = ∞). For k ∈ {0, 1, . . .} and K ∈ {1, 2, . . .}, let C(k)

K [T1, T2] be the space
of all K-vector functions defined on [T1, T2] and having continuous derivatives up to the
kth-order, which is endowed with the unified norm for both T2 < ∞ and T2 = ∞,

‖y‖C ≡
N∑

n=1

2−n

⎛
⎝1

∧
sup

T1≤t≤n

k∑
j=0

∥∥y(j)(t)
∥∥
⎞
⎠

+ 2−(N+1)

⎛
⎝1

∧
sup

T1≤t<T2∧(N+1)

k∑
j=0

∥∥y(j)(t)
∥∥
⎞
⎠,

(15)

where ‖ · ‖ denotes the Euclidean norm in RK and N = sup{n : n ≤ T2} with n ∈
{1, 2, . . . , }, y(j)(t) denotes the jth-order derivative of y(t) at time t and y(0)(t) = y(t) (here,
we note that all vectors associated in the paper are explained as row-vectors).

Now, take m = (m1, . . . , mK) ∈ C(0)
K [0, ∞) and z ∈ C(0)

K [0, ∞) as control functions,
y = (y1, . . . , yK) ∈ C(1)

K [0, ∞) as state function. Then, we can rewrite the OCMC model
in (12)–(14) as follows:

sup
(m,z)∈C(0)

K [0,∞)×C(0)
K [0,∞)

J (m) (16)
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290 W. Dai

subject to

The constraints in (13)–(14) and (m, z) ∈ UK[0, ∞) × NK[0, ∞). (17)

Then, we have the following theorem.

Theorem 2.2 There is at least one optimal solution (y∗, m∗, z∗) ∈ C(1)
K [0, ∞)×C(0)

K [0, ∞)
×C(0)

K [0, ∞) for the OCMC model defined in (16)–(17). Furthermore, the optimal value is
finite and is an upper bound to the corresponding values of the physical queueing system
under Markovian decision rules.

The proof of Theorem 2.2 is provided in Section 6.

3. An admission policy by numerical schemes to the OCMC model

First, it follows from the definition of f (y(t), m(t), t) in (10) that the following convergence
is uniform in all y and m owing to the fact that m(·) is bounded over [0, ∞):

∫ ∞

t
f (y(s), m(s), s)ds → 0 as t → ∞. (18)

Thus, we can take a sufficiently large time T > 0 to replace the infinity for our pur-
pose. Furthermore, note that any function in UK[0, T] can be uniformly approximated by a
sequence of piecewise continuous functions bounded by n over [0, T] owing to Ergoroff’s
Theorem (see, e.g., p. 73 of Royden [25]), and zπ∗

(·) = (zπ∗
1 (·), . . . , zπ∗

K (·)) ∈ NK[0, ∞) can
be approximated by a sequence of piecewise linear nondecreasing functions. Then, we can
estimate z(·) in the following way:

żi(t) = vi(t), żi(0) = 0, vi(0) = 0, (19)

almost everywhere (a.e.) in t ∈ [0, T], where v(·) = (v1(·), . . . , vK(·)) is a nonnegative
piecewise continuous K-vector function. Hence, we turn to find a piecewise continuous
function as our approximating control function for the OCMC problem. In doing so, we
replace the constraints related to zi by two different approximating forms that allow us to
design implementable and effective numerical algorithms.

The first approximating form is actually taking derivative of y(t) by using (11) to get
corresponding control inequality constraints to replace the constraints in (14), which leads
to our first numerical algorithm (Algorithm 3.1) to solve the OCMC problem in (12)–(14).
The second approximating form is directly corresponding to the numerical integrations of
y(t) and z(t) by applying (11) and (19), which leads to our second numerical algorithm
(Algorithm 3.2) to solve the OCMC problem in (12)–(14). From Remark 4.1 presented in
Section 4.2, one can see that Algorithm 3.1 and Algorithm 3.2 display different advantages
related to different system parameters in real numerical implementations.

3.1. An algorithm based on control inequality constraints

First, it follows from the first and third constraints in (14), (11), and (19) that
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∫ t

0
((xiw(s) + λi) − μimi(s) − vi(s)) ds = mi(t) ≥ 0, (20)

where w(t) is a fast decaying function in terms of t ∈ [0, T] such that

∫ t

0
xiw(s)ds ≈ xi for all t ∈ (0, T].

Then, we can find our approximating control function for the OCMC problem with
constraints related to zi replaced by (19) and (21) for i ∈ {1, . . . , K} a.e. in t ∈ [0, T],

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gi(y, z, m, v, t) ≡ vi(t) ≥ 0,
gK+i(y, z, m, v, t) ≡ (xi + λit) − (mi(t) + μiyi(t) + zi(t)) = 0,
g2K+i(y, z, m, v, t) ≡ (xiw(t) + λi − μimi(t)) ∨ 0 − vi(t) ≥ 0,

g0(y, z, m, v, t) ≡ nw(t) − ∑K
i=1 (xiw(t) + λi − μimi(t)) ∨ 0

+∑K
i=1 vi(t) ≥ 0,

(21)

where the third constraint in (21) is naturally obtained from the constraint in (20) such that
v(t) ≥ 0 for each t ∈ [0, T] is not violated, the fourth constraint in (21) is obtained by the
fourth constraint in (14) and the third constraint in (21).

In this case, the Pontryagin’s maximum principle with monotonicity and equality and
inequality constraints (see, e.g., Hellwig [19], Theorems 6.1–6.2 in pp. 153–161 of Tu
[23]) can be applied. More precisely, the corresponding Hamiltonian is given by

H(y, m, z, v, p, q, t) = p0f (y(t), m(t), t) +
K∑

i=1

pi(t)mi(t)

+
2K∑

i=K+1

pi(t)vi(t) +
3K∑
j=0

qj(t)gj(y, m, z, v, t).

(22)

In the Equation (22), p0 is a constant (and without loss of generality, we suppose it to be the
unity), pi(t) with i ∈ {1, . . . , 2K} and qj(t) with j ∈ {0, 1, . . . , 3K} are continuous functions
over [0, T], satisfying

dpi(t)

dt
= −∂H

∂yi
= −αliμie

−αt + qK+i(t)μi, (23)

dpK+i(t)

dt
= −∂H

∂zi
= qK+i(t), (24)

0 = ∂H

∂mi
= (ri + αli)e

−αt + pi(t) + q0(t)μi − qK+i(t) − q2K+i(t), (25)

0 = ∂H

∂vi
= pK+i(t) + qi(t) + q0(t) − q2k+i(t), (26)

0 = qj(t)gj(y, m, z, v, t), qj(t) ≥ 0, gj(y, m, z, v, t) ≥ 0. (27)

Hence, the optimal control function at each time t ∈ [0, T] can be obtained by the LP
problem subject to the constraints (13), (19), and (21),
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max
(m,v)

H(y, m, z, v, p, q, t), (28)

where y = y∗ and z = z∗ correspond to the optimal path by time t, and

H(y, m, z, v, p, q, t) =
K∑

i=1

(
e−αtαliμiyi(t) + ηi(t)mi(t) + ζi(t)vi(t)

)
, (29)

ηi(t) = e−αt(ri + αli) + pi(t), (30)

ζi(t) = pK+i(t) (31)

for i ∈ {1, . . . , K}. Note that the optimal solutions to the LP problem in (28) at each time
t are located on the boundary of the constraint set (see, e.g., Corollary 32.3.4 in p. 345 of
Rockafeller [26] and Figure 1 in the current paper). Hence, the extreme points of the fea-
sible sets are the possible optimal solutions. Therefore, it follows from Theorem 6.2 in
p. 161 of Tu [23], we can take q0(t) = q2K+i(t) = 0 for each i ∈ {1, . . . , K} in order to get
an optimal solution since they are either zero or the free variables (whose values can be
arbitrarily taken) owing to (27). Thus, it follows from (23) to (26) that

dpi(t)

dt
= −αliμie

−αt + qK+i(t)μi, (32)

dpK+i(t)

dt
= qK+i(t), (33)

0 = (ri + αli)e
−αt + pi(t) − qK+i(t), (34)

0 = pK+i(t) + qi(t) (35)

with pi(T) = pK+i(T) owing to the transversality conditions in Theorem 6.2 of Tu [23] (or
Theorem 6.2 in p. 21 of Fleming and Soner [27]). Hence, for each t ≥ 0, we have

pi(t) = riμi

μi + α

(
eμi(t−T)−αT − e−αt

)
, (36)

∑vi(t) = ∑(xih(t) + λi – μimi(t)) – nh(t)

∑vi(t) = ∑(xih(t) + λi – μimi(t))

v1 = x1h(t) + λ1 – μ1m1(t)

v2 = x2h(t) + λ2 – μ2m2(t)

v2

v1

0

Figure 1. A typical feasible convex set for the loss control function at time t.
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pK+i(t) = − ri

μi + α

(
e−αT − eμi(t−T)−αT

)

+ 1

α

(
(ri + αli) − riμi

μi + α

) (
e−αT − e−αt

)
.

(37)

In addition, owing to the linearity of f in (10), the Erdmann–Weierstrass conditions
required in Theorem 6.2 of Tu [23] are satisfied by the obtained p(t) and q(t). Therefore,
we have the following Bang–Bang control based algorithm.

Algorithm 3.1 The algorithm consists of the following three parts:

• Partition [0, T] into {[tl, tl+1), l = 0, 1, 2, . . . , L} with equal gauge �t = tl+1 − tl and
t0 = 0, and for each l ≥ 1, compute w(tl), e.g., w(tl) can be taken in the following
form for good performance:

w(tl) =

⎧⎪⎪⎨
⎪⎪⎩

0.2

(1 − e−0.2×5)e0.2tl
if tl ≤ 8,

1

t1.01
l

if tl > 8,

and calculate

φi(tl) = (xiw(tl−1) + λi − μimi(tl−1)) ∨ 0 for i ∈ {1, . . . , K}.

• Let vi(t0) = 0 for each i ∈ {1, . . . , K}, and for each tl with l ∈ {1, . . . , L}, let ζi(tl)
be given in (31) and (37). Then
(1) Take vi(tl) = φi(tl) for each i ∈ {1, . . . , K} satisfying ζi(tl) ≥ 0;
(2) Let is ∈ {1, . . . , K} with s = 1, . . . , K1 for some K1 ∈ {0, 1, . . . , K} denote the

index such that ζis (tl) < 0, take (vi1 (tl), . . . , viK1
(tl)) to be the solution to the

following LP problem:

max
K1∑

s=1

ζis (tl)vis (tl),

s.t.

{∑K1
s=1 vis (tl) =

(∑K1
s=1 φis (tl) − nw(tl)

)
∨ 0,

0 ≤ vis (tl) ≤ φis (tl);

• Let mi(t0) = xi and yi(t0) = 0 with each i ∈ {1, . . . , K}, and for each l ≥ 1, take

mi(tl) = 1

1 + μi�t
(mi(tl−1) + �t(λi − vi(tl))) ,

yi(tl) = yi(tl−1) + mi(tl)�t.

Note that, in the third part of Algorithm 3.1, we have used numerical integrations of y(t)
and z(t) to compute mi(tl) by using (11), (19), and the third constraint in (14) as follows:

mi(tl) = xi + λitl − μi

l∑
j=0

mi(tj)�t −
l∑

j=0

vi(tj),
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294 W. Dai

where �t should be sufficiently small owing to the convergence consideration of numerical
integrations.

Remark 3.1 Note that Algorithm 3.1 is an iterative one in terms of time parameter tl. ζi(tl)
for each l ∈ {0, 1, . . . , } and each i ∈ {1, . . . , K} can be precalculated by using (31) and
(37) to save computational time at each tl. Hence, for an online threshold policy based on
the values of vi(tl), we only care about the computational complexity of the algorithm at
each instant tl, which is mainly dominated by the time in solving the LP problem appeared
in the second part of the algorithm. If the Karmarkar algorithm (see, e.g., Karmarkar [28]
and Megiddo [29]) is employed, the complexity of Algorithm 3.1 at each time tl is bounded
by O(K3.5B1) + O(K), where B1 is the number of bits in the input of the LP appeared in
Algorithm 3.1 at each time instant tl. Note that B1 depends on the number of servers (i.e.,
B1 = O(n)) owing to the constraints in the second step of Algorithm 3.1. Nevertheless, if we
employ the constrained MDP to design a threshold policy, the complexity for the related LP
in computing the value function for a given initial state at each time tl will be O((nK)3.5B2)
(see, e.g., pp. 12–16 of Altman [12], Dai and Feng [3]), where B2 is the number of bits in
the input of the LP and is independent of n and K. Therefore, if the number of job classes
is large and when the arrival and service rates are high, our algorithm has less complexity
than the constrained MDP based algorithm. Furthermore, by sufficient conditions of opti-
mality similarly as discussed in Theorem 2.5 of Yong and Zhou [30], one can see that the
control function constructed by using Algorithm 3.1 is indeed an approximated solution to
the OCMC model in (12), which subjects to the constraints (13) and (19)–(21).

3.2. An alternative algorithm based on control-state inequality constraints

An alternative to Algorithm 3.1 can be proposed via replacing the third and fourth pure
control oriented inequalities in (21) by the following mixed control and state oriented
inequalities due to the third part in Algorithm 3.1, i.e., for the partition {[tl, tl+1), l =
0, 1, 2, . . . , L} with t0 = 0 and each l ≥ 1,

{
g2K+i(y, z, m, v, tl) ≡ φi(tl) − vi(tl)�t/(1 + μi�t) ≥ 0,

g0(y, z, m, v, tl) ≡ n − ∑K
i=1 φi(tl) + ∑K

i=1 vi(tl)�t/(1 + μi�t) ≥ 0,
(38)

where, for i ∈ {1, . . . , K},

φi(tl) = 1

1 + μi�t
(xi + λitl − μiyi(tl−1) − z(tl−1)) ∨ 0.

Then, we have the following algorithm.

Algorithm 3.2 The algorithm consists of the following two parts:

• Let vi(t0) = 0 for each i ∈ {1, . . . , K}, and for each tl with l ∈ {1, . . . , L}, let ζi(tl)
be given in (31) and (37). Then
(1) Take vi(tl) = φi(tl)(1 + μi�t)/�t for each i ∈ {1, . . . , K} satisfying ζi(tl) ≥ 0;
(2) Let is ∈ {1, . . . , K} with s = 1, . . . , K1 and some K1 ∈ {0, 1, . . . , K} denote the

index such that ζis (tl) < 0, take (vi1 (tl), . . . , viK1
(tl)) to be the solution to the

following LP problem:
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max
K1∑

s=1

ζis (tl)vis (tl)

s.t.

{∑K1
s=1(1/(1 + μis�t))vis (tl) =

(∑K1
s=1(φis (tl) − n)/�t

)
∨ 0,

0 ≤ vis (tl) ≤ φis (tl)(1 + μis�t)/�t;

• Let mi(t0) = xi and yi(t0) = 0 with each i ∈ {1, . . . , K}, and for each l ≥ 1, take
mi(tl) and yi(tl) as given in Algorithm 3.1.

3.3. An online admission control policy

Based on the loss rate functions determined in the previous subsections, we can design an
online admission control policy for the parallel-server loss channel as follows.

Admission Policy 3.1 The policy consists of the following five parts:

(1) At each time tl with l ∈ {0, 1, . . . , L}, compute (or input) v(tl) by using Algorithm
3.1 (or Algorithm 3.2);

(2) Define two sequences of random times {αl, l ∈ {1, 2, . . .}} and {βl, l ∈ {0, 1, 2, . . .}}
with β0 = 0 as

αl = inf

{
t > βl−1,

K∑
i=1

Xi(t) = K

}
, l ∈ {1, 2, . . .},

βl = inf

{
t > αl,

K∑
i=1

Xi(t) < K

}
, l ∈ {1, 2, . . .};

(3) If t ∈ [βl−1, αl] (the system is not full in this time interval) with l ∈ {1, 2, . . .} and
vi(t) > 0 (the loss ratio is positive at time t) for an i ∈ {1, . . . , K}, the system rejects
an arrived class i job at time t;

(4) If t ∈ [βl−1, αl] with l ∈ {1, 2, . . .} and vi(t) = 0 for an i ∈ {1, . . . , K}, the system
accepts an arrived class i job at time t;

(5) If t ∈ [αl, βl] (the system is full in this time interval) with l ∈ {1, 2, . . .}, the system
rejects an arrived job at time t.

4. Numerical simulations and performance comparisons

4.1. A simulation algorithm

To implement Policy 3.1, we consider a 2-class and n-server parallel system and propose a
simulation algorithm by partitioning [0, T] as in Algorithm 3.1 and Algorithm 3.2.

Algorithm 4.1 The simulation algorithm consists of the following five steps:

(1) Counting ξ (k) for each k ∈ {1, 2, . . .} and ξi(k) for each i ∈ {1, 2}, which denote
the arrival time of the kth job (either a class-1 job or a class-2 job) and the arrival
time of the kth class i job, respectively;

(2) For each i ∈ {1, 2}, r ∈ {1, . . . , n}, and k ∈ {1, 2, . . .}, define
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τ r
i = ξ (k − 1) + γ r

i ,

where γ r
i is the remaining service time required for server r to finish serving a class

i job, which starts at time ξ (k − 1);
(3) Let Ji denote the profit associated with class i jobs and take Ji = 0 initially. Then,

for each k ∈ {1, 2, . . .} such that ξ (k) ≤ T, if τ r
i ≥ ξ (k), take

Ji = Ji + ri

(
e−αξ (k−1) − e−αξ (k)

)
,

otherwise, take

Ji = Ji + ri

(
e−αξ (k−1) − e−ατ r

i
)
;

(4) Let q(t) be the number of servers occupied by a job at time t ∈ [tl−1, tl). If tl−1 ≤
ξ (k) < tl and ξ (k) = ξi(k1) for some i ∈ {1, 2}, k1 ∈ {1, . . . , k}, then
(a) if vi(t) = 0 and q(t) < n, the system accepts the arrived class i job at time ξ (k)

and assigns an available server r ∈ {1, . . . , n} to serve the job while updating
γ r

i = uj
i for some j ∈ {1, 2, . . .}

(b) otherwise, the system rejects the arrived class i job at time ξ (k) while taking
Li = 0 initially and for each k ≥ 1 such that ξ (k) ≤ T , taking

Li = Li + lie
−αξ (k),

where Li is the lost value associated with class i jobs;
(5) Finally, compute the optimal total profit by

L =
2∑

i=1

(Ji − Li) − c

α
.

4.2. Comments to Algorithm 4.1 and its implementations

In the following three subsections, we implement Policy 3.1 by using the proposed simula-
tion algorithm for a 2-class and 7-sever parallel system when the system is either of or not
of the Markovian property. In these simulations, we find out that Policy 3.1 implemented
by applying Algorithm 4.1 outperforms several ones when the traffic intensity

ρ = λ1/μ1 + λ2/μ2 (39)

is relatively large, and the differences of the revenues per unit of time and the penalty costs
among different classes of jobs are large. Here, for each x ∈ S, the comparison criterion
is the relative error between vπ∗

(x) (the numerically computed (or approximated) optimal
value obtained under Policy 3.1) and v(x) obtained by one of the following three policies:

(1) The FIFO policy, i.e., the policy by taking v1(t) = v2(t) = 0 for all t ∈ [0, T] and
accepting an arrived job at time t if there is a server available at time t;

(2) The AS policy: the system accepts an arrived job at time t in all odd indexed
interval [tl, tl+1) for l ∈ {0, 1, . . . , L − 1} and rejects otherwise;

(3) The MDP based threshold policy in Dai and Feng [3].
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Mathematically, for each x ∈ S, the relative error is expressed as

error(x) = (
vπ∗

(x) − v(x)
)
/vπ∗

(x). (40)

Remark 4.1 From our simulation experiences, we see that v2(t) = 0 for all t ∈ [0, T]
when λ2 is relatively small (e.g., approximately below 5) and v2(t) > 0 for a small number
of t ∈ [0, T] when λ2 is relatively large (e.g., approximately above 5). However, when we
implement Policy 3.1 by taking v2(t) = 0 for all t ∈ [0, T], good performance is reached
for a system with λ2 relatively large. This is because when λ2 increases, the loss rate of
class-2 jobs increases solely owing to system blocking. Thus, the system accepts the small
number of class-2 jobs (or a portion of the small number) corresponding to v2(t) > 0 is a
reasonable strategy. In the following simulation examples, when v2(t) is taken to be 0 for
all t ∈ [0, T], v1(t) will converge to a constant (e.g., 0 or 1) in all cases. The phenomenon
indicates that the dynamical feasible control region as shown in Figure 1 will converge to
a fixed one as t → ∞. In addition, the limit of dynamical optimal control pair (v1(t), v2(t))
is located in one of the extreme points of the limit feasible region. Essentially, the phe-
nomenon roughly reflects the principle of LP or Bang–Bang control for linear optimal
control system as discussed in Section 3.

Furthermore, when Algorithm 3.1 is employed in the simulations, good performance is
reached for all cases in terms of the traffic intensity ρ and the computed loss rate functions.
However, when the system is overloaded (i.e., ρ > 1), the summation of computed mean
functions of two classes of jobs at each time t may exceed the upper bound n = 7. When
Algorithm 3.2 is employed in the simulations, good performances are reached if the system
is critically loaded and overloaded (i.e., ρ ≥ 1), and Policy 3.1 reduces to FIFO if ρ < 1.
Nevertheless, the computed variables satisfy all the constraints as stated in the OCMC
model.

Finally, the numerical comparisons provided in the following three subsections are
conducted when the system is overloaded, critically loaded, or under-loaded in terms of the
traffic intensity ρ in (39). In all these simulations, the sever number is fixed to be n = 7, the
number of job classes is fixed to be K = 2, the time horizon is 400 (i.e., T = 400), the time
gauge is 400/10,000, the discounted rate α = 0.73, the fixed cost is c = 1000, the revenue
per unit of time is 1000 for class-1 jobs and is 6000 for class-2 jobs, the penalty cost is
200 for each class-1 job and is 5000 for each class-2 job (except the cost in Example 4.10),
and the number of simulation run times is 1000. Furthermore, to be simple for notations,
we use ‘exp’ to denote ‘exponential’ in all the related figures.

Here, we note that α = 0.73 is an arbitrary choice. If one chooses a larger α, the
convergence of the numerical integration related to (18) will be more faster in suitable
accuracy. If one chooses a smaller α, T may be chosen larger than the current value 400
to guarantee the convergence of the associated numerical integration related to (18) in
suitable accuracy. When the numbers of n and K increase, the corresponding computation
run-time will increase. For the current purpose of illustration, we choose n = 7 and K = 2.

4.3. Algorithm 3.1 based simulation examples: Markovian cases and comparing with
FIFO and AS policies

In this subsection, we implement the simulation algorithm based on Algorithm 3.1 and
provide numerical comparisons when the job arrival processes are Poisson ones and the
service times are exponentially distributed.
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Figure 2. Alg 3.1, exp, ρ = 1.1626, n = 7, α = 0.73, λ1 = 5.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.

Example 4.1 (With FIFO, AS, Markovian, and Overloaded) The traffic intensity is
taken to be ρ = 1.1626 with λ1 = 5.0622, λ2 = 2.0878, μ1 = μ2 = 6.15/n. The related
error ratios are displayed in Figure 2. In the figure, the error ratios showed in the left-upper
graph are compared with the FIFO policy, the error ratios showed in the right-upper graph
are compared with the AS policy. Furthermore, in the upper two graphs, each starred point
corresponds to an initial state (i, j) that is arranged in the order of j = 0, 1, . . . , n − i +
1 when i increases from 0 to n. In the lower two graphs, the curves represent loss rate
functions, respectively, corresponding to class-1 jobs and class-2 jobs with initial state
(2,1), which are generated from Policy 3.1 and are drawn from their first 400 computed
points. If vi(tl) > 0, a red ‘star’ point is drawn and otherwise, a blue ‘dot’ point is drawn.

Example 4.2 (With FIFO, AS, Markovian, and Critically Loaded) Besides ρ = 1 and
λ1 = 4.0622, the other data are the same as in Example 4.1. The related error ratios are
displayed in Figure 3 with the same explanation as in Example 4.1.

Example 4.3 (With FIFO, AS, Markovian, and Heavy Traffic) Besides ρ = 0.9675 and
λ1 = 3.8622, the other data are the same as in Example 4.1. The related error ratios are
displayed in Figure 4 with the same explanation as in Example 4.1.

4.4. Algorithm 3.1 based simulation examples: non-Markovian cases and comparing
with FIFO and AS policies

As pointed out at the end of Subsection 2.1, when the Poisson arrival processes and/or
the exponentially distributed service times imposed in the previous discussions are
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Figure 3. Alg 3.1, exp, ρ = 1.0000, n = 7, α = 0.73, λ1 = 4.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.
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Figure 4. Alg 3.1, exp, ρ = 0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.
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replaced by renewal processes and/or generally distributed service times, the formerly
discussed system does not satisfy Markov (memoryless) property. The conditions used in
Theorem 2.1 are not satisfied by such a generalized queueing system. However, the fol-
lowing Examples 4.4–4.6 indicate that our OCMC based Policy 3.1 still performs well
for the previously studied 2-class and 7-server parallel system with renewal arrival pro-
cesses that are of uniformly distributed job interarrival times. One way to interpret this
phenomenon is as given in the introduction of the paper. Here, we use the following numer-
ical Examples 4.4–4.6 to illustrate the effectiveness of Policy 3.1 for a non-Markovian
model with uniformly distributed job interarrival times.

Example 4.4 (With FIFO, AS, Non-Markovian, and Overloaded) Besides the uniformly
distributed interarrival times, the other data are the same as in Example 4.1. The related
error ratios are displayed in Figure 5.

Example 4.5 (With FIFO, AS, Non-Markovian, and Critically Loaded) Besides the
uniformly distributed interarrival times, the other data are the same as in Example 4.2.
The related error ratios are displayed in Figure 6.

Example 4.6 (With FIFO, AS, Non-Markovian, and Heavy-Traffic) Besides the uni-
formly distributed interarrival times, the other data are the same as in Example 4.3. The
related error ratios are displayed in Figure 7.
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Figure 5. Alg 3.1, uniform, ρ = 1.1626, n = 7, α = 0.73, λ1 = 5.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.

D
ow

nl
oa

de
d 

by
 [

N
an

jin
g 

U
ni

ve
rs

ity
] 

at
 0

1:
21

 1
9 

Fe
br

ua
ry

 2
01

4 



Mathematical and Computer Modelling of Dynamical Systems 301

0 10 20 30 40
0

0.1

0.2

0.3

0.4
Relative error ratios

Initial number of jobs

E
rr

or
 r

at
io

0 10 20 30 40
0.2

0.4

0.6

0.8

1
Relative error ratios

Initial number of jobs

E
rr

or
 r

at
io

0 100 200 300 400
0

1

2

3
An optimal loss rate curve of class = 1

Time

C
om

pu
te

d 
lo

ss
 r

at
e

0 100 200 300 400
−1

−0.5

0

0.5

1
An optimal loss rate curve of class = 2

Time

C
om

pu
te

d 
lo

ss
 r

at
e

Figure 6. Alg 3.1, uniform, ρ = 1, n = 7, α = 0.73, λ1 = 4.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.
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Figure 7. Alg 3.1, uniform, ρ = 0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.
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4.5. Algorithm 3.2 based simulation examples: non-Markovian cases and comparing
with FIFO and AS policies

In this subsection, we implement the simulation algorithm based on Algorithm 3.2 instead
of Algorithm 3.1 as used in the previous subsections when the system is non-
Markovian. The different advantages of numerical performance between Algorithm 3.1 and
Algorithm 3.2 are as explained in Remark 4.1.

Example 4.7 (With FIFO, AS, Non-Markovian, and Overloaded) The system data are
the same as in Example 4.4 and the related error ratios are displayed in Figure 8.

Example 4.8 (With FIFO, AS, Non-Markovian, and Critically Loaded) The system
data are the same as in Example 4.5 and the related error ratios are displayed in Figure 9,
where, in the left-lower graph, the curve is drawn from their 10,000 computed points.

4.6. Comparing with FIFO and MDP based threshold policies

In this subsection, we employ Algorithm 3.1 to conduct the performance comparisons
among our Policy 3.1, the FIFO policy, and the MDP based threshold policy proposed
in Dai and Feng [3]. From the numerical Examples 4.9–4.12, we see that our Policy
3.1 together with Remark 4.1 outperforms both the FIFO policy and the MDP based
policy in [3] when the difference of revenue rates between two classes of jobs is large.
However, if the difference is small, the performance of the MDP based policy is fairly
good. Furthermore, this phenomenon reveals an interesting issue in our study, i.e., the con-
ditions (e.g., submodularity) imposed in [3] indeed have some impact on the design and
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Figure 8. Alg 3.2, uniform, ρ = 1.1626, n = 7, α = 0.73, λ1 = 5.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.
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Figure 9. Alg 3.2, uniform, ρ = 1, n = 7, α = 0.73, λ1 = 4.0622, λ2 = 2.0878, μ1 = μ2 =
6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 6000.

performance of the MDP based optimal policy. This is because the value function used
in our OCMC model is not required to be submodular. Thus, we can identify an optimal
value function and optimal admission control policy on an enlarged class of value func-
tions. Actually, owing to Theorem 2.2, the optimal value to our OCMC model provide an
upper bound to the corresponding values of our physical queueing system under Markovian
decision rules. Therefore, it is possible that the approximate approach proposed in our cur-
rent paper is better than the optimal policy resulting from a structured value function based
MDP such as in the reference [3] in certain cases. Since using the class of structured
value functions to design optimal policy for continuous time Markov decision problem is
a popular method in many areas recently, our finding here should be valuable in this field.

Example 4.9 (With FIFO, MDP, and Critically Loaded) The system data for the lower
two graphs in Figure 10 are the same as those in Example 4.2. The system data for the
upper two graphs in Figure 10 are the same as those in Example 4.2 except the revenue rate
of the class-2 jobs, which is taken to be 1300 here. The left two graphs display the compar-
isons between our newly designed policy and the FIFO policy. The curves are drawn from
their 10,000 computed points. Note that the slight difference between the left-lower graph
in Figure 10 and the left-upper one in Figure 3 corresponding to Example 4.2 is mainly
owing to the error ratio 1/

√
1000 of random number generator used in Matlab Software

Package since our number of simulation run times is 1000 and two different 1000 aver-
age sample paths are used. Furthermore, the error ratio measures the difference between a
random variable and its counterpart corresponding to pseudo random numbers generated
by a random number generator owing to central limit theorem, etc. However, the accuracy
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Figure 10. Upper two: Alg 3.1, exp, ρ = 1.0000, n = 7, α = 0.73, λ1 = 4.0622, λ2 = 2.0878, μ1 =
μ2 = 6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 1300. Lower two: Alg 3.1, exp, ρ =
0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 = 6.15/n, c = 1000, l1 = 200, l2 =
5000, r1 = 1000, r2 = 6000.

is reasonably good for our current illustration purpose. The right two graphs display the
comparisons between our newly designed policy and the MDP based threshold policy in
[3]. The number of iterative times for the MDP based algorithm is 500.

Example 4.10 (With FIFO, MDP, and Critically Loaded) The system data except the
ones list below are the same as those in Example 4.2. The related error ratios are displayed
in Figure 11. The revenue rates of the class-2 jobs for the upper two graphs are both
2000 and those for the lower two graphs are both 7500. Other interpretations are the same
as in Example 4.9.

Example 4.11 (With FIFO, MDP, and Heavy Traffic) The system data for the lower two
graphs in Figure 12 are the same as those in Example 4.3. The system data for the upper
two graphs in Figure 12 are the same as those in Example 4.3 except the revenue rate of the
class-2 jobs, which is taken to be 1300 here. The left two graphs display the comparisons
between our newly designed policy and the FIFO policy. The curves are drawn from their
10,000 computed points. Note that the slight difference between the left-lower graph in
Figure 12 and the left-upper one in Figure 4 corresponding to Example 4.3 is mainly owing
to the error ratio 1/

√
1000 of random number generator used in Matlab Software Package

since our number of simulation run times is 1000 and two different average sample paths
are used. However, the accuracy is reasonably good for our current illustration purpose.
The right two graphs display the comparisons between our newly designed policy and
the MDP based threshold policy in [3]. The number of iterative times for the MDP based
algorithm is 500.
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Figure 11. Upper two: Alg 3.1, exp, ρ = 1.0000, n = 7, α = 0.73, λ1 = 4.0622, λ2 = 2.0878, μ1 =
μ2 = 6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 2000. Lower two: Alg 3.1, exp, ρ =
0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 = 6.15/n, c = 1000, l1 = 200, l2 =
5000, r1 = 1000, r2 = 7500.

Example 4.12 (With FIFO, MDP, and Heavy Traffic) The system data except the ones
list below are the same as those in Example 4.3. The related error ratios are displayed in
Figure 13. The revenue rates of the class-2 jobs for the upper two graphs are both 2000
and those for the lower two graphs are both 7500. Other interpretations are the same as in
Example 4.11.

5. Proof of Theorem 2.1

5.1. Preliminary lemmas

We first note that all of the stochastic processes concerned in the following discussions
are measurable functions from some probability space (�, F, P) into Skorohod topological
space. Their paths are right-continuous with left-limits on [0, ∞) and the space is endowed
with the Skorohod topology (see, e.g., Ethier and Kurtz [31]).

Lemma 5.1 For each fixed i ∈ {1, . . . , K}, we have

E

∫ ∞

0
e−αt(Ri(t) − λit)dt = 0. (41)

Proof. For each i ∈ {1, . . . , K}, since Ri(·) is a Poisson process with right-continuous
sample paths, then Ri(·) is progressively measurable in terms of the natural filtration
R = {Rt = σ (Ri(s), 0 ≤ s ≤ t), t ≥ 0} (see, e.g., Theorem 1 in p. 38 of Chung [32]). Thus,
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Figure 12. Upper two: Alg 3.1, exp, ρ = 0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 =
μ2 = 6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 1300. Lower two: Alg 3.1, exp, ρ =
0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 = 6.15/n, c = 1000, l1 = 200, l2 =
5000, r1 = 1000, r2 = 6000.

Ri(t, ω) is nonnegative measurable on the product space [0, ∞) × �. Furthermore, note that
(�,F , P) and ([0, ∞),B[0, ∞), dt) are two σ -finite measure spaces, where dt denotes the
Lebesgue measure on [0, ∞). Then, it follows from Tonelli’s Theorem in p. 309 of Royden
[25] that (41) is true. Hence, we finish the proof of Lemma 5.1. �

Lemma 5.2 For each fixed i ∈ {1, . . . , K}, we have

E

(
Sπ∗

i (t) − μi

∫ t

0
mπ∗

i (s)ds

)
= 0. (42)

Proof. Let Tj be the departure time of the jth class i job that finishes service at the channel.
Let T0 = 0 and define ηj ≡ Tj − Tj−1 for j = 1, 2, . . . . Then, we have

Sπ∗
i (t) ≡ max {m : Tm ≤ t} , Tm =

m∑
j=1

ηj. (43)

Define

ξj ≡
∫ Tj

Tj−1

μiX
π∗
i (s)ds, (44)
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Figure 13. Upper two: Alg 3.1, exp, ρ = 0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 =
μ2 = 6.15/n, c = 1000, l1 = 200, l2 = 5000, r1 = 1000, r2 = 2000. Lower two: Alg 3.1, exp, ρ =
0.9675, n = 7, α = 0.73, λ1 = 3.8622, λ2 = 2.0878, μ1 = μ2 = 6.15/n, c = 1000, l1 = 200, l2 =
5000, r1 = 1000, r2 = 7500.

and let

�π∗
i (t) ≡ max {m : Vm ≤ t} , Vm =

m∑
j=1

ξj. (45)

Furthermore, let Oj denote the arrival time of the jth class i jobs that actually get into
service under the policy π∗ after arriving at the channel. Let O0 = 0 and define Zj ≡ Oj −
Oj−1 for j = 1, 2, . . . , which is the summation of a number of external interarrival times.
Let Mπ∗

i (t) denote the total number of class i jobs that get into service under the policy π∗
at the channel by time t, that is,

Mπ∗
i (t) ≡ max{m : Om ≤ t}, Om =

m∑
j=1

Zj. (46)

Then, we can express the left-side of (42) as

E

(
Sπ∗

i (t) − μi

∫ t

0
mπ∗

i (s)ds

)

= E
((

Sπ∗
i (t) + 1

) − VSπ∗
i (t)+1

)
+ E

∫ T
Sπ∗
i (t)+1

t
μiX

π∗
i (s)ds − 1

≡ I + II − 1.

(47)
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In deriving the first equality of (47), we have used the fact that X π∗
i (·) has right-continuous

sample paths and is bounded by n. The remaining proof of the lemma is to show I = 0 and
II = 1 for I and II that are defined in the right-side of (47).

First, we prove the claim that I = 0. By the similar way as developed in Dai [33] and
Dai and Dai [34], let

G = {Gt = σ
(
Mπ∗

i (s), Sπ∗
i (s), �π∗

i (s), X π∗
i (0), 0 ≤ s ≤ t

)
, t ≥ 0

}
. (48)

Then, for each (m1, m2, m3) ∈ {0, 1, . . .} × {0, 1, . . .} × {0, 1, . . . , }, (Tm1 , Vm2 , Om3 ) is a
multi-parameter G-stopping time since, for example, {Tm1 ≤ t} = {Sπ∗

i (t) ≥ m1} ∈ Gt with
t ≥ 0. Since ESπ∗

i (t) is bounded by ERi(t) = λit < ∞ for each fixed t ≥ 0, we have that
Sπ∗

i (t) < ∞ almost surely (a.s.). Furthermore, the measure of the set {Sπ∗
i (t) + 1 = ∞} is

zero. Thus, we conclude that VSπ∗
i (t)+1 is Gt-measurable since Sπ∗

i (t) + 1 is also a G-stopping
time and the following expression holds:

VSπ∗
i (t)+1 =

∞∑
m=1

VmI{Sπ∗
i (t)+1=m} + V∞I{Sπ∗

i (t)+1=∞}. (49)

Next, define the filtration {GTm , m ∈ {1, 2, . . . , }} associated with stopping times Tm for
m ∈ {1, 2, . . .} by the σ -algebras,

GTm ≡ {B ∈ F : B ∩ {Tm ≤ s} ∈ Gs for all s ≥ 0}. (50)

Let the filtration {G(Tm,t)}, m ∈ {1, 2, . . . , t ≥ 0} be defined by the σ -algebra for each t ≥ 0
and Tm,

G(Tm,t) ≡ σ
(GTm ∪ Gt

)
. (51)

Note that Mπ∗
i (·) is progressively measurable in terms of the filtration G since it has right-

continuous sample paths. Then, by Proposition 2.8.5 in p. 87 of Ethier and Kurtz [31], we
know that Mπ∗

i (Tm) is GTm -measurable (hence G(Tm,t)-measurable) and GTm−1 ⊂ GTm ⊂ G(Tm,t)

since Tm−1 < Tm. Furthermore, suppose that there are Ym class i customers who get into
service during [Tm−1, Tm] at the channel, then we have

Mπ∗
i (Tm) = Mπ∗

i (Tm−1) + Ym ≡ max

⎧⎨
⎩r :

r∑
j=1

Zj ≤ Tm

⎫⎬
⎭ . (52)

Hence, we can conclude that Ym is G(Tm,t)-measurable. Note that Sπ∗
i (t) + 1 and VSπ∗

i (t)+1 are
also G(Tm,t)-measurable. Then, by using the following alternative expression of (4) derived
from (43) and (46):

{
X π∗

i (t) = Mπ∗
i (t) − Sπ∗

i (t) + X π∗
i (0),

X π∗
i (0) = xi,

(53)

we know that X π∗
i (Tm−1) is G(Tm,t)-measurable.

We now introduce a reference model for the purpose to prove the integrability of
some related processes. In the model, the inter-arrival time sequence of class i jobs for

D
ow

nl
oa

de
d 

by
 [

N
an

jin
g 

U
ni

ve
rs

ity
] 

at
 0

1:
21

 1
9 

Fe
br

ua
ry

 2
01

4 



Mathematical and Computer Modelling of Dynamical Systems 309

each i ∈ {1, . . . , K} is given by {uj
i, j = 1, 2, . . .} as in (5) and every arrived job is sup-

posed to be permitted into service immediately. In other words, the reference model
is the same as the original model except taking the number of servers to be infin-
ity, i.e., n = ∞. For convenience, we denote the associated service time sequences by
{vj

i, j = 1, 2, . . .} for i ∈ {1, . . . , K} and define a multi-parameter filtration by H = {Hm =
σ (u1

i , . . . , um
i ; v1

i , . . . , vm
i ; i = 1, . . . , K), m ≥ 1}. Then, for each t ≥ 0, we have

E
∣∣∣(Sπ∗

i (t) + 1) − VSπ∗
i (t)+1

∣∣∣ ≤ xi + E(Ri(t) + 1) + nμiETSπ∗
i (t)+1

≤ xi + E(Ri(t) + 1) + nμi

K∑
l=1

E

⎛
⎝Ri(t)+1∑

j=1

(uj
l + vj

l)

⎞
⎠

= xi + E(Ri(t) + 1) + nμi

K∑
l=1

E(u1
l + v1

l )E(Ri(t) + 1)

= xi + (λit + 1) + nμi

K∑
l=1

(1/λl + 1/μl)(λlt + 1)

< ∞,

(54)

where the first inequality in (54) follows from the fact that the total number of class i jobs
that finish service by time t is less than the summation of the initial number of class i jobs
and the total number of arrival class i jobs by time t, (54)–(55), and the fact that X π∗

i (t) is
bounded by n; The second inequality in (54) follows from the fact that the departure time of
the (Sπ∗

i (t) + 1)th class i job that finishes service is less than the summation of arrival times
of all the (Ri(t) + 1)th class i jobs and the total amount of time required to finish serving
the number

∑K
i=1(Ri(t) + 1) of arrival jobs in the reference model; The first equality in

(54) follows from the Wald’s identity (see, e.g., Chow and Teicher [35]) since Ri(t) + 1
is a H-stopping time with E(Ri(t) + 1) = λit + 1 < ∞ and {uj

l + vj
l, j ∈ {1, 2, . . . , }} for

each l ∈ {1, . . . , K} is an i.i.d. sequence of random variables owing to the independent
assumptions among inter-arrival times and service times.

Therefore, we know that (Sπ∗
i (t) + 1) − VSπ∗

i (t)+1 and VSπ∗
i (t)+1 are L1(�,F , P)-

integrable. Hence, for each m ∈ {1, 2, . . .}, ξmI{Sπ∗
i (t)+1≥m} is also L1(�,F , P)-integrable

since

E
(
ξmI{Sπ∗

i (t)+1≥m}
)

≤ E

⎛
⎝ ∞∑

j=1

ξjI{Sπ∗
i (t)+1≥j}

⎞
⎠ = EVSπ∗

i (t)+1 < ∞.

Furthermore, since (X π∗
i (Tm−1), Ym) is G(Tm,t)-measurable, we know that the following con-

ditional expectations are well defined for m ∈ {1, 2, . . .} and k, l ∈ {0, 1, . . .} (see, e.g.,
p. 8 in Yong and Zhou [30])

E
[
ξmI{Sπ∗

i (t)+1≥m}
∣∣X π∗

i (Tm−1) = k, Ym = l
]

. (55)

Next, by Lemma 5.1 of Dai and Feng [3], we further divide the interval [Tm−1, Tm) into
sub-intervals {[Tp

m, Tp+1
m ), p = 0, 1, . . . , Ym} with T0

m = Tm−1 and TYm+1
m = Tm and at each

time Tp
m for p = 1, . . . , Ym, there is a class i job that gets into service. Thus, we have
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310 W. Dai

ηm = Tm − Tm−1 =
Ym∑

p=0

(
Tp+1

m − Tp
m

)
. (56)

For convenience of notation, we use Im to denote I{Sπ∗
i (t)+1≥m}. Then, we have

E[ξmIm] = E

⎡
⎣Im

Ym∑
p=0

∫ Tp+1
m

Tp
m

μiX
π∗
i (s)ds

⎤
⎦

= E

⎡
⎣Im

Ym∑
p=0

μi

(
X π∗

i (Tm−1) + p
) (

Tp+1
m − Tp

m

)⎤⎦

=
∞∑

l=0

n∑
k=1

μiE

⎡
⎣ Im

⎛
⎝k (Tm − Tm−1) +

l∑
p=1

(
Tm − Tp

m

)⎞⎠
∣∣∣∣∣∣X π∗

i (Tm−1) = k, Ym = l

⎤
⎦

P{X π∗
i (Tm−1) = k, Ym = l}.

Remember that there is only one job that finishes service at time Tm (see Lemma 5.1 and its
associated Remark 5.1 in Dai and Feng [3]). Thus Tm − Tm−1 is the time duration during
which a job that is in the channel at time Tm−1 is served at rate μi. Let W j

m for j ∈ {1, . . . , k}
denote the associated remaining service time after Tm, that is, the job that is in the channel
at time Tm−1 will finish service at time Tm + W j

m. Note that both W j
m and Tm − Tm−1 + W j

m
are exponentially distributed with rate μi. Similarly, Tm − Tp

m for each p ∈ {1, . . . , l} is
the time duration during which the job arrived at Tp

m is served at the rate μi. Let W j
m for

j = k + p denote the associated remaining service time, i.e., the job arrived at Tp
m will finish

service at Tm + W p
m. Both W j

m and Tm − Tp
m + W j

m are exponentially distributed with rate
μi. Then, for k ∈ {1, . . . , n} and l ∈ {0, 1, . . .}, we have

E

⎡
⎣ Im

⎛
⎝k (Tm − Tm−1) +

l∑
p=1

(
Tm − Tp

m

)⎞⎠
∣∣∣∣∣∣X π∗

i (Tm−1) = k, Ym = l

⎤
⎦

=
⎛
⎝ k+l∑

j=1

E
(
Tm − Tl

m + W j
m − W j

m

)⎞⎠E
(
Im|X π∗

i (Tm−1) = k, Ym = l
)

=
⎛
⎝ k+l∑

j=1

E
(

I{W j
m=0}

(
Tm − Tl

m

))⎞⎠E
(
Im|X π∗

i (Tm−1) = k, Ym = l
)

= 1

μi
E
(
Im|X π∗

i (Tm−1) = k, Ym = l
)

,

(57)

where in the first equality of (57), we have used the fact that {Sπ∗
i (t) + 1 ≥ m} = {Tm−1 ≤ t}

which is only dependent on T0, T1, . . . , Tm−1 and independent of

k∑
j=1

(
Tm − Tm−1 + W j

m − W j
m

) +
l∑

p=1

(
Tm − Tp

m + W k+p
m − W k+p

m

)
,
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and the fact that Tm − Tm−1 + W j
m − W j

m for each j ∈ {1, . . . , k} and {Tm − Tp
m + W k+p

m −
W k+p

m } for each p ∈ {1, . . . , m} are independent identically distributed (i.i.d.); in the second
equality of (57), we have used the following fact for the equality:

E
(

I{W j
m �=0}

(
Tm − Tl

m + W j
m − W j

m

)) = 0.

In the third equality, we have used the i.i.d property as explained for the first equality. Thus,
we have

E[ξmIm] = EIm. (58)

Furthermore, by (58), we can calculate I defined in (47) by

I = E
[(

Sπ∗
i (t) + 1

) − VSπ∗
i (t)+1

]
=

∞∑
m=1

E[Im] −
∞∑

m=1

E [ξmIm]

= 0.

Finally, we show that II = 1 claimed in (47). In fact, for each m ≥ 1, we divide the
interval [t, Tm) into sub-intervals {[Tp

m, Tp+1
m ), p = 0, 1, . . . , Ym} with T0

m = t and TYm+1
m =

Tm, which indicates that at each time point Tp
m for p = 1, . . . , Ym, there is a class i job that

gets into service. Furthermore, define Īm = I{Sπ∗
i (t)+1=m} for each m ∈ {1, 2, . . .}. Note that

{Sπ∗
i (t) + 1 = m} = {Sπ∗

i (t) + 1 ≥ m} − {Sπ∗
i (t) + 1 ≥ m + 1} ∈ Gt is independent of the

exponentially distributed service times jobs experienced after time t. Then, by the similar
discussion as before, we have

E

(∫ T
Sπ∗
i (t)+1

t
μiX

π∗
i (s)ds

)
=

∞∑
m=1

E

⎛
⎝Īm

Ym∑
p=0

μi

(
X π∗

i (t) + p
) (

Tp+1
m − Tp

m

)⎞⎠
=

∞∑
m=1

EĪm

= 1.

By the facts as shown above that I = 0 and II = 1, we have proved the claim given in
(42) true. Hence, we complete the proof of Lemma 5.2. �

Lemma 5.3 For each fixed i ∈ {1, . . . , K}, we have

E

∫ ∞

0
e−αt

(
Sπ∗

i (t) − μi

∫ t

0
mπ∗

i (s)ds

)
dt = 0. (59)

Proof. Note that Sπ∗
i (·) is measurable on [0, ∞) × � since it has right-continuous sample

paths. Then, by the fact that Sπ∗
i (t) ≤ Ri(t) for all t ≥ 0, we have

E

∫ ∞

0
e−αtSπ∗

i (t)dt ≤ E

∫ ∞

0
e−αtRi(t)dt < ∞,
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312 W. Dai

that is, e−αtSπ∗
i (t) is integrable on [0, ∞) × �. Furthermore, since mπ∗

i (s) ≤ n, it follows
from Tonelli Theorem that (59) is true. Thus, we complete the proof of Lemma 5.3. �

5.2. Proof of Theorem 2.1

Proof. First, since Nπ∗
i (t) for each i ∈ {1, . . . , K} is nondecreasing in t along each sample

path and the total number of lost jobs cannot exceed the total number of arrived jobs over
any time interval [s, t] with t ≥ s ≥ 0, we have

zπ∗
i (t) − zπ∗

i (s) ≤ λi(t − s), (60)

where z∗
i (t) = E

[
N∗

i (t)
]
. Thus, by (4), (7), Lemma 5.2, we have, mπ∗

(·) ∈ UK[0, ∞) and
zπ∗

(·) ∈ NK[0, ∞).
Second, by the integration by parts theorem for the Riemann–Stieltjes integral, we a.s.

have

∫ ∞

0
e−αtdNπ∗

i (t) = e−αtNπ∗
i (t)

∣∣∞
0

−
∫ ∞

0
Nπ∗

i (t)(−α)e−αtdt

=
∫ ∞

0
αNπ∗

i (t)e−αtdt,
(61)

where in the second equation, we have used the facts that Nπ∗
i (t) ≤ Ri(t) and Ri(t) has the

same order of t (denoted by O(t)) a.s. for t large enough since Ri(t) is a Poisson process
(see, e.g., the functional law of the iterative logarithm presented in Theorem 5.13 of Chen
and Yao [36]). Then, it follows from (6), (61), and Lemma 5.3 that the expression given in
(8) is true. Hence, we complete the proof of Theorem 2.1. �

6. Proof of Theorem 2.2

First, let

J∗ ≡ sup
(m,z)∈C(0)

K [0,∞)×C(0)
K [0,∞) satisfying (17)

J (m). (62)

Then, there exists a sequence of {(yu, mu, zu), u ∈ {1, 2, . . .}} ⊂ C(1)
K [0, ∞) × C(0)

K [0, ∞) ×
C(0)

K [0, ∞) satisfying constraints (17) such that

J∗ = lim
u→∞ J (yu, mu),

where we endow the 3K-vector space C(1)
K [0, ∞) × C(0)

K [0, ∞) × C(0)
K [0, ∞) with the topol-

ogy given by (15) (we here employ yu, mu, zu for each u ∈ {1, 2, . . .} to denote K-vector
functions rather than components as used in other places of the paper). Thus, we claim that
{(yu, mu, zu), u = 1, 2, . . .} is relatively compact in C(1)

K [0, ∞) × C(0)
K [0, ∞) × C(0)

K [0, ∞),
and owing to the constraints in (17), it only needs to be shown that {(yu, zu), u ∈ {1, 2, . . .}}
is relatively compact in C(1)

K [0, ∞) × C(0)
K [0, ∞).
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Let βu(t) ≡ (yu(t), ẏu(t), zu(t)) for all u ∈ {1, 2, . . .} and all t ∈ [0, ∞). Owing to the
constraints in (17), and particularly, the constraint in (7), {βu, u ∈ {1, 2, . . .}} is equicon-
tinuous over all finite interval [0, N] with N ∈ {1, 2, . . .}. Thus, for N = 1 and by
Ascoli–Arzela Theorem (see, for example, Royden [25]), there exists a uniformly con-
vergent subsequence βuv of βu over [0, 1], i.e., βuv (t) → β(t) uniformly for t ∈ [0, 1] as
v → ∞, where β(t) is a continuous function over [0, 1]. For convenience of notation,
we still use βu to denote this subsequence. Next, repeating the above procedure, we can
obtain a further subsequence of βuv such that it converges uniformly to β(t) over [0, 2],
. . . , and continuing this procedure along N → ∞, we can obtain a subsequence of the
original βu(t) such that it converges uniformly on compact subset of [0, T] to some β(t).
As before, we still use βu to denote this subsequence and define β ≡ (ξ0, ξ1, ξ2). Hence, yu

is a Cauchy sequence in C(1)
K [0, ∞). Note that C(1)

K [0, ∞) is complete (see, e.g., the related
discussion in p. 325 of Jacod and Shiryaev [37]), and βu → β uniformly on compact set of
[0, ∞). Thus, we have that y ∈ C(1)

K [0, ∞) with y = ξ0, ẏ = ξ1. Furthermore, we have that
(ξ0, ξ1, ξ2) satisfies the constraints in (17).

Next, we show that J (y, m, t) = J∗ with m = ẏ. Since y, yu ∈ C(1)
K [0, ∞) and satisfy the

constraints in (17), we know that there is a positive constant c such that

‖ β(t) ‖≤ c(t + 1), (63)

‖ βu(t) ‖≤ c(t + 1) for all u ∈ {1, 2, . . .}. (64)

Furthermore, note that βu → β uniformly on compact set of [0, ∞). Then, it follows from
the dominated convergence theorem,

|J∗ − J (y, m, t)| ≤ κ lim
u→∞

∫ ∞

0
e−αt(‖ yu(t) − y(t) ‖ + ‖ mu(t) − m(t) ‖)dt

= 0,

where κ is some nonnegative constant. Thus, (y∗, m∗, z∗) ≡ (y, m, z) ∈ C(1)
K [0, ∞) ×

C(0)
K [0, ∞) × C(0)

K [0, ∞) is a maximal point for the OCMC problem in (16)–(17). Therefore,
it follows from (63) to (64) that J∗ < ∞.

Finally, owing to Theorem 2.1, the pair (mπ∗
(·), zπ∗

(·)) corresponding to an opti-
mal Markovian policy π∗ satisfies the constraints in (13)–(14). Thus, (mπ∗

(·), zπ∗
(·)) is

a feasible solution to the OCMC problem in (12)–(14) (and hence, the problem in (16)–
(17)). Therefore, the optimal value to our OCMC model provides an upper bound to the
corresponding values of the physical queueing system under Markovian decision rules.
Concerning this point, readers are also referred to Section 4 in Bäuerle [14] for related
discussion. Hence, we complete the proof of the theorem. �

7. Conclusion

In this research, a parallel-server loss channel serving multi-class jobs is studied.
An OCMC model over infinite time horizon with non-smooth monotonicity and control-
state inequality constraints is established and justified by using the physical queueing
model with linear revenue function. Existence of a solution to the OCMC model is proved,
whose optimal value provides an upper bound of the corresponding values of physical
queueing model under Markovian decision rules. Algorithms with lower complexity in
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314 W. Dai

solving the OCMC model are proposed, which are further used to design an admission
control policy for the loss channel. Furthermore, a simulation algorithm is proposed to
implement the designed policy. Performance comparisons through numerical examples are
conducted among our newly designed policy, the FIFO policy, the AS policy, and the MDP
based threshold policy. Advantages and disadvantages of these policies are identified under
different channel parameters and channel (e.g., Markovian and non-Markovian) conditions.
In particular, we find out that our designed policy outperforms the other three policies when
the traffic intensity is relatively large, and the differences of the revenues per unit of time
and the penalty costs among different classes of jobs are large.

Finally, we note that the discussion in the paper is focused on the case that the revenue
function is linear. The related discussion should be interesting and open for the case that
the revenue function is nonlinear. Hence, at this moment, an MDP based method is still our
major tool in solving such an admission control problem with nonlinear revenue function
(see, e.g., the section of Concluding Remarks and Future Research in Dai and Feng [3]).
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