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Abstract. This is the first of a series devoted to the approximation theory of the p-version of
the finite element method in two dimensions in the framework of the Jacobi-weighted Besov spaces,
which provides the p-version with a solid mathematical foundation. In this paper, we establish a
mathematical framework of the Jacobi-weighted Besov and Sobolev spaces and analyze the approx-
imability of the functions in the framework of these spaces, particularly, singular functions of rγ -type
and rγ logν r-type. These spaces and the corresponding approximation properties are of fundamental
importance to the proof of the optimal convergence for the p-version in two dimensions in part II
and to various sharp inverse approximation theorems in part III.
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1. Introduction. Since the late 1970s the p-version of the finite element method,
which increases the degree of elements on a fixed mesh to obtain desired accuracy, is
widely used in engineering computations. There are several commercial and research
codes based on the p- (or h-p) versions of the finite element method, for example,
MSC/PROBE, FIESTA, MECHANICA, PHLEX, STRESSCHECK, and STRIPE.

In 1980 it was shown that the p-version in two dimensions converges at least as
fast as the traditional h-version with quasi-uniform meshes and that it converges twice
as fast as the h-version if the solution has singularity of rγ-type. In [10] an upper
bound O(p−2γ+ε) was proven, where p is the degree of elements and ε > 0 is arbitrary.
In [8, 9] the ε was removed. The convergence of the p-version in three dimensions was
addressed in [14, 15]. A detailed analysis of the p-version in one dimension is available
in [17]. The p-version is very close to the spectral method which was independently
studied and developed; see, e.g., [12] and references therein.

Although significant progress has been made in the past two decades, several
important issues of the p-version in two and three dimensions are still not resolved, for
example, the lower bound of error and the optimal convergence rate in energy norm
for the solution of practical engineering interest, inverse approximation theorems,
and the effective a posteriori error estimation and adaptive selection of polynomial
(incomplete) shape functions.

In this paper we analyze the approximation of the functions which has singular
behavior of rγ logν r-type. This is a typical singularity occurring in the neighborhood
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of the corners. We proved the optimal rate of convergence depending on γ and ν for
γ real or integer.

We have established a framework in two dimensions which can be generalized into
three dimensions. Some main ideas and results without detailed proofs were addressed
in [3]. In the present paper we elaborate more on these ideas and present detailed
proofs which could serve as a starting point for three-dimensional analysis. The main
idea, which appeared to be very effective, is the concept of the Jacobi- weighted
Besov and Sobolev spaces Bs,β and Hs,β with weights depending on s and the order
of derivatives under consideration. In contrast to the approximation in L2-norm, the
approximation in the H1-norm is more complicated because the H1-norm involves the
L2-norm of derivatives in one variable only. We have shown that a judicious selection
of the weight in the spaces under consideration will overcome this difficulty.

In [1, 12] and references cited therein the weighted Sobolev spacesHs
α with Jacobi-

type weights, which are independent of s, are utilized. The application to differential
equations are not addressed in details in these references. In contrast, in this paper,
we relate the weight function to the sharpest characterization of the smoothness of
the solution by using the maximal value of s. Recently, the general Jacobi approx-
imation with nonsymmetric and varying weights was studied in [19, 20, 21, 22] and
was applied to singular differential equations with coefficients which degenerate. The
analysis in the mentioned papers assumes the regularity of the exact solution and does
not address practical important cases that the domain has corners or the boundary
conditions are changing the type. In practical computations, singularities of this type
are always present, and they can govern the accuracy of the p-version. The optimal
error estimates in H1-norm when the solution has singularity of rγ- and rγ logν r-type
were not addressed in either [1, 12] or [19, 20, 21, 22].

The problem of the approximation by polynomials is a classical problem addressed
directly and indirectly in many papers and books; see, e.g., [13, 24] and others. Various
abstract results especially related to functional analysis are available; see, e.g., [25].
Nevertheless, the concrete results related to the p-version of the finite element method
are not available in the literature.

In this paper we present a mathematical framework and detailed proof of essential
theorems for the analysis of the p-version, which will be utilized in the second and third
paper of the series. The scope of the paper is as follows. In section 2 we introduce the
Jacobi-weighted Besov spaces Bs,β(Q) and Sobolev spaceHs,β(Q), with Q = (−1, 1)2,
and analyze the approximability of functions of the rγ-type, with γ > 0, in terms of
the space Bs,β(Q). The modified Jacobi-weighted Besov space Bs,βν (Q) is introduced
in section 3 to effectively analyze the approximability of functions of rγ logν r-type.
Unlike the space Bs,β(Q), the space Bs,βν (Q) is not exact interpolation space, but only
a uniform interpolation space according to the definitions of [11]. Various properties,
which stand for exact interpolation spaces, have been carefully examined and strictly
proved for these modified spaces, in particular, the partial reiteration theorem. Some
concluding remarks are given in the last section on the effectiveness of the Sobolev
space Hs, the Besov space Bs, and the Jacobi-weighted Besov spaces Bs,β and Bs,βν
for the analysis of the h-version and the p-version of the finite element method.

2. Jacobi-weighted Besov space Bs,β(Q) and approximability of singu-
lar function of rγ-type. We shall introduce Jacobi-weighted Besov and Sobolev
spaces Bs,β(Q) and Hk,β(Q) and characterize the singularity and analyze the approx-
imability for functions of rγ-type in the framework of the spaces Bs,β(Q).
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2.1. Sobolev and Besov spaces with Jacobi weights. Let Q = I2 =
(−1, 1)2, and let

wα,β(x) =

2∏
i=1

(1− x2
i )
αi+βi(2.1)

be a weight function with integer αi ≥ 0 and real number βi > −1, which is referred
to as Jacobi weight. Obviously, the Jacobi polynomials and their derivatives are
orthogonal with the weight wα,β(x).

The Sobolev space Hk,β(Q) is defined as a closure of C∞ functions in the norm
with the Jacobi weight

||u||2Hk,β(Q) =

k∑
|α|=0

∫
Q

|Dαu|2 wα,β(x) dx,(2.2)

where Dαu = uxα1
1 x

α2
2
, α = (α1, α2), |α| = α1 + α2, and β = (β1, β2). By |u|Hk,β(Q)

we denote the seminorm,

|u|Hk,β(Q) =
∑
|α|=k

∫
Q

|Dαu|2
2∏
i=1

(1− x2
i )
αi+βi dx.

Let Bs,β2,q (Q) be the interpolation spaces defined by the K-method(
H�,β(Q), Hk,β(Q)

)
θ,q

,

where 0 < θ < 1, 1 ≤ q ≤ ∞, s = (1− θ)�+ θk, � and k are integers, � < k, and

||u||Bs,β
2,q (Q) =

(∫ ∞

0

t−qθ |K(t, u)|q dt
t

)1/q

, 1 ≤ q < ∞,(2.3a)

||u||Bs,β
2,∞(Q) = sup

t>0
t−θK(t, u),(2.3b)

where

K(t, u) = inf
u=v+w

(
||v||H�,β(Q) + t||w||Hk,β(Q)

)
.(2.4)

In particular, we are interested in the cases q = 2 and q =∞. For q = 2 , we have a
theorem on the relation between Bs,β2,2 (Q) and Hm,β(Q) if s is an integer m.

Theorem 2.1. Bs,β2,2 (Q) = Hm,β(Q) for s = m, an integer.
Proof. For the sake of simplicity we shall prove the theorem in one dimension,

and the proof in two dimensions is similar.
For any u ∈ H�,β(Q), � ≥ 0, there holds

u(x) =

∞∑
i=0

ai Pi(x, β),

where

Pi(x, β) =
(−1)i
i! 2i

(1− x2)−β
di(1− x2)i+β

dxi
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is the Jacobi polynomial of degree i. Let u = v + w with

w(x) =

∞∑
i=0

di Pi(x, β) ∈ Hk,β(Q), k > m,

and

v(x) =
∞∑
i=0

(ai − di)Pi(x, β) ∈ H�,β(Q), � < m,

where di’s are undetermined. By the properties of Jacobi polynomials, we have

K2(t, u) ≤ 2
(
infu=v+w ||v||2H�,β(Q) + t2||w||2Hk,β(Q)

)

≤ 2 infd0,d1,...

∞∑
i=0

(ai − di)
2i2�

2i+ 2β + 1
+

t2d2
i i

2k

2i+ 2β + 1

= 2 infd0,d1,...G(d0, d1, . . . )

= 2G̃(t, u).

It is easy to see that G(d0, d1, . . . ) reaches its minimum G̃(t, u) at di =
ai

1+t2g2
�k

(i)
, i =

0, 1, . . . , and

G̃(t, u) =

∞∑
i=0

a2
i t

2g2
�k(i)i

2�

(2i+ 2β + 1)(1 + t2g2
�k(i))

,

where g�k(i) = i(k−�). Thus

Φ2
θ,2(u) =

∫ ∞

0

t−2θK2(t, u)
dt

t

≤ 2

∞∑
i=0

a2
i g

2
�k(i)i

2�

(2i+ 2β + 1)

∫ ∞

0

t1−2θ

1 + t2g2
�k(i)

dt.

Noting that∫ ∞

0

t1−2θ

1 + t2g2
�k(i)

dt ≤
∫ 1

g�k(i)

0

t1−2θdt+
1

g2
�k(i)

∫ ∞

1
g�k(i)

t−1−2θdt

≤ 2g
2(θ−1)
�k (i)

we have

llΦ2
θ,2(u) ≤ 4

∞∑
i=0

a2
i g

2θ
�k (i)i

2�

2i+ 2β + 1

≤ 4

∞∑
i=0

a2
i i

2((1−θ)�+θk)

2i+ 2β + 1
(2.5)

≤ 4‖u‖2
Hm,β(Q).
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On the other hand, there holds

K2(t, u) ≥ G̃(t, u)

and ∫ ∞

0

t1−2θ

1 + t2g2
�k(i)

dt ≥ 1

2

(∫ 1
g�k(i)

0

t1−2θdt+
1

g2
�k(i)

)∫ ∞

1
g�k(i)

t−1−2θdt

≥ g
2(θ−1)
�k (i),

which leads to

Φ2
θ,2(u) ≥ C

∞∑
i=0

a2
i i

2((1−θ)�+θk)

2i+ 2β + 1
≥ ‖u‖2

Hm,β(Q).(2.6)

Combining (2.3), (2.5), and (2.6) we obtain

C1‖u‖Hm,β(Q) ≤ ‖u‖Bm,β
2,2 (Q) ≤ C2‖u‖Hm,β(Q),

which completes the proof.
Remark 2.1. Theorems of this type may follow from the abstract theory pre-

sented, for example, in [25]. Nevertheless, we present here a direct and simple proof.
Remark 2.2. Due to Theorem 2.1 we shall write for s ≥ 0 and q = 2

Hs,β(Q) = Bs,β2,2 (Q) =
(
H�,β(Q), Hk,β(Q)

)
θ,2

with 0 < θ < 1 and s = (1 − θ)� + θk. This space is called Jacobi-weighted space
with fractional order if s is not an integer, and it coincides with Hm,β(Q) if s is an
integer m. The above definition of Hs,β(Q) is independent of the selection of � and
k. Furthermore, � and k do not have to be integers.

Remark 2.3. According to the arguments of the proof, we can introduce an
equivalent norm in discrete form for functions in Hs,β(Q):

‖|u|‖2
Hs,β(Q) =

∑
0≤m1,m2<∞

|cm1,m2 |2
2∏
i=1

22βi+1

2mi + 2βi + 1

(
1 +

2∑
i=1

m2s
i

)
,

where cm1,m2 are the coefficients of the Jacobi–Fourier expansion of u,

u =
∑

0≤m1,m2≤∞
cm1,m2

2∏
i=1

Pmi(xi, βi).

Similarly, the Jacobi-weighted Besov spaces can be introduced as interpolations be-
tween spaces H�,β(Q) and Hk,β(Q) as in (2.4), but furnished with the above discrete
norms in (2.4), instead of ‖u‖H�,β(Q) and ‖u‖Hm,β(Q).

Remark 2.4. For q =∞, we shall write

Bs,β(Q) = Bs,β2,∞(Q) =
(
H�,β(Q), Hk,β(Q)

)
θ,∞

,

which are referred to as the Jacobi-weighted Besov spaces. It is an exact interpolation
space according to [11], and all properties of exact interpolation spaces stand for the
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space Bs,β(Q). It can be defined as an interpolation between two fractional order
Jacobi-weighted Sobolev spaces.

Remark 2.5. The Jacobi-weighted Besov spaces Bs,β(Q) and Sobolev spaces
Hk,β(Q) can be generalized with nonsymmetric weights

wα,β(x) =

2∏
i=1

(1− xi)
αi+βi,1(1 + xi)

αi+βi,2

with β = (β1, β2), βi = (βi,1, βi,2), βi,j > −1, i, j = 1, 2. All properties proved the
Jacobi-weighted Besov and Sobolev spaces with symmetric weights will stand for
those with nonsymmetric weights.

Let Pp(Q) be set of all polynomials of (separate) degree ≤ p, and let up be

the H0,β(Q)-projection of a function u(x) ∈ Hk,β(Q) on Pp(Q). Then we have the
following approximation property.

Theorem 2.2. Let u ∈ Hk,β(Q) with integer k ≥ 1, βi > −1, i = 1, 2, and let up
be its H0,β(Q)-projection on Pp(Q). Then we have for integer � ≤ k ≤ p+ 1

|u− up|H�,β(Q) ≤ C p−(k−�) |u|Hk,β(Q).(2.7)

Proof. Let Pm(ξ, ν, µ) =
(−1)m

m! 2m (1− ξ)−ν(1+ ξ)−µ d
m(1−ξ)ν+m(1+ξ)µ+m

dξm , with ν, µ >

−1, be the Jacobi polynomial of degree m, and let Pm(ξ, ν) = Pm(ξ, ν, ν). For u ∈
Hk,β(Q), k ≥ 0, we have the Jacobi–Fourier expansion

u(x) =
∞∑
i,j=0

Cij Pi(x1, β1)Pj(x2, β2).

Then

up(x) =

p∑
i,j=0

Cij Pi(x1, β1)Pj(x2, β2)

is the projection of u(x) on Pp(Q) in H0,β(Q), and

u− up =


 ∞∑
i=0

∞∑
j=p+1

+

∞∑
i=p+1

p∑
j=0


Cij Pi(x1, β1)Pj(x2, β2) = U + V.

By the property of the Jacobi polynomials (see [16]), we have for |α| ≤ � ≤ k ≤ p+ 1

∫
Q

|DαU |2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx

=
∞∑
i=α1

∞∑
j=p+1

|Cij |2 22(β1+β2+1)

[
(i+ 2β1 + 1) · · · (i+ 2β1 + α1)

]2
Γ2(i+ β1 + 1)

(i− α1)! (2i+ 2β1 + 1)Γ(i+ α1 + 2β1 + 1)

×
[
(j + 2β2 + 1) · · · (j + 2β2 + α2)

]2
Γ2(j + β2 + 1)

(j − α2)! (2j + 2β2 + 1)Γ(j + α2 + 2β2 + 1)
.

On the other hand, we have, by noting that α2+k− � ≤ p+1 for |α| = � ≤ k ≤ p+1,



1518 IVO BABUŠKA AND BENQI GUO∫
Q

|U
x
α
1

1 x
α
2
+k−�

2

|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+k−�+β2 dx

≥
∞∑
i=α1

∞∑
j=p+1

|Cij |2 22(β1+β2+1)

[
(i+ 2β1 + 1) · · · (i+ 2β1 + α1)

]2
Γ2(i+ β1 + 1)

(i− α1)! (2i+ 2β1 + 1)Γ(i+ α1 + 2β1 + 1)

×
[
(j + 2β2 + 1) · · · (j + 2β2 + α2)

]2
Γ2(j + β2 + 1)

(j − α2)! (2j + 2β2 + 1)Γ(j + α2 + 2β2 + 1)
Ψ(j),

where

Ψ(j) =

[
(j + 2β2 + α2 + 1) · · · (j + 2β2 + k − �)

]2
(j − α2)! Γ(j + α2 + 2β2 + 1)

(j − α2 − (k − �))! Γ(j + α2 + (k − �) + 2β2 + 1)
.

It is easy to verify that for j ≥ p+ 1

Ψ(j) ≥ C p2(k−�),

which leads to

(2.8)∫
Q

|DαU |2 (1 − x2
1)
α1+β1 (1− x2

2)
α2+β2 dx

≤ C p−2(k−�)
∫
Q

|u
x
α
1

1 x
α
2
+k−�

2

|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2+k−� dx

≤ C p−2(k−�) |u|2Hk,β(Q).

Similarly, we have for |α| = � ≤ k ≤ p+ 1

(2.9)∫
Q

|DαV |2 (1 − x2
1)
α1+β1 (1− x2

2)
α2+β2 dx

≤ C p−2(k−�)
∫
Q

|u
x
α
1
+k−�

1 x
α
2

2

|2 (1− x2
1)
α1+k−�+β1 (1− x2

2)
α2+β2 dx

≤ C p−2(k−�) |u|2Hk,β(Q).

It follows from (2.8) and (2.9) that for |α| = � ≤ k ≤ p+ 1∫
Q

|Dα(u− up)|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx ≤ C p−2(k−�) |u|2Hk,β(Q),

which yields (2.7), and completes the proof.
Remark 2.6. The above proof shows that if ϕ is the Jacobi projection of u ∈

Hk,β(Q) on Pp(Q) in H0,β(Q), then ϕ is the Jacobi projection of u on Pp(Q) in
H�,β(Q) for all 0 ≤ � ≤ k, and

|ϕ|2H�,β(Q) + |u− ϕ|2H�,β(Q) = |u|2H�,β(Q).

This is a very important and special property of the Jacobi projection.
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By a standard argument of interpolation spaces, we are able to generalize Theorem
2.2 to an approximation theorem for functions in the Jacobi-weighted Besov spaces
Bs,β(Q).

Theorem 2.3. Let u ∈ Bs,β(Q), s > 0 with βi > −1, i = 1, 2, and let up be the
Jacobi projection of u on Pp(Q) with p + 1 ≥ s. Then for any integer � < s there
holds

||u− up||H�,β(Q) ≤ C p−(s−�) ||u||Bs,β(Q)(2.10)

with constant C independent of p.

2.2. Characterization of functions of rγ-type in terms of weighted Besov
spaces Bs,β(Q). Let (r, θ) be the polar coordinates with respect to the vertex

(−1,−1), where r = {(x1 + 1)
2 + (x2 + 1)

2}1/2, θ = arctan(
x2+1
x1+1 ), and let for γ > 0

u(x) = rγ χ(r) Φ(θ)(2.11)

be a function defined on Q = (−1, 1)2, where χ(r) and Φ(θ) are C∞ functions such
that for 0 < r0 < 2

χ(r) =



1 for 0 < r ≤ r0

2 ,

0 for r ≥ r0,
(2.12)

and for θ0 ∈ (0, π/2)
Φ(θ) = 0 for θ 
∈ (θ0, π/2− θ0).(2.13)

Therefore, u(x) has a support R0 = Rr0,θ0
with

Rr0,θ0 =

{
x ∈ Q

∣∣∣ r < r0, θ0 < θ < π/2− θ0

}
,(2.14)

which is shown in Figure 2.1. For x ∈ R0, there hold

1− r0 < (1− xi) < 2 for i = 1, 2(2.15a)

and

1

κ0

≤ 1 + x2

1 + x1

≤ κ0 = tan θ0.(2.15b)

We now characterize the singularity of u(x) in terms of Jacobi-weighted Sobolev
spaces Hk,β(Q) and Besov spaces Bs,β(Q).

Lemma 2.4. Let u(x) = rγ χ(r) Φ(θ) be given by (2.11), and let β = (β1, β2) with
β1, β2 > −1. Then u ∈ H�,β(Q) for all integers � ≤ [2 + β1 + β2 + 2γ]. Hereafter [a]
denotes the largest integer < a.

Proof. It is easy to see that for any α

|Dαu| ≤ C rγ−|α|(2.16)

and for |α| < 2γ + 2 + β1 + β2∫
Q

|Dαu|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx ≤ C

∫ ρ

0

r2γ+β1+β2+1−|α| dr < ∞,

which proves the lemma.
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0r

x +1 = 2 (x +1)1

(x +1)1 κ

Q
θ

0

R
0r ,

0

1

-1

1-1

(-1,-1)

X

X

1

2κ

x +1 = 2

θ
0

θ
0

/

Fig. 2.1. Square domain Q and subregion Rr0,θ0 .

Theorem 2.5. Let u = rγ χ(r) Φ(θ) be given in (2.11) with γ > 0. Then
u ∈ Bs,β(Q) with s = 2 + 2γ + β1 + β2 and β1, β2 > −1.

Proof. Let χδ(r) = χ( rδ ) with 0 < δ ≤ r0 undetermined, and u = v + w with
v = χδ(r)u and w = (1 − χδ(r))u. Then v ∈ H�,β(Q), � < 2 + 2γ + β1 + β2, by
Lemma 2.4, and w ∈ Hk,β(Q), k > 2 + 2γ + β1 + β2. Note that for |α| = �′ ≤ � and
r < δ

|Dαv| ≤ C

�′∑
t=0

δ−(�′−t) rγ−t

and it vanishes for r > δ. It follows that

∫
Q

|Dαv|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx ≤ C

�′∑
t=0

δ−2(�′−t)
∫
R0

r2(γ−t)+�′+β1+β2dx

≤ C
�′∑
t=0

δ−2(�′−t)
∫ δ

0

r2(γ−t)+β1+β2+1−�′dr

≤ C δ2γ+β1+β2+2−�′ ,

which yields, for � < 2 + 2γ + β1 + β2,

||v||2H�,β(Q) ≤ C δ2γ+β1+β2+2−�.(2.17)

Note that for |α| = �′ ≤ k

|Dαw| ≤ C

{
(1− χδ(r))r

γ−�′ +
�′−1∑
t=0

rγ−t
d�

′−t

dr�′−t
(1− χδ(r))

}
.(2.18)
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Since the first term on the right-hand side of (2.18) vanishes for r < δ/2 and the
second term vanishes for r < δ/2 and r > δ, there holds∫

Q

|Dαw|2 (1− x2
1)
α1+β1 (1− x2

2)
α2++β2 dx

≤ C

{∫ ρ

δ/2

r2γ+β1+β2+1−�′dr +
�′−1∑
t=0

δ−2(�′−t)
∫ δ

δ/2

r2γ−2t+β1+β2+1−�′dr
}

≤ C




δ2γ−�′+2+β1+β2 + 1 if �′ 
= 2γ + 2 + β1 + β2,

ln δ + 1 if �′ = 2γ + 2 + β1 + β2.

Therefore we always have for k > 2 + 2γ + β1 + β2

||w||2Hk,β(Q) ≤ Cδ2γ−k+2+β1+β2 .(2.19)

For 0 < t < 1, we have by (2.18) and (2.19)

K(t, u) = inf
u=u1+u2

(
||u1||H�,β(Q) + t ||u2||Hk,β(Q)

)

≤ ||v||H�,β(Q) + t ||w||Hk,β(Q)

≤ C(δγ+1+(β1+β2−�)/2 + t δγ+1+(β1+β2−k)/2).

By selecting δ = t
2

k−� and θ = 2γ+2+β1+β2−�
k−� , we have for 0 < t < 1

K(t, u) ≤ C δγ+1+(β1+β2−�)/2 ≤ C t
2γ+2+β1+β2−�

k−�

and

sup
0<t<1

t−θK(t, u) ≤ C,

and for t ≥ 1 we always have

sup
t≥1

t−θK(t, u) ≤ ||u||H�,β(Q) ≤ C,

which implies that u = (H�,β(Q), Hk,β(Q)) θ,∞ = Bs,β(Q), with θ = 2γ+2+β1+β2−�
k−�

and s = 2 + 2γ + β1 + β2.
Remark 2.7. Although the singular function u(x) = rγ χ(r) Φ(θ) ∈ Bs,β(Q)

with s = 2 + 2γ + β1 + β2 for general β with βi > −1, i = 1, 2, the results with
βi = −1/2 are much more interesting to us for approximation errors measured in
H1-norm (energy norm) without weights. In that case, u ∈ Bs,β(Q) with s = 1 + γ
and β1 = β2 = −1/2.

2.3. Approximation of the functions of rγ-type. We will prove approxima-
tion theorems for singular functions of rγ-type in the framework of the Jacobi-weighted
Besov and Sobolev spaces.

Theorem 2.6. Let u(x) = rγ χ(r) Φ(θ) given in (2.11). Then there exists a
polynomial ϕ(x) ∈ Pp(Q) with p ≥ 2γ such that

||u− ϕ||H1(R0) ≤ C

(
1

p

)2γ

(2.20)

with constant C independent of p, where R0 is the support of u given in (2.14).
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Proof. By Theorem 2.5 and Remark 2.7, u ∈ Bs,β(Q) with s = 1 + 2γ and
β = (−1/2,−1/2). Due to Theorem 2.3, there exists a polynomial ϕ ∈ Pp(Q) such
that

||u− ϕ||H1,β(Q) ≤ C p−2γ ||u||Bs,β(Q).(2.21)

Obviously

||u− ϕ||L2(Q) ≤ C ||u− ϕ||H0,β(Q) ≤ C ||u− ϕ||H1,β(Q).(2.22)

Due to (2.15) it always holds for α = (1, 0) or (0, 1) and for x ∈ R0 that

C1 ≤ (1 + x1)
α1−1/2 (1 + x2)

α2−1/2 ≤ C2.

Then, we have for α with |α| = 1∫
R0

∣∣∣Dα(u− ϕ)
∣∣∣2 dx ≤ C

∫
R0

∣∣∣Dα(u− ϕ)
∣∣∣2 (1 + x1)

α1−1/2 (1 + x2)
α2−1/2 dx

≤ C

∫
R0

∣∣∣Dα(u− ϕ)
∣∣∣2 (1− x2

1)
α1−1/2 (1− x2

2)
α2−1/2 dx,

which together with (2.21) and (2.22) leads to (2.20).
In the applications to boundary value problems on polygonal domains, the singu-

lar solution of rα-type may satisfy homogeneous Dirichlet boundary condition on one
or two edges of the polygon around each vertex. Hence we have to enforce the same
condition on approximation polynomials. Let us consider the approximation of the
singular functions by polynomials vanishing on one or two lines lying in the supports
R0.

If u(x) = 0 on the line x2 + 1 = κ(x1 + 1) for 1 < κ ≤ κ0 = tan θ0, we introduce

ζ1(x) = x2 + 1− κ(x1 + 1)(2.23a)

and

u1(x) =
u(x)

ζ1(x)
= rγ−1 χ(r)ψ1(θ),(2.23b)

where ψ1(θ) = Φ(θ)/(sin θ − κ cos θ) is a C∞ function on [0, π2 ].
If u(x) = 0 on the lines x2 + 1 = κ(x1 + 1) and x2 + 1 = (x1 + 1)/κ, we similarly

introduce

ζ2(x) =
(
x2 + 1− κ(x1 + 1)

)(
x2 + 1− (x1 + 1)/κ

)
(2.24a)

and

u2(x) =
u(x)

ζ0(x)
= rγ−2 χ(r)ψ2(θ),(2.24b)

where

ψ2(θ) =
Φ(θ)

(sin θ − κ cos θ)(sin θ − 1
κ cos θ)

is a C∞ function on [0, π2 ].
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It is easy to verify that there are positive constants C1 and C2 such that for
� = 1, 2

|Dαu| ≤ C1 r
�
∑

|α′|≤|α|
|Dα′

u�|(2.25a)

and

|Dαu�| ≤ C2 r
−� ∑

|α′|≤|α|
|Dα′

u|,(2.25b)

which lead immediately to the following theorem.

Theorem 2.7. u�(x) ∈ B2+2γ+β1+β2,β
[�]

(Q) with β[�] = β+� = (β1+�, β2+�), � =
1, 2, and there are constants C1 and C2 such that

C1 ||u(x)||B2+2γ+β1+β2,β(Q) ≤ ||u�(x)||B2+2γ+β1+β2,β[�]
(Q)

≤ C2 ||u(x)||B2+2γ+β1+β2,β(Q).
(2.26)

In particular, u�(x) ∈ B1+2γ,β[�]

(Q) with β[�] = �− 1/2 = (�− 1/2, �− 1/2).
For approximation to the singular functions of rγ-type vanishing on one or two

lines, we need the following lemmas.
Lemma 2.8. Let r2 |D1v| ∈ L2(Q) and v = 0 for r > ρ > 0. Then, r v ∈ L2(Q),

and

||r v||L2(Q) ≤ C ||r2 D1v||L2(Q).(2.27)

Proof. We quote the Hardy inequality 330 from [24, p. 245]∫ ∞

0

x−s F p dx <

(
p

|s− 1|
)p ∫ ∞

0

x−s (x f)p dx,(2.28)

where F (x) =
∫∞
x

f(t) dt for s < 1, and F (x) =
∫ x
0
f(t) dt for s > 1. The application

of (2.28) with p = 2, s = −3, f = ∂v
∂r , and F = −v leads to∫ ρ

0

r3 |v|2 dr < C

∫ ρ

0

r5

∣∣∣∣∂v∂r
∣∣∣∣
2

dr,

which implies (2.27).
Lemma 2.9. Let r |D1v| ∈ L2(Q), and v = 0 for r > ρ > 0. Then v ∈ L2(Q),

and

||v||L2(Q) ≤ C ||r D1v||L2(Q).(2.29)

Proof. The application of (2.28) with p = 2, s = −1, f = ∂v
∂r , and F = −v yields

(2.29) immediately.
These lemmas above and Theorem 2.7 lead to the following theorem.
Theorem 2.10. Let u(x) = rγ χ(r) Φ(θ) given in (2.11), and u = 0 on both lines

θ = θκ = arctan(κ) and θ = θ1/κ = arctan(1/κ) (resp., u = 0 on one line θ = θκ) with
1 ≥ κ ≥ κ0, with κ0 given in (2.15). Then there exists a polynomial ϕ(x) ∈ Pp(Q),
p ≥ max{2, 2γ} (resp., p ≥ max{1, 2γ}) such that ϕ|θ=θκ = ϕ|θ=θ

1/κ
= 0 (resp.,

ϕ|θ=θκ = 0), and
||u− ϕ(x)||H1(R0)

≤ C p−2γ(2.30)

with constant C independent of p, where R0 is the support of u given in (2.14).
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Proof. We would prove the theorem for u vanishing on both lines; the proof for
u vanishing on one line is similar. Let u2(x) = u(x)/ζ2(x), given by (2.24). By The-

orem 2.7, u2 ∈ Bs,β
[2]

(Q) with s = 1 + 2γ and β[2] = (3/2, 3/2). Due to Theorem 2.3
and Theorem 2.7, there exists a polynomial φ(x) ∈ Pp−2(Q), p ≥ max{2, 2γ}, such
that for � ≤ s

||u2 − φ(x)||
H�,β[2]

(Q)
≤ C p−(s−�) ||u2||Bs,β[2]

(Q)
≤ C p−(2γ+1−�) ||u||Bs,β(Q).(2.31)

Now let ϕ(x) = ζ2(x)φ(x). Then ϕ(x) = 0 on the lines θ = θκ and θ = θ1/κ, and∫
R0

|u(x)− ϕ(x)|2 dx =
∫
R0

|ζ0|2 |u2(x)− φ(x)|2 dx ≤ C

∫
R0

|u2(x)− φ(x)|2 r4 dx

≤ C

∫
R0

|u2(x)− φ(x)|2 (1− x2
1)

3/2 (1− x2
2)

3/2 dx

≤ C ||u2 − φ||2
H0,β[2]

(Q)
,

which together with (2.31) implies∫
R0

|u(x)− ϕ(x)|2 dx ≤ C p−2(2γ+1) ||u||2Bs,β(Q).(2.32)

Letting χ(r) be the C∞ function given in (2.12), we have

∫
R0

∣∣∣D1
(
u(x)− ϕ(x)

)∣∣∣2 dx
≤ C

(∫
R0

∣∣∣ζ2
2

∣∣∣D1
(
χ(r)(u0 − ϕ0)

)∣∣∣2 dx+ ∫
R0

|D1ζ2|
∣∣∣χ(r)(u2 − φ)

∣∣∣2 dx
)
.

(2.33)

For α = (1, 0) or α = (0, 1) and for x ∈ R0, we have from (2.15)

C̃1r ≤ (1− x2
i ) ≤ C̃2r for i = 1, 2.

Therefore,∫
R0

|ζ2|2
∣∣∣Dα(χ(r)(u2 − φ)

)∣∣∣2 dx ≤
∫
R0

r4
∣∣∣Dα(χ(r)(u2 − φ)

)∣∣∣2 dx
≤

∫
R0

∣∣∣Dα(χ(r)(u2 − φ)
)∣∣∣2 (1− x2

1)
α1+3/2 (1− x2

2)
α2+3/2 dx

≤ C

(∫
Q

∣∣∣Dα(u2 − φ)
∣∣∣2 (1− x2

1)
α1+3/2 (1− x2

2)
α2+3/2 dx

+

∫
Q

|u2 − φ|2 (1− x2
1)

3/2 (1− x2
2)

3/2 dx

)

= C ||u2 − φ||2H1,β(Q),

which together with (2.31) leads to∫
R0

|ζ2|2
∣∣∣Dα(χ(r)(u0 − ϕ0)

)∣∣∣2 dx ≤ C p−4γ ||u||2
Bs,β[2]

(Q)
.(2.34)
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For the second term on the right-hand side of (2.31) we have∫
R0

|D1ζ2|2
∣∣∣χ(r)(u2 − φ)

∣∣∣2 dx ≤ C

∫
R

ρ,k
0

r2
∣∣∣χ(r)(u2 − φ)

∣∣∣2 dx,
by Lemma 2.8

≤ C

∫
R0

r4
∣∣∣D1

(
χ(r)(u0 − ϕ0)

)∣∣∣2 dx,
by (2.33)

≤ C p−4γ ||u||2Bs,β(Q).(2.35)

The combination of (2.32)–(2.35) yields (2.30).
The proof above can be carried out for u vanishing on one line, except replacing

ζ2 by ζ1, B
s,β[2]

by Bs,β
[1]

, and using Lemma 2.9 for (2.34) instead of Lemma 2.8.
Thus we have completed the proof of the theorem.

3. Modified Jacobi-weighted Besov spaces Bs,β
ν (Q) and approximation

of the functions of rγ logν r-type. It can be shown that functions of rγ logν r-
type, ν > 0, belong to the weighted Besov spaces Bs,β(Q) with s = 1 + 2γ − ε, ε > 0
arbitrary, which will lead to a loss of (1/p)ε in rate of convergence for the p-version
of the finite element method. Hence we have to sharpen the mathematical tool for
a better characterization of the singularity of functions of rγ logν r-type and a better
approximation by the high-order polynomial. This sharpened tool is the modified
Jacobi-weighted Besov space Bs,βν (Q).

3.1. Modified interpolation spaces (A0, A1)θ,∞,ν . We shall modify general
interpolation space defined by the K-method and the J-method, then apply it to the
modified Jacobi-weighted Besov spaces . Let Ā = (A0, A1) be a couple of compatible
Banach spaces. For the sake of simplicity we assume that A0 ⊆ A1 or A1 ⊆ A0, and
this assumption holds in practical applications. We introduce for a ∈ Ā

Φθ,∞,ν(K(t, a)) = sup
t>0

K(t, a)
t−θ

(1 + | log t|)ν ,(3.1)

where K(t, a) is defined as usual by

K(t, a) = inf
a=a0+a1

(
||a0||A0

+ t||a1||A1

)
,(3.2)

and ν ≥ 0, 0 < θ < 1. If ν = 0, Φθ,∞,0(K(t, a)) = Φθ,∞(K(t, a)). It is easy to verify
that Φθ,∞,ν(K(t, a)) is a norm on Ā. By Āθ,∞,ν we denote the interpolation space
(A0, A1)θ,∞,ν with the norm ||a||θ,∞,ν = Φθ,∞,ν(K(t, a)).

(A0, A1)θ,∞,ν and Φθ,∞,ν , ν > 0, preserve many properties of (A0, A1)θ,∞ and
Φθ,∞. It is trivial to verify by definition the following properties:
(P1) (A0, A1)θ,∞,ν = (A1, A0)1−θ,∞,ν ;
(P2) (A0, A0)θ,∞,ν = A0;
(P3) (A0, A1)θ2,∞,ν ⊂ (A0, A1)θ1,∞,ν if θ1 < θ2;
(P4) (A0, A1)θ1,∞,ν ∩ (A0, A1)θ2,∞,ν ⊂ (A0, A1)θ,∞,ν if θ1 < θ < θ2;
(P5) (A0, A1)θ,∞ ⊂ (A0, A1)θ,∞,ν1 ⊂ (A0, A1)θ,∞,ν2 for ν2 > ν1 > 0;
(P6) (A0, A1)θ−ε,∞,ν ⊂ (A0, A1)θ,∞ for ε ∈ (0, θ) arbitrary.
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Some properties of Φθ,∞ and (A0, A1)θ,∞ may hold, but not obviously, for Φθ,∞,ν
and (A0, A1)θ,∞,ν with ν > 0. We have to argue precisely; for instance, the partial reit-
eration theorems (Theorem 3.4) needed to be proved for the space (A0, A1)θ,∞,ν . Some
properties of Φθ,∞ and (A0, A1)θ,∞ may no longer stand for Φθ,∞,ν and
(A0, A1)θ,∞,ν , which we need to modify substantially. For instance, unlike (A0, A1)θ,∞,
the space (A0, A1)θ,∞,ν with ν > 0 is not exact of exponent θ; instead, it is only a
uniform interpolation space. We elaborate it in Theorem 3.2, which is very essential
to the theory of interpolation spaces and analysis of the approximation errors for
functions of rγ logν r-type.

Lemma 3.1. Let a ∈ (A0, A1), 0 < θ < 1, ν ≥ 0, and t, s > 0. Then

Φθ,∞,ν(K(t/s, a)) ≤ s−θ (1 + | log s|)ν Φθ,∞,ν (K(t, a)).(3.3)

Proof. For ν = 0 it is a standard argument for Besov spaces; we refer to [11]. We
now assume that ν > 0. By the definition (3.2) we have

Φθ,∞,ν(K(t/s, a)) = sup
t>0

t−θK(t/s, a)
(1 + | log t|)ν = s−θ sup

t>0
g(t)ν

t−θK(t, a)
(1 + | log t|)ν ,(3.4)

where g(t) = (1 + | log t|)/(1 + | log t+ log s|). We estimate g(t) for s > 1 and s ≤ 1.
In both cases we can easily prove that g(t) has maximum value at t = 1/s. Hence,

g(t) ≤ g(1/s) = 1 + | log s|.(3.5)

The combination of (3.4) and (3.5) yields (3.3) immediately.
Remark 3.1. The inequality (3.3) becomes an equality if ν = 0.
Theorem 3.2. Let T be an operator Ā = (A0, A1) −→ B̄ = (B0, B1) and let

||T ||i, i = 0, 1, be the norm of the operator Ai −→ Bi. Then T is an operator
Āθ,∞,ν −→ B̄θ,∞,ν for 0 < θ < 1, ν ≥ 0, and

||T || = ||T ||Ā
θ,∞,ν

−→B̄
θ,∞,ν

≤
(
1 +

∣∣∣∣ log ||T ||1||T ||0

∣∣∣∣
)ν

||T ||1−θ0 ||T ||θ1.(3.6)

Proof. For any a = a0 + a1 ∈ Ā with ai ∈ Ai, i = 0, 1,

K(t, T a) = inf
a=a0+a1

(
||T a0||B0

+ t ||T a1||B1

)

≤ inf
a=a0+a1

(
||T ||0 ||a0||A0

+ t ||T ||1 ||a1||A1

)

≤ ||T ||0 inf
a=a0+a1

(
||a0||A0

+ t
s ||a1||A1

)
= ||T ||0 K( ts , a)

with s = ||T ||0/||T ||1. By Lemma 3.1

||T a||θ,∞,ν = sup
t>0

t−θ

(1 + | log t|)ν K(t, T a) ≤ ||T ||0 sup
t>0

t−θ

(1 + | log t|)ν K( ts , a)

≤ ||T ||0 s−θ (1 + | log s|)ν sup
t>0

t−θK(t, a)
(1 + | log t|)ν

≤ ||T ||1−θ0 ||T ||θ1
(
1 +

∣∣∣∣ log ||T ||1||T ||0

∣∣∣∣
)ν

||a||θ,∞,ν ,

which leads to (3.6) immediately.
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Corollary 3.3. (A0, A1)θ,∞,ν , ν ≥ 0, is a uniform interpolation space, and it
is exact of exponent θ if ν = 0.

Proof. Due to (3.6) it holds that for ν ≥ 0

||T || ≤ C max(||T ||0, ||T ||1).

According to the definitions (for the definitions and properties of uniform and ex-
act interpolation spaces, we refer to, e.g., [11]), (A0, A1)θ,∞,ν , ν > 0, is a uniform
interpolation space. For ν = 0, it is true by a standard argument (see, e.g., [11]) that

||T || ≤ ||T ||1−θ0 ||T ||θ1,

which implies that (A0, A1)θ,∞,0 is exact of exponent θ.
Theorem 3.4 (partial reiteration). Let Xi = (A0, A1)θi,∞ with θi ∈ (0, 1), � =

1, 2. Then for η ∈ (0, 1), ν ≥ 0 and θ = (1− η)θ0 + η θ1

(X0, X1)η,∞,ν = (A0, A1)θ,∞,ν .(3.7)

Remark 3.2. The reiteration theorem for modified interpolation spaces does not
stand in general; i.e., if Xi = (A0, A1)θi,∞,ν with ν > 0, then (3.7) may not be
true. The theorem holds only for the special case that Xi, i = 1, 2, are the exact
interpolation space (A0, A1)θi,∞. We call it the partial reiteration theorem, which is
sufficient for the need of our approximation purpose.

The proof of the theorem is not trivial; we need to introduce the modified inter-
polation space defined by the J-method. For the J-method we refer to [11].

Let a ∈ ∆(Ā) = A0 ∩A1 and define

J(t, a) = J(t, a, Ā) = max
(
||a||A0

, t ||a||A1

)
.

By Āθ,∞,ν,J we denote the spaces defined by the J-method; meanwhile, by Āθ,∞,ν,K or
Aθ,∞,ν we denote those defined by the K-method. The space Āθ,∞,ν,J is now defined
as follows: The elements a in Āθ,∞,ν,J are those in

∑
(Ā) = A1 ∪ A2 which can be

represented by

a =

∫ ∞

0

u(s) ds,(3.8)

where u ∈ ∆(Ā) is measurable with values in ∆(Ā), and

Φθ,∞,ν
(
J(t, u(t))

)
= sup
t>0

t−θ J(t, u(t))
(1 + | log t|)ν < ∞(3.9)

for 0 < θ < 1. The norm of Āθ,∞,ν,J is defined as

||a||θ,∞,ν,J = inf
u
Φθ,∞,ν

(
J(t, u(t))

)
,(3.10)

where the infimum is taken over all u satisfying (3.8).
It was proven in Lemma 3.1 that Φθ,∞,ν , ν > 0, is not an exact functor of exponent

θ for K(t, a). The next lemma will show that it is not an exact functor of exponent
θ for J(t, u(t)) either.
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Lemma 3.5. For u ∈ ∆(Ā), θ ∈ (0, 1), ν ≥ 0 integer, and t, s > 0, there holds

Φθ,∞,ν
(
J(t/s, u(t/s))

)
≤ s−θ (1 + | log s|)ν Φθ,∞,ν

(
J(t, u(t))

)
.(3.11)

Proof. Due to the definition (3.1),

Φθ,∞,ν
(
J(t/s, u(t/s))

)
= sup
t>0

t−θ J(t/s, u(t/s))
(1 + | log t|)ν = s−θ sup

t′>0

t′−θ J(t′, u(t′))
(1 + | log t′ + log s|)ν

= s−θ sup
t′>0

(g(t′))ν
t′−θ J(t′, u(t′))
(1 + | log t′|)ν ,

where g(t′) = (1+| log t′|)
(1+| log t′+log s|) . It has been shown in Lemma 3.1 that for all t

′ ∈ (0,∞)
and s ∈ (0,∞)

|g(t′)| ≤ (1 + | log s|)ν ,
which leads to (3.11) immediately.

It is well known that the spaces Āθ,∞,ν,K and Āθ,∞,ν,J are equivalent for ν = 0.
The equivalence theorem can be proved for integers ν > 0 by proceeding the arguments
for ν = 0 with some very straightforward modifications, which we will not elaborate
on here; instead we refer to, e.g., [11, Theorem 3.3].

Theorem 3.6. If 0 < θ < 1, then the spaces Āθ,∞,ν,K = Āθ,∞,ν,J with equivalent
norms.

We now are able to prove Theorem 3.4.
Proof of Theorem 3.4. (1) Prove

(X0, X1)η,∞,ν ⊂ (A0, A1)θ,∞,ν .(3.12)

Let a ∈ (X0, X1)η,∞,ν . Then a = a0 + a1 with ai ∈ Xi, i = 0, 1, and

K(t, a, Ā) ≤ C tθi ||ai||Xi
, i = 0, 1.

Since K(t, a, Ā) is a norm on
∑
(Ā),

K(t, a; Ā) ≤ K(t, a0; Ā) +K(t, a1; Ā) ≤ C
(
tθ0 ||a0||X0

+ tθ1 ||a1||X1

)
= C tθ0

(
||a0||X0

+ tθ1−θ0 ||a1||X1

)
.

Here we may assume without losing generality that θ0 < θ1. Therefore

sup
t>0

t−θK(t, a, Ā)
(1 + | log t|)ν ≤ C sup

t>0
t−(θ−θ0)

(
||a0||X0

+ tθ1−θ0 ||a1||X1

)
(1 + | log t|)ν .

Setting s = tθ1−θ0 and noting that 0 < θ1 − θ0 < 1 and η = (θ − θ0)/(θ1 − θ0), we
have

||a||Ā
θ,∞,ν

≤ C sup
s>0

s−η
(
||a0||X0

+ s ||a1||X1

)
(1 + | log s|)ν = C ||a||X̄η,∞,ν

,

which implies (3.12).
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(2) Prove

(A0, A1)θ,∞,ν ⊂ (X0, X1)η,∞,ν .(3.13)

Assume that a ∈ (A0, A1)θ,∞,ν with a representation a =
∫∞
0

u(s) dss , u(s) ∈ ∆(Ā).
Consider

||a||X̄η,∞,ν
= sup
s>0

s−ηK(s, a; X̄)
(1 + | log s|)ν ,

and we have, by changing variable s = tθ1−θ0 ,

||a||X̄η,∞,ν
≤ sup
t>0

t−(θ−θ0) K(tθ1−θ0 , a; X̄)
(1 + | log t|)ν .

Due to Lemma 3.2.1 of [11]

tθ0 K(tθ1−θ0 , a; X̄) ≤
∫ ∞

0

tθ0 K(tθ1−θ0 , u(s); X̄)
ds

s

≤
∫ ∞

0

min

(
1,

(
t

s

)θ1−θ0)
tθ0 J(sθ1−θ0 , u(s); X̄)

ds

s
.

Since Xi = (A0, A1)θi,∞, there holds (see [8, Theorem 3.2.2])

||a||X
i
≤ Ci s

−θi J(s, a, Ā),

which implies

J(sθ1−θ0 , u(s), X̄) = maxs>0

(
||u(s)||X0

, sθ1−θ0 ||u(s)||X1

)
≤ max(C0, C1)s

−θ0 J(s, u(s), Ā)

and

tθ0 K(tθ1−θ0 , a; X̄) ≤ C

∫ ∞

0

min

((
t

s

)θ0
,

(
t

s

)θ1)
J(s, u(s), Ā)

ds

s
.

Changing variable s = σ t for fixed t > 0, we have

tθ0 K(tθ1−θ0 , a; X̄) ≤ C

∫ ∞

0

min(σ−θ0 , σ−θ1)J(σ t, u(σ t), Ā)
dσ

σ
,

and by Lemma 3.5

sup
t>0

t−(θ+θ0) K(tθ1−θ0 , a; X̄)
(1 + | log t|)ν ≤ C

∫ ∞

0

min(σ−θ0 , σ−θ1) Φθ,∞,ν (J(σ t, u(σ t), Ā)
dσ

σ
,

≤ C

∫ ∞

0

min(σ−θ0 , σ−θ1)σθ(1 + | log(1/σ)|)ν dσ

σ
Φθ,∞,ν J(t, u(t), Ā),

where the above integral is finite for θ = (1−η)θ0+η θ1, θ0 
= θ1, η ∈ (0, 1), and ν ≥ 0.

By Theorem 3.6, we have

||a||X̄η,∞,ν
≤ sup
t>0

t−(θ−θ0) K(tθ1−θ0 , a; X̄)
(1 + | log t|)ν ≤ C ||a||Ā

θ,∞,ν,J
≤ C ||a||Ā

θ,∞,ν
,

which implies (3.13) and completes the proof.
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3.2. Characterization of functions of rγ logν r-type in terms of modi-
fied weighted Besov spaces Bs,β

ν (Q). In the framework of modified interpolation
spaces (A0, A1)θ,∞,ν , we now introduce the modified weighted Besov space Bs,βν (Q),
ν ≥ 0:

Bs,βν (Q) =
(
H�,β(Q), Hk,β(Q)

)
θ,∞,ν

(3.14)

with θ ∈ (0, 1) and s = (1 − θ)� + θ k, βi > −1, i = 1, 2. The singular functions of
rγ logν r-type can be precisely characterized by this space.

Remark 3.3. Due to Theorem 3.4 (partial reiteration), the definition of Bs,βν (Q)
is independent of the individual values of �, k, and θ. Namely,(

H�′,β(Q), Hk′,β(Q)
)
θ′,∞,ν

=
(
H�,β(Q), Hk,β(Q)

)
θ,∞,ν

= Bs,βν (Q)

with θ′ = s−�′
k′−�′ and θ = s−�

k−� , where 0 ≤ �, �′ < s < k, k′.
We now consider functions of rγ logν r-type. Let

u(x) = rγ logν r χ(r) Φ(θ)(3.15)

be defined on Q = (−1, 1)2 with γ > 0 and integer ν ≥ 0 where χ(r) and Φ(θ) are
smooth functions satisfying (2.12) and (2.13), respectively. Obviously supp. u ⊂
R0 = Rr0,θ0

⊂ Q,R0 is given in (2.14). Arguing as we did in the proof of Lemma 2.4,

we can prove a similar lemma.
Lemma 3.7. Let u = rγ logν r χ(r) Φ(θ) with γ > 0 and integer ν ≥ 0. Then

u(x) ∈ Hk,β(Q) with β1, β2 > −1 and k = [2 + 2γ + β1 + β2].
Remark 3.4. Lemmas 3.7 and 2.4 indicate that the singular function of rγ logν r-

type belong to Hk,β(Q) with k = [2 + 2γ + β1 + β2] for ν ≥ 0. The factor logν r
with ν > 0 does not affect the maximum value of k, but it affects the value of s for
the space Bs,β(Q) which u(x) belongs to, namely, u ∈ B2+2γ+β1+β2−ε,β(Q), ε > 0
arbitrary. The loss can be recovered only if we use the space Bs,βν (Q), instead of
Bs,β(Q), to characterize the singularity of rγ logν r-type.

Theorem 3.8. Let u = rγ logν r χ(r) Φ(θ) be given in (3.15) with γ > 0 and
integer ν ≥ 0. Then u ∈ Bs,βν (Q) with β1, β2 > −1 and s = 2 + 2γ + β1 + β2.

Proof. Let χδ(r) = χ( rδ ) with 0 < δ < r0, and u = v + w with v = χδ(r)u and
w = (1 − χδ(r))u. Then v ∈ H�,β(Q) with � < 2 + 2γ + β1 + β2 due to Lemma 3.7,
and w ∈ Hk,β(Q) for k > 2 + 2γ + β1 + β2. Note that for |α| = �′ ≤ �

|Dαv| ≤ C

�′∑
t=0

δ−(�′−t) rγ−t | log r|ν for x ∈ R0

and

Dαv = 0 for x 
∈ R0.

Therefore, for |α| = �′ < �∫
Q

|Dαv|2(1 − x2
1)
α1+β1(1− x2

2)
α2+β2 dx

≤ C

�′∑
t=0

δ−2(�′−t)
∫
R

δ,θ
0

r2(γ−t)+�′+β1+β2 | log r|2νdx

≤ C

�′∑
t=0

δ−2(�′−t)
∫ δ

0

r2γ−2t+�′+1+β1+β2 | log r|2νdr.
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Noting that ν is an integer, we have by integration by part

∫ δ

0

r2γ−2t+�′+1+β1+β2 | log r|2νdr

= δ2γ−2t+�′+2+β1+β2

2ν∑
m=0

| log δ|2ν−mΓ(2ν + 1)
(2γ − 2t+ �′ + 2 + β1 + β2)m+1Γ(2ν −m− 1)

+
Γ(2ν + 1)

(2γ − 2t+ �′ + 2 + β1 + β2)2ν

∫ δ

0

r2γ−2t+�′+1+β1+β2 dr

≤ C δ2γ−2t+�′+2+β1+β2 | log δ|2ν ,

which implies, for |α| ≤ � < 2 + 2γ + β1 + β2,

||v||2H�,β(Q) ≤ C δ2γ−�+2+β1+β2 | log δ|2ν .(3.16)

Note that for |α| = �′ ≤ k

|Dαw| ≤ C

{
(1− χδ)r

γ−�′ +
�′−1∑
t=0

d�
′−t(1− χδ(r))

dr�′−t
rγ−t

}
;(3.17)

the first term on the right hand of (3.17) vanishes for r < δ/2, and the second term
vanishes for r < δ/2 and r > δ. This implies∫

Q

|Dαw|2(1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx

≤ C

{
�′−1∑
t=0

δ2(�−t)
∫ δ

δ
2

r2γ−2t+�′+1+β1+β2 | log r|2νdr

+

∫ r0

δ
2

r2γ−�′+1+β1+β2 | log r|2νdr
}

≤ C | log δ|2ν
{
δ2γ−�′+2+β1+β2 + (r2γ−�′+2+β1+β2

0 + δ2γ−�′+2+β1+β2)
}
.

For �′ < 2 + 2γ + β1 + β2

(r2γ−�′+1
0 + δ2γ−�′+2+β1+β2) ≤ C,

and for 2 + 2γ + β1 + β2 ≤ �′ ≤ k

(ρ2γ−�′+2+β1+β2 + δ2γ−�′+2+β1+β2) ≤ C δ2γ−k+2+β1+β2 ,

which yields for |α| ≤ k∫
Q

|Dαw|2 (1− x2
1)
α1+β1 (1− x2

2)
α2+β2 dx ≤ C δ2γ−k+2+β1+β2 | log δ|2ν .(3.18)

We now have by (3.16) and (3.18) that for 0 < t < 1

K(u, t) = inf
u=u0+u1

(
||u0||H�,β(Q) + t ||u1||Hk,β(Q)

)
≤
(
||v||H�,β(Q) + t ||w||Hk,β(Q)

)
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≤ C | log δ|ν
(
δγ+1+

β1+β2−�

2 + t δγ+1=
β1+β2−k

2

)
.

Selecting δ = t
2

k−� we have for 0 ≤ t < 1

K(u, t) ≤ C | log δ|νδγ+1+
β1+β2−�

2 ≤ C | log t|νt 2γ+2+β1+β2−�

k−� ,

and selecting θ = 2γ+2+β1+β2−�
k−� ∈ (0, 1) we get

sup
0<t<1

t−θK(u, t)
(1 + | log t|)ν ≤ C.(3.19)

For t ≥ 1 and θ selected as above, we have

sup
t>1

t−θK(u, t)
(1 + | log t|)ν ≤ ||u||H�,β(Q) ≤ C.(3.20)

Equations (3.19) and (3.20) imply u ∈ (H�,β(Q), Hk,β(Q))θ,∞,ν for any integers � and
k such that 0 < � < 2 + 2γ + β1 + β2 < k with θ = 2γ+2+β1+β2−�

k−� . By Theorem 3.4

(partial reiteration theorem) these spaces are the same. We denoted Bs,βν (Q) with
s = 2+2γ+β1+β2, which depends on the value of s but not on the individual value
of �, k, β, and θ.

Theorem 3.8 stands for all γ > 0 and integer ν ≥ 0. If γ is an integer and ν > 0,
a sharper result should be expected.

Theorem 3.9. If γ > 0 is an integer and integer ν > 0, then u = rγ logν r χ(r) Φ(θ)

∈ Bs,βν−1(Q) with s = 2 + 2γ + β1 + β2 and βi > −1, i = 1, 2.
Proof. Let δ ∈ (0, r0), and let u = v + w with

w = rγ logν(r + δ) χ(r) Φ(θ)

=

γ∑
�=0

(
�
γ

)
(r + δ)�(−δ)γ−� logν(r + δ) χ(r) Φ(θ)

and

v = rγ
(
logν r − logν(r + δ)

)
χ(r) Φ(θ)

= rγ
(
log r − log(r + δ)

) ν−1∑
�=0

logν−1−� r log�(r + δ).

Note that for m > � and ν ≥ 1

∣∣∣∣dmdrm (r + δ)� logν(r + δ)

∣∣∣∣ ≤ C (r + δ)�−m logν−1(r + δ)

and for m < � ∣∣∣∣dmdrm (r + δ)� logν(r + δ)

∣∣∣∣ ≤ C (r + δ)�−m logν(r + δ),
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which implies that for m > γ

|w|2Hm,β(Q) ≤ C

γ∑
�=0

δ2(γ−�)
∫ 1

0

(r + δ)2(�−m) | log(r + δ)|2(ν−1)rm+1+β1+β2 dr

≤ C

γ∑
�=0

δ2(γ−�)δ2�−m+2+β1+β2 | log δ|2(ν−1)

≤ C δ2γ−m+2+β1+β2 | log δ|2(ν−1)

and for m ≤ γ

|w|2Hm,β(Q) ≤ C

m∑
�=0

δ2(γ−�)
∫ 1

0

(r + δ)2(�−m) | log(r + δ)|2νrm+1+β1+β2 dr

≤ C

m∑
�=0

δ2(γ−�)δ2�−m+2+β1+β2 | log δ|2ν

≤ C δ2γ−m+2+β1+β2 | log δ|2ν .

Therefore, there holds for k > 2γ + 2 + β1 + β2

||w||2Hk,β(Q) ≤ C δ2γ−k+2+β1+β2 | log δ|2(ν−1).(3.21)

For 0 < r < δ we have

|v| = rγ log

(
1 +

δ

r

) ∣∣∣∣
ν−1∑
�=0

logν−1−� r log�(r + δ)

∣∣∣∣

≤ C rγ log
δ

r

ν−1∑
�=0

| log r|ν−1−� | log(r + δ)|�

≤ C rγ log
δ

r

ν−1∑
�=0

| log r|ν−1−� | log δ|�

and

(3.22)∫ δ

0

|v|2(1− x2
1)
β1(1− x2

2)
β2 dx

≤ C

∫ δ

0

r2γ+1+β1+β2 | log δ

r
|2
ν−1∑
�=0

| log r|2(ν−1−�) | log δ|2�dr

≤ C δ2γ+2+β1+β2 | log δ|2(ν−1)

∫ 1

0

z2γ | log z|2
ν−1∑
�=0

(| log z|+ | log δ|)2(ν−1−�) dz

≤ C δ2γ+2+β1+β2 | log δ|2(ν−1).
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Also we have for δ < r < r0

|v| ≤ rγ
∣∣∣∣ log

(
1 +

δ

r

)∣∣∣∣
ν−1∑
�=0

| log r|ν−1−� | log δ|� ≤ C δ rγ−1
ν−1∑
�=0

| log r|ν−1−� | log δ|�

and

∫ 1

δ

|v|2(1− x2
1)
β1(1− x2

2)
β2 dx ≤ C δ2

∫ 1

δ

r2γ−1+β1+β2

ν−1∑
�=0

| log r|2(ν−1−�) | log δ|2�dr

≤ C δ2γ+2+β1+β2 | log δ|2(ν−1),

which together with (3.22) yields

||v||2H0,β(Q) ≤ C δ2γ+2+β1+β2 | log δ|2(ν−1).(3.23)

Combining (3.21) and (3.22) we have

K(t, u) = infu=u1+u2

(
||u1||H0,β(Q) + t ||u2||Hk,β(Q)

)
≤ ||v||H0,β(Q) + t ||w||Hk,β(Q)

≤ C | log δ|ν−1
(
δγ+1+

β1+β2
2 + t δγ+1+

(β1+β2−k)

2

)
.

Selecting δ = t2/k and θ = (2γ + 2 + β1 + β2)/k we have for 0 < t < 1

t−θK(t, u)
(1 + | log t|)ν−1

≤ C

and for t ≥ 1

t−θK(t, u)
(1 + | log t|)ν−1

≤ C ||u||H0,β(Q),

which leads to

Φθ,∞,ν−1(u) ≤ C

and u ∈ B1+2γ,β
ν−1 (Q).

Combining Theorems 3.8 and 3.9 we have the following theorem.
Theorem 3.10. Let u = rγ logν r χ(r) Φ(θ) be given in (3.15). Then u ∈ Bs,βν∗ (Q)

with s = 2 + 2γ + β1 + β2 and

ν∗ =




ν if γ is not an integer,

ν − 1 if γ is an integer and ν > 0,

0 if ν = 0.

(3.24)

We are interested in the special case that β = (−1/2,−1/2) for the approxima-
bility of the singular functions in the H1- or energy norm without weight.

Corollary 3.11. Let u = rγ logν r χ(r) Φ(θ). Then u ∈ Bs,βν∗ (Q) with s =
1 + 2γ, β = (−1/2,−1/2), and ν∗ given by (3.24).
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3.3. Approximation of the functions of rγ logν r-type based on the
spaces Bs,β

ν (Q). We now are able to establish sharp approximation theorems for
singular functions of rγ logν r-type in the frame of modified Jacobi-weighted Besov
space Bs,βν (Q), ν > 0.

Theorem 3.12. Let u ∈ Bs,βν (Q) with s > 0, and βi > −1, i = 1, 2. Then the
Jacobi -projection up of u on Pp(Q) with p+ 1 ≥ s satisfies for � < s

||u− up||H�,β(Q) ≤ C p−(s−�)(1 + log p)ν ||u||Bs,β
ν (Q).(3.25)

Proof. We write Bs,βν (Q) = (H�,β(Q), Hk,β(Q))θ,∞,ν for k > s > �, with θ = s−�
k−�

and let E u = u− up. Arguing as in the proof of Theorem 2.3, we have

||E u||H�,β(Q) ≤ C ||u||H�,β(Q)

and

||E u||H�,β(Q) ≤ C p−(k−�) ||u||Hk,β(Q).

Due to the property (P2) of the modified interpolation spaces,(
H�,β(Q), H�,β(Q)

)
θ,∞,ν

= H�,β(Q),

and by Theorem 3.4 E is an operator Bs,βν (Q) −→ H�,β(Q), and

||E u||H�,β(Q) ≤ C
(
1 + (k − �) log p

)ν
p−θ(k−�) ||u||Bs,β

ν (Q)

≤ C (1 + log p)ν p−(s−�)||u||Bs,β
ν (Q),

which is (3.25).
Corollary 3.13. Let u(x) = rγ logν r χ(r) Φ(θ) with γ > 0. Then there

exists a polynomial ϕ ∈ Pp(Q) with p ≥ 1 + 2γ + β1 + β2 − � such that for � <
2 + 2γ + β1 + β2, βi > −1, i = 1, 2,

||u− ϕ||H�,β(Q) ≤ C p−(2+2γ+β1+β2−�)(1 + log p)ν
∗ ||u||Bs,β

ν ∗(Q).(3.26)

The approximabilities of functions of rγ logν r-type for general β, given in Corol-
lary 3.13, does not give us the estimation of approximation error in H1-norm. Com-
bining Corollary 3.11 and Theorem 3.12 and using the property (2.15), we will have
a desired result.

Theorem 3.14. Let u(x) = rγ logν r χ(r) Φ(θ) with γ > 0. Then there exists a
polynomial ϕ ∈ Pp(Q) with p ≥ 2γ such that

||u− ϕ||H1(R0) ≤ C p−2γ(1 + log p)ν
∗
,(3.27)

where R0 is given in (2.14) and ν∗ is given in (3.24).
Proof. By Theorem 3.10 and Corollary 3.11, u ∈ Bs,βν∗ (Q), s = 1 + 2γ, β =

(−1/2,−1/2). The arguments used in the proof of Theorem 2.6 can be carried
over except using the estimate (3.25) of Theorem 3.12 instead of (2.10)
of Theorem 2.3.
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As mentioned in the previous section, for applications to boundary value prob-
lems on polygonal domains, the singular solution of rγ logν r-type may satisfy a ho-
mogeneous Dirichlet condition. We should approximate such singular functions by
polynomials vanishing on one or two lines lying in the support R0.

Theorem 3.15. Let u(x) = rγ logν r χ(r) Φ(θ) given in (2.11), and u = 0 on
both lines θ = θκ = arctan(κ) and θ = θ1/κ = arctan(1/κ) (resp., u = 0 on one line
θ = θκ) with 1 > κ ≥ κ0, with κ0 given in (2.15). Then there exists a polynomial
ϕ(x) ∈ Pp(Q), p ≥ max{2, 2γ} (resp., p ≥ max{1, 2γ}) such that ϕ|θ=θκ = ϕ|θ=θ

1/κ
=

0 (resp., ϕ|θ=θκ = 0) and
||u− ϕ(x)||H1(R0)

≤ C p−2γ(1 + log p)ν
∗ ||u||Bν∗s,β(Q)(3.28)

with constant C independent of p, where R0 is the support of u given in (2.14) and
ν∗ is given in (3.24).

Proof. Let u2 =
u(x)
ζ2(x)

if u vanishes on both lines where ζ2(x) is given in (2.24a).

Due to the property (2.15), u2 ∈ Bs,β
[2]

ν∗ (Q) with s = 1+2γ and β[2] = (3/2, 3/2), β =
(−1/2,−1/2), and

||u2(x)||B1+2γ,β[2]

ν∗ (Q)
≤ C ||u(x)||B1+2γ,β

ν∗ (Q).

By Theorem 3.12, there is a polynomial φ ∈ Pp−2(Q) with p ≥ max{2, 2γ} such that
||u2 − φ||

H1,β[2]
(Q)

≤ C p−2γ(1 + log p)ν
∗ ||u2(x)||B1+2γ,β[2]

ν∗ (Q)
.

Let ϕ(x) = ζ2(x)φ(x), which vanishes on both lines. Then, using Lemma 2.8 and the
property (2.15) and arguing as in the proof of Theorem 2.10, we have (3.28). The
above arguments can be carried out for u vanishing on one line, by replacing u2 and
ζ2(x) with u1 and ζ1(x), respectively, using Lemma 2.9 instead of Lemma 2.8.

3.4. The extreme values of the indices s and ν′ of weighted Besov space
Bs,β

ν′ (Q) for the functions of rγ logν r-type. In previous sections we have shown
that the functions of rγ logν r-type with γ > 0 and integer ν ≥ 0 belong to the spaces
Bs,βν∗ (Q) with s = 1 + 2γ, β = (−1/2,−1/2), and ν∗ given in (3.24). Is (1 + 2γ) the
maximum value of s, and is ν∗ the minimum value of ν′ for Bs,βν′ (Q) which contains
these functions? This question is equivalent to asking whether p−2γ(1+log p)ν

∗
is the

optimal rate of the approximation error to these functions. The following theorem
tells that 1 + 2γ and ν∗ are the optimal values of s and ν′ for functions of this type.

Theorem 3.16. Let u = rγ logν r χ(r) Φ(θ), γ > 0, ν ≥ 0, be given in (3.15).

Then u∈̄Bs,βν′ (Q) with β = (−1/2,−1/2) for any s > 1 + 2γ or for any ν′ < ν∗ if
s = 1 + 2γ, where ν∗ is given in (3.24).

Proof. Suppose that u ∈ Bs,βν′ (Q) with s > 1 + 2γ or s = 1 + 2γ, ν′ < ν∗. Then
by Theorem 3.14

inf
ϕ∈Pp(Q)

||u− ϕ||H1(R0) ≤ C p−(s−1)(1 + log p)ν
′
.(3.29)

On the other hand, it has been proved in [3, Theorems 2.9–2.11] that

inf
ϕ∈Pp(Q)

||u− ϕ||H1(R0) ≥ C p−2γ(1 + log p)ν
∗
.(3.30)

The contradiction between (3.29) and (3.30) implies the assertion of the
theorem.
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Table 4.1
The value of k and s in Sobolev, Besov, and weighted Besov spaces for functions of rγ-type and

rγ logν r-type.

Space Hk(Q) Hk,β(Q) Hs(Q) Bs(Q) Bs,β(Q) Bs,β
ν∗ (Q)

rγ 1 + [γ] 1 + [2γ] 1 + γ − ε 1 + γ 1 + 2γ 1 + 2γ

rγ logν r 1 + [γ] 1 + [2γ] 1 + γ − ε 1 + γ − ε 1 + 2γ − ε 1 + 2γ

Table 4.2
Accuracy of approximation of the h- and p-version to functions of rγ- and rγ logν r-type based

on Sobolev, Besov, and weighted Besov spaces.

h-version p-version

Space Hs(Q) Bs(Q) Hs(Q) Bs(Q) Bs,β(Q) Bs,β
ν∗ (Q)

rγ hγ−ε hγ p−(γ−ε) p−γ p−2γ p−2γ

rγ logν r hγ−ε hγ−ε p−(γ−ε) p−(γ−ε) p−(2γ−ε) p−2γ logν
∗
p

4. Concluding remarks. In order to effectively analyze approximability of
functions including singular functions of rγ-type and rγ logν r-type, we successfully
introduced the weighted Besov spaces Bs,β and Bs,βν , respectively. These two spaces
could lead to the optimal convergence rate and to the sharp direct and inverse theo-
rems for the p-version of the finite element method (see [4, 5]).

As many function spaces with and without weights, these two spaces characterize
the singularities of solutions of problems in nonsmooth domains and to serve various
mathematical interests, such as approximation. The selection of function spaces, to
best serve our numerical analysis, depends on not only the characters of the solutions
but also the numerical methods selected to approximate the solutions. The values of
k and s in Sobolev spaces and Besov spaces with and without weights for functions
of rγ-type and rγ logν r-type are listed in Table 4.1, where γ > 0 and ν ≥ 0, k is
an integer, s is real, [γ] denotes the largest integer < γ, etc. These values directly
yield the rates of convergence given in Table 4.2 for the h- and p-versions of the finite
element method, with ν∗ given in (3.24), and the error is measured in the H1-norm.

For the elliptic problems on smooth domains, the regularity results in Sobolev
space Hs(Q) may very adequately serve numerical analysis. For the linear elliptic
problems on nonsmooth domain, the regularity in usual Besov space Bs(Q) can lead
to the optimal rate of convergence for the h-version of the finite element method,
and it has been shown in this paper that the Jacobi-weighted Besov spaces Bs,β(Q)
and Bs,βν (Q), ν > 0, are the best mathematical tools to analyze the convergence rate
of the p-version of the finite element method. It is well known that the regularity
theory, which can lead to the exponential convergence for the h-p version associated
with geometric meshes, is the one in the framework of countably normed spaces B�β(Q)
(see [2, 7, 18]), instead of the Jacobi-weighted Besov spaces Bs,βν (Q).

The Jacobi-weighted Besov spaces can be introduced for analysis of approxima-
bility of singular functions in three dimensions. Since the singular functions have
different characters in different singular neighborhoods, the Jacobi-weighted Besov
spaces should be furnished with different weight functions accordingly. We refer to
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[6] for the details.
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[3] I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation
errors in the p-version of the finite element method in two dimensions, Numer. Math., 85
(2000), pp. 219–255.
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[6] I. Babuška and B.Q. Guo, Direct and Inverse Approximation Theorems of the p-Version of
the Finite Element Method in Three Dimensions, Part 1: Approximability of Functions in
the Framework of Weighted Besov Spaces, in preparation.
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