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Abstra
tThis is the se
ond of a series devoted to the dire
t and inverse approximationtheorems of the p-version of the �nite element method in the framework of theweighted Besov spa
es. In this paper, we 
ombine the approximability of singularsolutions in the Ja
obi-weighted Besov spa
es, whi
h were analyzed in the previouspaper [4℄, with the te
hnique of partition of unity in order to prove the optimal rateof 
onvergen
e of the p-version of the �nite element method for ellipti
 boundaryvalue problems on polygonal domains.

1



1 Introdu
tionThe p-version, the h-version and the h-p version are the three basi
 approa
hesof the �nite element method(FEM). The p-version of FEM a
hieves a

ura
y byin
reasing the element degree p on a �xed mesh. The 
lassi
al Sobolev and Besovspa
es are e�e
tive tools for the error analysis of the h-version of FEM, but theyare not adequate for the analysis of the p-version of FEM. In parti
ular, when exa
tsolutions of boundary value problems on non-smooth domains have singularities,these spa
es are not appropriate for proving the optimal 
onvergen
e of the p-versionof FEM.In order to address this issue, various fun
tion spa
es have been used sin
ethe early 1980's. Very re
ently the Ja
obi-weighted Besov and Sobolev spa
es wereintrodu
ed in [4℄. They are appropriate spa
es for the analysis of the p-version �niteelement approximation of singular solutions of r
 log� r-type. Singular solutions ofr
 log� r-type arise from ellipti
 problems on non-smooth domains, for instan
e, theelasti
ity problems on domains with pie
ewise smooth boundary. Hen
e, the studyon the singular solutions of this type and their best �nite element approximationin the framework of proper spa
es is of great importan
e theoreti
ally as well aspra
ti
ally.The weighted Besov spa
es Bs;�� and Sobolev spa
es Hs;� introdu
ed in [4℄ fortwo dimensions are furnished with Ja
obi weights depending on s. The uniquedynami
al stru
ture of the Ja
obi-weighted Besov and Sobolev spa
es leads to ex-tremely important approximation properties su
h as the uniform proje
tions andsharp inverse inequality. These spa
es allow us to show that the polynomial ap-proximation is optimal in the sense of N-width(see [17℄), and play a signi�
ant rolein the proof of the inverse approximation theorems in [5℄.The main result of this paper is Theorem 3.4 whi
h gives the optimal upperand lower bounds of the error in the p-version of FEM for ellipti
 boundary valueproblems on polygonal domains 
. More pre
isely, when the solutions u have sin-2



gularities of r
 log� r-type in ea
h neighborhood of verti
es of 
, we have shownthat, as p in
reases,C1p�2
(1 + log�� p) � ku� upkH1(
) � C2p�2
(1 + log�� p);where �� = � � 1 if 
 is an integer > 0, and �� = � otherwise.We now provide a brief history of the approximation theory of the p-version ofFEM. The �rst error analysis for the p-version of FEM was given in [11℄ in 1981 forsolutions u 2 Hk(
); k � 0 :ku� upkH1(
) � C(�)p�k+1+�kukHk(
);and for the solution u with singularity of r
-type,ku� upkH1(
) � C(�)p�2
+�;with � > 0, arbitrary and 
onstant C(�) depending on �. The upper bound of theapproximation error was not sharp. In 1987 the result was improved in [9℄ where� was removed. Both papers did not deal with the singularity of r
 log� r-type,and they did not give lower bound of the eroor. The singularity of r
 -type wastreated by spe
ial te
hniques in these papers. The singular solution u = r
 log� rwas studied by [10℄ in 1987. In the h-p setting with quasi-uniform mesh. It wasshown that ku� upkH1(
) � Cp�2
(1 + log� p):where there was no distin
tion between non-integer 
 and integer 
. The upperbound of the error, as given above, is not optimal for integer 
. Also the lowerbound of the error was not addressed in [10℄. Sin
e then there had been no progresson the approximation theory of the p-version of FEM in two dimensions until thevery late 1990's.The p-version of FEM is 
losely related to the spe
tral methods. But the sin-gularities of r
 log� r-type and the related best approximation were not addressedin [1, 13℄ and [18, 19, 20, 21℄, where Sobolev spa
es with a �xed Ja
obi-weight was3



introdu
ed and was used to analyze the upper bound of the error in the spe
tralmethod for singular equations with degenerate 
oeÆ
ients in di�erential operators.Using the framework of the Ja
obi-weighted Besov spa
es and Sobolev spa
es,whi
h are furnished with dynami
 Ja
obi-weights, we derived both upper and lowerbounds of the error measured in H1-norm for ellipti
 boundary value problems onnon-smooth domains. Moreover, we showed that the two bounds are of the sameorder. Thus, the issue on the optimal rate of 
onvergen
e in the p-version �niteelement approximation in two dimensions is 
ompletely resolved. For the �rst timein the 
ontext of singular solutions, the lower bound of the error is proved in thispaper. The proof for the upper bound of the error in this paper is quite di�erentfrom those in the previous papers [9, 10, 11℄. Namely, we 
ombine the te
hnique ofpartition of unity with the approximability of singular solutions in the frameworkof the Ja
obi-weighted Besov spa
es. It not only simpli�es the proof, but also makeit more robust to analysis for all dimensions. A simple version of the theorem wasaddressedd in [3℄ without 
omplete and detailed proof in
orporating all types ofboundary 
onditions.This is the se
ond paper of a series devoted to the dire
t and inverse theorems ofthe p-version of FEM in two dimensions. In Se
tion 2 we shall quote the notationsand de�nitions of Ja
obi-weighted Besov spa
es Bs;� and Bs;�� , and major theoremson approximability of fun
tions in these spa
es, whi
h were proved in [4℄. The upperand lower bounds of the approximation error in the p-version of FEM are analyzedin Se
tion 3, whi
h proves the optimality of the error estimate. Some 
on
ludingremarks are given in the last se
tion.
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2 Preliminaries2.1 Weighted Besov spa
es Bs;�(Q) and Bs;�� (Q)Let Q = I2 = (�1; 1)2, and letw�;�(x) = 2Yi=1(1� x2i )�i+�i (2:1)be a weight fun
tion with integer �i � 0 and real number �i > �1, whi
h is refereedto as Ja
obi weight.The weighted Sobolev spa
e Hk;�(Q) is de�ned as a 
losure of C1 fun
tions inthe norm with the Ja
obi weightjjujj2Hk;�(Q) = kXj�j=0 ZQ jD�uj2 w�;�(x) dx (2:2)where D�u = ux�11 ;x�22 , � = (�1; �2); j�j = �1+�2, and � = (�1; �2). By jujHk;�(Q)we denote the semi-norm,jujHk;�(Q) = Xj�j=k ZQ jD�uj2 w�;�(x) dxThe weighted Besov spa
e Bs;�(Q) is de�ned as an interpolation spa
e by theK-method, i.e. Bs;�(Q) = �H`;�(Q); Hk;�(Q)��;1where 0 < � < 1; s = (1� �)`+ �k, ` and k are integers, ` < k, andjjujjBs;�(Q) = supt>0 t��K(t; u) (2:3)where K(t; u) = infu=v+w �jjvjjH`;�(Q) + tjjwjjHk;� (Q)� (2:4)The modi�ed weighted Besov spa
e Bs;�� (Q) with � � 0 is de�ned as an inter-polation spa
e Bs;�� (Q) = �H`;�(Q); Hk;�(Q)��;1;�5



with a modi�ed norm jjujjBs;�� (Q) = supt>0K(t; u) t��(1 + j log tj)� (2:5)Remark 2.1. The spa
e Bs;�� (Q) with � > 0 is only a uniform interpolation spa
e,and Bs;�0 (Q) = Bs;�(Q) is a standard exa
t interpolation spa
e of exponent �. Forthe de�nition and properties of exa
t interpolation spa
es of exponent � we refer to[12℄, and for the proof of various properties of uniform interpolation spa
e Bs;�� (Q)with integer � > 0 we refer to [4℄.Let Pp(Q) be the set of all polynomials of degree (separate) � p. Then we havethe following approximation property:Theorem 2.1. (Theorem 2.2 of [4℄) Let u 2 Hk;�(Q) with integer k � 1, �i > �1,1 � i � 2, and up be its H0;�(Q)-proje
tion on Pp(Q). Then we have for integer` � k � p+ 1 ju� upjH`;�(Q) � C �1p�k�` jujHk;�(Q) : (2:6)�Remark 2.2. For u 2 Hk;�(Q) with integer k � 0, the H0;�(Q)-proje
tion of u onPp(Q) is H`;�(Q)-proje
tion on Pp(Q) for any 0 � ` � k.Using the properties of interpolation spa
es, we have approximation theoremsfor fun
tions in Besov spa
es Bs;�(Q) and Bs;�� (Q).Theorem 2.2. (Theorem 2.3 of [4℄) Let u 2 Bs;�(Q), s > 0, �i = (�1; �2), �i > �1,1 � i � 2, and let up be the H0;�(Q)- proje
tion of u on Pp(Q). Then for any integer` < s there holds jju� upjjH`;�(Q) � C �1p�s�` jjujjBs;�(Q) (2:7)with 
onstant C independent of p. �Theorem 2.3 (Theorem 3.7 of [4℄) Let u 2 Bs;�� (Q), s > 0, �i = (�1; �2), �i > �1,1 � i � 2, integer � � 0, and let up be the H0;�(Q)- proje
tion of u on Pp(Q).6



Then for any integer ` < s there holdsjju� upjjH`;�(Q) � C �1p�s�` (1 + log p)� jjujjBs;�� (Q) (2:8)with 
onstant C independent of p. �2.2 Approximability of singular fun
tions of r
-type and r
 log� r-typeLet (r; �) be the polar 
oordinates with respe
t to the vertex (�1;�1), where r =f(x1+1)2+(x2+1)2g1=2, � = ar
tan�x2 + 1x1 + 1�, and let for 
 > 0 and integer � � 0u(x) = r
 �(r) �(�) (2:9)and v(x) = r
 log� r �(r) �(�) (2:10)are fun
tions de�ned on Q = (�1; 1)2, where �(r) and �(�) are C1 fun
tions su
hthat for 0 < r0 < 2 �(r) = 8<: 1 for 0 < r � r020 for r � r0 (2:11)and for �0 2 (0; �=2) �(�) = 0 for � 62 (�0; �=2� �0): (2:12)Therefore, u(x) has a support R0 = Rr0;�0 withRr0;�0 = �x 2 Q ��� r < r0; �0 < � < �=2� �0� (2:13)whi
h is shown in Fig. 2.1. For x 2 R0 we have 0 < 1� r0 < (1� xi) < 2, and1�0 � 1 + x21 + x1 � �0 = tan �0: (2:15)Now we 
hara
terize the singularity of u(x) and v(x) in terms of the weightedBesov spa
es Bs;�(Q) and Bs;�� (Q). 7
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Fig. 2.1 Square Domain Q and subregion Rr0;�0Theorem 2.4 (Theorem 2.4 of [4℄) Let u(x) = r
 �(r) �(�) be given by (2.9) with
 > 0. Then u 2 Bs;�(Q) with s = 1 + 2
, � = (�1=2;�1=2). �Theorem 2.5. (Theorem 3.4-3.5 of [4℄) Let v = r
 log� r �(r) �(�) given in (2.10)with 
 > 0 and integer � � 0. Then v 2 Bs;��� (Q) with s = 1+2
, � = (�1=2;�1=2),and �� =8>>>><>>>>: � if 
 is not an integer,� � 1 if 
 is an integer and � > 0;0 if � = 0: (2:14)�Combination of Theorems 2.4-2.5 and Theorems 2.2-2.3 leads to the approxima-bilities of the singular fun
tions of r
 -type and r
 log� r-type.Theorem 2.6. (Theorem 2.6-2.8 of [4℄) Let u(x) = r
 �(r) �(�) with 
 > 0 asgiven in (2.9). Then:(i) There exists a polynomial ' 2 Pp(Q) su
h thatjju� 'jjH1(R0) � C �1p�2
 (2:15)where R0 is given in (2.13); 8



(ii) If uj�=��;�1=� = 0; �� = tan�1� � �0, there exists a polynomial ' 2 Pp(Q) su
hthat ' vanishes on the lines � = �k and � = �1=k and satis�es (2.15);(iii) If uj�=�� = 0; �� = tan�1� � �0, there exists a polynomial ' 2 Pp(Q) su
hthat ' vanishes on the line � = �k and satis�es (2.15). �Theorem 2.7. (Theorem 3.8 of [4℄) Let u(x) = r
 log� r �(r) �(�) with 
 > 0 andinteger � � 0 be given in (2.10). Then:(i) There exists a polynomial ' 2 Pp(Q) su
h thatjju� 'jjH1(R0) � C �1p�2
(1 + log p)�� (2:16)where R0 is given in (2.13) and �� is given in (2.14);(ii) If uj�=��;�1=� = 0; �� = tan�1� � �0, there exists a polynomial ' 2 Pp(Q) su
hthat ' vanishes on the lines � = �k and � = �1=k and satis�es (2.16);(iii) If uj�=�� = 0; �� = tan�1� � �0, there exists a polynomial ' 2 Pp(Q) su
hthat ' vanishes on the line � = �k and satis�es (2.16). �3 Rate of 
onvergen
e of the p-version of the �niteelement method3.1 A model problem in a polygonal domain
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Let 
 be a polygon, shown in Fig. 3.1, with verti
es Ai, 1 � i �M (AM+1 = A1),and (open) edges �i 
onne
ting the verti
es Ai and Ai+1. By !i we denote theinternal angle between �i and �i+1. Let D be a subset of M = f1; 2; : : : ;Mg, andN =MjD. We refer to �D = [i2D �i as the Diri
hlet boundary and to �N = [i2N �ias the Neumann boundary. We allow also polygons with internal angle 2�, whi
his important in appli
ations.Consider a boundary value problem:��u+ u = f in 
uj�D = 0�u�n �����N = g: (3:1)By this simple model problem we shall show how to derive the lower and upperbounds of the approximation error of the p-version, whi
h applies general ellipti
problem on no n-smooth domains. By Hk(
), k � 0 integer, we denote the usualSobolev spa
e and H1D(
) = �u 2 H1(
) ��� uj�D = 0�. The variational form of(3.1) is to seek u(x) 2 H1D(
) su
h thatB(u; v) = F (v); 8 v 2 H1D(
) (3:2)where B is a bilinear form on H1D(
) � H1D(
) and F is a linear fun
tional onH1D(
), given by B(u; v) = Z
(rrru � rrrv + u v) dx (3:3)and F (v) = Z
 f v dx+ Z�N g v ds: (3:4)Let SÆi = �x 2 
 dist(x;Ai) < Æi� be a neighborhood of the verti
es Ai,shown in Fig. 3.2, with Æi 2 (0; 1). Æi is sele
ted su
h that SÆi \ SÆj = ; for i 6= j.
0 = 
j [i2MSÆi=2 
ontains no verti
es of 
, and 
0 \ SÆi 6= ; for i 2 M. 
0 is
alled the regular part of 
. 10
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Fig. 3.2 A neighborhood of the vertex AiWe assume that f and g are su
h that the solution u of (3.1) is in Hk(
0); k � 1,and in ea
h neighborhood SÆi , u have an expansion in terms of singular fun
tionsof r
 log� r -typeu = X0<
[i℄m�k�1C [i℄m r
[i℄mi j log rij�[i℄m�[i℄m(�i) �(ri) + u[i℄0 (3:5)where (ri; �i) are polar 
oordinates with the vertex Ai, u[i℄0 2 Hk(SÆi) is the smoothpart of u, 
[i℄m > 0, and �[i℄m � 0 are integers. We assume that �[i℄m < �[i℄m+1 and
[i℄m � 
[i℄m+1 , �(ri) and �[i℄m(�i) are C1 fun
tions, �(ri) = 1 for 0 < ri < Æi < 12 ,�(ri) = 0 for ri > Æi. Let
 = mini 
[i℄1 = 
[i0℄1 ; �
 = �[i0℄1 (3:6a)and ��
 =8<: �
 if 
 is not an integer or �
 = 0;�
 � 1 if 
 is an integer and �
 � 1: (3:6b):3.2 Upper bound of approximation error in the p-version �-nite element solutionsLet � = �
j , 1 � j � J� be a partition of the domain 
. The elements 
i aretriangles or parallelograms. We shall assume that 
i \ 
j is either the empty set,or an entire side, or a vertex of 
i and 
j , and assume that all verti
es of 
 areverti
es of some 
i. 11



By Pp(
) (or Pp(
i)) we denote the spa
e of all polynomials of total degree� p de�ned on 
 (or 
i), and let Sp = Sp(
;�) = �u 2 H1(
) ��� u 2 Pp(
j),j = 1; 2; : : : ; J� and SpD = SpD(
;�) = Sp(
;�) \H1D(
).The p-version �nite element solution up 2 SpD(
;�) is su
h thatB(up; v) = F (v); 8 v 2 SpD(
;�): (3:7)Using the 
oer
ivity of the bilinear form (3.3), one 
an show thatjju� upjjH1(
) � C infw2SpD jju� wjjH1(
) : (3:8)Below, we will analyze the asymptoti
 rate of 
onvergen
e of the p-version ofFEM. We will use at various pla
es approximations by polynomials of degree pseparately in two dire
tions. These polynomials are polynomial of total degree 2p,and hen
e we will not distinguish between polynomials of total degree and degree intwo dire
tions, whi
h will only in
uen
e the value of the 
onstants in the estimates.Theorem 3.1. Let � = �
j ; 1 � j � J� be a partition of 
 
ontaining triangularand parallelogram elements and SpD(
;�) be the �nite element spa
e de�ned asabove. The data fun
tions f and g are assumed su
h that the solution u of (3.1) is inHk(
0) with k � maxf2; 1+2
g, and u have the expansion (3.5) with u[i℄0 2 Hk(SÆi)in ea
h neighborhood SÆi . Then the �nite element solution up 2 SpD(
;�) for theproblem (3.1) satis�es jju� upjjH1(
) � C p�2
 (1 + log p)��
 (3:9)with 
onstant C depending on u; k; 
 and ��
 , but not on p, where 
 and ��
 aregiven in (3.6).To prove Theorem 3.1 we need several lemmas.Lemma 3.2. Let Q = (�1; 1)2 with four sides �i; 1 � i � 4 lying on the linesx1 = �1, x2 = �1, x1 = 1, and x2 = 1, respe
tively, and let u 2 Hk�(Q) = �u 212



Hk(Q)j uj
 = 0� with k � 2, where � = ��1 [ ��2. Then there exists a polynomial' 2 Pp(Q), p � k � 1 su
h that 'j� = 0, andjju� 'jjH1(Q) � C p�(k�1) jujHk(Q) (3:10)with 
onstant C independent of p.Proof: Sin
e u 2 Hk�(Q), k � 2, ux1x2 has a Legendre-Fourier expansion:ux1x2 = 1Xi;j=0 aij Li(x1) Lj(x2) (3:11a)ux1 = 1Xi;j=0 aij Li(x1) Z x2�1 Lj(�2) d�2 = 1Xi;j=0 aij Li(x1) Lj+1(x2)� Lj�1(x2)2j + 1 ;= 1Xj=0 1Xi=0 bij Li(x) Lj(x); (3:11b)ux2 = 1Xi;j=0 aij Lj(x2) Z x1�1 Li(�1) d�1 = 1Xi;j=0 aij Lj(x2) Li+1(x1)� Li�1(x1)2i+ 1 ;= 1Xi=0 1Xj=0 dij Li(x1) Lj(x2) (3:11
)u = 1Xi;j=0 aij Z x1�1 Li(�1) d�1 Z x2�1 Lj(�2) d�2= 1Xi;j=0 aij Li+1(x1)� Li�1(x1)2i+ 1 Lj+1(x2)� Lj�1(x2)2j + 1 (3:11d)where bij = ai;j�12j � 1 � ai;j+12j + 3, dij = ai�1;j2i� 1 � ai+1;j2i+ 3 with ai;�1 = ai;0 and a�1;j =a0;j , and Li(x1) is the Legendre polynomial of degree i, et
. De�ne' = p�1Xi;j=0 aij Z x1�1 Li(�1) d�1 Z x2�1 Lj(�2) d�2; (3:12)and we have 'jx1=�1 = 'jx2=�1 = 0 andu� ' = � 1Xi;j=0� p�1Xi;j=0�aij Z x1�1 Li(�1) d�1 Z x2�1 Lj(�2) d�2;(u� ')x1 = � 1Xi;j=0� p�1Xi;j=0�bij Li(x1) Lj(x2);13



(u� ')x2 = � 1Xi;j=0� p�1Xi;j=0�dij Li(x1) Lj(x2):By the properties of Legendre polynomials ([15℄):Z 1�1 L(`)k (t)L(`)m (t)(1�t2)` dt =8>><>>: 22k + 1 (k + `)!(k � `)! for k = m � `;0 for k 6= m or min(k;m) < `:we have the following estimates:jju� 'jj2L2(Q) � E1 +E2 � C 1p2(k�1) juj2Hk(Q) (3:13)with E1 = 1Xi=0 1Xj=p jaij j2 22i+ 1 22j + 1 1(2i+ 1)2 1(2j + 1)2� C 1p2 (p� k + 2)!(p+ k � 2)! 1Xi=0 1Xj=p jaij j2 22i+ 1 22j + 1 (j + k � 2)!(j � k + 2)!� C 1p2(k�1) ZQ jux1xk�12 j2(1� x22)k�2 dx1dx2 � C 1p2(k�1) juj2Hk(Q)and E2 = 1Xi=p pXj=0 jaij j2 22i+ 1 22j + 1 1(2i+ 1)2 1(2j + 1)2� C 1p2 (p� k + 2)!(p+ k � 2)! 1Xi=p pXj=0 jaij j2 22i+ 1 22j + 1 (i+ k � 2)!(i� k + 2)!� C 1p2(k�1) ZQ juxk�11 x2 j2(1� x21)k�2 dx1dx2 � C 1p2(k�1) juj2Hk(Q) :Similarly we havejj(u� ')x1 jj2L2(Q) � F1 + F2 � C 1p2(k�1) juj2Hk(Q) (3:14)
14



with F1 = 1Xi=0 1Xj=p jbij j2 22i+ 1 22j + 1� C (j � k + 1)!(j + k � 1)! 1Xi=0 1Xj=p jbij j2 22i+ 1 22j + 1 (j + k � 1)!(j � k + 1)!� C 1p2(k�1) ZQ jux1xk�12 j2(1� x22)k�2 dx1dx2 � C 1p2(k�1) juj2Hk(Q)and F2 = 1Xi=p pXj=0 jbij j2 22i+ 1 22j + 1� C (p� k + 1)!(p+ k � 1)! 1Xi=p pXj=0 jbij j2 22i+ 1 22j + 1 (i+ k � 1)!(i� k + 1)!� C 1p2(k�1) ZQ juxk1 j2(1� x21)k�1 dx1dx2 � C 1p2(k�1) juj2Hk(Q) :It 
an be proved in the same way thatjj(u� ')x2 jj2L2(Q) � C 1p2(k�1) juj2Hk(Q) : (3:15)The 
ombination of (3.13){(3.15) yields (3.10). �Lemma 3.3. Let Q = (�1; 1)2 and u 2 Hk�(Q) = �v 2 Hk(Q) ��� vj� = 0�, k � 2,where � is a part of �Q 
onsisting of the entire sides of Q or the whole of �Q. Thenthere exists a polynomial of ' of degree p, p � k � 1 su
h that 'j� = 0, andjju� 'jjH1(Q) � C �1p�k�1jjujjHk(Q) (3:16)with 
onstant C independent of p.Proof: Let �i, 1 � i � 4 be four sides of Q as in the previous lemma. Sin
e theresult for � = �1 [ �2 has been proved in Lemma 3.1, we need only to analyze thefollowing �ve 
ases: (1) � = 3Si=1 ��i; (2) � = 4Si=1 ��i; (3) � = ��1S ��3; (4) j�j = 0; (5)� = �1. 15



Case (1): Let ' be the polynomial de�ned in (3.12). It suÆ
es to show 'j�3 = 0.By (3.11
) ux2(x1; x2) = 1Xi;j=0 aij Lj(x2) Z x1�1 Li(�1) d�1:Sin
e ux2(1; x2) = 0, we have0 = 1Xi;j=0 aijLj(x2) Z 1�1 Li(�1) d�1 = 1Xi=0 a0jLj(x2)whi
h implies a0j = 0 for all j. Therefore'(1; x2) = p�1Xi=1 p�1Xj=0 aij Z 1�1 Li(�1) d�1 Z x21 Lj(�2) d�2 = 0:Case (2): The arguments in Case (1) 
an be 
arried over to 'j�3 as well as to'j�4 , we have '(x1; x2) = pXi;j=1 aij Z x1�1 Li(�1) d�1 Z x2�1 Lj(�2) d�2whi
h implies that 'j�i = 0, 1 � i � 4.Case (3): Let �1(x2) and �2(x2) be C1 fun
tions su
h that �1(x2) = 1 for�1 < x2 < 0 and �1(x2) = 0 for x2 > 1=2; �2(x2) = 1 for 0 < x2 < 1 and �2(x2) = 0for x2 < �1=2, and let uj = �i(x2)u, j = 1; 2, and u3 = �1 � �1(x2) � �2(x2)�u.Hen
e u1 vanishes on �1 [�3 [ �4, u2 vanishes on �1 [ �2 [�3, and u3 vanishes on4Si=1�i. Due to the results in Cases (2) and (3), there are polynomials 'j , 1 � j � 3of degree p su
h that 'j vanishes on the 
orresponding sides of Q andjjuj � 'j jjH1(Q) � �1p�k�1 jjuj jjHk(Q) :Let ' =Xi=1 'i. Then ' vanishes on �1 [ �3, and (3.16) holds.Case (4): First we extend u to ~Q = (�2; 2)2. Let �(t) be a C1 fun
tions su
hthat �(t) = 1 for �1 � t � 1 and �(t) = 0 for jtj � 2, and let v = �(x1)�(x2)u.Then v 2 Hk( ~Q) and vj� ~Q = 0. By the result of Case (2), there is a polynomial 'of degree p su
h that 'j� ~Q = 0jjv � 'jjH1( ~Q) � C �1p�k�1 jvjHk( ~Q) � C �1p�k�1 jjujjHk(Q)16



whi
h implies (3.16).Case (5): Let �(x1) be a C1 fun
tion su
h that �(x1) = 1 for �1 � x1 � 0 and�(x1) = 0 for x1 > 1=2, u = �(x1)u+ �1� �(x1)�u = u1 + u2. Hen
e u1 2 Hk(Q)and u1j�1[�3 = 0. By the result of Case (3) there is a polynomial '1 2 Pp(Q) su
hthat '1j�1[�3 = 0 andjju1 � '1jjH1(Q) � C �1p�k�1 jju1jjHk(Q) :Sin
e u2 = 0 for x1 � 0, ~u2 = u21 + x1 2 Hk(Q) andjj~u2jjHk(Q) � C jju2jjHk(Q) � C jjujjHk(Q) :From the result in Case (4), there exists a polynomial ~'2 2 Pp�1(Q) su
h thatjj~u2 � ~'2jjH1(Q) � C � 1p� 1�k�1 jju2jjHk(Q) � C � 1p� 1�k�1 jjujjHk(Q) :Let '2 = (1 + x1) ~'2. Then '2j�1 = 0, andjju2 � '2jjH1(Q) � C jj~u2 � ~'2jjH1(Q) � C �1p�k�1 jjujjHk(Q)De�ne ' = '1 + '2, then 'j�1 = 0, and satis�es (3.16). �Lemma 3.4 Let u 2 Hk(
); k � 2 and u = 0 on �i, where �i is an edge of a 
onvexpolygonal domain 
 lying on the x1 axis with one endpoint Ai. Then there existsa polynomial 'p 2 Pp(
), p � k � 1 su
h that 'pj�i = 0 andjju� 'pjjH1(
) � C �1p�k�1jjujjHk(
) : (3:17)Proof: Let T be a trapezoid � 
, whose boundary is surrounded by �i, theextensions ~�i�1 of �i�1 and the extension ~�i+1 of �i+1, and a line parallel to �iwith distan
e H , shown in Fig. 3.3. The trapezoid T exists be
ause 
 is 
onvex.We now extend u in T with preserving the Hk- norm. We may assume withoutloss of the generality that �i = f(x1; 0)j 0 < x1 < 1 g and !i = �2 . If !i+1 = �217



then T is a re
tangle (0; 1)� (0; H), shown in Fig. 3.3(a). By Lemma 3.2 there isa polynomial 'p 2 Pp(T ) su
h that 'pj�i = 0 andjju� 'pjjH1(T ) � C �1p�k�1jjujjHk(
) :Then (3.17) follows immediately.
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(a) (b)Fig. 3.3. A polygonal domain 
 
ontained in a trapezoid T(a) !i = !i+1 = �2 ; (b) !i+1 6= !i = �2 .If !i+1 6= �2 , then we extend u in ~T � T by the Nikolskij-Babi�
 extension (see[22℄)su
h that u 2 Hk( ~T ) and uj~�i = 0, where ~�i is the extension of �i, and ~T is are
tangle with ~�i and ~�i�1 as its edges shown in Fig. 4.3(b). By Lemma 3.2 thereis a polynomial 'p 2 Pp( ~T ) su
h that 'pj~�i = 0 andjju� 'pjjH1( ~T ) � C �1p�k�1jjujjHk(
) :Then 'p vanishes on �i and satis�es (3.17). �Lemma 3.5. Let u 2 Hk(
); k � 2 where 
 is a 
onvex polygon and u = 0 on �i�1and �i, where �i�1 and �i are two sides of 
 with a 
ommon endpoint (vertex) Ai.Then there exists a polynomial 'p 2 Pp(
), p � k�1 su
h that 'pj�i[�i�1 = 0 andjju� 'pjjH1(
) � C �1p�k�1jjujjHk(
) : (3:18)Proof: Let T � 
 be a trapezoid with height H as before, and assume that !i = �2and that �i and �i�1 with unit length lie in the x1 and x2 axis, respe
tively. Let18



�1(x1) and �2(x2) be C1 fun
tions su
h that �i(xi) = 1 for 0 < xi < Æ and�i(xi) = 0 for xi > 2Æ; i = 1; 2. Æ 2 (0; 12 ) is sele
ted su
h that (0; 2Æ)� (0; 2Æ) � 
,and the line x2 = 2Æ inter
epts only �i�1 and �i+1, and the line x1 = 2Æ inter
eptsonly �i�2 and �i. Setu1 = u�2(x2); u2 = u (1� �2(x2))and u11 = u1 �1(x1); u12 = u1 (1� �1(x1))Then u = u1+u2 = u11+u12+u2. Note that u11 = 0 on �i [�i�1 and u11 � 0 forx 62 [0; 2Æ℄� [0; 2Æ℄ � 
; u12 = 0 on �i and u12 � 0 for x 2 
 with x1 < Æ, u2 = 0 on�i�1 and u2 � 0 for x 2 
 with x2 < Æ. We extend u11 by zero extension outside(0; 2Æ)� (0; 2Æ) in a square T = (0; H)� (0; H) � 
 with a suitable H > 1. Thenby Lemma 3.2, we have a polynomial '11 2 Pp(T ) vanishing on �i and �i�1 su
hthat jju11 � '11jjH1(T ) � C �1p�k�1jjujjHk(
) : (3:19)Sin
e u2 � 0 for x2 < Æ, set ~u2 = u2x2 2 H1(
) and vanishes on �i�1. Due toLemma 3.3, there exists a polynomial ~'2 2 Pp�1(
) su
h that ~'2 = 0 on �i�1 andjj~u2 � ~'2jjH1(
) � C �1p�k�1jjujjHk(
) :Let '2 = ~'2 x2. Then '2 2 Pp(
) and vanishes on �i�1 and �i, and there holdsjju2 � '2jjH1(
) � C jj~u2 � ~'2jjH1(
) � C �1p�k�1jjujjHk(
) : (3:20)Similarly we 
an �nd a polynomial '12 2 Pp(
) vanishing on �i�1 and �i, andjju12 � '12jjH1(
) � C �1p�k�1jjujjHk(
) (3:21)Let 'p = '11+'12+'2 2 Pp(
), whi
h vanishes on �i�1 and �i, and (3.18) followsfrom (3.19) � (3.21). �19



We now prove the main theorem of this se
tion.
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(c)Fig. 3.4. Pat
hes Q` and 
enters T`(a) Q` 
ontains no vertex and T` 62 �D;(b) Q` 
ontains no vertex and T` 2 �D;(
) Q` 
ontains verti
es of 
.Proof of Theorem 3.1: We may assume that p � k. Due to (3.8), it suÆ
es to
onstru
t a pie
ewise polynomial �p 2 SpD(
;�) su
h thatjju� 'pjjH1(
) � C p�2
(1 + log p)��
 : (3:22)By T`, 1 � ` � L we denote verti
es of 
j , 1 � j � J , and by Q` we denotea union of elements whi
h have T` as a vertex, Q` = ST`2�
j 
j . T` and Q` are20




alled a node and a pat
h 
entered at T`, respe
tively. Let �` 2 S1(
;�) su
h that�`(T`) = 1 and �`(Tm) = 0 for m 6= `. Note that the support of �` is the pat
hQ`, and LX̀=1 �` � 1. Therefore f�`gL̀=1 is a partition of unity for 
 subordinate tofQ`gL̀=1. Let 'p = LX̀=1 �` '[`℄p�1 with '[`℄p�1 2 Pp�1(Q`). Then 'p 2 Sp(
;�) andu� 'p = LX̀=1 �`(u� '[`℄p�1).We need to 
onstru
t a polynomial '[`℄p�1 2 Sp�1(
;�) whi
h vanishes on �Q`\�D and satis�es jju� '[`℄p�1jjH1(Q`) � C p�(k�1) (3:23)if �Q` 
ontains no verti
es of 
, andjju� '[`℄p�1jjH1(Q`) � C p�2
(1 + log p)��
 (3:24)if �Q` 
ontains verti
es of 
.We shall 
onstru
t '[`℄p�1 on ea
h Q` a

ording to their lo
ations. There are three
ases shown in Fig. 3.4:Case A : Q` 
ontains no vertex of 
 and T` 62 �D;Case B : Q` 
ontains no vertex of 
 and T` 2 �D;Case C : Q` 
ontains verti
es of 
.Case A. Sin
e Q` 
ontains no vertex of 
, u 2 Hk(Q`). ByM` we denote an aÆnemapping whi
h maps Q` onto M`(Q`) � Q = (�1; 1)2. Then we extend ~u = u ÆM`to whole Q su
h that the Hk-norm is preserved . By Lemma 3.2 there exists apolynomial ~'p�1 2 Pp�1(Q) su
h thatjju ÆM` � ~'p�1jjH1(Q) � C p�(k�1):Then, 'p�1 = ~'p�1 ÆM` 2 Pp�1(Q`), and satis�es (3.23).Case B. Let Q` be a pat
h 
ontaining no verti
es of 
 with the 
enter T` 2 �Dshown in Fig. 3.5. To �x the ideas, suppose that Q` has �ve edges ~
i; 1 � i � 5 and21



that the edge ~
1, lying on the x1 axis, is a portion of �D. Then the angle �2 between~
1 and ~
2, and �1 between ~
5 and ~
1 are less than �. We may assume without lossof generality that Q` is 
onvex. If Q` is not 
onvex, we 
an extend u in a 
onvexpolygon 
ontaining Q` and having ~
1 as its one whole edge. Therefore Q` 
an be
ontained in a trapezoid T between the extension of ~
5 and ~
2. Due to Lemma 3.3,we have a polynomial 'p�1 2 Pp�1(Q`) su
h that '[`℄p�1 = 0 on ~
1 satis�es (3.23).
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lFig. 3.5.A pat
h Q` 
ontaining no verti
es of 
 with 
enter T` on �DCase C. We will 
onstru
t '[`℄p�1 in Q` whose 
enter T` is a vertex Ai of 
. The
onstru
tion of '[`℄p�1 on Q` with the 
enter T`, whi
h is not a vertex of the domain,is similar to what follows.We assume that Ai is the 
enter T` of Q`, lo
ated at the origin and that �i and�i�1 are on the lines � = 0 and � = !i respe
tively, where !i is the internal anglebetween �i and �i�1. In Q`, the solution u has the asymptoti
 expansion:u = X̀�1
[i℄` �k�1 C` r
[i℄` (log r)�[i℄` �(r) �(�) + u0 = v + u0with k � maxf2; 2
 + 1g, 0 < 
[i℄` < 
[i℄`+1, and �[i℄` � 0. Here u0 2 Hk(Q`) is thesmooth part of the solution, �(0) = 0 if �i � �D, �(!i) = 0 if �i�1 � �D. We mayassume that 
[i℄1 = 
 and �[i℄1 = �
 . 22



Note that u0 2 Hk(Q`). If �i 6� �D and �i�1 6� �D, a polynomial '[0℄p�1 2Pp�1(Q`) 
an be 
onstru
ted as in Case A su
h thatjju0 � '[0℄p�1jjH1(Q`) � C �1p�k�1: (3:25)
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h Q` 
entered at the vertex Ai with!i � � and !i � � < �2 < �.If �i � �D and the internal angle !i < �, we have '[0℄p�1 2 Pp�1(Q`) byLemma 3.3 su
h that '[0℄p�1 = 0 on �i and (3.25) holds.If �i � �D and !i � �, there are several elements 
m, 1 � m � s around thevertex Ai. These elements 
m are between the lines � = �m and � = �m�1, wherewe write �0 = 0 and �s = !i. Assume now that there is �m0 among �m's su
h that�m0��0 = �m0 < � and �s��m0 = !i��m0 < � (see Fig. 3.6 wherem0 = 2). By ~
mwe denote the element edges lying on the line �m, 0 � m � s. Let Mm0 be a linearmapping whi
h maps the ~
m0 onto itself and maps ~
0 onto ~
00 su
h that !i��00 < �,and let ~u0 = u0 ÆM` 2 Hk( ~Q1̀), where ~Q1̀ = Q1̀ ÆMm0 , and Q1̀ = S1�m�m0 �
m.Then ~u0j~
00 = 0, and ~u0 
an be extended into Q2̀ = Q` n Q1̀ = Sm0<m�s �
M . Notethat ~u0 = 0 on ~
00 and u0 � ~u0 = 0 on ~
m0 . By the previous arguments for internalangle < �, there is a polynomial ~' 2 Pp�1( ~Q`), where ~Q` = ~Q1̀ [ Q2̀ su
h that23
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3Fig. 3.7. A pat
h Q` 
entered at the vertex Aiwith !i > �, �1 < � and �2 > �.~'j~
00 = 0 and jj~u0 � ~'jjH1( ~Q`) � C �1p�k�1; (3:26)and there is a polynomial � 2 Pp�1(Q2̀) su
h that �j~
m0 = 0 andjj(u0 � ~u0)� �jjH1(Q2̀) � C �1p�k�1: (3:27)We extend � into Q1̀ by a zero extension, and set'[0℄p�1 = 8<: ( ~'+ �) ÆM�1m0 in Q1̀;~'+ � in Q2̀: (3:28)Then 'p�1[0℄ 2 Sp�1D (
;�), and there holdsjju0 � '[0℄p�1jjH1(Q`) � C �jj~u0 � ~'jjH1( ~Q`) + jj(u0 � ~u0)� �jjH1(Q2̀)�24



whi
h together with (3.26) and (3.27) yields (3.25).In general, su
h �m0 , satisfying !i � � < �m0 < �, may not exist, but therealways exists a m0 su
h that �m0�1 < � and �m0 � �, shown in Fig. 3.7 wheres = 3;m0 = 2; �2 > � and �1 < !i � �. Let M` be a linear mapping whi
h maps~
m0�1 onto itself and maps ~
0 onto ~
00 su
h that �m0 � �00 < �. By ~u0 = u0 ÆM`, wedenote the transformed fun
tion in ~Q1̀ = Q1̀ ÆM` where Q1̀ = S1�m�m0�1 �
m, andwe further extend ~u0 into Q2̀ = Q` nQ1̀ su
h that the Hk-norm is preserved. Then~u0 2 Hk( ~Q`) where ~Q` = ~Q1̀ [ Q2̀, and vanishes on ~
00. It is exa
tly the previous
ase that the internal angle � � with �m0 � �00 < � and �s � �m0 = !i � �m0 < �.Therefore, there exist a polynomial ~' 2 Sp�1D (
;�) su
h that ~'j~
00 = 0 and satis�es(3.26). Note that u0� ~u0 = 0 on ~
m0 , and that �m0 � �m0�1 < � and �s� �m0 < �.Again, it is exa
tly same as the 
ase above. Hen
e, there is a polynomial � 2Sp�1D (
;�) su
h that �j~
m0 = 0 and satis�es (3.27). We extend � into Q1̀ by azero extension, and de�ne '[0℄p�1 as in (3.28). Then '[0℄p�1 2 Sp�1D (
;�) and satis�es(3.25).We next dis
uss the situation in whi
h �i[�i�1 � �D. If !i < �, the polynomial'[0℄p�1 2 Sp�1D (
;�) satisfying (3.25) 
an be 
onstru
ted due to Lemma 3.5.
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h Q` 
entered at the vertex Ai with �i [ �i�1 � �Dand with !i � � and !i � � < �2 < �.If !i > � and there is a m0 su
h that �m0 � �0 = �m0 < � and �s � �m0 =25



!i � �m0 < �, we introdu
e a linear mapping M` whi
h maps the ~
m0 onto itselfand maps ~
0 onto ~
00 su
h that ~
00 lies on the extension of ~
s. By T we denotea trapezoid with ~
00 [ ~
s and the extensions of the edges neighboring to ~
00 [ ~
sas its edges. T is divided by ~
m and its extension into T1 and T2, shown in Fig.3.8. Let ~u0 = u0 ÆM` in ~Q1̀, where ~Q1̀ = Q1̀ ÆMm0 , Q1̀ = S1�m�m0 �
M . We �rstextend ~u0 into T1, then extend it into T2 by an extension of the Nikolskij-Babi�
-type (see [22℄), denoted again by ~u0. The extension leads to ~u0j~
00 = ~u0j~
s = 0.By Lemma 3.3, there exists a polynomial ~' 2 Pp�1(T ) su
h that ~'j~
s[~
00 = 0 andjj~u0 � ~'jjH1(T ) � C �1p�k�1: (3:29)Let ' =8<: ~' ÆM�1` in Q1̀;~' in Q2̀ = Q nQ1̀:Hen
e ' 2 Sp�1D (
;�) andjju0 � 'jjH1(Q1̀) � C �1p�k�1: (3:30)Let w = u0� ~u0 in Q2̀. Note that w0j~
m0 = wj~
s = 0. By the previous result, thereis a polynomial � 2 Sp�1D (
;�) su
h that �j~
m0 = �j~
s = 0, andjjw � �jjH1(Q2̀) � C �1p�k�1: (3:31)We extend � into Q1̀ by a zero extension, and set '[0℄p�1 = ' + �. Then '[0℄p�1 2Sp�1D (
;�) and satis�es (3.25) due to (3.29)-(3.31).If !i > � and there exists no m0 su
h that !i � � < �m0 < �, we have to applythe extension of the Nikolskij-Babi�
 -type twi
e in order to 
onstru
t the desired'[0℄p�1. For the sake of the simpli
ity, we assume that s = 3; �1 < !i� � and �2 > �,as shown in Fig. 3.9. Let M1 be a linear mapping of 
1 onto 
01, whi
h maps ~
1onto itself and ~
0 onto ~
00 su
h that ~
00 lies in the opposite dire
tion of ~
2. By u1we denote the transformed fun
tion u0 ÆM1 in 
01, and by ~u1 the Nikolskij-Babi�
26



extension of u1 in 
01[
2 su
h that ~u1j~
00 = ~u1j~
2 = 0. By Lemma 3.5, there existsa polynomial ~'1 of degree (p� 1) in 
01 [ 
2 su
h that ~'1j~
00 = ~'1j~
2 = 0 andjj~u1 � ~'1jjH1(
01[
2) � C �1p�k�1: (3:32)Let '1 = 8<: ~'1 ÆM�11 in 
1;~'1 in 
2:Then jju0 � '1jjH1(
1) � C jj~u1 � ~'1jjH1(
01) � C �1p�k�1: (3:33)Similarly we introdu
e a linear mappingM3 of 
3 onto 
03, whi
h maps ~
2 onto itselfand ~
3 onto ~
03, su
h that ~
03 lies in the opposite dire
tion of ~
1. Let u3 = u0 ÆM1in 
03, and let ~u3 be the Nikolskij-Babi�
 extension of u3 in 
03 [ 
2 su
h that~u3j~
03 = ~u3j~
2 = 0. By Lemma 3.5, there exists a polynomial ~'3 of degree (p � 1)in 
03 [ 
2 su
h that ~'3j~
03 = ~'1j~
2 = 0 andjj~u3 � ~'3jjH1(
03[
2) � C �1p�k�1: (3:34)Let '3 = 8<: ~'3 ÆM�13 in 
3;~'3 in 
2:Then jju0 � '3jjH1(
3) � C jj~u3 � ~'3jjH1(
03) � C �1p�k�1: (3:35):Let w = u0 � ~u1 � ~u3 in 
2. Note that wj~
1 = wj~
2 = 0. By the previous result,there is a polynomial '2 2 Pp�1(
2) su
h that '2j~
1 = '2j~
2 = 0 andjjw � '2jjH1(
2) � C �1p�k�1: (3:36)We extend '1 into 
3, '3 into 
1 and '2 into 
1 [ 
3 by zero extensions, respe
-tively, and let '[0℄p�1 = '1 + '2 + '3. Then '[0℄p�1 2 Sp�1D (
;�) and satis�es (3.25)due to (3.32)-(3.36). 27
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(a)

(b)Fig. 3.9. A pat
h Q` 
entered at the vertex Ai with �i [ �i�1 � �Dand with !i > �, �1 < � and �2 > �.We now 
onstru
t a polynomial '[v℄p�1 2 Pp�1(Q`) to approximate the singularsolution v in two di�erent 
ases: Case C1: !i < � and Case C2: !i � �.Case C1: Sin
e !i < �, there is � > 0 su
h that !i + 2� < �. We extend �(�)to R1 su
h that �(�) = 0 for � > !i + � or � < ��. Thus v is extended to Q�̀,whi
h 
ontains Q` and is between the lines � = !i+� and � = ��. We introdu
e alinear mapping M` whi
h maps Q�̀ onto ~Q�̀ � R0 = Rr0;�0 � Q = (�1; 1)2, whereR0 is de�ned in (2.14). Then ~v = v ÆM` 2 Bs;�� (Q) with s = 1 + 2
, � = ��
 . ByTheorem 2.8 for � = 0, or by Theorem 3.8 for � > 0, there exists a polynomial~'(~x) 2 Pp�1(Q) su
h thatjj~v � ~'jjH1(R0) � C �1p�2
(1 + log p)��
 : (3:37)28



Then '[v℄p�1 = ~' ÆM�1` 2 Pp�1(Q`), and satis�esjjv � '[v℄p�1jjH1(Q`) � C �1p�2
(1 + log p)��
 : (3:38)If ��i [ ��i�1 � �D (resp. �i � �D), we should apply Theorem 2.6 (ii) (resp. (iii)) orTheorem 2.7 (ii) (resp. (iii)) to 
onstru
t a polynomial ~'(~x) 2 Pp�1(Q) vanishing onthe lines M(�i [ �i�1) (resp. M(�i)) and satisfying (3.20). Then '[v℄p�1 2 Pp�1(Q`)and '[v℄p�1 = 0 on �Q` \ �D.Let '[`℄p�1 = '[v℄p�1 + '[0℄p�1 2 Pp�1(Q`) (or Sp�1D (
;�)). Then '[`℄p�1 = 0 on�Q` \ �D and satis�es (3.24).Case C2: !i � �. We extend �(�) to (��; !i + �), � > 0 ( if !i = 2�, it isunderstood that the non-periodi
 fun
tion �(�) is de�ned on (��; !i + �) ) su
hthat �1 + � < � and (�s � �s�1) + � < �. Let ��1 = ��, �s+1 = !i + �. Twoadditional elements, whi
h are between the lines � = ��1 and � = �0, and lines� = �s and � = �s+1, respe
tively, are denoted by 
0 and 
s+1.We now introdu
e a partition of unity f m(�); m = 0; 1; 2; : : : ; sg su
h thatsXm=0 m(�) = 1 on [0; !i℄, and ea
h  m(�) is a C1 fun
tion with 
ompa
t supportSm = (�m�1 + �m; �m+1 � �m); 0 � m � s whi
h form a 
over of [0; !i℄. Letvm =  m v, whi
h has the 
ompa
t support Sm. If (�m+1 � �m�1) < � for all m.It be
omes the Case C1 for ea
h vm, namely, there exists a polynomial '[m℄ 2Pp�1(�
m [ �
m+1), 1 � m � s, su
h that '[m℄ vanishes on the line � = �m�1 and� = �m+1, and jjvm � '[m℄jjH1(�
m[�
m+1) � C �1p�2
(1 + log p)��
 : (3:39)We next extend '[m℄ by zero extension outside of Sm, and let '[v℄p�1 = sXm=1'[m℄.Then '[v℄p�1 2 Sp�1(
;�) andjjv � '[v℄p�1jjH1(Q`) � C sXm=1 jjvm � '[m℄jjH1(�
m[�
m+1) � C �1p�2
(1 + log p)��
 :(3:40)29



Thus (3.24) is satis�ed.If �i � �D, '[1℄ 
an be 
onstru
ted su
h that '[1℄ 2 Pp�1(�
0 [ �
1) and vanishon the line � = ��1 and � = �0. If �i�1 � �D, '[m℄ should be 
onstru
ted in asimilar way.If (�m+1 � �m�1) > � for some m, we introdu
e a linear mapping M of 
monto 
0m whi
h maps the line � = �m onto itself, and the line � = �m�1 onto aline � = �0m�1 su
h that �m+1 � �0m�1 < �. By ~vm we denote the transformedfun
tion of vm ÆM�1 on 
0m, and we extend ~vm to 
m+1 su
h that the extensionvanishes on the line � = �m+1. The 
onstru
tion of approximation polynomial ~'[m℄to ~vm on 
m+1 [ 
0m is one of previous 
ase sin
e �m+1 � �0m�1 < �. Note that(~vm � vm)j�=�m = 0 and ~vmj�=�m+1 = vmj�=�0m+1 = 0. Therefore there exists apolynomial ~�[m℄ 2 Pp�1(
0m) to approximate (vm � ~vm) on 
m+1, whi
h vanisheson the lines � = �m and � = �m+1. De�ne'[m℄p�1 =8<: ~'[m℄ ÆM�1 in 
m;~'[m℄ + � in 
m+1:and extend '[m℄p�1 by zero extension outside �
m+1 [ �
m. Then '[m℄p�1 2 Sp�1D (
;�)and satis�es (3.30).Combining all the 
ases dis
ussed above, we 
omplete the proof of this theorem.� The assumption of Theorem 3.1, namely, that the elements are triangles orparallelograms is not substantial. The theorem 
an be proved for quadrilateralelements. In order to generalize Theorem 3.1. to the mesh 
ontaining quadrilateralelements we introdu
e the �nite element spa
es of pull-ba
k polynomial type asusual :Sp = Sp(
;�) = �' 2 H1(
) ��� ' = � ÆM�1j ; � 2 Pp(Q); j = 1; 2; � � � ; J� (3:41)and SpD = SpD(
;�) = Sp(
;�) \H1D(
): (3:42)30



whereMj is a mapping of the referen
e element Q onto the element 
j , whi
h is bi-linear if 
j is a quadrilateral element, and linear if 
j is a triangle or parallelogram,respe
tively.On ea
h pat
h Q`, whi
h may 
ontain quadrilateral elements, with the 
enterdenoted by T`; ` = 1; 2 � � �L, we de�ne a pie
ewise bilinear fun
tion �` su
h that�`(T`) = 1 and �`(Tm) = 0 for m 6= `. Note that �` 2 S2(
;�) and f�gL̀=1 isa partition of unity for 
 subordinate to fQ`gL̀=1. Let ' = LX̀=1 �` '[`℄, where '[`℄is a polynomial of (separate) degree (p � 1) and belongs to S2(p�1)(
;�). Then' 2 S2p(
;�) and u � ' = LX̀=1 �`(u � '[`℄). By 
` we denote the edges of Q`su
h that T` 2 
`. We need to 
onstru
t a polynomial '[`℄ 2 S2(p�1)(
;�) whi
hvanishes on 
` \ �D and satis�esjju� '[`℄jjH1(Q`) � C p�(k�1)jjujjHk(Q`) (3:43)if �Q` 
ontains no verti
es of 
, andjju� '[`℄jjH1(Q`) � C p�2
(1 + log p)��
 (3:44)if �Q` 
ontains verti
es of 
.The 
onstru
tion of '[`℄p�1 on ea
h pat
h Q` in the proof of Theorem 3.1 
anbe 
arried over for the 
onstru
tion of '[`℄. Hen
e we have proved the followingtheorem for general partition � 
ontaining triangular and quadrilateral elements.Theorem 3.6. Let � = �
j ; 1 � j � J� be a quasi-uniform partition of 

ontaining triangular and quadrilateral elements, and let SpD(
;�) be the �niteelement spa
e de�ned in (3.41)� (3.42). The data fun
tions f and g are smooth sothat the solution u of the boundary value problem (3.1) is in Hk(
0) and has theexpansion (3.5) with u[i℄0 2 Hk(SÆi) in ea
h neighborhood SÆi with k � maxf2; 1+2
g. Then the �nite element solution up 2 SpD(
;�) for the problem (3.1) satis�esjju� upjjH1(
) � C p�2
 (1 + log p)��
 (3:45)31



with 
onstant C depending on k, 
 and ��
 , but not on p, where 
 and ��
 are givenin (3.6). �Remark 3.1. The arguments above 
an be generalized further for meshes 
ontain-ing 
urvilinear elements where high-order mapping are used. However, we will notelaborate on it here.Remark 3.2. The theorem is also valid for the data fun
tions f and g whi
h mayhave singularity at the verti
es of the domain, i.e. f 2 Ck;0� (
) or Hk;0� (
) andg 2 Ck�3=2;1=2� (�) or Hk�3=2;1=2� (�N ). For the de�nitions of these weighted Sobolevspa
es with Babu�ska-Guo weight, we refer to [2, 8℄.3.3 Lower bound of approximation error in the p-version �-nite element solutionsWe now study the lower bound of the approximation error in the p-version �niteelement solutions in two dimensional setting. The main theorem of this se
tion isthe following :Theorem 3.7. Let u be the solution of the problem (3.1) with the data fun
tions fand g, whi
h are assumed su
h that the solution u is inHk(
0) with k � maxf2; 1+2
g, and u has the expansion (3.5) with u[i℄0 2 Hk(SÆi) in ea
h neighborhood SÆi .and let up 2 SpD(
;�) be the �nite element solution of the problem (3.7). Thenku� upk � Cp�2
(1 + log p)��
 ; (3:46)where C is independent of p, 
 and ��
 are given in (3.6). �The proof of the theorem needs several lemmas.Lemma 3.8. Let F (t) be a non-in
reasing fun
tion on [0;1), and limt!1F (t) = 0.Then, there is a fun
tion G(t) on (0;1) with the following properties:(P1) G(t) � F (t) for t 2 (0;1);(P2) G(t) is non-in
reasing;(P3) limt!1G(t) = 0;(P4) G(tk)G(t) > 12 for t 2 (1;1) and integer k � 1:32



Proof. We refer to Lemma 2.2 of [3℄. �We now introdu
e a weighted Besov spa
e asso
iated with the fun
tion G satis-fying (P1){(P4) : Bs;�G (Q) = �H`;�(Q); Hk;�(Q)��;1;Gwith norm kukBs;�G (Q) = supt>0 t��K(t; u)G(1=t) ;where 0 < � < 1, s = (1� �)`+ �k.Lemma 3.9 If for all p � 1 there holdsinf'2Pp(Q) ku� 'kL2(Q) � Cp�sG(p)where G(t) satis�es (P1){(P4), then u 2 Bs;�0G (Q) with �0 = (0; 0).Proof. Refer to the proof of Lemma 2.3 in [3℄. �.Letting Qh = (�1;�1 + 2h)2, we introdu
e Sobolev spa
es Hk;�(Qh) withJa
obi-weighted normkukHk;�(Qh) = Xj�j�k ZQh jD�uj2 2Yi=1(1� x2i )�i+�i dx;where k � 0, integer and � = (�1; �2); �i > �1; i = 1; 2. The semi-norm jujHk;�(Qh)involves only the k-th derivatives of u.The weighted Besov spa
e Bs;�G (Qh) is de�ned as an interpolation spa
e by theK-method, i.e. Bs;�G (Qh) = �H`;�(Qh); Hk;�(Qh)��;1;Gwhere 0 < � < 1; s = (1� �)`+ �k, ` and k are integers with normkukBs;�G (Qh) = supt>0 t��K(t; u)G(1=t) ;with K(t; u) given in (2.4) and G satisfying (P1){(P4).33



Obviously, the spa
es Hk;�(Qh) and Bs;�G (Qh) are the restri
tions of the spa
esHk;�(Q) and Bs;�G (Q) on Qh = (�1;�1 + 2h)2, respe
tively, andkukHk;�(Qh) � kukHk;�(Q) ; kukBsk;�(Qh) � kukBs;�(Q) :Lemma 3.10. Let u(x) 2 Hk;�(Qh) with �i � 0, and let ~u(~x) = u(h(1 + ~x) � 1).Then ~u(~x) 2 Hk;�(Q), and for integer ` � kj~uj2H`;�(Q) � C h`�2��1��2 juj2H`;�(Qh) :Proof. The mapping : x+1 = h(~x+1) maps Q = (�1; 1)2 onto Qh. Then ~u(~x) isde�ned on Q. Noting that 1 � (1� xi) � 2 for x 2 Qh, we havej~uj2H`;�(Q) =Pj�j=` RQ jD�~uj2 Q2i=1(1� ~x2i )�i+�i ~dx� CPj�j=` h`�2��1��2 RQh jD�uj2 Q2i=1(1 + xi)�i+�i dx� Ch`�2��1��2 juj2H`;�(Qh):This 
ompletes the proof of the lemma. �Lemma 3.11. Let u(x) 2 Hk;�(Qh) with �1 = �2 = 0. Then there exists apolynomial 'p 2 Pp(Qh) with 1 + p � k su
h thatju� 'pj2H0;�(Qh) � C hkp�2k juj2Hk;�(Qh) : (3:47)Proof. By Lemma 3.10, ~u(~x) = u(h(1 + ~x) � 1) 2 Hk;�(Q). Due to Theorem 2.1, there exist a polynomial ~'p(~x) 2 Pp(Qh) with 1 + p � k, whi
h is the Ja
obiproje
tion of ~u(~x) on Pp(Qh), su
h thatj~u� ~'pj2H0;�(Q) � Cp�2kj~uj2Hk;�(Q) :Let 'p(x) = ~'p(1 + xh � 1) 2 Pp(Qh), and by Lemma 3.10 and s
aling we haveju� 'j2H0;�(Qh) � C RQh ju� 'j2 dx� Ch2 RQ j~u� ~'pj2 dx� Ch2p�2kj~uj2Hk;�(Q)� Chkp�2kjuj2Hk;�(Qh):34



�.Lemma 3.12. Let u(x) 2 Bs;�G (Qh) with �1 = �2 = 0. Then there exists ' 2Pp(Qh) with p+ 1 > s su
h thatju� 'pjH0;�(Qh) � C hs=2G(1=hs=2) kukBs;�G (Qh) : (3:48)where the 
onstant C depends on p but not on h.Proof. Due to the de�nition, there are v 2 H0;�(Qh) and w 2 Hk;�(Qh) su
h thatfor all t > 0 kvkH0;�(Qh) + tkwkHk;�(Qh) � Ct�G(1=t)kukBs;�G (Q) (3:49)where 0 < s < k, � = sk . By Lemma 3.11 there exists a polynomial 'p 2 Pp(Qh)satisfying kw � 'pkH0;�(Qh) � Chk=2kwkHk;�(Qh):Thereforeku� 'pkH0;�(Qh) � kvkH0;�(Qh) + kw � wpkH0;�(Qh)� kvkH0;�(Qh) + Chk=2kwkHk;�(Qh)� C �kvkH0;�(Qh) + hk=2kwkHk;�(Qh)� : (3:50)Letting t = hk=2 and 
ombining (3.49) and (3.50), we haveku� 'pkH0;�(Qh) � C �kvkH0;�(Qh) + tkwkHk;�(Qh)�� Ct�G(1=t)kukBs;�G (Qh)� Chs=2G(1=hs=2)kukBs;�(Qh):Thus the proof of Lemma 3.12 is 
ompleted. �We now are ready to prove the main theorem in this se
tion.Proof of Theorem 3.7. We shall prove (3.46) for ��
 = 0. The proof for ��
 > 0 issimilar to what follows. We assume that 
1 is the element 
ontaining the vertex Ai0where the strongest singularity o

urs. It suÆ
es to prove for some � with j�j = 1kD�(u� up)kL2(
1) � Cp�2
 : (3:51)35



We may assume that 
1 is a quadrilateral without loss of generality. If 
1 is atriangle, we may 
onsider a quadrilateral with the verti
es at Ai0 and middle pointsof three edges of 
1. By M1 we denote a linear mapping whi
h maps Q = (�1; 1)2onto 
1 and Ai0 to the vertex (�1;�1). Let v = u ÆM1 and vp = up ÆM1. Thenvp 2 Pp(Q) and we need to show thatkD�(v � vp)kL2(
1) � Cp�2
If it is false, then there exists a fun
tion F(t) su
h that limt!1 F (t) = 0, andkD�(v � vp)kL2(
1) � CF (p) p�2
By Lemma 3.8 we 
an 
onstru
t a fun
tion G satisfying (P1)-(P4), and by Lemma3.9 D�v 2 B2
;�0G (Q) with �01 = �02 = 0 and j�j = 1. Then v 2 B2
;�0G (Qh), and dueto Lemma 3.12, there is ' 2 Pp(Qh) with p+ 1 � k su
h thatjD�v � 'jL2(Qh) � C h
G(1=h
) jvjB2
;�0G (Qh) � C h
G(1=h
) jvjB2
;�0G (Q) : (3:52):On the other hand, v has singularity of r
-type at Ai0 it is known [14, 23℄ that forj�j = 1 inf�2P1(Qh) kD�(r
�(r)�(�)) � �kL2(Qh) � C h
 ;whi
h 
ontradi
ts (3.52). Thus (3.51) holds.For ��
 > 0, we need only to introdu
e the spa
e Bs;�G;��
 (Q), instead of Bs;�G (Q),and its norm : kukBs;�G (Q) = supt>0 t��K(t; u)(1 + j log tj)��
G(1=t) :Then all arguments above 
an be 
arrid out for ��
 > 0. Hen
e the theorem isproved. �3.4 Optimal 
onvergen
eCombining the estimates on the lower and upper bounds of the approximation errorin the p-version �nite element solution, we 
on
lude with the optimal 
onvergen
eof the p-version. 36



Theorem 3.13. Let u be the solution of the problem (3.1) on polygonal domain 
with the assumption on the data fun
tions f and g as in Theorem 3.1-3.3, and letup be the �nite element solution of the p-version in SpD(
;�), respe
tively. Thenp�2
 (1 + log p)�� is the optimal rate of 
onvergen
e for the �nite element solutionup, i.e. there are 
onstants C1 and C2 independent of p su
h thatC1p�2
 (1 + log p)�� � ku� upkH1(
) � C2p�2
 (1 + log p)�� ;where 
 and ��
 are given in (3.6), whi
h represent the strongest singularity of thesolution of the problem (3.1). �Remark 3.4. It has been shown that the 
onstants C1 and C2 in Theorem 3.13are asymptoti
ally the same in one dimension [16℄. Whether C1 and C2 in twodimensions are asymptoti
ally the same remains to be answered yet. Nevertheless,the same order on the the upper and lower bound of errors allows us to develop a-posteriori error estimators by extrapolation of 
omputational solutions, whi
h willbe reasonably reliable in pra
ti
e if the di�eren
e between C1 and C2 is not toolarge.A
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