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Abstract

This is the second of a series devoted to the direct and inverse approximation
theorems of the p-version of the finite element method in the framework of the
weighted Besov spaces. In this paper, we combine the approximability of singular
solutions in the Jacobi-weighted Besov spaces, which were analyzed in the previous
paper [4], with the technique of partition of unity in order to prove the optimal rate
of convergence of the p-version of the finite element method for elliptic boundary

value problems on polygonal domains.



1 Introduction

The p-version, the h-version and the h-p version are the three basic approaches
of the finite element method(FEM). The p-version of FEM achieves accuracy by
increasing the element degree p on a fixed mesh. The classical Sobolev and Besov
spaces are effective tools for the error analysis of the h-version of FEM, but they
are not adequate for the analysis of the p-version of FEM. In particular, when exact
solutions of boundary value problems on non-smooth domains have singularities,
these spaces are not appropriate for proving the optimal convergence of the p-version
of FEM.

In order to address this issue, various function spaces have been used since
the early 1980’s. Very recently the Jacobi-weighted Besov and Sobolev spaces were
introduced in [4]. They are appropriate spaces for the analysis of the p-version finite
element approximation of singular solutions of r log” r-type. Singular solutions of
7 log” r-type arise from elliptic problems on non-smooth domains, for instance, the
elasticity problems on domains with piecewise smooth boundary. Hence, the study
on the singular solutions of this type and their best finite element approximation
in the framework of proper spaces is of great importance theoretically as well as
practically.

The weighted Besov spaces B3® and Sobolev spaces H*? introduced in [4] for
two dimensions are furnished with Jacobi weights depending on s. The unique
dynamical structure of the Jacobi-weighted Besov and Sobolev spaces leads to ex-
tremely important approximation properties such as the uniform projections and
sharp inverse inequality. These spaces allow us to show that the polynomial ap-
proximation is optimal in the sense of N-width(see [17]), and play a significant role
in the proof of the inverse approximation theorems in [5].

The main result of this paper is Theorem 3.4 which gives the optimal upper
and lower bounds of the error in the p-version of FEM for elliptic boundary value

problems on polygonal domains 2. More precisely, when the solutions u have sin-



gularities of r7log” r-type in each neighborhood of vertices of Q, we have shown

that, as p increases,
Cip~ (1 +log”" p) < ||u— upllmi(@) < Cap™>(1 +1log” p),

where v* = v — 1 if -y is an integer > 0, and v* = v otherwise.
We now provide a brief history of the approximation theory of the p-version of
FEM. The first error analysis for the p-version of FEM was given in [11] in 1981 for

solutions u € H*(Q),k >0 :

[ = upllg1 (@) < COP™ ' |ull e (q),
and for the solution u with singularity of r”7-type,

lu = upllmi (@) < Cle)p™7™,

with € > 0, arbitrary and constant C'(e) depending on e. The upper bound of the
approximation error was not sharp. In 1987 the result was improved in [9] where
e was removed. Both papers did not deal with the singularity of r7log” r-type,
and they did not give lower bound of the eroor. The singularity of r7-type was
treated by special techniques in these papers. The singular solution u = r” log” r
was studied by [10] in 1987. In the h-p setting with quasi-uniform mesh. It was
shown that

[ = upllm1 (@) < Cp~27(1 + log” p).

where there was no distinction between non-integer v and integer . The upper
bound of the error, as given above, is not optimal for integer . Also the lower
bound of the error was not addressed in [10]. Since then there had been no progress
on the approximation theory of the p-version of FEM in two dimensions until the
very late 1990’s.

The p-version of FEM is closely related to the spectral methods. But the sin-
gularities of 7 log” r-type and the related best approximation were not addressed

in [1, 13] and [18, 19, 20, 21], where Sobolev spaces with a fixed Jacobi-weight was



introduced and was used to analyze the upper bound of the error in the spectral
method for singular equations with degenerate coefficients in differential operators.

Using the framework of the Jacobi-weighted Besov spaces and Sobolev spaces,
which are furnished with dynamic Jacobi-weights, we derived both upper and lower
bounds of the error measured in H!'-norm for elliptic boundary value problems on
non-smooth domains. Moreover, we showed that the two bounds are of the same
order. Thus, the issue on the optimal rate of convergence in the p-version finite
element approximation in two dimensions is completely resolved. For the first time
in the context of singular solutions, the lower bound of the error is proved in this
paper. The proof for the upper bound of the error in this paper is quite different
from those in the previous papers [9, 10, 11]. Namely, we combine the technique of
partition of unity with the approximability of singular solutions in the framework
of the Jacobi-weighted Besov spaces. It not only simplifies the proof, but also make
it more robust to analysis for all dimensions. A simple version of the theorem was
addressedd in [3] without complete and detailed proof incorporating all types of
boundary conditions.

This is the second paper of a series devoted to the direct and inverse theorems of
the p-version of FEM in two dimensions. In Section 2 we shall quote the notations
and definitions of Jacobi-weighted Besov spaces B*? and B5# , and major theorems
on approximability of functions in these spaces, which were proved in [4]. The upper
and lower bounds of the approximation error in the p-version of FEM are analyzed
in Section 3, which proves the optimality of the error estimate. Some concluding

remarks are given in the last section.



2 Preliminaries

2.1 Weighted Besov spaces B*?((Q) and B:*(Q)

Let Q = I? = (—1,1)2, and let

2

W, 5(x) = [[ (1= a2)t5 (2.1)

i=1
be a weight function with integer a; > 0 and real number ; > —1, which is refereed

to as Jacobi weight.

The weighted Sobolev space H*#(Q) is defined as a closure of C* functions in

the norm with the Jacobi weight

ol / D uf? w, (@) do 2.2
|a]=0
where D%u = w1 yo0, 0 = (o, 2), [a = a1+ az, and § = (b1, B2). By |ul . 5(Q)
we denote the semi-norm,

Ul Z/uw? () da

la|=k

The weighted Besov space B*?((Q) is defined as an interpolation space by the

K-method, i.e.
BH(Q) = (HY(Q), H*(Q))

f,00

where 0 < 0 < 1,5 = (1 — 0)¢ + 0k, ¢ and k are integers, £ < k, and

_ —6
[ull gr.s gy = supt " K(t,u) (2.3)
where
O N (S (2.4)

The modified weighted Besov space B55(Q) with v > 0 is defined as an inter-

polation space

BA(Q) = (H"°(Q), H*"(Q))

0,00,v



with a modified norm

(2.5)

Remark 2.1. The space B3?(Q) with v > 0 is only a uniform interpolation space,
and BS’B(Q) = B*%(Q) is a standard exact interpolation space of exponent 6. For
the definition and properties of exact interpolation spaces of exponent 6 we refer to
[12], and for the proof of various properties of uniform interpolation space BS?(Q)

with integer v > 0 we refer to [4].

Let P,(Q) be the set of all polynomials of degree (separate) < p. Then we have
the following approximation property:
Theorem 2.1. (Theorem 2.2 of [4]) Let u € H*?(Q) with integer k > 1, 3, > —1,
1 <i <2 and u, be its H%B(Q)-projection on P,(Q). Then we have for integer

(<k<p+1

k—¢
1
u—up\Hé,B(Q) <C (1—)) ‘U|H’“’B(Q)' (2.6)
O

Remark 2.2. For u € H*#(Q) with integer k > 0, the H%5(Q)-projection of u on

P,(Q) is H%A(Q)-projection on P,(Q) for any 0 < ¢ < k.

Using the properties of interpolation spaces, we have approximation theorems

for functions in Besov spaces B*?(Q) and B3?(Q).

Theorem 2.2. (Theorem 2.3 of [4]) Let u € B*#(Q), s > 0, 8; = (81, 52), B > —1,
1 <i <2,andlet u, be the HO%8(Q)- projection of u on P,(Q). Then for any integer

{ < s there holds

1 s—{
fu =ty gy <€ (3) I (2.7

with constant C independent of p. d

B*#(Q)

Theorem 2.3 (Theorem 3.7 of [4]) Let u € B5°(Q), s > 0, 8; = (81, 52), B; > —1,

1 <4 < 2, integer v > 0, and let u, be the HO%B(Q)- projection of u on P,(Q).



Then for any integer ¢ < s there holds

1 s—{ ,
=l <€ (5) A +1o0wn” ully g, (28)

with constant C independent of p. d

2.2 Approximability of singular functions of r”-type and 7 log” r-
type

Let (r,0) be the polar coordinates with respect to the vertex (—1,—1), where r =

{(z,+1)*+ ($2+1)2}1/2; 6 = arctan <x2 +

1
1) , and let for v > 0 and integer v > 0

u(z) =r" x(r) 2(6) (2.9)
and
v(z) =17 log” r x(r) ®(6) (2.10)

are functions defined on Q = (—1,1)?, where x(r) and ®(#) are C* functions such

that for 0 < ry, < 2

1 for 0<r<-2
X(r) = (211)
0 for r>rg
and for 6, € (0,7/2)
B(0) =0 for 6 ¢ (0, 7/2—6,). (2.12)

Therefore, u(z) has a support R, = Rroﬁo with
R, g, = {a:EQ ‘ r <1y, 90<0<7r/2—00} (2.13)

which is shown in Fig. 2.1. For z € Ry we have 0 < 1 —ry < (1 — ;) < 2, and

i< 1+,
kg — 14+x

< kg = tanéb. (2.15)

Now we characterize the singularity of u(z) and v(z) in terms of the weighted

Besov spaces B*?(Q) and B5°(Q).
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Fig. 2.1 Square Domain @ and subregion R, g,

Theorem 2.4 (Theorem 2.4 of [4]) Let u(z) = r¥ x(r) ®(0) be given by (2.9) with

7> 0. Then u € B*5(Q) with s = 142, 8= (-1/2,-1/2). O

Theorem 2.5. (Theorem 3.4-3.5 of [4]) Let v = r7 log” r x(r) ®(6) given in (2.10)
with v > 0 and integer » > 0. Then v € B3?(Q) with s = 1427, 8 = (=1/2,-1/2),

and
v if 4 is not an integer,
v =< v-1 if v is an integer and v > 0, (2.14)
0 if v=0.

O

Combination of Theorems 2.4-2.5 and Theorems 2.2-2.3 leads to the approxima-

bilities of the singular functions of 77-type and 77 log” r-type.

Theorem 2.6. (Theorem 2.6-2.8 of [4]) Let u(z) = r7 x(r) ®(f) with v > 0 as
given in (2.9). Then:

(i) There exists a polynomial ¢ € P,(Q) such that

1\*
1 =@l gy <€ <5) (2.15)

where Ry is given in (2.13);



(it) ful,_, , =0,0,=tan""x > g, there exists a polynomial ¢ € P,(Q) such
=001/

that ¢ vanishes on the lines 6 = 6, and 6 = 6, , and satisfies (2.15);

(iti) If ul,_, = 0,05 = tan"'k > 6o, there exists a polynomial ¢ € P,(Q) such

that ¢ vanishes on the line § = 6, and satisfies (2.15). O

Theorem 2.7. (Theorem 3.8 of [4]) Let u(z) = r" log” r x(r) ®(#) with v > 0 and
integer v > 0 be given in (2.10). Then:

(i) There exists a polynomial ¢ € P,(Q) such that

1\ > .
lu =@l gy SC (13) (1+ logp)” (2.16)

where Ry is given in (2.13) and v* is given in (2.14);

(ii) Hul,_, , L= 0,60, = tan"'k > 6y, there exists a polynomial ¢ € P,(Q) such
Tkl /K

that ¢ vanishes on the lines 6 = 6 and 6 = 6, , and satisfies (2.16);

(iti) If ul,_, = 0,05 = tan"'k > 6o, there exists a polynomial ¢ € P,(Q) such

that ¢ vanishes on the line § = 6, and satisfies (2.16). O

3 Rate of convergence of the p-version of the finite
element method

3.1 A model problem in a polygonal domain

Fig. 3.1 Polygonal domain Q



Let Q be a polygon, shown in Fig. 3.1, with vertices 4;, 1 <i < M (Apy41 = A1),
and (open) edges I'; connecting the vertices 4; and A;41. By w; we denote the
internal angle between I'; and I';;1. Let D be a subset of M = {1,2,..., M}, and
N = M|D. We refer to T'p = U T; as the Dirichlet boundary and to I'y = U T;
as the Neumann boundary. \Kj'SZIIOW also polygons with internal angle 27, i\?vj}\lfich

is important in applications.

Consider a boundary value problem:

—Autu=f in Q
=0
thr, (3.1)
ol _
on |y -9

By this simple model problem we shall show how to derive the lower and upper
bounds of the approximation error of the p-version, which applies general elliptic
problem on no n-smooth domains. By H*(2), & > 0 integer, we denote the usual
Sobolev space and H}(Q) = {u € H'(Q) ‘ ulp, = 0}. The variational form of
(3.1) is to seek u(z) € HY) () such that

B(u,v) = F(v), Yo € Hp(Q) (3.2)

where B is a bilinear form on HYL(Q) x H)(Q) and F is a linear functional on
HL(Q), given by
B(u,v) = / (Vu - Vo +uv) de (3.3)
Q

and

F(v):/ﬂfvda:+/FNgvds. (3.4)

Let S5, = {:I: € Q dist(z, 4;) < 6i} be a neighborhood of the vertices A;,
shown in Fig. 3.2, with d; € (0,1). d; is selected such that S5, N S5; = 0 for i # j.
Q = Q] U S5, /2 contains no vertices of Q, and Qo N S5, # () fori € M. Qp is

iEM
called the regular part of .

10



Fig. 3.2 A neighborhood of the vertex A;

We assume that f and g are such that the solution u of (3.1) is in H*(Qo),k > 1,
and in each neighborhood S;s;, v have an expansion in terms of singular functions

of 77 log"” r -type

. [i] i p .
w= Y ORIl Nlogr | @6 x(ry) + uf] (3.5)
o<ylil<k—1
where (r;,6;) are polar coordinates with the vertex A;, u([]i] € H*(S;,) is the smooth
part of u, 'y%] > 0, and 1/%] > 0 are integers. We assume that V%] < I/Lil]+1 and

7%] < ygﬂ , x(r;) and @m(ﬂi) are C* functions, x(r;) = 1 for 0 < r; < §; < 3,
x(r;) =0 for r; > d;. Let

y=minyil =4 =y (3.6a)

and
v, if v is not an integer or v, =0,

Vi = (3.6D).
vy —1 if v is an integer and v, > 1.

3.2 Upper bound of approximation error in the p-version fi-
nite element solutions

Let A = {Qj, 1<j5< J} be a partition of the domain Q. The elements (2; are
triangles or parallelograms. We shall assume that Q; N €); is either the empty set,
or an entire side, or a vertex of Q; and Q;, and assume that all vertices of ) are

vertices of some §2;.

11



By P,(Q) (or P,(£2;)) we denote the space of all polynomials of total degree

Y

< p defined on Q (or €;), and let S? = SP(Q;A) = {u € H'(Q) | u € Py(Q;)

The p-version finite element solution u, € S7,(€; A) is such that
B(u,,v) = F(v), VoeSh;A). (3.7)
Using the coercivity of the bilinear form (3.3), one can show that

— < i — . .
=yl gy < C ind, L=l g (3.8)

H'(Q

Below, we will analyze the asymptotic rate of convergence of the p-version of
FEM. We will use at various places approximations by polynomials of degree p
separately in two directions. These polynomials are polynomial of total degree 2p,
and hence we will not distinguish between polynomials of total degree and degree in

two directions, which will only influence the value of the constants in the estimates.

Theorem 3.1. Let A = {Qj, 1<;5< J} be a partition of {2 containing triangular
and parallelogram elements and S7,(€; A) be the finite element space defined as
above. The data functions f and g are assumed such that the solution u of (3.1) is in
H*(Qo) with k > max{2, 1+2v}, and u have the expansion (3.5) with u([]i] € H*(Ss,)
in each neighborhood Ss,. Then the finite element solution u, € S7,(Q2; A) for the

problem (3.1) satisfies

lu—u <Cp * (1+logp)* (3.9)

ol a)

with constant C' depending on u,k,v and v}, but not on p, where v and v are

given in (3.6).

To prove Theorem 3.1 we need several lemmas.

Lemma 3.2. Let Q = (—1,1)? with four sides I';,1 < i < 4 lying on the lines

z; = -1, 2, = =1, z; = 1, and x, = 1, respectively, and let u € HE(Q) = {u €

12



H*(Q)| u|7 = 0} with k > 2, where T = T, UT,. Then there exists a polynomial

¢ € Pp(Q), p >k — 1 such that ¢|. =0, and

=@l g < C o5 Jul o (3.10)
with constant C' independent of p.
Proof: Since u € H(Q), k > 2, u, , has a Legendre-Fourier expansion:
Ug wy = Z a;; Li(wy) Lj(zy) (3.11a)
i,7=0
1(22) = L4 (25)
UIIZZG L,(z;) / (&) d&y = Za L;(xy) Lis 2j+IJ ,
%,j=0 - i,j=0
= D> by Li(z) Lj(x), (3.11b)
7=0i=0
o (1) = Li_y (2y)
= L ) d L z+1 1 -1\
Uy, ]z:()a (z5) [ (&) d& = JZ:OG (z,) % + 1 ,
= 2D dy Li(ay) Ly() (3.11c)
i=0 j=0
& Ty
v =S [ned [ d
4,7=0
3.11d
_ i a Li(z)—L;_(z) Lj+1(l°2) _Lj—1(332) ( )
- ij 3
i,j=0 2i+1 2j+1
_ %1 g Gy Oy _ B
where b;; = 95-1 2j+3 % T %-1 2i+3 witha; | =a;pand a_, ; =

ag ;, and L;(z,) is the Legendre polynomial of degree i, etc. Define

- 5 ”/ J(€) dfl/ L,(&) de, (3.12)

1,j=0

and we have @\11:71 = @\12:71 =0 and

u—<p=<§:0 ZO) o ds [ i) des
w-o), = fj—z)b L) Lj(ay):

e i j=

13



(w-¢), = ( i - pi )dij Ly(x;) L;(y).

ij=0  ij=0

By the properties of Legendre polynomials ([15]):

1 2k2 1(Z+?: for k=m >/,
[ mowrpoa-eya=q e E=0
-1
0 for k #m or min(k,m) < £.
we have the following estimates:
=l < By + By <O o ful? (3.13)
Alpzg) =17 72 =% 61y Mg '
with
[ee] o0
2 1 1
E, = 2
! ;; %) 21+1 2 +1 (2i+1)2 (25 +1)2
< ci p—k+2)! ii‘ ? 2 (j+k-2)
- P p+k-2) & = %ij 2z+12y+1(j—k+2)!
< o [ PO -2 deyde, < O —
- pQ(k—l) 0 a ah! 2 1552 = pQ(Ic—l) H*(Q)
and
e} p
2 2 1 1
B, = |2
2 ;;'“’J‘ 2i+12j+1 (2i+1)2 (2j + 1)
1 (p—k+2)! 2 (i+k-2)
< C—=
- p? (p+k— 'Zz;;'” 2z+1 2j+1 (i —k+2)!
< 2=2 oy < O — 2
S (k1) ‘U =1y —7) T10Ty > P2 1) ‘U|Hk(Q)'
Similarly we have
(u—o) |2 <F, +F <o ul|? (3.14)
Pallppg =717 72 20-1 () '

14



with

oo o0 2
F = 2
! Z%Z:’ﬂ m+12 +1
]—k+1'°°°° , 2 2 (j+k-1)!
S — IZZ|H‘ y |
j+k 1) == 2i+12j+1 (j—k+1)!
<

1 2 2\k—2 1 2
C Im/cguzlz;—l (1 —23)"" doyday < C e} \U|Hk(Q)

and

2 & 2 2
F b..|2 ——
? ;;W' 2 +12j+1

(p—Fk+1)! 2 (i+k-1)
<
- p+k !;;Jzy” 22-1-1 2j+1 (i —k+1)!
< - [ P = 22 deyday < O - Ju?
= P+ s 1 2= 2= R Q)
It can be proved in the same way that
1w =0, I ) < € —gimyy ol (315)
2 'L2(Q) —  p2k=1) HMQ)” ’
The combination of (3.13)—(3.15) yields (3.10). O

Lemma 3.3. Let Q = (—1,1)? and u € HE(Q) = {v € H*(Q) ‘ vl = O}, k> 2,
where T is a part of Q) consisting of the entire sides of @) or the whole of Q). Then

there exists a polynomial of ¢ of degree p, p > k — 1 such that <p|F =0, and

1 k—1
=l gy <© <5> Il e (3.16)

with constant C' independent of p.

Proof: Let I';, 1 < ¢ < 4 be four sides of () as in the previous lemma. Since the
result for ' = I'; UT', has been proved in Lemma 3.1, we need only to analyze the

3 _ 4 _ _ _
following five cases: (1) T=JT,;(2)T=UJT;B)I=T,UTls 4) |IT|=0;(5)
i=1 i=1

r=r,.

15



Case (1): Let ¢ be the polynomial defined in (3.12). It suffices to show ¢|. =
3
By (3.11c)

3317932 Za L; 372/ Li(&) d&;.

i,j=0
Since u,_(1,z,) = 0, we have

0= Zasz Lo / 51 d£1 ZG’OJ

3,7=0

which implies ay; = 0 for all j. Therefore

p—1p—1
o(1,2,) = ZZ%/ (6) d&/ L;(&,) dé = 0.

i=1 j=0

Case (2): The arguments in Case (1) can be carried over to p|. as well as to
3
<,0|F4 , we have

plar, ) = / (&) de, / (&) d6,

27]

which implies that gp\r =0,1<1i<4.

Case (3): Let x;(z,) and x,(z5) be C* functions such that x,(z,) = 1 for
—1 <z, <0and x;(zy) =0forzy > 1/2; x5(z,) = 1for 0 < z, < land x,(2,) =0
for z, < —1/2, and let u; = x;(z5)u, j = 1,2, and uz = (1 —x(zy) — XQ(xQ))u.
Hence u; vanisheson I'y UI'; UL, u, vanishes on I'y UT', UT'5, and u,; vanishes on
U T;. Due to the results in Cases (2) and (3), there are polynomials ¢;, 1 < j <3

i=1
of degree p such that ¢; vanishes on the corresponding sides of @ and

1 k—1
s =iy < (3) Tullye gy

Let p = Z ;. Then ¢ vanishes on I'; UT;, and (3.16) holds.

Case Z(jl;: First we extend u to Q = (—2,2)2. Let x(t) be a C° functions such
that x(t) = 1 for —1 <t <1 and x(¢) = 0 for |[t| > 2, and let v = x(x;) x(25) u.
Then v € H*(Q) and U‘a@ = 0. By the result of Case (2), there is a polynomial ¢

of degree p such that <p|8Q =

lkfl lkfl
o=l <€ () Pl <€ (3) Ml

16



which implies (3.16).

Case (5): Let x(z,) be a C* function such that x(z;) =1 for —1 <z, <0 and
x(xzy) =0for zy >1/2, u=x(z;)u+ (1 - X(xl))u = u; + u,. Hence u, € H*(Q)
and ul‘FIUF3 = 0. By the result of Case (3) there is a polynomial ¢, € P,(Q) such

that ¢, =0 and

‘rlurg

1 k—1
=0l <€ (5) Mol

Since u, = 0 for z;, <0, @, = : _7_23: € H*(Q) and
1

ol gy < € sl gy < € Ml o -

From the result in Case (4), there exists a polynomial ¢, € P,_1(Q) such that

1 k—1 1 k—1
o= llmy <€ (527)  Moallgngy <€ (527) Nl

Let vy = (1 4+ 2;)@5. Then 902‘1“1 =0, and

k-1
- - 1
s = 6allys gy <€ N = Bollngy <€ (5) Nl
Define ¢ = ¢; + ¢y, then ¢|. =0, and satisfies (3.16). O
1

Lemma 3.4 Let u € H*(Q),k > 2 and u = 0 on I';, where T'; is an edge of a convex
polygonal domain {2 lying on the z; axis with one endpoint A;. Then there exists

a polynomial ¢, € P,(Q), p > k — 1 such that ¢,|. =0 and

I
1 k—1
= el <€ (5) Nullyegey (3.17)

Proof: Let T be a trapezoid D (2, whose boundary is surrounded by T';, the
extensions T;_; of I'; ; and the extension fi+1 of I';,;, and a line parallel to T';
with distance H, shown in Fig. 3.3. The trapezoid T exists because (2 is convex.
We now extend u in T with preserving the H*- norm. We may assume without

loss of the generality that I'; = {(21,0)|0 < 21 <1 }andw; = 5. fw;;; =%

17



then T is a rectangle (0,1) x (0, H), shown in Fig. 3.3(a). By Lemma 3.2 there is

a polynomial ¢, € P,(T) such that ¢,|. =0 and

1 k—1
=l <€ (5) Nllyeey

Then (3.17) follows immediately.

@ ®
Fig. 3.3. A polygonal domain {2 contained in a trapezoid T

(a) w; = Wit1 = 53 (b) Wit Fw; = 3
If w;,; # %, then we extend u in T > T by the Nikolskij-Babi¢ extension (see
[22])such that u € H*(T) and ulz =0, where T, is the extension of T';, and T is a
rectangle with T, and T',_, as its edges shown in Fig. 4.3(b). By Lemma 3.2 there

is a polynomial ¢, € P,(T') such that ¢ |- = 0 and
P p plT,

1\ k1
=2l <€ (5) ullyee
Then ¢, vanishes on I'; and satisfies (3.17). O
Lemma 3.5. Let u € H*(Q),k > 2 where Q is a convex polygon andu = Qon T,

and I';, where I';_; and T'; are two sides of  with a common endpoint (vertex) A;.

Then there exists a polynomial ¢, € P,(Q2), p > k—1such that ,|. . =0and
i i—1

1 k—1
= el <€ (5) Nullgegey (3.18)

Proof: Let T' D (2 be a trapezoid with height H as before, and assume that w; = 3

and that I'; and I',_; with unit length lie in the z; and =z, axis, respectively. Let
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X1 (zy) and x,(z,) be C* functions such that y,(z;) = 1 for 0 < z; < ¢ and
X;(z;) = 0for z; > 26,i=1,2. § € (0, 3) is selected such that (0,26) x (0,26) C Q,
and the line z, = 20 intercepts only I'; | and I';, , and the line x; = 24 intercepts

only I',_, and I';. Set

up = uxy(7y), Uy = u (1= xy(7))

and

uyy =y x4 (%), Uy =y (1= x4 (7))
Then u = u; + uy = uyy + Uy +uy. Note that uy; =0onI',UI',_, and u;; =0 for
z ¢10,20]x[0,20] C Q; uy5 =0o0nT; and u;, =0 for z € Q with 2, < J, u, =0on
I',_, and uy =0 for z € Q with 2, < §. We extend u;; by zero extension outside
(0,28) x (0,20) in a square T' = (0, H) x (0, H) D Q with a suitable H > 1. Then

by Lemma 3.2, we have a polynomial ¢,; € P,(T) vanishing on I'; and I';_, such

that
1\ 1
gy — 8011HH1(T) <C (1—)> HUHH;C(Q)- (3.19)
Since u, = 0 for z, < 6, set 4, = :—z € H'(Q) and vanishes on ', ;. Due to

Lemma 3.3, there exists a polynomial @, € P,_1(Q) such that ¢, =0 on I';_; and

1\ k-1
I = Gallnigy <€ (3) e
Let ¢, = @5 x,. Then ¢, € P,(Q) and vanishes on I',_; and I';, and there holds

. . 1 k—1
I = 02l ay < Cllt =Bl <O (3) Mullyugye (320

Similarly we can find a polynomial ¢12 € P,(2) vanishing on I';_; and T';, and

1 k—1
iz = 12l <€ (5) Meln (3.21)

Let ¢p = w11 + @12+ p2 € Pp(Q), which vanishes on I';_; and I';, and (3.18) follows
from (3.19) ~ (3.21). O
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We now prove the main theorem of this section.

I_D I_D
cocy Tl SUESE S
rN leo 000 rD rN 000 rD
S 5 rD I_D
T Z?'Z I I
@ (b)
rN rN
rD
I rD
§ Qs
R
rN
©
rN

Fig. 3.4. Patches @)y and centers T}
(a) @, contains no vertex and T, ¢ I'p;
(b) @, contains no vertex and T, € I'p;

(c) @, contains vertices of (2.

Proof of Theorem 3.1: We may assume that p > k. Due to (3.8), it suffices to

construct a piecewise polynomial ¢, € S%(€2; A) such that

_ —2y 12
e = @pll g gy < C P77 (1 +logp)™. (3.22)
By T, 1 < £ < L we denote vertices of (2;, 1 < j < J, and by @, we denote
a union of elements which have 7, as a vertex, @, = U ;. T, and Q, are
T,eQ;
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called a node and a patch centered at T, respectively. Let ¢, € S*(€; A) such that
¢,(T;) = 1 and ¢,(T,,) = 0 for m # £. Note that the support of ¢, is the patch
L

Q,, and Z ¢, = 1. Therefore {¢;}£_, is a partition of unity for Q subordinate to
(=1
L
{Qe}fy. Let ¢, = Z 1 with gom € P, 1(Q,). Then ¢, € SP(Q;A) and

u—p, = Z@u—% )

We need to construct a polynomial go . € SP71(Q; A) which vanishes on 0Q, N

T'p and satisfies

¢ (ke
llu— el g,y SCP (k1) (3.23)
if , contains no vertices of , and
=@y, < C P27 (1+1ogp)™ (3.24)

if Q, contains vertices of Q.

We shall construct go[péll on each (), according to their locations. There are three
cases shown in Fig. 3.4:

Case A : @), contains no vertex of ) and T, ¢ I'p;

Case B : ), contains no vertex of Q and T, € I'p;

Case C : ), contains vertices of Q.
Case A. Since ), contains no vertex of Q, u € H*(Q,). By M, we denote an affine
mapping which maps @, onto M,(Q,) C @ = (—1,1)%. Then we extend @ = uo M,
to whole @ such that the H¥-norm is preserved . By Lemma 3.2 there exists a

polynomial ¢,_; € P,_1(Q) such that
Hqul_cﬁpleHl(Q <Cp (k= 1)

Then, ¢, | = ¢, 10 M, € P,_1(Q,), and satisfies (3.23).
Case B. Let (), be a patch containing no vertices of (0 with the center T, € I'p

shown in Fig. 3.5. To fix the ideas, suppose that ¢J; has five edges 9;,1 < i < 5 and
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that the edge 41, lying on the z; axis, is a portion of I'p. Then the angle 6, between
4, and 7,, and 6; between 75 and 7, are less than 7. We may assume without loss
of generality that @y is convex. If @)y is not convex, we can extend u in a convex
polygon containing ()¢ and having ¥; as its one whole edge. Therefore (), can be
contained in a trapezoid T between the extension of 4; and 4,. Due to Lemma 3.3,

we have a polynomial ¢, ; € P,_1(Q,) such that 50511 = 0 on 7, satisfies (3.23).

Fig. 3.5.A patch @, containing no vertices of ) with center 7}, on I'p

Case C. We will construct 50511
4l

p—1

in @, whose center T, is a vertex A; of 0. The

construction of ¢ on (), with the center Ty, which is not a vertex of the domain,

is similar to what follows.
We assume that A; is the center T, of @),, located at the origin and that I'; and
I';_1 are on the lines § = 0 and § = w, respectively, where w; is the internal angle

between I'; and I';_;. In @, the solution u has the asymptotic expansion:

[ [
u= Z Cyr7e (logr)’e x(r) ®(0) +ug = v+ uy
0>1
vlgi]Skfl

with £ > max{2,2y+ 1}, 0 < %[i] < ﬁll, and Vy] > 0. Here uy € H*(Q,) is the
smooth part of the solution, ®(0) =0ifI'; C I'p, ®(w;) =0if I';_; C T'p. We may

I

assume that v} = v and Vy] = v,.
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Note that u, € Hk(Q[) IfT; ¢ T'p and I';_; ¢ I'p, a polynomial gog)ll €

P, 1(Q,) can be constructed as in Case A such that

o — ] <c(! - (3.25)
0" il =V \p) ‘

=60

Fig. 3.6. A patch @), centered at the vertex A; with
w; >mand w; —m < 0y < 7.

If I'; € I'p and the internal angle w;, < w, we have gog)ll € P,_1(Q,) by
Lemma 3.3 such that go[o] =0onI'; and (3.25) holds.

p—1

If It C I'p and w; > m, there are several elements ),,, 1 < m < s around the
vertex A;. These elements (2, are between the lines § = 6,, and § = 6,,_,, where
we write f; = 0 and 6, = w;. Assume now that there is §,, among #,,,’s such that
O, —00 =0, <mand;,—6,, =w;—0, < (seeFig. 3.6 wheremg =2). By ¥,
we denote the element edges lying on the line §,,, 0 <m <'s. Let M, be a linear

mapping which maps the Yrm,, ONtO itself and maps 4, onto 4 such that w;, — 6 < ,

and let iy = ug o M, € H*(Q}), where Q} = Q} o M, ,and Qp = U Q.
1<m<m,
Then )., =0, and @, can be extended into Q? = Q,\Q} = U Q,,. Note
Yo my<m<s

that @, = 0 on 4 and uy — @y = 0 on 4, By the previous arguments for internal

angle < 7, there is a polynomial ¢ € P,_1(Q,), where @, = Q} U Q? such that
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6=6 A, " 0=0;=0

Fig. 3.7. A patch @), centered at the vertex A;
with w; > 7, #; < 7w and 05 > .

(‘5|W’ =0 and

1 k—1
lao = ¢l <€ (5) (3.26)

and there is a polynomial ¢ € P,_;(Q?) such that ¢l. ~=0and
mo
1) A
(00 =) = bz <€ () (3.27)

We extend ¢ into @} by a zero extension, and set

o ((,5+¢))0Mn;; in Qf,
o = (3.28)
p+o in Q7.
Then cpﬁ)?l € S%71(Q; A), and there holds

o = Al < € {10 = Bl + 100 = 0) = 0l ) |
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which together with (3.26) and (3.27) yields (3.25).

In general, such Gmo, satisfying w;, — 7 < Hmo < 7, may not exist, but there
always exists a mq such that 6,, , < m and 6, > m, shown in Fig. 3.7 where
s =3,mg =2,0, >7 and #; < w; — w. Let My be a linear mapping which maps
Ym,—1 onto itself and maps 5, onto ¥; such that 6, —6y < 7. By @y = ug o M,, we

denote the transformed function in Q} = Q} o M; where Q} = U Q, ., and

1<m<mg—1
we further extend o into Q2 = @, \ Q} such that the H*-norm is preserved. Then

m?

iy € H*(Q¢) where Q; = Q} U @7, and vanishes on #). It is exactly the previous
case that the internal angle > 7 with 6,, — 6y <7 and 0, —0,, =w;, -0, <m.
Therefore, there exist a polynomial ¢ € 5%71(9; A) such that @\% = 0 and satisfies
(3.26). Note that ug — g = 0 on ¥, , and that Oy, — 01 <7 and f; — O, < 7.
Again, it is exactly same as the case above. Hence, there is a polynomial ¢ €
S?71(Q; A) such that ¢‘%m0 = 0 and satisfies (3.27). We extend ¢ into Q} by a
zero extension, and define SOLOL as in (3.28). Then gog)ll € S%71(Q; A) and satisfies
(3.25).

We next discuss the situation in which I';UT';_y C I'p. If w; < 7, the polynomial

4,0;011 € Sffl(ﬂ; A) satisfying (3.25) can be constructed due to Lemma 3.5.

Fig. 3.8. A patch @, centered at the vertex 4; with I'; UT';_; C I'p
and with w; > 7 and w; — 7 < 6, < 7.

If w; > m and there is a mg such that Gmo — 6y = Gmo < m and 0, — Gmo =
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w;, — 0

i m, < T, We introduce a linear mapping M, which maps the 7m0 onto itself

and maps 4, onto 4} such that 4§ lies on the extension of 5. By T we denote
a trapezoid with 4§ U 4, and the extensions of the edges neighboring to 4y U s

as its edges. T is divided by 4,, and its extension into 7} and 7%, shown in Fig.

3.8. Let g = ug o My in Q}, where Q} = Q} o M,, Qi= U Q. Wefirst
1<m<my
extend g into T3, then extend it into T5 by an extension of the Nikolskij-Babic

-type (see [22]), denoted again by @g. The extension leads to ﬂo“v’ = ﬂ0|;y =0.
0 .

By Lemma 3.3, there exists a polynomial ¢ € P,_;(T") such that 55‘& oy = 0 and
s 0

1\ k-1
o =l 1 gy <C (5) : (3.29)
Let
95 o M[l in Q%,
(p =
@ in Q7 =Q\Q}
Hence ¢ € S%'(Q; A) and
1\ k-1

Let w = ug — @ in Q7. Note that w0|ﬁ = w\gy = 0. By the previous result, there
mo s

is a polynomial ¢ € S%'(Q; A) such that ¢l =¢l, =0, and
o .

1\ 1
|w - ¢HH1(Q§) <C (5) . (3.31)
We extend ¢ into @} by a zero extension, and set cp][?oll = ¢ + ¢. Then cp][?oll €

SP1(Q; A) and satisfies (3.25) due to (3.29)-(3.31).

If w; > m and there exists no my such that w, — 7 < Gmo < m, we have to apply
the extension of the Nikolskij-Babi¢ -type twice in order to construct the desired
cp[poll. For the sake of the simplicity, we assume that s = 3,6; < w; — 7 and 6, > 7,
as shown in Fig. 3.9. Let M; be a linear mapping of ; onto ), which maps ¥,

onto itself and 4y onto 4} such that 4} lies in the opposite direction of 45. By u;

we denote the transformed function ug o M; in ), and by @; the Nikolskij-Babic
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extension of u; in Q) UQs such that 4|, = 4|, = 0. By Lemma 3.5, there exists
1 Yo Y2

a polynomial ¢; of degree (p — 1) in Qf U Q5 such that 4,51\%, = ¢1|% =0 and
0

1 k—1
a1 = Gull g1 g1 g,y <€ (1—3> : (3.32)
Let
@1 0.2\4171 in Ql,
$1 =
951 in QQ.
Then
1 k—1

lluo = @1ll g1 g,y < C llin = @1l g gy <C <5) : (3.33)

Similarly we introduce a linear mapping M3 of 23 onto Q%, which maps 4» onto itself
and 43 onto 44, such that 44 lies in the opposite direction of 4. Let ug = ug o M;
in Qf, and let @3 be the Nikolskij-Babi¢ extension of uz in Qf U Qy such that

113‘% = 113\% = 0. By Lemma 3.5, there exists a polynomial @3 of degree (p — 1)

in Q5 U Qs such that @3|., = @1, =0 and
Y3 72
1 k—1
123 = @3ll 1 L0,y <C <5) : (3.34)
Let
@30 Mgt in Q3,
$3 =
(,53 in QQ.
Then
1 k—1
0 = fall s oy < Cllia = Gall gy <€ (3) - (335

Let w = ug — @, — @3 in Q5. Note that w|;“ = w|% = 0. By the previous result,

there is a polynomial ¢y € P,_1(f22) such that 4,02|;Y1 = g02|% =0 and

1\ k1
We extend ¢ into Q3, 3 into 1 and - into Q; U Q3 by zero extensions, respec-

tively, and let <p£]0]

1 =1+ @2+ p3. Then cp][?oll € 8571 (0; A) and satisfies (3.25)
due to (3.32)-(3.36).
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Fig. 3.9. A patch @, centered at the vertex 4; with I'; UT';_; C I'p
and with w; > 7, 61 < 7 and 65 > 7.

[v]

p—1 € Pp—1(Q,) to approximate the singular

We now construct a polynomial ¢

solution v in two different cases: Case C1: w; < m and Case C2: w; > 7.

Case C1: Since w; < 7, there is 0 > 0 such that w, + 20 < 7. We extend ®(6)
to R such that ®(#) = 0 for § > w, + 0 or # < —o. Thus v is extended to Q7,
which contains (), and is between the lines § = w; 4+ 0 and § = —o. We introduce a
linear mapping M, which maps Q} onto Q} C Ry = Ry, 9, C Q = (—1,1)?, where
Ry is defined in (2.14). Then § = vo M, € By?(Q) with s = 1 4+ 2y, v = v}. By
Theorem 2.8 for v = 0, or by Theorem 3.8 for v > 0, there exists a polynomial

$(7) € Pp—1(Q) such that

o 1\* o
10 =&l <C (1—)> (1+logp)™. (3.37)
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Then goLUll =@¢oM,;"' € P,_1(Q,), and satisfies

1\* .
HU—‘P HHI SC(E) (1+logp)”. (3.38)

If [;UT;_y C I'p (resp. I'; C I'p), we should apply Theorem 2.6 (ii) (resp. (iii)) or
Theorem 2.7 (ii) (resp. (iii)) to construct a polynomial $(Z) € P,_1(Q) vanishing on
the lines M (T'; UT;_1) (resp. M (T;)) and satisfying (3.20). Then <p1[0v11 € P,_1(Qy)
and @Lv] ,=00ndQ,NTp.

Let ol = o+ 0% € P,_1(Q,) (or S%7'(2:A)). Then ¢!l, = 0 on
0Q,NTp and satisfies (3.24).
Case C2: w; > 7. We extend ®(f) to (—o,w; +0), 0 > 0 (if w; = 2m, it is
understood that the non-periodic function ®(¢) is defined on (—o,w; + o) ) such
that 61 + 0 < 7 and (05 —85-1) + 0 < 7. Let 0_1 = —0, 0541 = w; + 0. Two
additional elements, which are between the lines § = 6_; and 8 = 6y, and lines
0 =05 and 0 = 651, respectively, are denoted by g and Qgy4.

We now introduce a partition of unity {v,,(6), m = 0,1,2,...,s} such that
Z ¥,,(0) =1 on [0,w,], and each ¥,,(0) is a C* function with compact support
S = 01 + 0,001 —0,,),0 < m < s which form a cover of [0,w;]. Let

U,, = ¥,, v, which has the compact support Sp,. If (6,,,, —¥6,,_;) < « for all m.

m—

It becomes the Case C1 for each v, , namely, there exists a polynomial ¢! €

m’

Pp1(9,,UQ, 1), 1 <m < s, such that ™! vanishes on the line § = 6,,_; and
0 =0m+1, and
[m] 1\ -
m =" s <C (5) 1+ logn)*, (3.39)
We next extend "™ by zero extension outside of S, and let goLvll = Z go[m].

m=1

Then go L € SP71(Q;A) and

. 1\ -
o= e g, <€ Zuv . u9m+l)so(5) (1 +logp)"
(3.40)
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Thus (3.24) is satisfied.

If I; C Tp, ¢! can be constructed such that ¢!l € P, 1(Q, U ;) and vanish
on the line § =60 4 and § = 6y. If [';_y C I'p, go[m] should be constructed in a
similar way.

If (0,01 —0,,_1) > 7 for some m, we introduce a linear mapping M of Q,,
onto Q/ which maps the line # = §,, onto itself, and the line § = 6,,_, onto a
line § = 6;,_; such that 6,,,, —0,,_; < 7. By 9, we denote the transformed
function of v,, o Mt on !, and we extend ©,, to ,,+1 such that the extension
vanishes on the line # = 6,,,;. The construction of approximation polynomial @l

to 0, on Q,,,, U is one of previous case since 6,,,,; — 6, < w. Note that

m m—1

= (0. Therefore there exists a

(0 =0and §,[,_, = vm|9:9;“r1

m Um)‘gzgm
polynomial ¢[™ € P,_;(9,) to approximate (v,, — #,,) on Qp1, which vanishes
on the lines 8 = 6,, and § = 6,,41. Define

¢[m] o M1 in Qm:
[m] _
gop—l -
(ﬁ[m] + ¢ in Qm+1.

[m]

o1 by zero extension outside Q,,,; UQy,. Then gogﬁ]l € S%719Q,A)

and extend ¢
and satisfies (3.30).

Combining all the cases discussed above, we complete the proof of this theorem.

The assumption of Theorem 3.1, namely, that the elements are triangles or
parallelograms is not substantial. The theorem can be proved for quadrilateral
elements. In order to generalize Theorem 3.1. to the mesh containing quadrilateral
elements we introduce the finite element spaces of pull-back polynomial type as

usual :
57 =57 8) = {0 € ') [ p =00 M, " 6 € P,Q)7 = L2+, T} (34D
and

SP = SP(Q;A) = SP(Q; A) N Hp(Q). (3.42)

30



where M is a mapping of the reference element () onto the element €2;, which is bi-
linear if €2; is a quadrilateral element, and linear if 2 is a triangle or parallelogram,

respectively.

On each patch @y, which may contain quadrilateral elements, with the center
denoted by Ty, ¢ = 1,2--- L, we define a piecewise bilinear function ¢, such that
¢,(T,) = 1 and ¢,(T,,) = 0 for m # £. Note that ¢, € S*(Q;A) and {¢}, is
a partition of unity for  subordinate to {Q/}l_,. Let ¢ = i ¢y 0", where !¢
is a polynomial of (separate) degree (p — 1) and belongs to 4521(”_1)(9; A). Then
@ € S?P(Q;A) and u — ¢ = XL:@(U — ). By 5, we denote the edges of Qy

=1

such that T; € .. We need to construct a polynomial ol € S2(P=1)(Q; A) which

vanishes on v, N ['p and satisfies

=00, <O Dl (3.43)
if , contains no vertices of 2, and
[lu = ]| < Cp 7 (1+logp)™ (3.44)

H'Y(Qy)

if Q, contains vertices of Q.

4]

p—1 on each patch Q¢ in the proof of Theorem 3.1 can

The construction of ¢
be carried over for the construction of ¢l¥. Hence we have proved the following

theorem for general partition A containing triangular and quadrilateral elements.

Theorem 3.6. Let A = {Qj, 1 <5< J} be a quasi-uniform partition of
containing triangular and quadrilateral elements, and let S7,(Q, A) be the finite
element space defined in (3.41)~ (3.42). The data functions f and g are smooth so
that the solution u of the boundary value problem (3.1) is in H*() and has the
expansion (3.5) with ug] € H*(Ss,) in each neighborhood Sj, with k£ > max{2, 1+

2v}. Then the finite element solution u,, € S7,(Q; A) for the problem (3.1) satisfies

llu —u < Cp~ (1 +logp)¥ (3.45)

o)
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with constant C' depending on &, v and v, but not on p, where v and v are given

in (3.6). m

Remark 3.1. The arguments above can be generalized further for meshes contain-
ing curvilinear elements where high-order mapping are used. However, we will not

elaborate on it here.

Remark 3.2. The theorem is also valid for the data functions f and g which may
have singularity at the vertices of the domain, i.e. f € CZ’O(Q) or HS’O(Q) and
g€ C2_3/2’1/2 (T) or Hg_3/271/2 (T'w). For the definitions of these weighted Sobolev
spaces with Babuska-Guo weight, we refer to [2, §].

3.3 Lower bound of approximation error in the p-version fi-

nite element solutions

We now study the lower bound of the approximation error in the p-version finite
element solutions in two dimensional setting. The main theorem of this section is

the following :

Theorem 3.7. Let u be the solution of the problem (3.1) with the data functions f
and g, which are assumed such that the solution u is in H*(Qg) with & > max{2, 1+
27}, and u has the expansion (3.5) with u([]i] € H*(Ss,) in each neighborhood S, .

and let u, € S (€Q; A) be the finite element solution of the problem (3.7). Then
lu = upl| > Cp~>7(1 + logp)*~, (3.46)

where C is independent of p, v and v} are given in (3.6). O

The proof of the theorem needs several lemmas.

Lemma 3.8. Let F(t) be a non-increasing function on [0, 00), and tlim F(t) = 0.
—00

Then, there is a function G(¢) on (0, 00) with the following properties:

(P1) G(t) > F(t) for t € (0, 00),
(P2) G(t) is non-increasing,
(P3)  limyee G(t) = 0,
k
(P4) %((tt)) > 1 for t€(1,00) and integer k> 1.
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Proof. We refer to Lemma 2.2 of [3]. O

We now introduce a weighted Besov space associated with the function G satis-
fying (P1)-(P4) :
B (Q) = (H(Q), H** (@), . &
with norm

_ t=OK (t, u)
@ T Taa

llul
where 0 < 8 < 1, s = (1 — 6)¢ + 6k.

Lemma 3.9 If for all p > 1 there holds

inf U — <Cp*°G
o Po(Q) I <P||L2(Q) s OUp (p)

where G(t) satisfies (P1)—(P4), then u € Bg’ﬁl(@) with 8’ = (0,0).
Proof. Refer to the proof of Lemma 2.3 in [3]. a.

Letting Q, = (—1,—1 + 2h)?, we introduce Sobolev spaces H*?(Q;) with

Jacobi-weighted norm

lllysio,, = 3 / |Dau|2 _ a2yt gy,

la| <k

where k > 0, integer and 3 = (831, 32),8:; > —1,i = 1,2. The semi-norm ‘u|H’“’B(QH)

involves only the k-th derivatives of w.
The weighted Besov space Bg’B(Qh) is defined as an interpolation space by the

K-method, i.e.
B Q) = (HY(Qu), H** Q)

6,00,G
where 0 < 0 < 1,5 = (1 — )¢ + 6k, £ and k are integers with norm

t=0K (t,u)

lull 5o @u) = 890 =G

with K (¢,u) given in (2.4) and G satisfying (P1)—(P4).
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Obviously, the spaces H*?(Q}) and Bé’B(Qh) are the restrictions of the spaces

H*5(Q) and Bé’ﬂ(Q) on Qp = (—1,—1+ 2h)?%, respectively, and

[l < Jfull » [l

< lul

H*B(Qn) HEA( B8 (Qy) B*#(Q)"

Lemma 3.10. Let u(x) € H*#(Qp) with 3; > 0, and let @(#) = u(h(1+ &) — 1).
Then (%) € H*#(Q), and for integer ¢ < k

jal?

< Opi2hpe |u\
H"?(Q)

H?(Qn)’
Proof. The mapping : z + 1= h(Z + 1) maps Q = (—1,1)2 onto Q. Then @(%) is
defined on Q. Noting that 1 < (1 — z;) < 2 for z € @}, we have
‘a‘iﬂ,ﬁ(Q) = Z\a\:e fQ |Dal? H (1= FF)iths dx
<O jal=t ht=2 == th | D*ul? Hz’:l(]' + ;)i dx
< Chl—?—ﬁl—BQ‘u@ﬂﬁ(Qh)_

This completes the proof of the lemma. d

Lemma 3.11. Let u(z) € H*?(Qp) with 81 = B2 = 0. Then there exists a

polynomial ¢, € P,(Qp) with 1+ p > k such that

u = @yl < Chfp~2 Juf? (3.47)

HOR(Qp) — HY#(Qn) "

Proof. By Lemma 3.10, @(%) = u(h(1 + %) — 1) € H*#(Q). Due to Theorem 2.1
, there exist a polynomial ¢,(%) € P,(Qn) with 1 4+ p > k, which is the Jacobi
projection of %(Z) on P,(Qp), such that

< Cp~ 2 af?

| 50p|Ho Q) =

H*P(Q)'

1
Let @,(z) = @p( -;a: 1) € P,(Qr), and by Lemma 3.10 and scaling we have

u— Sp‘fqo,ﬂ(Qh) < Cth lu— | dz
<CW [, lu— @y d
< Ch2p=2kif2, 5@

< Chkp=2F|u|2., 5(Qn)"
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Lemma 3.12. Let u(z) € Bg’B(Qh) with #; = B2 = 0. Then there exists ¢ €

P,(Qp) with p+1 > s such that

1= ol g,y < CH2GA/B?) |lul (3.48)

BSP(Qn) "
where the constant C depends on p but not on h.

Proof. Due to the definition, there are v € H%%(Q}) and w € H*5(Q},) such that

forallt >0

[0l 0.5 (Qu) + tlwll s @,y < C/GA/1)]lul

where 0 < s < k, 0 = % By Lemma 3.11 there exists a polynomial ¢, € P,(Q#r)
satisfying

1w = @pllos@u) < CH2|wlls ()

Therefore

| 10.5(Qu) + 1w — wpll o5 (q,)
| 0, 8(Qn) T Chk/? [|w]| g, 8(Qn) (3.50)

llu — @pll o5 (@) V]
v
C (||v||H0ﬂ an) + W2 wll s ,)) -

Letting ¢ = h*/? and combining (3.49) and (3.50), we have
lu = pllmos@,) <C (IIUIIHOB (@u) + tlwlmesqu)

< CGA/)ull pes g,
< ohs/2G(1/hs/2)IIUI B8 (Qn)-

Thus the proof of Lemma 3.12 is completed. d
We now are ready to prove the main theorem in this section.

Proof of Theorem 3.7. We shall prove (3.46) for v = 0. The proof for v} > 0 is
similar to what follows. We assume that {2; is the element containing the vertex A;,

where the strongest singularity occurs. It suffices to prove for some a with |a| =1

1D (u = up)ll 200y > Cp~. (3.51)
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We may assume that ; is a quadrilateral without loss of generality. If Q; is a
triangle, we may consider a quadrilateral with the vertices at A;, and middle points
of three edges of ;. By M; we denote a linear mapping which maps Q = (—1,1)?
onto ; and A;, to the vertex (—1,—1). Let v = uwo M; and v, = up o M. Then

vp € Pp(Q) and we need to show that
D% (v = vp)l|2(0y) > Cp™"
If it is false, then there exists a function F(t) such that lim; ,o F'(t) = 0, and
1D*(v — vp)||p2(0,) < CF(p) p~>"

By Lemma 3.8 we can construct a function G satisfying (P1)-(P4), and by Lemma
3.9 D € BY"7(Q) with 8, = 85 = 0 and |a| = 1. Then v € BY"? (Q4), and due

to Lemma 3.12, there is ¢ € P,(Qp) with p+ 1 > k such that

D = ¢l ) S OGO/ | SOWGQE/m) . (3.52).

52 (@ ]z g

On the other hand, v has singularity of r7-type at A;, it is known [14, 23] that for
lal =1

inf D*(r"x(r)®(0)) — 2 >Ch,
L DR X6) ~ bliz@u)

which contradicts (3.52). Thus (3.51) holds.

For v > 0, we need only to introduce the space Bs;f,: (Q), instead of BEB(Q),

and its norm :
Cw t=OK (t, u)
By"(Q T S (1 + [log )5 G(1/1)

Then all arguments above can be carrid out for vJ > 0. Hence the theorem is

[[ul

proved. O
3.4 Optimal convergence

Combining the estimates on the lower and upper bounds of the approximation error
in the p-version finite element solution, we conclude with the optimal convergence

of the p-version.
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Theorem 3.13. Let u be the solution of the problem (3.1) on polygonal domain
with the assumption on the data functions f and g as in Theorem 3.1-3.3, and let
u, be the finite element solution of the p-version in ST (€; A), respectively. Then
p 27 (1+ logp)"* is the optimal rate of convergence for the finite element solution

Uy, i.e. there are constants C; and Cy independent of p such that

v

Cip™?" (1+1logp) < lu = upll 10y < Cop™ (1+ logp)y* ;

where 7 and v are given in (3.6), which represent the strongest singularity of the

solution of the problem (3.1). O

Remark 3.4. It has been shown that the constants C; and Cs in Theorem 3.13
are asymptotically the same in one dimension [16]. Whether Cy and C5 in two
dimensions are asymptotically the same remains to be answered yet. Nevertheless,
the same order on the the upper and lower bound of errors allows us to develop a-
posteriori error estimators by extrapolation of computational solutions, which will
be reasonably reliable in practice if the difference between C; and Cs is not too

large.
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