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DIRECT AND INVERSE APPROXIMATION THEOREMS FOR THE
p-VERSION OF THE FINITE ELEMENT METHOD IN THE
FRAMEWORK OF WEIGHTED BESOV SPACES.

PART I: APPROXIMABILITY OF FUNCTIONS IN THE
WEIGHTED BESOV SPACES*

IVO BABUSKAT AND BENQI GUO?

Abstract. This is the first of a series devoted to the approximation theory of the p-version of
the finite element method in two dimensions in the framework of the Jacobi-weighted Besov spaces,
which provides the p-version with a solid mathematical foundation. In this paper, we establish a
mathematical framework of the Jacobi-weighted Besov and Sobolev spaces and analyze the approx-
imability of the functions in the framework of these spaces, particularly, singular functions of r»7-type
and 7 log” r-type. These spaces and the corresponding approximation properties are of fundamental
importance to the proof of the optimal convergence for the p-version in two dimensions in part II
and to various sharp inverse approximation theorems in part III.
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1. Introduction. Since the late 1970s the p-version of the finite element method,
which increases the degree of elements on a fixed mesh to obtain desired accuracy, is
widely used in engineering computations. There are several commercial and research
codes based on the p- (or h-p) versions of the finite element method, for example,
MSC/PROBE, FIESTA, MECHANICA, PHLEX, STRESSCHECK, and STRIPE.

In 1980 it was shown that the p-version in two dimensions converges at least as
fast as the traditional h-version with quasi-uniform meshes and that it converges twice
as fast as the h-version if the solution has singularity of r7-type. In [10] an upper
bound O(p~27%¢) was proven, where p is the degree of elements and € > 0 is arbitrary.
In [8, 9] the & was removed. The convergence of the p-version in three dimensions was
addressed in [14, 15]. A detailed analysis of the p-version in one dimension is available
in [17]. The p-version is very close to the spectral method which was independently
studied and developed; see, e.g., [12] and references therein.

Although significant progress has been made in the past two decades, several
important issues of the p-version in two and three dimensions are still not resolved, for
example, the lower bound of error and the optimal convergence rate in energy norm
for the solution of practical engineering interest, inverse approximation theorems,
and the effective a posteriori error estimation and adaptive selection of polynomial
(incomplete) shape functions.

In this paper we analyze the approximation of the functions which has singular
behavior of 77 log” r-type. This is a typical singularity occurring in the neighborhood
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of the corners. We proved the optimal rate of convergence depending on v and v for
~ real or integer.

We have established a framework in two dimensions which can be generalized into
three dimensions. Some main ideas and results without detailed proofs were addressed
in [3]. In the present paper we elaborate more on these ideas and present detailed
proofs which could serve as a starting point for three-dimensional analysis. The main
idea, which appeared to be very effective, is the concept of the Jacobi- weighted
Besov and Sobolev spaces B%# and H*? with weights depending on s and the order
of derivatives under consideration. In contrast to the approximation in L?-norm, the
approximation in the H!'-norm is more complicated because the H'-norm involves the
L?-norm of derivatives in one variable only. We have shown that a judicious selection
of the weight in the spaces under consideration will overcome this difficulty.

In [1, 12] and references cited therein the weighted Sobolev spaces H? with Jacobi-
type weights, which are independent of s, are utilized. The application to differential
equations are not addressed in details in these references. In contrast, in this paper,
we relate the weight function to the sharpest characterization of the smoothness of
the solution by using the maximal value of s. Recently, the general Jacobi approx-
imation with nonsymmetric and varying weights was studied in [19, 20, 21, 22] and
was applied to singular differential equations with coefficients which degenerate. The
analysis in the mentioned papers assumes the regularity of the exact solution and does
not address practical important cases that the domain has corners or the boundary
conditions are changing the type. In practical computations, singularities of this type
are always present, and they can govern the accuracy of the p-version. The optimal
error estimates in H'-norm when the solution has singularity of 77- and 7 log” r-type
were not addressed in either [1, 12] or [19, 20, 21, 22].

The problem of the approximation by polynomials is a classical problem addressed
directly and indirectly in many papers and books; see, e.g., [13, 24] and others. Various
abstract results especially related to functional analysis are available; see, e.g., [25].
Nevertheless, the concrete results related to the p-version of the finite element method
are not available in the literature.

In this paper we present a mathematical framework and detailed proof of essential
theorems for the analysis of the p-version, which will be utilized in the second and third
paper of the series. The scope of the paper is as follows. In section 2 we introduce the
Jacobi-weighted Besov spaces B*#(Q) and Sobolev space H**(Q), with Q = (—1,1)2,
and analyze the approximability of functions of the r7-type, with v > 0, in terms of
the space B*#(Q). The modified Jacobi-weighted Besov space B3?(Q) is introduced
in section 3 to effectively analyze the approximability of functions of r7 log” r-type.
Unlike the space B*4(Q), the space B5%(Q) is not exact interpolation space, but only
a uniform interpolation space according to the definitions of [11]. Various properties,
which stand for exact interpolation spaces, have been carefully examined and strictly
proved for these modified spaces, in particular, the partial reiteration theorem. Some
concluding remarks are given in the last section on the effectiveness of the Sobolev
space H?, the Besov space B*, and the Jacobi-weighted Besov spaces B*? and B39
for the analysis of the h-version and the p-version of the finite element method.

2. Jacobi-weighted Besov space B*#(Q) and approximability of singu-
lar function of r7-type. We shall introduce Jacobi-weighted Besov and Sobolev
spaces B*?(Q) and H*#(Q) and characterize the singularity and analyze the approx-
imability for functions of r7-type in the framework of the spaces B*?(Q).
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2.1. Sobolev and Besov spaces with Jacobi weights. Let Q = I? =
(—1,1)2, and let

2

(2.1) w,, g(w) = [J(1 = 7)ot

i=1

be a weight function with integer a; > 0 and real number 3; > —1, which is referred
to as Jacobi weight. Obviously, the Jacobi polynomials and their derivatives are
orthogonal with the weight w,, ;(z).

The Sobolev space H*2(Q) is defined as a closure of C* functions in the norm
with the Jacobi weight

(2.2) 2.5 ) = }jl/\LWuF () de
[a]=0

where D%u = U,y 0¢1 <>¢27 a = (Oél,Otg) |Oé| = a1 + Qo2, and ,6 = (/81,62). By |U|H’Cﬂ(Q)
we denote the semmorm

|u| grv, BQ) = Z / ‘Dau|2 —x?)aﬁ-ﬁi dx.
lo=k

Let B‘Sg (@) be the interpolation spaces defined by the K-method

(H(@Q. B (@), .

0,9

where 0 < 0 < 1,1 <g<o00,s=(1—0)+ 0k, ¢ and k are integers, { < k, and

< dt\
(2.32) lull gy = (/0 - K(t,u)|qt) . 1<g<oo,
_ -0
(2.3b) ||u||B;:i(Q) = iglgt K(t,u),
where
(2.4) K(t,u) = u:lgf»w <||”||HM(Q) + t”wHH’fvﬁ(Q))'

In particular, we are interested in the cases ¢ = 2 and ¢ = co. For ¢ = 2 , we have a
theorem on the relation between BS?(Q) and H™A(Q) if s is an integer m.

THEOREM 2.1. ng (Q) = H™P(Q) for s = m, an integer.
Proof. For the sake of simplicity we shall prove the theorem in one dimension,

and the proof in two dimensions is similar.
For any u € H*%(Q), ¢ > 0, there holds

(2) = > as P, 9

where
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is the Jacobi polynomial of degree i. Let u = v + w with
=> d;Pi(z,8) € H"*(Q),  k>m,
i=0
and
v(x):Z(az_dl)Pl(xalg) GHAQ(Q)a €<m7
i=0

where d;’s are undetermined. By the properties of Jacobi polynomials, we have

K2 (w) < 2( 0y 101 e g + 0l e )

. — (a; — d;)%i** t2d3i*"
< 2inf >
S z21n do"dl"";Qi—l—Zﬁ-Fl +27:_|_26_|_1

= 2infd0’d1’.“ G(d07d1, .. .)
= 2G(t, u).

It is easy to see that G(dp,dy, . ..) reaches its minimum G(t,u) at d; =
0,1,..., and

ag 7/ —
1+t2g7, (i)

e at®gp, ()i
- ; (20 + 28 + 1)(1 + t2g7, (i)

where gy (i) = i®*=9. Thus

< dt
W) = [ e

i a glk 26 /00 t1—20 i@t
(20 + 2[3 +1) 1+ t2g3, ()

Noting that

oo 4126 T 1 >
/ s —dt < /g“ #1204t + 2—/ 1204
o 1+t gek(l) 0 9ok (Z) 1

9ok (1)

we have
)2t
a3 9@k
ll<I> ) <4

Z 2i+ 23 + 1

2 242((1-0)¢+0k)
2. <4 Dt
(2:5) <4 2i+23+ 1

=0
< AflullFrmn(q)-
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On the other hand, there holds
K2(t,u) > G(t,u)

00 1—26 7 o'}
[ s ([T L) [T
o 1+t2g7.(1) 2\ Jo g5.(i) ) J 1 _

and

9ek ()
2(0—-1),.
Z gélg )(Z)a
which leads to
e 2((1 0)¢+0k)
(2.6) > CZ 2 +268+1 — HUHH’"B(Q)

Combining (2.3), (2.5), and (2.6) we obtain

Cillullgmsq) < lul BrP(@Q) S Collull gm.s(qQ)
which completes the proof. 0
Remark 2.1. Theorems of this type may follow from the abstract theory pre-
sented, for example, in [25]. Nevertheless, we present here a direct and simple proof.
Remark 2.2. Due to Theorem 2.1 we shall write for s > 0 and ¢ = 2

HYP(Q) = B3(Q) = (HY(Q). H(Q),
with 0 < # < 1 and s = (1 — 0)¢ + 0k. This space is called Jacobi-weighted space
with fractional order if s is not an integer, and it coincides with H™#(Q) if s is an
integer m. The above definition of H*#(Q) is independent of the selection of ¢ and
k. Furthermore, ¢ and k do not have to be integers.

Remark 2.3. According to the arguments of the proof, we can introduce an
equivalent norm in discrete form for functions in H*?(Q):

) 2 226+1 : 2s
Mallfreny = D \Cmm'Hzmw@H ”;mi !

0<mi,ma<0o

where ¢, ,m, are the coefficients of the Jacobi-Fourier expansion of v,

2
u = Z Cmi,ma Hqu(xwﬂl)

0<m1,moe<o00 i=1

Similarly, the Jacobi-weighted Besov spaces can be introduced as interpolations be-
tween spaces H%?(Q) and H*#(Q) as in (2.4), but furnished with the above discrete
norms in (2.4), instead of ||u| ge.6(q) and [Jul| gm.6(q)-

Remark 2.4. For g = oo, we shall write

B(Q) = ByL(Q) = (H(Q). H(Q), .

6,00

which are referred to as the Jacobi-weighted Besov spaces. It is an exact interpolation
space according to [11], and all properties of exact interpolation spaces stand for the
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space B*?(Q). Tt can be defined as an interpolation between two fractional order
Jacobi-weighted Sobolev spaces.

Remark 2.5. The Jacobi-weighted Besov spaces B*(Q) and Sobolev spaces
H*8(Q) can be generalized with nonsymmetric weights

2

w, 5(x) = H(1 _ mi)ﬂéi+ﬂi,l(1 + xi)aﬁﬁm
i=1

with 8 = (61, 82),8; = (Bi1,Bi2),08,; > —1,4,j = 1,2. All properties proved the
Jacobi-weighted Besov and Sobolev spaces with symmetric weights will stand for
those with nonsymmetric weights.

Let P,(Q) be set of all polynomials of (separate) degree < p, and let u, be
the H*P(Q)-projection of a function u(z) € H*#(Q) on P,(Q). Then we have the
following approximation property.

THEOREM 2.2. Let u € HXP(Q) with integer k > 1, 8, > —1,i = 1,2, and let u,
be its H*P(Q)-projection on P,(Q). Then we have for integer £ < k < p+ 1

(2.7) [ — wylmesg) < Cp~ "9 Julgrs q)-

Proof. Let P (€,v,p) = SR (1 —g)~7(1 4 £) #2007 "OHO"™ vy ) py >

m!2m dg?n
—1, be the Jacobi polynomial of degree m, and let P,,(¢,v) = P, (&, v,v). For u €
H®8(Q), k > 0, we have the Jacobi-Fourier expansion

u(x) =Y Cyj Pi(xy, By) Pi(xa, Bo).

i,j=0
Then

P

u,(x) = > Cy Pilwy, By) Pj(wy, By)

i,j=0

is the projection of u(x) on P,(Q) in H*#(Q), and

0o o o P
u—u, =Y >+ D > | CyPiley,By) Pilay, ) =U + V.

i=0 j=p+1 i=p+1j=0

By the property of the Jacobi polynomials (see [16]), we have for |a| <L <k <p+1

/ |DO‘U|2 (1- x?)”‘ﬁﬁl (1- x%)o‘ﬁﬁ? dx
Q

2
N (1420, + 1)+ i+ 26, +a,)| T2+ 8, +1)
_ . 2 2(51"!‘/62""1) |:

=Y ) [C,P2 (i —ay) (20 + 26, + DO(i + oy + 26, + 1)

t=a, j=p+1

2
(G +28,+ 1) (+ 20, +ag)| T2+ 8, + 1)
(J—ax)! (25 + 26, + DI(G + ay + 26, + 1)

X

On the other hand, we have, by noting that as+k—£¢ < p+1for |a| =€ <k < p+1,
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J T N R e
Q 1 T2

2

s oo @+mﬂ+ﬁ-~@+ﬂ%+aﬂ}F%VH%+n
12 92(8, +B,+1) [

2 Z Z ICis" 2 (i—a) (204268, + DI+ +26, +1)

i=a, j=p+1

(G428, + 1) (428, +a3)] T2+ 8, +1)

ST — ) (25 + 2B, + DTG + ap + 26, 1) v).

where
2
(G +28 4 ay 1)+ (G + 28, + k= 0)] (G = a)! TG+ g + 26, + 1)
(j—ag—=(k=ONT(+ay+(E—=0)+28,+1) .

It is easy to verify that for j > p+1

V() =

U(j) > O p*Fh),

which leads to

(2.8)
/ \DO“U|2 (1-— x%)o‘ﬁ'ﬁl (1- x%)o‘ﬁﬁ? dx
Q

< O [ a1 (1 s g
Q T T2

< Cp2k-0 |u@{kﬁ(Q)'

Similarly, we have for o] =¢ <k <p+1

(2.9)
/ |D"‘V|2 (1-— a:f)o‘ﬁﬁl (1- x%)o‘2+ﬁ2 dx
Q

< Cp k=0 / [U o tr-t o, |2 (1 — a2y th=trbr (1 — g2)%2tP2 gy
Q acl 3?2
< Cp_2(k_€) |uﬁ'{kﬁ(Q)-

It follows from (2.8) and (2.9) that for |a| =¢ <k <p+1

/Q D% (1 — ) (1 = )™+ (1= aB) ™+ da < Cp2070 Juflyes g,

which yields (2.7), and completes the proof. O

Remark 2.6. The above proof shows that if ¢ is the Jacobi projection of u €
H*B(Q) on P,(Q) in H*A(Q), then ¢ is the Jacobi projection of u on P,(Q) in
H%P(Q) for all 0 < £ < k, and

|¢|§—I’Z,B(Q) +lu— ‘P@{e,ﬁ(Q) = |u|?—]2,ﬂ(Q)-

This is a very important and special property of the Jacobi projection.
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By a standard argument of interpolation spaces, we are able to generalize Theorem
2.2 to an approximation theorem for functions in the Jacobi-weighted Besov spaces
BA(Q).

THEOREM 2.3. Let u € B¥%(Q), s > 0 with 3, > —1,i = 1,2, and let u,, be the
Jacobi projection of w on P,(Q) with p+ 1 > s. Then for any integer ¢ < s there
holds

(2.10) llu = wy|les(q) < Cp~ 7 |Jul

B=8(Q)
with constant C independent of p.

2.2. Characterization of functions of »7-type in terms of weighted Besov
spaces B*A(Q). Let (r,0) be the polar coordinates with respect to the vertex

(—1,—1), where 7 = {(z, + 1)? + (x5 + 1)2}/2, 0 = arctan(ifﬁ), and let for v > 0

(2.11) u(z) =717 x(r) ®(0)

be a function defined on @ = (—1,1)2, where x(r) and ®(#) are C* functions such
that for 0 < ry <2

1 for 0<r<i2,
(2.12) x(r) =

0 for r>rg,
and for 6, € (0,7/2)
(2.13) ®(6)=0 for 6 & (0y,7/2—0,).

Therefore, u(x) has a support R, = RTO!HU with

(2.14) RT(J?GO:{J:EQ‘ r <7, 90<9<7r/2—90}7
which is shown in Figure 2.1. For z € R, there hold

(2.15a) l—rg<(l—z) <2 for 1=1,2

and

(2.15b) R Ko = tan fp.

Ko — 14z

We now characterize the singularity of u(x) in terms of Jacobi-weighted Sobolev
spaces H"#(Q) and Besov spaces B*4(Q).

LEMMA 2.4. Let u(xz) =7 x(r) ®(0) be given by (2.11), and let 5 = (8, B5) with
By, By > —1. Then u € HB(Q) for all integers £ < [2+ (1 + B2 + 27]. Hereafter [a)
denotes the largest integer < a.

Proof. Tt is easy to see that for any «

(2.16) |DYu| < CrY~1el

and for |a] < 2y 42+ F1 + B2

P
/ ‘Dau|2 (1 _ x%)aﬁrﬁl (1 _ z%)a2+,62 doe < C p2y+61+8241—el 4. < 00,
Q 0

which proves the lemma. 0
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X+1 =K (X +1) X2
1
A/GU\ Q
-1 \ 0 1 X 1
Rro,eO x+1=(x;+1) / x
L
% 0
(-17- -) -1

F1G. 2.1. Square domain Q and subregion R g, -

THEOREM 2.5. Let u = 77 x(r)®(0) be given in (2.11) with v > 0. Then
u € B5P(Q) with s =2+ 2y + B1 + B2 and B1, B2 > —1.
Proof. Let x4(r) = x(5) with 0 < 6 < ry undetermined, and v = v + w with
v = xs(r)u and w = (1 — xs(r))u. Then v € H*A(Q), £ < 2+ 2y + B1 + Ba, by
Lemma 2.4, and w € H*8(Q), k > 2+ 2y + (1 + (2. Note that for |a| = ¢ < ¢ and
r<é
P
(D <O 67
t=0

and it vanishes for » > 8. It follows that

é/
/ D[ (1 = af)* P (1 —af) P2 da < 026—2“’—“/ r2O0 O+ B2 gy
Q t=0 Ry

IN

¢ 5
o3 520 /O P20+ Bt g
t=0

< O §HPiHBe2-l
which yields, for £ < 2+ 2v + 1 + (2,
(2.17) HUH%M(Q) < O 6D HPiHBaF2—L
Note that for |a| = ¢ < k

, -1 dé'ft
218) 0%l < of - xr + T - wi) )
t=0
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Since the first term on the right-hand side of (2.18) vanishes for r < §/2 and the
second term vanishes for r < §/2 and r > 6, there holds

| Dt = a1 = e da
Q

-1 §
< C{ /P 7«2“/+51+ﬂ2+1—5’dr+ Z (5_2(Z/_t) / r27—2t+51+52+1—5’dr}
- §/2 t=0 8/2
527*4/+2+ﬁ1+52 +1 if v 75 2y +2+ B1 + Ba,
< C
Ind+1 if 0 =2v+2+ 0+ Fo.
Therefore we always have for k > 2 + 2v + 81 + B2
(2.19) ] 3.y < COPI—FH2HOH,
For 0 < t < 1, we have by (2.18) and (2.19)
K(tw)= il (Jlugllmeog +t luallmnsg))
et § 2
< llmesg) +tllwllmes )

< C(E1HIHBIHB0/2 4 ¢ 1 HIH(Bi+B2—k) /2,

By selecting 6 = 727 and 0 = W, we have for 0 <t <1

2v+2+081+By—¢

K(t,u) < C sV 1+ (B1+B2—0)/2 <Ot i
and

sup t Y K(t,u) < C,
0<t<1

and for ¢ > 1 we always have

supt = K (t,u) < [[ullges(q) < C,

>1
which implies that u = (H*?(Q), H**(Q))-0,00 = B>%(Q), with § = W
and s =2+ 2y + (1 + Bo. 0

Remark 2.7. Although the singular function u(z) = 7 x(r) ®(0) € B*>°(Q)

with s = 2 + 2y + 81 + (2 for general § with 8; > —1,7 = 1,2, the results with
B; = —1/2 are much more interesting to us for approximation errors measured in
H'-norm (energy norm) without weights. In that case, u € B*#(Q) with s = 1+ v
and 51 = 52 = —1/2.

2.3. Approximation of the functions of r7-type. We will prove approxima-
tion theorems for singular functions of 77-type in the framework of the Jacobi-weighted
Besov and Sobolev spaces.

THEOREM 2.6. Let u(z) = r7 x(r) ®(0) given in (2.11). Then there exists a
polynomial ¢(x) € P,(Q) with p > 27 such that

1\
(2.20) =l gy < C (p)

with constant C' independent of p, where Ry is the support of u given in (2.14).
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Proof. By Theorem 2.5 and Remark 2.7, u € B*%(Q) with s = 1 + 2y and
B = (=1/2,-1/2). Due to Theorem 2.3, there exists a polynomial ¢ € P,(Q) such
that

(2.21) lu = @llareg) < Cp~ 2 lullpes(q)-
Obviously
(2.22) llu—llrz@) < C llu—@llros@) < C |lu—¢llmreq)-

Due to (2.15) it always holds for o = (1,0) or (0,1) and for x € Ry that
Cr < (L+a)M V2 (14 ay)% 2 < .

Then, we have for a with |a| =1
2 2
/ ’DQ(U—W)’ dx < C’/ ’Do‘(u—ap)’ (1+x1)0‘1*1/2 (1+x2)°‘2*1/2 d
R, R,

2
< C/ ’Do‘(u—@)’ (1_$§)a1—1/2 (1—1’§)a2_1/2d$,
RO

which together with (2.21) and (2.22) leads to (2.20). a

In the applications to boundary value problems on polygonal domains, the singu-
lar solution of r*-type may satisfy homogeneous Dirichlet boundary condition on one
or two edges of the polygon around each vertex. Hence we have to enforce the same
condition on approximation polynomials. Let us consider the approximation of the
singular functions by polynomials vanishing on one or two lines lying in the supports
Ry.

If u(z) = 0 on the line z, + 1 = k(z, + 1) for 1 < k < Ky = tanb,, we introduce

(2.23a) G)=2y+1—r(zy +1)
and
(2.230) uy(@) = M () 4, 0),

T G(2)

where 9, () = ®(0)/(sin@ — k cosf) is a C*° function on [0, T].
If u(z) = 0 on the lines x5 + 1 = x(x; + 1) and 25 + 1 = (z; + 1)/k, we similarly
introduce

(2.24a) Go(2) = (:cQ 11— k(z, + 1)) (12 P11 (2 + 1)/5)
and
ug(z) = u(z) =" 2x(r
(2.24b) 2(2) o@) x(r) 12 (0),
where
0(6) = 20
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It is easy to verify that there are positive constants C; and C, such that for
(=1,2

(2.25a) |DYu| < Cy r* Z |D* |
lo/[<|ex]

and

(2.25b) |D%u,| < Cyr=* > DY,
la’|<|ef

which lead immediately to the following theorem.

THEOREM 2.7. u,(z) € B2+ +A+82.8 Q) with Bl = B+0 = (By+L, Bo+0), £ =
1,2, and there are constants C| and Cy such that

(2.26)
Cy [[u(@)| p2e22+01102.8(Q) < ue(@)] gosarin +o;.001 ) < Co [w(@)][p2e2vt81402.8 () -

In particular, u,(z) € Bi+2v.pY (Q) with Bl =0 —1/2=(¢—1/2,0—1/2).

For approximation to the singular functions of r7-type vanishing on one or two
lines, we need the following lemmas.

LEMMA 2.8. Let r?|Dw| € L?(Q) and v =0 for r > p > 0. Then, rv € L*(Q),
and

(2.27) HTUHLQ(Q) <(C ||’I“2 D1U||L2(Q).

Proof. We quote the Hardy inequality 330 from [24, p. 245]

00 p 00
(2.28) /0 2  FPdx < <S ﬁ 1|> /0 x” % (z )P dz,

where F(z) = [ f(t)dt for s < 1, and F(z) = [ f(t)dt for s > 1. The application

of (2.28) withp=2,s=-3, f = %, and F' = —v leads to

P p
/ 3 |2 dr < C/ 7
0 0

which implies (2.27). d
LEMMA 2.9. Let r|D| € L*(Q), and v =0 forr > p > 0. Then v € L?(Q),
and

(229) ||U||L2(Q) S C HT’Dl’U”LZ(Q).

ovl?
—| d
ar|

Proof. The application of (2.28) with p=2,s=—1, f = %7 and F' = —v yields
(2.29) immediately. |

These lemmas above and Theorem 2.7 lead to the following theorem.

THEOREM 2.10. Let u(x) = 7 x(r) ®(0) given in (2.11), and u =0 on both lines
0 = 0, = arctan(x) and 0 = 0,,,, = arctan(1/x) (resp., u = 0 on one line 0 = 0,;) with
1 > k > Ko, with ko given in (2.15). Then there exists a polynomial p(x) € P,(Q),
p > max{2,2v} (resp., p > max{l,2v}) such that @lg—s = g0|9:91/h_ = 0 (resp.,
¢lo=g, =0), and

(2.30) lu = @(@)|| g1 (r,) < Cp~>

with constant C' independent of p, where Ry is the support of u given in (2.14).
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Proof. We would prove the theorem for u vanishing on both lines; the proof for
u vanishing on one line is similar. Let uy(z) = u(x)/{y(x), given by (2.24). By The-
orem 2.7, uy € BsA” (Q) with s = 1+ 27y and 812! = (3/2,3/2). Due to Theorem 2.3
and Theorem 2.7, there exists a polynomial ¢(x) € P, 5(Q), p > max{2,2v}, such
that for £ < s

(231) [Jug = 0(0)| e ) < C 9™ [yl s g < € ™70 |Ju]

B9(Q)-
Now let p(z) = (2(x) ¢(x). Then ¢(z) = 0 on the lines § =6, and § = 91/;-;’ and

Ao|u<x>—¢<x>|2dx= /ng iy () — & () x<c/ uy () — () 2 d
< 0 [ ) - 6@ (1 - ah? (1 - ) do
RO
< Ol = 2y

which together with (2.31) implies

(232) [ @)~ o) de < 02 g

RO
Letting x(r) be the C* function given in (2.12), we have
(2.33)

RO
= C(/RO ‘CQQ‘Dl(X(T)(Uo - 900)) ‘2dx+ /Ro DG, ‘X(?‘)(u2 _ ¢)‘2dx>.

For ao = (1,0) or &« = (0,1) and for 2 € Ry, we have from (2.15)
Cyr < (1—a? Yy < Cor for i=1,2.

Therefore,

A ) Ry e e () [ R

/R D2 () (w2 = )| (1= aB)or3/2 (1 ayat3/2 o

IN

IN

2 -
c( [ [P - o @by - gy i
Q

4 [ - 0P (- st (1—x§>3/2dx>
Q

C ||u2 - ¢||§11,ﬁ(Q)7

which together with (2.31) leads to

e3) [ 16R[D (M)~ e0)[ do < € Jul?

B Q)
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For the second term on the right-hand side of (2.31) we have
2
| IDGE [ o) dx<c/ (1~ 6)[ de,
0

by Lemma 2.8

<c [ ot (xtntu o) da,

0

by (2.33)

(2.35) < Cp™ [ullBes(q)-

The combination of (2.32)—(2.35) yields (2.30). a

The proof above can be carried out for u vanishing on one line, except replacing
(2 by (1, B8 by Bs’ﬂm, and using Lemma 2.9 for (2.34) instead of Lemma 2.8.
Thus we have completed the proof of the theorem.

3. Modified Jacobi-weighted Besov spaces Bﬁ’ﬁ(Q) and approximation
of the functions of 77 log” r-type. It can be shown that functions of 7" log” r-
type, v > 0, belong to the weighted Besov spaces B*#(Q) with s =142y —¢, & >0
arbitrary, which will lead to a loss of (1/p)® in rate of convergence for the p-version
of the finite element method. Hence we have to sharpen the mathematical tool for
a better characterization of the singularity of functions of 7 log” r-type and a better
approximation by the high-order polynomial. This sharpened tool is the modified
Jacobi-weighted Besov space B54(Q).

3.1. Modified interpolation spaces (A, A;)g,00,b- We shall modify general
interpolation space defined by the K-method and the J-method, then apply it to the
modified Jacobi-weighted Besov spaces . Let A = (4, A;) be a couple of compatible
Banach spaces. For the sake of simplicity we assume that Ay C A; or A; C Ap, and
this assumption holds in practical applications. We introduce for a € A

=0
3.1 &,  (K(ta)=swpK(ta) —
( ) 6,00, ( ( )) t>g ( ) (1 + |10gt|)”
where K (t,a) is defined as usual by
(3.2) K(t,a)= inf (llaolla, +tllarlla, )
] 1

and v >0,0<0 <1 Ifv=0, ¢, (K a)) =2, (K(a)). Itis easy to verify
that ®,  ,(K(t,a)) is a norm on A. By A, , we denote the interpolation space
(Ags A1)6,00,» With the norm |lallg,c0,. = Py, ,(K(t, a)).

(Ags A1)o,00,0 and @y . v > 0, presérve many properties of (Ag, A;)p,00 and
®, - It is trivial to verify by definition the following properties:

(P1) (Ag, A1)0,000 = (A1, 40)1-0,00.03

(PZ) (A )9001/ _AO7

(P3) (Ag, A1)6, .00 C (Ag, A7)0, 00 if 01 < Os;

(P4) (Ag, A7)0, 000 N (Ag, A1)e, 000 C (Ags A1)g,00,0 if 07 <0 < O
(P5) (A, A1)o.00 C (A(),Al)g,oo’l,1 C (A(),Al)g,oo,,,2 for v, > vy > 0;
(P6) (Ag, A1)o—c,00,0 C (Ags Ay)o,00 for e € (0,0) arbitrary.
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Some properties of ®, _ and (A, A;)g,0c may hold, but not obviously, for ®,
and (A, A1)0,00,» With v > 0. We have to argue precisely; for instance, the partial reit-
eration theorems (Theorem 3.4) needed to be proved for the space (A, 41 )0,00,,- Some
properties of ®,  and (Ag,A4;)poc may no longer stand for @, , and
(Ag, A1)6,00., which we need to modify substantially. For instance, unlike (Ay, A;)g 00,
the space (Ay, A1)o,00,» With v > 0 is not exact of exponent ; instead, it is only a
uniform interpolation space. We elaborate it in Theorem 3.2, which is very essential
to the theory of interpolation spaces and analysis of the approximation errors for
functions of 77 log” r-type.

LEMMA 3.1. Leta € (Ay,A;),0<0<1,v>0, andt,s >0. Then

(3.3) g o0 (K (t/5,0)) < 570 (1+ [log s|)” @y o, (K(t,a)).

Proof. For v =0 it is a standard argument for Besov spaces; we refer to [11]. We
now assume that v > 0. By the definition (3.2) we have

t 9K (t/s,a)  _, t=K(t,a)
3.4 Dy o (K(t/s,a)) =sup ————=> =5 = su t) ——————,
( ) 0,00, ( ( / )) t>Ig (1 i |10gt|)y t>g g( ) (1 4 |10gt|)’/
where g(t) = (1 + |logt|)/(1 + |logt + log s|). We estimate g(t) for s > 1 and s < 1.
In both cases we can easily prove that g(¢) has maximum value at ¢ = 1/s. Hence,

(3.5) g(t) < g(1/s) =1+ |logs|.

The combination of (3.4) and (3.5) yields (3.3) immediately. O

Remark 3.1. The inequality (3.3) becomes an equality if v = 0.

THEOREM 3.2. Let T be an operator A = (A, A;) — B = (By, B;) and let
IT)|;, ¢ = 0,1, be the norm of the operator A, — B,. Then T is an operator
A — By, Jor0<0<1,v>0, and

6,00,v

Tl
Tl

36)  IT=1Ts,_ ,—5,., < (H s

) TN T

Proof. For any a = ay + a; € A with a; € 4;,i=0,1,

Kt.Ta)= it (|[Taglls, +¢Tals,)
i) 1

IN

ot (ITlo llaglla, + ¢ 171l oL, )

< Tl int (Ilaglla, + £ llaslla, ) = 1Tl K(%.a)
-0 1

with s = ||T||o/||T||1- By Lemma 3.1
40 -0

t
Ta y= sup ——— — K(t,Ta) <||T||lo sup ————— K(%,a
H |970<>7 t>g (1+|10gt|)u ( ) H ||0 t>g (1+|10gt|)’/ (é )
t=9K(t,a)
< |ITlo s~? (1 + |log s|)¥ sup —————2—~—
= H HO ( | g D t>%)) (1+|10gt|)y
- Tl [\"
< 1T e (1 1o gt ) el
[1T]o

which leads to (3.6) immediately. |
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COROLLARY 3.3. (A, A1)0,00,0, ¥ > 0, is a uniform interpolation space, and it
is exact of exponent 6 if v = 0.
Proof. Due to (3.6) it holds that for v > 0

T < & max([[T][o, [|T]1)-

According to the definitions (for the definitions and properties of uniform and ex-
act interpolation spaces, we refer to, e.g., [11]), (4g, 41)g.0005 ¥ > 0, is a uniform
interpolation space. For v = 0, it is true by a standard argument (see, e.g., [11]) that

11 < N7~ TS,

which implies that (Ay, A;)s,00,0 is exact of exponent 6. d
THEOREM 3.4 (partial reiteration). Let X, = (Ay, A1)0;,00 with 0; € (0,1),£ =
1,2. Then forn € (0,1), v >0 and 0 = (1 —n)f, +n b,

(3-7) (XO7X1)77’00’V = (AOaAl)O,oom-

Remark 3.2. The reiteration theorem for modified interpolation spaces does not
stand in general; i.e., if X, = (Ay,41)0;,00,, With v > 0, then (3.7) may not be
true. The theorem holds only for the special case that X,,i = 1,2, are the exact
interpolation space (Ay, A;)g; 0co- We call it the partial reiteration theorem, which is
sufficient for the need of our approximation purpose.

The proof of the theorem is not trivial; we need to introduce the modified inter-
polation space defined by the J-method. For the J-method we refer to [11].

Let a € A(A) = Ay N A, and define
J(t,a) = J(t,a, A) = max (|lal|a,. ¢ llal|, ).

By 14_19700% s we denote the spaces defined by the J-method; meanwhile, by /_1970071,7 K, Or
Ae,oo,u we denote those defined by the K-method. The space AG,OO,V,J is now defined
as follows: The elements a in A&OOMJ are those in Y (A) = A; U A, which can be
represented by

(3.8) a:/ u(s) ds,
0
where u € A(A) is measurable with values in A(A), and

It u(t)
(39) Py e (T 1) = s1p S

for 0 < 6 < 1. The norm of Ae,oo,uJ is defined as

(3.10) lallo. ooy = inf @ o, (J(E ult)),

where the infimum is taken over all u satisfying (3.8).

It was proven in Lemma 3.1 that ®,  ,, v > 0, is not an exact functor of exponent
0 for K(t,a). The next lemma will show that it is not an exact functor of exponent
6 for J(t,u(t)) either.
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LEMMA 3.5. Foru € A(A), 0 € (0,1), v > 0 integer, and t,s > 0, there holds
(3.11) ¢97w7V(J(t/s,u(t/s))) < s70(1+ |logs|)” <I>97OO7V<J(t,u(t))>.
Proof. Due to the definition (3.1),

-0 s,u(t/s =9 7wt
D ey ((t/5,u(t/3))) = sup LU _ oo v I u(t))

u
t>0 (L+]logt|)¥ v>0 (1 + |logt’ + log s|)¥

0T u(t))
—0 vV ?
= s " supW(l)) i
sup(g(t')) (14 [logt'[)”
_ (1+]logt'])
where g(t') = m'
a,Ild S € (Oa OO)

It has been shown in Lemma 3.1 that for all ¢’ € (0, 00)

lg(t)] < (1+[logss|)",

which leads to (3.11) immediately. a

It is well known that the spaces AG,OO,V,K and AO,OO,V,J are equivalent for v = 0.
The equivalence theorem can be proved for integers v > 0 by proceeding the arguments
for v = 0 with some very straightforward modifications, which we will not elaborate
on here; instead we refer to, e.g., [11, Theorem 3.3].

THEOREM 3.6. If0 < 6 < 1, then the spaces A
norms.

We now are able to prove Theorem 3.4.

Proof of Theorem 3.4. (1) Prove

0,000, K = AQ,OO,V,J with equivalent

(3.12) (Xos X1)n,00,0 C (Agy A1)0,00,0-
Let a € (Xy, X1)n,00,0- Then a =ay+ a; with a; € X,,i=0,1, and

K(t,a,A) < C t%

a;llx,s 1=0,1.
Since K(t,a, A) is a norm on Y_(4),
K (t,a; A) < K(tag; A) + K(t,ay:4) < C(1% [lagllx, + ¢ Jlay]lx, )
= 1% (llagllx, + 4% flaylx, )-

Here we may assume without losing generality that 6y < 6;. Therefore

0 i (llaollx, + %= Jlay]lx, )
sup BB o000 -
t>0 (14 |logt|)¥ >0 (1+ |logt|)¥

Setting s = t17% and noting that 0 < §; — 6, < 1 and n = (8 — 6p)/(61 — 6p), we
have

57 (llaollx, + s llay]|x, )
lall, _, <C sup

=C |lal|| % ,
50 (1+|10g8|)y H HXn,oo,V

which implies (3.12).
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(2) Prove
(3.13) (Ao, A1)o,00,0 € (Xg5 X )y00,0-

Assume that a € (Aj, A1)s,00,» With a representation a = [ u(s) 95 u(s) € A(A).
Consider

lal| s K(s,a; X)
al|x =sup ———————=
Fow 20 (T logs])”

and we have, by changing variable s = t%1=%

t*<"*90> K(t% % a; X)

allx <su
lallx, ... <500 ——q o
Due to Lemma 3.2.1 of [11]
_ 00 _d
0 K (19 =% q; X) < / t9 K (t97% u(s); X) &
0 S

oo 0,—0,
< / min (1, (t) >t90 J(s917% u(s); X) @
0 S S
Since X; = (A, A;)e, 00, there holds (see [8, Theorem 3.2.2])
HaHXi < Cz 5% J(S,G,A),

which implies

J(s% 0, u(s), X) = maxyso (lhu(s)ll x5 fluts)llx, )
S maX(COa 01)5700 J(Sv u(‘s)’ A)

t% K(t"=% a; X) < C/Ooomin((z)eo, (Z)el)J( u(s), A) %

Changing variable s = ot for fixed ¢ > 0, we have

and

_ o0 d
tho K (917 % a; X) < C’/ min(o =%, o) J(ot,u(ot), A) —U
0 g

and by Lemma 3.5

t=(0+00) K (#9100 q; X)
Ssu
oo (L+[logt])”

< C’/ min(o~%, 07%)0% (1 + |log(1/0)])" do Dy oo J(t,ult), A),
o

o | &

C’/ min(o~%, 07%) @y o, (J(ot,u(ot), A)

where the above integral is finite for § = (1—n)0,+n6,,6, # 6;,m € (0,1), and v > 0.

By Theorem 3.6, we have

t=(0=0) K (t%1=% a; X)
(14 |logt|)¥

lallx, ., < sup <Cllallz, ,, <Cllalls,

which implies (3.13) and completes the proof.
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3.2. Characterization of functions of r”log” r-type in terms of modi-
fied weighted Besov spaces Bj’ﬁ(Q). In the framework of modified interpolation
spaces (Ag, A1)p.00., We now introduce the modified weighted Besov space B3°(Q),
v>0:

(3.14) B3 (Q) = (H"(Q), H*(Q))

with 6 € (0,1) and s = (1 —0){ + 0k, 8, > —1,i = 1,2. The singular functions of
r7 log” r-type can be precisely characterized by this space.

Remark 3.3. Due to Theorem 3.4 (partial reiteration), the definition of B3#(Q)
is independent of the individual values of £, k, and 6. Namely,

(#"7@ 1" @), = (EY(Q.HYQ), = BA(Q)

,00,V

6,00,v

bl )V

with 0/ = 5=4; and 0 = $=%, where 0 < £,0' < s < k, k.
We now consider functions of 77 log” r-type. Let

(3.15) u(z) =r7log” r x(r) ®(6)

be defined on @Q = (—1,1)? with v > 0 and integer v > 0 where x(r) and ®() are
smooth functions satisfying (2.12) and (2.13), respectively. Obviously supp. u C
Ry=R 0, C Q, R, is given in (2.14). Arguing as we did in the proof of Lemma 2.4,
we can prove a similar lemma.

LEMMA 3.7. Let u = r71og” r x(r) ®(0) with v > 0 and integer v > 0. Then
u(z) € H*P(Q) with By, B2 > —1 and k = [2 + 27 + B1 + ().

Remark 3.4. Lemmas 3.7 and 2.4 indicate that the singular function of 77 log” r-
type belong to H*A(Q) with k = [2 + 2y + 81 + 32] for v > 0. The factor log” r
with v > 0 does not affect the maximum value of k, but it affects the value of s for
the space B*”(Q) which u(x) belongs to, namely, u € B?*¥27+A+52=8(Q) ¢ > 0
arbitrary. The loss can be recovered only if we use the space Bf,"ﬁ (Q), instead of
B*P(Q), to characterize the singularity of 77 log” r-type.

THEOREM 3.8. Let u = r¥log”"r x(r) ®(0) be given in (3.15) with v > 0 and
integer v > 0. Then u € B3P(Q) with 1,082 > —1 and s = 2 + 2y + B1 + Pa.

Proof. Let xs(r) = x(5) with 0 < 6 < ry, and v = v +w with v = x4(r) u and
w = (1 —x5(r))u. Then v € H*?(Q) with £ < 2+ 2y + (1 + (32 due to Lemma 3.7,
and w € H*A(Q) for k > 2+ 2y + B; + B2. Note that for |a| = </

V4

7’0,

|DYv| < C’Z(S_(”—t) 77" | logr|” for x€R,
t=0
and
D% =0 for x¢ R,.

Therefore, for |a| = ¢/ < ¢

/ |DYv|?(1 — mf)aﬁﬁl(l - 5L"§)°‘2+ﬁ2 dx
Q

él
< 026_2(2/_’5) / r2(r =)+ 1+ |10g7“|2”da:
t=0 I

5,0,

4 5
< CZ 52—t / P2 =2+ 14 P14 | log r|2”dr.
t=0 0
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Noting that v is an integer, we have by integration by part

6
!
/ r27—2t+€ +1+81+82 | logr|2”dr
0

2v v_m
= §27—2H 42461402 Z |log §]*~™T(2v + 1)
— 2y =2t+ 0 4+ 2+ f1 + o)™ ' 20 —m — 1)
I'(2v+1)

+

6
/ P22+ 1451+ B2 g
(2y =2t + 0 +2+ 61+ 52)% Jo

<C §27—2t+0'+2+51+02 |log 5|2V7
which implies, for |a| < ¢ < 24 2y 4+ (1 + o,

(3.16) ||U||§qlﬁ(Q) < O §2r— 248142 |10g6|2”.

Note that for |o| =¢ <k

=1
o d" =t — xs(r))
a ¢ ) t\.
(3.17) |Dw| < C{(l —Xxg)r7 + ; g

the first term on the right hand of (3.17) vanishes for r < §/2, and the second term
vanishes for r < 6/2 and r > ¢. This implies

/ |Do‘w|2(1 — x%)o‘l'wl (1- x%)a2+52 dx
Q

-1 5

< C’{ Z 62(24)/ T2fy72t+l'+1+ﬁ1+ﬁ2 |1ogr|2"dr
)
t=0 2

s

T
+/ OTQ’Y_Z/+1+51+B2|10gr2”dr}

2

< C |10g5|2u{6274’+2+ﬁ1+,62 + (7,(2)775’+2+61+ﬁ2 + 627*2/+2+'B1+B2)}.

For £/ <2+ 2y + B1 + B2

(rg'yféq‘l + 527—el+2+ﬁ1+52) < C7

and for 2+2v+ 1+ B2 < V' <k
2y—t'+2+ 81482 2y—4'+2+ 31482 2y—k+2+B1+52
(p +6 )<C6 ;
which yields for |a| < k
(3.18) / |DYw|? (1 — 22) 0 (1 — g2)22HP2 o < © §27—FH2HPHB2 | 1og 52,
Q

We now have by (3.16) and (3.18) that for 0 < ¢ < 1

K(ut)= _inf (|lugllmeoig) +tllwlliesig) < (1llmesig) +¢ lwlles))

U=u +u1
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B1+B2—
Pl

L srt=

<cC \1og5\”(5’*+1+ 7“32"“).

Selecting 6 = 727 we have for 0 <t<l1

f1+f2 ’Y+2+51 +52 £

K(u,t) < C |logé|"67 == — <C|10gt\ t )

. 2v-+2 —¢
and selecting 6 = % € (0,1) we get

t=0K (u,t)

3.19 sup ——————
(3.19) oty (1+ [logt])” =

For t > 1 and 0 selected as above, we have

t0K (u,t)
3.20 sup ———————— < ||ul|ge. <C.
(3:20) {1 ogye = M@

Equations (3.19) and (3.20) imply u € (H*?(Q), H*#(Q))g 0., for any integers ¢ and
k such that 0 < £ < 242y + (1 + 02 < k with § = W. By Theorem 3.4
(partial reiteration theorem) these spaces are the same. We denoted B5#(Q) with
s = 2+ 2v+ (1 + P2, which depends on the value of s but not on the individual value
of £,k,3, and 6. ]

Theorem 3.8 stands for all v > 0 and integer v > 0. If - is an integer and v > 0,
a sharper result should be expected.

THEOREM 3.9. If~y > 0 is an integer and integer v > 0, then v = r7log” r x(r) ®(0)
€ B3P (Q) with s =2+ 2y + 81+ o and B; > —1,i =1,2.

Proof. Let 6 € (0,r,), and let u = v + w with

7“:7/ log”(r + 6) x(r) ®(0)
3 f; (r+ 8)1 (=) log" (r + 8) x(r) (6)

=0

w

~

and
v o= r”(log” r —log”(r + 5)) x(r) ®(0)
v—1

=77 (logr — log(r + 6)) Z log” =1 log*(r + 6).
=0

Note that for m >/ and v > 1

™m

dr™m

(r+6) log”(r + 6)‘ <C(r+6)™ log” H(r+06)

and for m < ¢

m

dr™

—(r+ 6) log”(r + 6)' <C(r+ 5)#’” log”(r + ),
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which implies that for m > ~

v 1
\w|2Hm.g(Q) < C 252("’_@/ (r+ 6)2(€_m) | log(r + 5)|2(”_1)rm+1+51+62 dr
£=0 0

~
< C Z §2(v=0) §2¢—m+2+51+02 |10g6|2(z/71)
£=0

< C §27—m+2+B1+02 |10g5|2(u71)

and for m <~y

m 1
|w|i1mvB(Q) < C 262(778)/ (r _‘_6)2(27771) |10g(T+6)|2urm+1+ﬁ1+ﬁ2 dr
=0 0

C Z 52(7—6)62€—m+2+51+52 |10g6|2y
=0

IN

< (O §2y—mA2+61+02 |log 6|2V.
Therefore, there holds for k > 2y + 2+ 81 + (2
(3.21) ||w||§{kﬁ(Q) <C §27— k4241402 |10g5|2(u71)'

For 0 < r < 6 we have

r7 log <1 + f)

v—1
Z log” 17 log"(r + 6)
=0

o] =
5 v—1
< Cr'log- z:|log7"|”*1*‘z |log(r + 6)|*
" =0
$ v—1
< Cr¥log = v—1-—¢ J4
< rlog - Z|logr| |log 6]
=0
and
(3.22)
5
[ wPa-ad - o
0
6 F3 v—1
< C/ r27+1+51+52\10g7\2 Z|logr|2(”_1_€) \logé\%dr
0 [
1 v—1
< c52V+2+ﬂ1+ﬁ2|1og5|2<%1>/ 2log 2> Y (|logz| + [log 8[)** 170 dz
0 =0

<C §27+2+61+P2 | 10g5|2(u—1)'
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Also we have for 6 <r <1

v—1 v—1
6
<Y v v—1—¢ 4 < y—1 v—1—¢ 4
[v] < r7llog (1+r> Z\logr\ |logé|" < Cér Z\logﬂ [log 6]
=0 =0
and
1 1 v—1
/ [v|2(1 — 221 (1 — 23)"2 da < Céz/ r2Y-1+hithe Z [logr[2=179 |log 6|*“dr
8 8 =0

< C 6D Jog 2D,
which together with (3.22) yields
(3.23) [0l[30.6() < C 827H2F1H52 1og 62—,
Combining (3.21) and (3.22) we have

K(tu) = infuzu, +u, ([1unllosi@) +t l[uallnsg))

< ollgos(gy +twl|mrs(g)
< C |10g6|uil(57+1+ﬂ1:ﬂ2 4t 5v+1+%).

Selecting § = t*/* and = (2y + 2 + (1 + (2)/k we have for 0 <t < 1
t=OK (t,u)
(14 |logt])»—1 —
and for t > 1
—0
T o= < C ooy
which leads to

6,00,1/71(“) < C
and u € B:T2P(Q).
Combining Theorems 3.8 and 3.9 we have the following theorem. 1]
THEOREM 3.10. Letu = r7log” r x(r) ®(0) be given in (3.15). Thenu € B3P (Q)
with s =2+ 2y + (1 + B2 and

v if v is not an integer,
(3.24) v'=<¢ v-1 if v is an integer and v > 0,
0 if v=0.

We are interested in the special case that § = (—1/2,—1/2) for the approxima-
bility of the singular functions in the H!- or energy norm without weight.

COROLLARY 3.11. Let u = 17 log”r x(r)®(0). Then u € BSP(Q) with s =
14 2v,8=(-1/2,-1/2), and v* given by (3.24).
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3.3. Approximation of the functions of r7 log” r-type based on the
spaces Bz’ﬁ(Q). We now are able to establish sharp approximation theorems for
singular functions of r7 log” r-type in the frame of modified Jacobi-weighted Besov
space B3P (Q), v > 0.

THEOREM 3.12. Let u € B3P(Q) with s > 0, and 3; > —1, i = 1,2. Then the
Jacobi -projection u,, of u on P,(Q) with p+1 > s satisfies for £ < s

(3.25) [u = | res @) < C p~ (1 + log p)"||ul

B2 (Q)

Proof. We write B3”(Q) = (H%(Q), H*?(Q))g.00,, for k > s > £, with 6 = Z:ﬁ
and let Fu = u — u,. Arguing as in the proof of Theorem 2.3, we have

Eul|mesq) < C lullmes(q)
and
|E ullgesq) < Cp~ %9 [ullgrs(q).

Due to the property (P2) of the modified interpolation spaces,

(#@Q.8(@),  =HY(Q).

6,00,v

and by Theorem 3.4 E is an operator B3”(Q) — H%?(Q), and

1B ullgesgy <€ (1+ (k= 0)logp) p°*=0 [|ul
< C(1+1logp)” p~COull gos )

BSP(Q)

which is (3.25). O

COROLLARY 3.13. Let u(x) = r7 log”r x(r) ®(0) with v > 0. Then there
exists a polynomial ¢ € P,(Q) with p > 1+ 2y + By + B2 — £ such that for { <
2427+ 1+ B2, 8 > -1, = 1,2,

(3.26) lu = @[ e (@) < C p~ P2 HAFA=0 4 Ing)V*HuHBj*ﬁ*(Q)'

The approximabilities of functions of 77 log” r-type for general 3, given in Corol-
lary 3.13, does not give us the estimation of approximation error in H'-norm. Com-
bining Corollary 3.11 and Theorem 3.12 and using the property (2.15), we will have
a desired result.

THEOREM 3.14. Let u(z) = r7 log” r x(r) ®(0) with v > 0. Then there exists a
polynomial ¢ € P,(Q) with p > 2~ such that

(3.27) llu = @1 (rey < C p~2(1+logp)””,

where Ry is given in (2.14) and v* is given in (3.24).

Proof. By Theorem 3.10 and Corollary 3.11, u € B32(Q), s = 14+ 2y, 8 =
(=1/2,-1/2). The arguments used in the proof of Theorem 2.6 can be carried
over except using the estimate (3.25) of Theorem 3.12 instead of (2.10)
of Theorem 2.3. ad
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As mentioned in the previous section, for applications to boundary value prob-
lems on polygonal domains, the singular solution of 7 log” r-type may satisfy a ho-
mogeneous Dirichlet condition. We should approximate such singular functions by
polynomials vanishing on one or two lines lying in the support Ry.

THEOREM 3.15. Let u(z) = r¥1og” r x(r) ®(0) given in (2.11), and u = 0 on
both lines § = 0, = arctan(x) and 6 = 0, ,, = arctan(1/x) (resp., u =0 on one line
0 = 0,) with 1 > k > kg, with kg given in (2.15). Then there exists a polynomial
¢(r) € P,(Q), p > max{2,2v} (resp., p > max{l,2v}) such that plg—g, = 90|9:91/n =
0 (resp., vlp=o, =0) and

(3.28) llu = (@)||m1(ry) < C P~ (L+1logp)” |[ul| g, .0 (@)

with constant C' independent of p, where Ry, is the support of u given in (2.14) and
v* is given in (3.24).
Proof. Let uy = % if u vanishes on both lines where (,(x) is given in (2.24a).
2

Due to the property (2.15), ug € Bj;ﬁm (Q) with s = 1+2vy and 8% = (3/2,3/2),8 =
(—=1/2,-1/2), and

2@l g1 yar.aier ) < C @) prrero(g)-
By Theorem 3.12, there is a polynomial ¢ € P,_2(Q) with p > max{2, 2y} such that

s = 8l gy < €52 (141080 o)y,
Let ¢(z) = {y(z)¢(z), which vanishes on both lines. Then, using Lemma 2.8 and the
property (2.15) and arguing as in the proof of Theorem 2.10, we have (3.28). The
above arguments can be carried out for u vanishing on one line, by replacing uy and
¢y (x) with uy and ¢ (z), respectively, using Lemma 2.9 instead of Lemma 2.8. d

3.4. The extreme values of the indices s and v’ of weighted Besov space
Bf,’,’a (Q) for the functions of 77 log” r-type. In previous sections we have shown
that the functions of r7 log” r-type with v > 0 and integer v > 0 belong to the spaces
B5P(Q) with s = 1+ 2y, 8 = (=1/2,—1/2), and v* given in (3.24). Is (1 + 2) the
maximum value of s, and is v* the minimum value of v’ for Bi;ﬁ (Q) which contains
these functions? This question is equivalent to asking whether p=27(1+1logp)*” is the
optimal rate of the approximation error to these functions. The following theorem
tells that 1 4+ 2y and v* are the optimal values of s and v/ for functions of this type.

THEOREM 3.16. Let u = 77 log” r x(r) ®(0), v > 0, v > 0, be given in (3.15).
Then w€BZP(Q) with 3 = (—1/2,—1/2) for any s > 1+ 2y or for any v/ < v* if
s =1+ 2y, where v* is given in (3.24).

Proof. Suppose that u € B%?(Q) with s > 142y or s = 1 4+ 2y, v/ < v*. Then
by Theorem 3.14

3.29 inf — <Cp =Y +1ogp)” .
(3.29) 4,0611%(@”“ ollar(ry) < Cp (1+logp)

On the other hand, it has been proved in [3, Theorems 2.9-2.11] that

3.30 inf |ju— . > C p 27(1 +logp)” .
(3.30) </}EPP(Q)II el (ryy = Cp( gp)

The contradiction between (3.29) and (3.30) implies the assertion of the
theorem. a
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TABLE 4.1
The value of k and s in Sobolev, Besov, and weighted Besov spaces for functions of v -type and
r7 log” r-type.

space | HEQ) | HM9Q) | HUQ | B'Q | BYQ | B@

ol T+ | 1429 | 1+7—¢| 147 1+ 2y 142y

rYlog”r | 1+ [v] 1+[29] | 14v—e | 1+y—¢e | 1+2y—¢ 142y

TABLE 4.2
Accuracy of approximation of the h- and p-version to functions of r7- and r7 log” r-type based
on Sobolev, Besov, and weighted Besov spaces.

h-version p-version

Space | H*(Q) | B*(Q) | H*(Q) | B*(Q) | B*’(Q) B

Y hY—€ hY p= (=2 p~Y p=2Y p=2Y

M log’r | hYTE = | p=(r=8) | p=(=9) | p=(@v=2) | p=2710g"" p

4. Concluding remarks. In order to effectively analyze approximability of
functions including singular functions of 77-type and r7log” r-type, we successfully
introduced the weighted Besov spaces B*# and B2”, respectively. These two spaces
could lead to the optimal convergence rate and to the sharp direct and inverse theo-
rems for the p-version of the finite element method (see [4, 5]).

As many function spaces with and without weights, these two spaces characterize
the singularities of solutions of problems in nonsmooth domains and to serve various
mathematical interests, such as approximation. The selection of function spaces, to
best serve our numerical analysis, depends on not only the characters of the solutions
but also the numerical methods selected to approximate the solutions. The values of
k and s in Sobolev spaces and Besov spaces with and without weights for functions
of r7-type and r7 log” r-type are listed in Table 4.1, where v > 0 and v > 0, k is
an integer, s is real, [y] denotes the largest integer < =, etc. These values directly
yield the rates of convergence given in Table 4.2 for the h- and p-versions of the finite
element method, with v* given in (3.24), and the error is measured in the H!-norm.

For the elliptic problems on smooth domains, the regularity results in Sobolev
space H*(Q)) may very adequately serve numerical analysis. For the linear elliptic
problems on nonsmooth domain, the regularity in usual Besov space B*(Q) can lead
to the optimal rate of convergence for the h-version of the finite element method,
and it has been shown in this paper that the Jacobi-weighted Besov spaces B*#(Q)
and B3#(Q), v > 0, are the best mathematical tools to analyze the convergence rate
of the p-version of the finite element method. It is well known that the regularity
theory, which can lead to the exponential convergence for the h-p version associated
with geometric meshes, is the one in the framework of countably normed spaces Bg(Q)
(see [2, 7, 18]), instead of the Jacobi-weighted Besov spaces B5°(Q).

The Jacobi-weighted Besov spaces can be introduced for analysis of approxima-
bility of singular functions in three dimensions. Since the singular functions have
different characters in different singular neighborhoods, the Jacobi-weighted Besov
spaces should be furnished with different weight functions accordingly. We refer to
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[6] for the details.
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