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THE h-p VERSION OF THE FINITE ELEMENT METHOD
WITH QUASIUNIFORM MESHES (*)

by I. BABUSKA (*), Manil SURI (2)

Abstract. — The classical error estimâtes for the h-version of the finite element method are
extended for the h-p version. The estimâtes are expressed as explicit fUnctions of h and p and are
shown to be optimal The estimâtes are given for the case where the solution u e Hk and the case
when u has singularities at the corners of the domain.

Résumé. — Les estimations d'erreur classiques de la version h de la méthode des éléments finis
sont étendues aux cas de la version h-p. Ces estimations sont exprimées explicitement en fonction
de h et de p, et on montre qu'elles sont optimales.

Ces estimations sont données dans le cas où u appartient à Hk et dans le cas où u présente des
singularités aux coins du domaine.

1. INTRODUCTION

There are three versions of the finite element method : the h-version, the
p-version and the h-p version. The A-version is the standard one, where the
degree p of the éléments is fixed, usually on low level, typically
p = 1, 2, 3 and the accuracy is achieved by properly refining the mesh. The
p-version, in contrast, fixes the mesh and achieves the accuracy by
increasing the degree p of the éléments uniformly or selectively. The h-p
version is the combination of both.

The standard A-version has been thoroughly investigated theoretically
(see e.g. [1, % 2ô]-and others) and mafly^program codes are avaüable, both
commercial and research. The ^-version and the h-p version are new
developments. There is only one commercial code, the System PROBE
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200 I. BABUSKA, M. SURI

(Noetic Technologies, St. Louis) (*)• Theoretical aspects have been studied
only recently. The first theoretical paper appeared in 1981 (see [6]). See also
[2, 5, 7, 10, 11, 14] for most recent results. For the numerical, computatio-
nal, implementational and engineering aspects of the h-p version we refer to
[3, 21-24],

The classical form of the error estimate for the /i-version with quasiuni-
form mesh is

(l.lû) ||uo - UFE\\HKÜ) ^ n )

where

(l.lfe) ri = min (k,p + 1)

and the constant C(p) dépends onp in an unspecified way, (See e.g. [1,9,
20] and others.)

The main purpose of this paper is to analyze the h-p version with a
quasiuniform mesh and uniform p and get an error estimate which is
simultaneously optimal in both/> and h, We show that the estimate (1.1) can
be written in the form

( L 2 ) IK - UFE\\Hi{a} ^ C — | |«o| |# ( û )

with

TJ = min (k, p + 1 )

and C independent of hfp and u0. We will also prove estimâtes for the h-p
version when the solution has singularities in the corners of the domain and
in the case when essential (Dirichlet) conditions are prescribed but are not
in the subspace of finite éléments. Finally, we will present a numerical
example illustrating the applicability of the developed (asymptotic) theory
in a range of h and p used in practice.

2. THE NOTATION

For OczfR2 a polygonal domain, x = (xl5x2) e R2, w e let L2(£l) =
/f°(O)? Hk(ü), iF/o(Û)? k ^ 0 integer, dénote the usual Sobolev spaces. For
u s Hk(Q,) we dénote by ||u \\ k ü and | u \ k a the usual norm and seminorm»
respectively. For k s* 0 nonintegral, we define Hk(Q) and ||. || k n by the K-

i1) In addition there is code FIESTA for solving 3 dimensional elasticity problems having p-
version features but using onîy 1 ̂ p ^ 4 .
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THE h-p F1NITE ELEMENT METHOD 201

method of the interpolation theory [8]. If / is an interval or a segment, then
we define Hk(I% \\*\\ktn * ^ 0 analogously.

For 0 < t < 1, we will dénote by 0|| . ||f l the norm of the interpolation
space (H°(I), Ho(/)) r This norm is equivalent to the || . ||f f norm when

t ^ _ . For t = - , we obtain a norm

4
which is not equivalent to the || • || I z norm (see [17]). Moreover, if A is an

end point of J, we may analogously define A |j . || 11 to be the norm of the
spaee (H°(I)9 H\(I))t where Hl

A(I) - {u € H^I), u(A) = 0} .
Given p^>0, let

For any Ocz U2 we will dénote pn = sup {diam (B)\B a bail in O}.
The set of all algebraic polynomials of degree (total) less than or equal to

p on O will be denoted by ^ ( O ) . By ^ ( O ) we will dénote the set of all
polynomials of degree less than or equal to p in each variable on O. For
F cz R2 a straight segment, we define tPp(T) as the set of polynomials on F of
degree less than or equal to p in s ($ being the length parameter of F).

Let K >. 0. Then by H^ER(R(K)) C H * ( R ( K ) ) we dénote the space of all
periodic fonctions with period 2 K. By T^(1*(K)) (^J(R(K))) we dénote the
space of all trigonométrie polynomials of (total) degree (degree in every
variable) less than or equal to p.

3. THE MODEL PROBLEM

3.1* The formulation of the problem,

Consider the following model problem

(3.1) - Aw + « = ƒ in O

(3.2a) u = g on F1

(3.2b) — = b on F2

dn

where û c R 2 is a polygonal domain with vertices Ai9 i = 1,. . . , n + 1,

F 1 - {J F,, F2= [J Tj9 F = F 1 UF 2 ,

vol, 21, n° 2, 1987



202 I. BABUâKA, M. SURI

A,

Figure 3.1. — The scheme and notation of the polygonal domain.

F is the boundary dH of fl and F;, j = 1, ..., n, are the open sides of the
boundary dft (see fig. 3.1).

The internai angle at At is denoted by Ö>(.. We allow the possibility that
cDj = TT or 2 TT. The case iot = 2 TT describes the slit (cracked) domain while
the case oo, = TT is introduced to deal with the abrupt change of the type of
the boundary condition or with nonsmoothness of g or b at the correspond-
ing vertex. When ft is stated to be a Lipschitz polygonal domain, then it will
be assumed that o>; < 2 TT, i = 1, 2, ..., n.

Let Hl(£l) = {ve H\n), v = 0 on T1}. For M, V e H\n) we let

Vv + MI? ) dx .(u>v)oyn= uvdx, (w, tOi.ri = (Vw •
Ja * Ja

We interpret now (3.1) and (3.2) in the standard variational sense namely
we seek u e H1 (ft) so that

(3.3a) u = g on T1

and

(33b) (u,v\a=(f9v\a+ f bvds
JT2

holds for ail v
We will assume that the solution u of (3.1) and (3.2) is

(3.4) u = «! + u2 + M3

where

(3.4a) Wi e //fcl(H) n
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THE h-p FTNITE ELEMENT METHOD 203

u2 e Hk\£l) , k2 > 3/2

(3.4c) u3= J ^ i ^
( = i

(3.4d) «3,,- = /f' llogrH7' <P,(e«)x,C-,)

where rh 6,- are polar coordinates with respect to the origin located at the
vertex Ai9 a ; > 0 , yt ~z 0 integer, <Pi($i) is an analytic function in
9, and Xi(ri) is the C°° cut-off function so that u3i = 0 for rt =* p, > 0 ,
p( sufficiently small.

The form (3.4) is the typical form of the solution of (3.1)-(3.2) (and of a
system of second order) (see e.g. [4, 12, 16]). The assumption that
k > 3/2 is usually satisfied in practice and hence is not a severe restriction.

3*2. The finite element method

Let M = {TSh}, h^O be a family of meshes *&h = {S?} where
5f c ( ï is an open triangle or parallelogram. Let hsh = diam (Sh) and
psh be as defined in Section 2. We shall assume that the family {75h} is
regular in the sense that there exist positive constants ex, T independent of h
such that for all S? e "B*, & e M

(3.5a) max h$h = h

(3.5&) A^T

A5

(3.5c) — ^ a .
P5/1

(Condition (3.5è) is obviously the condition of quasiuniformity of the
mesh). Further we assume that with TSA = {5f} , i = 1, 2 , . . . , mh>

fi = \^JSf and that each pair 5f, Sy,"f =£ f has eitheran entire side or a
j = 1

vertex in common, or has empty intersection.
Let Ff be an affine mapping with Jacobian having positive determinant

which maps Sf onto the Standard square Q = ( - 1,1 ) x ( - 1 , 1 ) when
5* is a parallelogram and onto the standard triangle

T = {(xux2)l -

when 57̂  is a triangle. Let now TT*(H) <= i f^H) dénote the set of fonctions M
such that if USH dénotes the restriction of u to Sjlerüh then

voL 21, n° 2, 1987



204 I. BABUSKA, M. SURI

ush o (Ff)"1 e ^p(Q) if Sf is a parallelogram and u5*o (Ff)"1 e ^ ( T ) if

Sf is a triangle. We will then write «5* e ^ ( 5 f ) and M e f , (ft). Further-

more, we let /**(ft) = iT*(ft) n flj(ft).
The mesh TS* on H induces a partition if f = {7^} , j = 1, 2, ..., m (t ) of

F,, i = 1, ..., n. Dénote by AT*,, ƒ = 0, 1, ..., m(ï) the nodal points of

&ï (i.e. the end points of 7^). We let TT*(r(.)c ff1^.) be the set of
functions M such that the restriction uyh. of u on 7fj; is a polynomial of degree

=s/?. Moreover, ^p(F(-) c i^piT^ will dénote those polynomials that vanish

on JV£;, ; = 0 , 1 , . . . ?m(/) .

Let g* € l^J i^piXi) b e the approximation of g (see (3.2)) described

below. The h-p version of the finite element method consists now (for given
p and h) of finding w*e ^*(f t ) such that

(3.6a) u*=g* on F1

f
holds for a U y e

To define ^ we dénote by gfr the restriction of g on F(- c F1 and assume

that gT: e // '(F,) with r > 1.

We define now #*, /? ^ 1 so that

(3.7a) ^ r ^ i r ^ F , ) , F, c= F1

(3.76) glTi{Nli) = g(NtJ), ƒ = 1, ..., m(î) , î = M, ...,»'„,

(3.7c) f ( j*,r () 'w'4= f g ' W A , F, c F
1

Jr( Jr,

holds for ail w e / ^ ( F , ) .

Remark : If we restrict (3.76) to ƒ = 0, m(i) only (iV*0 = ^i» Ntm(i) =
Ai + 1)9 then (3.76) is satisfied as a conséquence of (3.7c).

4. THE CONVERGENCE OF THE h-p VERSION: THE CASE OF THE SOLUTION
u G Hk(a)

In this section we will analyze the rate of convergence of the h-p version
when the solution of (3.1), (3.2) has the form (3.4) with w3 = 0.
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THE h-p FINTTE ELEMENT METHOD 205

4.1* Basic approximation results

We present here some approximation results which will play an essential
role later.

LEMMA 4.1 : Let S = Q or S = Tbe the standard square or triangle. Then
there exists a family o f operators {TT^} , p = 1, 2, 3 , . . . , ftp : Hk(S) -• £?P(S)
such that for any 0 *s q =s k, u e Hk(S)

(4.1a) h-*p"\\q^Cp-(k-^\\u\\KS, k*0

(4.1fe) \(u-*pu)(x)\^Cp-«-V\\u\\ks, *=>1 , xeS

where we dénote 0>p(S) = 0>2
p{S) for S = Q and &>p{S) = ^ ( 5 ) for

S = T. The constant C in (4.1a), (4.16) is independent ofu andp but dépends
on k.

Moreover, if u e é?p(S), then ftp{u) = u.

Proof: The proof of this lemma is an adaptation of the proof given in [5].
Hence we will only outline the proof.

Let r0 > 1 so that J c i ? ( r 0 ) . Since 5 is a Lipschitz domain, there exists an
extension operator T mapping Hk(S) into Hk(R(2 r0)) such that

(4.2a) Tu = 0 on

where C is independent of u. For a concrete construction of T we refer, for
example, to [4,19].

Let $> be the one-to-one mapping of R l — J onto R(2r0):

(4.3)
= (2 r0 sin Él9 2 r0 sin

with fe^2)^^
Further, we let

where 4>-1 dénotes the inverse mapping of <£• Let v = Tu and

(4.5) V(6) =

vol 21, n° 2, 1987



206 I. BABUSKA, M. SURI

Because of (4.2a) we easily see that

(4.6) Supp V (£) c R .

In addition it can be readily seen that

(4.7a) V € Hk
PER(R(7t)) ,

(4.76) llFiU,7?(1r)^CHWL)5'

(4.7c) V (£) is a symmetrie function with respect to the Unes £ t = ± ™ ,

Let us expand the function V in terms of its Fourier series

ƒ se - O) / = - 00

For any /? ~* 1 we define

i) for 5 = Q :

(4.8a) *,^= I I «il
l/l ^p c i *p

ii) for 5 = T:

(4.86) *pv= l anei

Then quite similarly as in [5] we have for

(4.9a) ViV-*,Vl.RW'*Cp-<'-*>

(4.9b)

Because (TT̂  ^)(<ï>"1(^c)) s &p(S) and <E> is a regular mapping of /?(r0)

( r0 < ^ ) on 5, (4.9) yields the lemma immediately.

Let us quote now the following scaling resuit.

LEMMA 4.2 : Let Cl and Cth be two open subsets o f Rn such that there exists
an affine mapping F(x) = B(x) + b of ilh onto H and F(fLh) = ft. Let
diam (ft) = 1, pft = K, diam (Cth) = h, pft* = Kh. If the function
v e Hm(Q,), m ^ 0 integer, then v = v o F e Hm(£lh) and
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THE h-p FÏNITE ELEMENT METHOD 207

where C dépends on K and K but not on H, h, v.

For the proof see [9], Theorem 3.1.2.

The estimate of the error of the approximation of g by gh
p is given in

LEMMA 4.3 : Let r > 1, 0 ^ t == 1, p ^ 1, then

(4.11a) o||0-

(4.116)

where

(4.11c) v = min (ryp + 1 )

C w independent of g, p and h.

The proof is given in [13]. The main idea is to expand gf in Legendre
polynomials on every 7? ; of the partitioning of Tt induced by the mesh
T>\ prove (4.11) for r and t intejral and by the interpolation argument
obtain (4.11) in full generality.

Let us prove now :

LEMMA 4.4 : Let Sh and S be the triangle or parallelogram satisfying the
conditions of Lemma 4.2. Then for any û e Hk(Sï) corresponding to the
function u e Hk(fth), k ~s 0 we have

(4.12) inf \\û-p\\ka^Ch»-l\\u\\k^

where (x = min (p + 1, k) and C dépends on K, K, k but is independent ofp
and w.

Proof: For k = 0 the result follows immediately from Lemma 4.2 taking
p — 0. Hence let k > 0. Assume first that k is an integer. Then

inf \\û-p\\k^ inf U » | J i O

vol. 21, n° 2, 1987
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k

where £ = 0 for fc < p, + 1. Using Theorem3.1.1 of [9], we see that
i = p. + 1

il* \\û-P\\k^c i \Û\
p 6 &p{CÏ) i = \y-

^C | A ' - » . ^ (by4.106)

and (4.12) is proven for k integer. For gênerai k we use an interpolation
argument.

Let us prove now :

LEMMA 4.5 : Let Sh be a triangle or parailelogram with vertices
At satisfying conditions (3.5). Let u s Hk(Sh). Then there existe a constant C
depending on k, T, a but independent of u, p and h and a séquence
Zp<= ^p(S%P = 1» 2, ... {see def of ^p{Sh) in Section 3.2) such that for any

(4.13a)

(4 .136 ) i ( t f - ^ X * ) i - C ^ | | a J ! f e ^ , * > 1 , xeSh

(4 .13c) |x = m i n (p + l , k ) .

If k> 3/2, then we can assume that Zp(At) = u{At).

Further, for t - -

where 7 is any side of Sh.

Proof: Let %p be the operator introduced in Lemma 4.L Define now

TT* :Hk(Sh)-*&p(S
h)

so that

TTH
pU= (*p(UoF-l))oF

where Fis the linear mapping of 5Aonto T, respectively Q (see Section 3.2).
Denoting û = u o F~l we get from Lemmas 4.1 and 4.4 for q =s k
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THE h-p FINITE ELEMENT METHOD 209

(4.14) \\u~*pû\\qS=\\{û-p)-%p{û-p)\\qS

^Cp-(k~q) inf \\û-p\\kS

Combining (4.14) with Lemma 4.2 we get for 0 « m =s q =s k

and hence

(4.15) | | « -^« | | , i 5 **Cl i ' ' - «p - (* -«

Now analogously for k > 1 and x e S

(4.16) K û - i r p û X i ^ C / r * - 1 ) inf

and (4.13) is proven.
If k > 3/2 then we modify ẑ  analogously as in Theorem 4.1 of [5]. We get

zp(Ai) = u{Ai) and by interpolation

where 7 is any side of Sh.
The proof of the following theorem is a modified version of Theorem 4.1

in [5].

THEOREM 4,6 : Let u be the solution o/(3.1-3.2), u e Hk(fl), k > 3/2 and
for Tt cz T1 let gt € H r(Tt), r^k - 1/2, where qi is the restriction of g to
F;. Then for each p =s 1 and h > 0 , there exists yh

p e ^p{Cl) such that

(4.17ö) cp£ = gh
p on T1

(4.i7è) i i u - ^ n - c * ^ ;

(4.17c) |x = min (p + 1, k)

where gh
p is defined by (3.7) and C is independent of w, p, h, and

•E*.

Fkst we will introducé

LEMMA 4.7 ; Let S = Q or S =T and let y = AXA2 be a side of 5. Let
4* e ^p(y) such that ^(At) = 0, / = 1, 2. Tften r/îere exwr̂  an extension

vol. 21, n° 2, 1987
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v e &p(S), v = i|/ on 7, v = 0 on dS - y and

where the constant C is independent of p and ty.

The lemma follows from Theorems 7.4 and 7.5 presented in the Appen-
dix.

Proof of Theorem 4.6 : Let {Sf} = ¥>h. Then by Lemma 4.5 there exists
ZPJ e ^p(sh s u c h t h a t ZPJ = u a t a11 vertices of S%. Let now 7* =
5 j n 5 f and let Nu N2 be the end points of yh. Then ^ ) j f ~ ^ / =
Wjj is a polynomial on 7^ of degree at most p, and w£/(iV(-) = 0,
i = 1,2. We now map S) U Sf onto 5y U St by a continuous linear mapping
F where 5 ; and S; are congruent images of Q or T, suitably placed as shown
in figure 4.1.

Using the notation used in the proof of Lemma 4.5 we get, by Lemma 4.5

II - c is analogously bounded. Also by Lemma 4.5,
II 1 , i3ƒ

S / II - c

Applying Lemma 4.7 there exists ^ e ^ ( S , ) so that

on 7
and

41 = 0 on

Figure 4.1. — Scheme for the map of two neighboring éléments.
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THE-h-p FINITE ELEMENT METHOD 211

Hence we can modify zpj to zh
pj so that zp y- = zpl on 7* and

Repeating this process we construct zpJ similarly on each S*.
Defining $£ so that its restriction on 5* is zh

p} we get <p* G

Finally if dSf n Tl = yh ^ 0 , we have to modify z£;. so that z*tj = g* on
7*. Using (4.II0) and realizing that

we can proceed quite analogously as before and complete the proof.

Remark : By the imbedding theorem we have || g \\ k _ 1/2 r ^ || u || k a and
hence the second term in (4.176) can be omitted.

4.2. The approximation results for 1 < k < 3/2

In the previous section we analyzed the case when the solution u of (3.1)-
(3.2) belongs to Hk(£l)J k>3/2. We will now analyze the case when
u e Hk(fl)i 1 < k < 3/2 and g = 0. In addition, we will assume that fl is a
Lipschitz domain.

As shown in [4], given any f=>0 and A:=>1, the fonction u can be
decomposed so that

(4.19) w = t;f + ü>'

and for any

(4.20a)

Let 2^fc>3/2, and l^q**3/2. Then by Theorem 4.6 there exists
<Po e y *(H) such that

= 0 on

vol. 21, n° 2, 1987
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since for p === 1, min (p + 1, k) = k. Hence

Choosing t = h/p we get

(4.21) n « 5

since

min (p + l,q) = q , q =s 3/2 .

We remark that the assumption that H is a Lipschitz domain was used in the
proof of décomposition (4.20). (4.21) shows that in Theorem4.6 we can
replace the restriction k => 3/2 by k >-1 provided that g = 0. In fact, we need
less namely that g\T e ifr(r(-), T, c= T1, r > 1.

4.3. The rate of convergence of the h-p version of the finite element method

We will prove now

THEOREM 4.8: Let u € Hk(£l), k>\ be the solution of (3.1)-(3.2).
Assume further that g is such that

u — Ui + u2

ux e Hk\a) n

u2 eH

and that Q, is a Lipschitz domain if kx =s 3/2. Let u£ be the finite element
solution o f (3.1)-(3.2) as defined in Section 3.2, then

(4.22a) \ \ u - u ^ ^

(4.22b) k = min (kl9 k2)

(4.22c) fx = min (p + 1, k)

where C is independent of u, h, p but dépends on H, T, a.

Proof: If g = 0 then (4.22) follows immediately from Theorem 4.6 and
(4.21).

If £ ^ 0, then dénote by J7* the exact solution of the problem (3.1)-(3.2)
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THE h-p FTNITE ELEMENT METHOD 213

when replacing g by gh
r Denoting w = u - U£ we see that

— Aco + (o = 0

— = 0 on r 2

iù = g_gh o n r i

By Lemma 4.3 we have

o 11 ̂  il i/2 r1 ^ C — lm IIu II r r1 where v = min (r, /? + 1 )

and r = k-112 by the imbedding theorem. Because

over all v e f f^ü ) such that t? = co on T1, we have

By Theorem 4.6 and the basic properties of the finite element method we
get for any ** e f*

ï=ïlMLn

and Theorem 4.8 is proven.

4.4. Optimality of the asymptotic rate of convergence

In this section we will proveThat the estimate ïnTheorem 4.8 is optimal.
To do so we will use the concept of the «-width. For details, see e.g. [18].
Dénote

Dn(H
l(a), Hk(n)) = inf sup inf |]u - v \\x o

SRcH1(û) «eff* veSn

dimSn = n ll«IU,n = 1

the «-width in the sense of Kolmogrov. Then by Theorem 2.5.1 and.2.5,2 of
[1] we have

(4.23) Dn(H
l(n), Hk(a)) 5* Cn~ ^

vol. 21, n 2y 1987
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Over each element we have
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Let us now compute the dimension of the space

The number of éléments is of order O { — ).

O(p2) polynomial basis fonctions. Hence, n = dim

for p + 1 s* k we have

(4.24) \u-uX^

Comparing (4.24) with (4.23) we see that the estimate is optimal.

5. THE CONVERGENCE RATE OF THE h-p VERSION. THE CASE OF THE SINGULAR
SOLUTION

In Section 4 we analyzed the rate of the h-p version when the solution of
(3.1)-(3.2) has the form (3.4) with w3 = 0. Now we will analyze the rate of
convergence in the case u = M3. For simplicity and without a loss of
generality we will assume that n = 1 in (3.4c).

5,1. An approximation resuit

Consider the square R = R (h ) defined in Section 2. Let (r, 6) dénote the
polar coordinates with the origin at 0 (see fig. 5.1). For K > 1 let
5K be the subset of R bounded by the lines L\ :X2 + h = K(XX + h) and

Q

Figure 5.1. — Scheme of R(h), Q,
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Ll:x1 +h = K(X2 + h). Let SJ be the région SK n {(r, 6 ) | r < p}

We will consider the approximation of a fonction u with support in
S^ for some KQ > K which vanishes on the lines L *, Lj. We will assume that

the fonction u has the form

(5.1) «^e) =

where <ï> and Xo a r e sufficiently smooth fonctions (e.g. C œ fonctions) such

that 0 ^ xo «s 1, Xo(0 = 1 for 0 * r *s jj , Xo( r) = 0 for r ^ ^ , 0 < p < 1/2

and (^(Oi) = ^>(G2) = 0 where 01? 62 are polar coordinates of the lines
Li and Li

h
Let g be the région bounded by the lines L^, L^, and xx = - - ,

h
x2= - 7y * We will estimate the approximation error ||w — Up\\ ,

We first map R = R(h) onto the square R = R(l) by the transformation

Xi = -f- or equivalently (f, 0) = \ T ^ \ This maps Q into g . Then, if

û(r, Ô) = w(r, 0) we have

(5.2) w(r5ë) = Aara|log/ïr|^xo(0<ï>(Ö)

where M = 0on the lines L\ and L2
K, the maps of L\ and L^. Since 7 is by

assumption a positive integer, we have for /z,r< 1

(5.3) w(r,è)=
/=o

By Theorem5.1 of [5] there exists &pe&j + 2(R) such that ij, = 0 on the
lines L\ and L^ and

Hence, we see that
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zp = O on L\ and L\ and

y-t

By suitably changing the constant in (5.4), we see that we may obtain a
zp e ^p(R) satisfying (5.4). By Lemma 4.2 the same estimate holds for
|| u — zp || j Q so that we have

LEMMA 5.1 : Let u be given by (5.1). Then there exists zp e &l(R) such
that zp — 0 on the Unes L\ and L\ and

(5.5a) \\u-zp\\

where

(5.5b) g(h,p, 7) =

and C is a constant independent of p and h.

5.2, The rate of convergence of the h-p version

We now return to the problem of approximating function w3 given in
(3.4<f). To this end let

where

(5.6a) «3,

(5.66) *3,2 =

Obviously w3 2 — 0 in the neighborhood of the origin.
Our first goal is to approximate M3 1 over the set of triangles or

parallelograms having a vertex at the origin as shown in figure 5.2.
m

We will assume that OB1 <= T1 and OBm + l a T2. Let f = [^J Bt Bi + 1.

Then Lemma 5.1 yields the following result, the proof of which may be
found in [5].

LEMMA 5.2 : Let u be given by (5.6a) with p (in the définition of
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Bm

Figure 5,2. — Scheme of the mesh in the neïghborhood of the singularity.

Xo) sufftciently small (depending on T and o* only), then there exists
zp e Hï(Ü), zp e ^%(Sf ), zp = 0 on OBX and on f such that

(5.7Ô)

w/tere C dépends on o-, T öwr is independent of p and h.

Let us consider now the fonction u = u32 given by (5.6ft). We have
u = 0 for r =££ pft. Further,

where p - ), $é > Ö, a n d

Hence we have

(5*8) I|«]l^n

Denoting by up the finite element approximation of M, we get by
Theorem4.8
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(5.9) l l « - « X n ^

with k => 1 arbitrary and v\ = min (p + 1 , &). Let us take fc = 2 a + l in
(5.9). Then -r) — k + a = t] — a — 1 = min (a,/> — a ) so that

/.min (a^-a)

(5.10) l"-"ïha<*CH
 2a

If p is small with respect to a, we can select k so that C(k)hJ]~k + a/pk~1

will be minimal. For example, with k = 2 we get

(5.11) ||H-M*|| l i f l

Combining the estimâtes for w3> x and w3 2 we get :

THEOREM 5.3 : Let u be given by (3Ad). Then there exists <p£ e

( /.min {ayp -a) \
h^~ ÏT-)

{5Mb) g(h,p, -y) = max (|log*r, |logpH

and C dépends on a, T but is independent of p and h.

Remark 1 : When a is an integer and 7 = 0, the estimate (5.12#) is very
pessimistic, since the solution u given by (3Ad) is smooth. When a is an
integer and 7 ^ 0 , then the estimate (5.12a) is a correct one.

Let us now summarize in one theorem the error estimate for the h-p
version with quasiuniform mesh and uniform p.

THEOREM 5.4 : Let Cl be a polygonal domain as introduced in Section 2.
Suppose that u, the solution of (3.1)-(3.2) can be written in the form (3.4).
Assume further if 1 < kx ̂  3/2 that Cl is a Lipschitz domain. Assume that
Up is the finite element solution with triangular and parallelogram éléments
satisfying (3.6) and the boundary condition on F1 defined by (3.7). Then

(5.13a) |« - «,% o *= C max (g, &R
*

p '
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(5.13c) jf(A,p,7 i) = max (

» min fa- I,k2~l,p)

(5*13d) fe = —r-77—TT—rr
^min^-l^-l)

(5.13e) R =

and C dépends on T, a m (3.5), fl, fcj, 7,., at but is independent of
-G\ h, p, u.

Remark 2 : We formulated Theorem 5.4 only in the frame of Sobolev
spaces. By interpolation arguments, it is also possible to formulate the
theorem in the frame of Besov spaces.

Remark 3 ; We addressed only the case of the polygonal domain and
éléments which are triangles or parallelograms. By the standard mapping
approach, the results are also valid for curvilinear éléments.

6. APPLICATIONS

In this section we will study the conséquences of Theorem 5.4 in
connection with computations.

First let us mention that although we discussed the h-p version in
connection with the problem (3.1)-(3.2), all conclusions are valid also for
the elasticity problem. In (3Ad) we assumed that ĉ  are real. In the case of
the elasticity problem, a( are in gênerai complex with Re a( > 0. The
estimate (5.13) is still valid with â  = Re c^.

Our theory is of asymptotic character. Hence it is important to see the
applicability of Theorem 5.4 in the range of practical parameters. To this
end let us consider the plane strain elasticity problem when ft is an L-shaped
domain shown in figure 6.1.

Let us assume that on dO tractions are prescribed, i.e. F1 = 0 . The
solution of this problem is the displacement vector (wl5 u2) where

(6.1a) ul = j^ra[(K-Q(a + l))cosaB-acos (a-2)6]

(6.1&) Mi = 2 % fOtKK + ö ( a + 1 )) sin a0 - a cos (a - 2 ) 8]

where
a =0.544 483 737
Q =0.543 075 579

G is the modulus of rigidity and K = 3 - 4 V where v is Poisson's ratio which
we assume to be v = 0.3. T^e solution has a typical singularity at O. The
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A

Figure 6.1. — I^shaped plane elastic body.

sides O A and O E are traction free. Instead of the norm || • || x ftwe will be
interested in the energy norm ||. || £ which is equivalent to the | j . || x ft norm.
Denoting W(u), respectively W{Up), to be the strain energy of the exact,
respectively the finite element solution, we have

(6.2) \\u-uh
p\\E=(W{u)-W(uï))m

and we define the relative error in the energy norm as

(6.3) \B,R

In the next figures we will present the results of computations which were
performed with a computer program called PROBE [21, 23] developed by
Noetic Technologies Corporation, St Louis.

We will consider a uniform mesh with square éléments as shown in
figure 6.2.

The solution u e / / 1 + a " £ ( n ) , e > 0 arbitrary.
Theorem 5.4 gives for p s* 1 the estimate :

Lmin (ayp - a)

(6.4) C min

where C dépends on a but is independent of h and p. Figure 6.3 shows the
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relative error in the energy norm IMI^^ (for different degrees p) in
dependence on h. We also show the slope hain the figure. We see that with
respect to h the error is in the asymptotie range also for moderate p and h.

Figure 6.2. — The scheme of the uniform mesh.

i
LU e

40

. 30

20

15

il

p=! >

p = 2 .

r

I
4

I i _L
6 8 JO

MESH SIZE h

Figure 6.3. — The relative error in the energy norm in dependence on h.
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2 3 4 5 6 7 8

DEGREE p OF ELEMENTS

Figure 6.4. — The relative error in the energy norm in dependence on p.

Figure 6.4 shows the error in dependence on/? and different h. Because of
the size of computations, only in the case h = 1/2 is the error given for
p ^ 4. (For p = 4 and h = 1/10, the number of degrees of freedom
N = 5 119). Estimate 6.4 gives the rate p~2a which appears only for
p > 3. For large p and small h we have N =p2/h2 and hence

(6.5) u~u:

(6.5) shows that if the measure of computational work is N, then the use of
higher p is préférable.

Figure 6.5 shows the dependence of the relative error in the energy norm
on the number of degrees of freedom N for various p. In addition, the
performance of the /^-version for h = 1/2 is shown in the figure. We see that
p = 2 is more effective than p = 3, and asymptotically for/? ^ oo, the higher
p are more effective as follows from (6*4). The p-version has a rate which is
twice that of the /^-version (see also [5]).

We addressed in this paper only the case of the quasiuniform mesh. If the
mesh is strongly refined, then its performance is different. Figure 6.6 shows
the strongly refined mesh with n layers (n = 2). The mesh is a geometrie
one with the ratio 0.15. The ratio 0.15 leads to nearly optimal convergence.
See [13, 14].
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30 50 80 100 300 500 8001000 3000 5000 8000

NUMBER OF DEGREES OF FREEDOM

Figure 6.5. — The relative error in the energy norm in dependence on N.

c

U n=2

h

Figure 6.6. — The strongly refined mesh with n =: 2 layers.
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Figure 6.7 compares the performance of the h, p versions for the uniform
and strongly refined mesh for our example. The performance of the p-
version on strongly refined meshes is in practice very similar to the gênerai
h-p version, leading to an exponential rate of convergence. We see that the
p-version performance dépends very strongly on the mesh.

For more about the comparison between the h,p and h-p version we refer
to [3].

P = j ' UNIFORM MESH 2 a p = 4
h - V E R S t 0 N

UJ 7
Œ 30 50

400 800 1000 2000 4000 8000

NUMBER OF DEGREES OF FREEDOM

Figure 6.7. — The error in the energy norm in dependence on ^ for various meshes.

7. APPENDIX

Theorems 7.4 and 7.5 proven in this section are slightly generalized forms
of Lemma 4.7 and are of interest by themselves.

Let us consider the equilateral triangle T = ABC as shown in figure 7.1.

We dénote
Î f F[ ï^g = AS ,y f =

72 = 7 2 ^ 7 2 =

73 = 73 u y3 =

U

u = BC .
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ty

r,

225

A=(O,O) r,A R rf B=(i,o)i ' i ' i

Figure 7.1. — The scheme of the equUateral triangle.

The notation is also shown in figure 7.1. Let ƒ 6

(7.1)

. Then we define

- *

The value of F1 at a point P e T dépends only on the values ƒ along the

segment <2iÔ2> ôi = ( x —~= , 0 j , g 2 = ( ̂  + -7= > 0 ) • We prove now

the following lemma.

LEMMA 7.1 : Let f e ^,(71) with f(A) = f(B) = 0 anrf fef F\f] (x,.
defined by (7.1). 77ien

(7.2) c) F^(x ,y)6^»j(r )

b)

\\f\\k,a

fte constant C is independent of p and f
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Proof: It is immédiate that (7.2è) holds. Let f =xn with
integer. Then

'i
7 r , y \n+1 (r y \ " + 1 l
.\ 73/ ~\ 7i/ J

V3

Hence (7.2a) holds.
To prove (7.2c) we first extend ƒ by zero to a function defined on the

entire x-axis IR so that (see [18])

(7.3) 1/2, R 1/2,71

where we have used the same notation ƒ to dénote the extended function as
well. Then by (7.1) F^x.y) is well defined on the entire half plane
H = {(x,y)\y>0). For (x,y)e n we have

(7.4)

where

(7.5)

J - c
f(t)H(x-t,y)dt= {f*H{.,y)){x)

= 0 otherwise.
Let g(%) represent the Fourier transform of the function g(x) in the x
direction. Then by (7.4)

(7.6)
where

r*
V2 2y

Let O = {(€, y)|.V > 0 } and calculate the Hl{Ci) norm of
Parseval's equality, we have using (7.6)

,}'). By

£
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Now letting z = yi/ \[3 we get, by (7,7),

(7.8)

Hence

(7.9)

Also

which is bounded at z = 0. Hence

so that

<71O) L

227

J -

The third term can be bounded analogously. Using (7.8)-(7.10), (7.2c)
follows. Inequalities (7.2d3), (7.2d4) follow immediately for k = 0, fc = 1
and hence by an interpolation argument (see [8]) they hold for all

We prove now (7.2d{). Let the variable x be used to represent both the
distance from A along^j and the distance front-A along y2-

(7.11) G{x) = \ [ f{t)dt
x Jo

it is readily seen that

(7.12) A\\F\%^^ A\\G(x)\\K1 / = (0,1/2).

Using (9.9.1) of [15], p. 244 we get

(7-13)
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Further, integrating (7.11) by parts we have

(7.14) G(x)= f(x)~ / ( O ) - - [ tf'(t)dt
x Jo

and hence

G'(x) = ff(x) + I \
x2 Jo

- ƒ'(*)

= - - 2 \* (x-t)f'{t)dt + \
x2Jo x

Using 9.9.5 of [15], p. 245 with r = 2 we get

and by 9.9.1 of [15], p. 244 we get

o,/

Hence

(7.15) l |G'(*) i l o , /^ c l l / ' l lo , / -

Combining (7.13) and (7.15) we get (7.2^) for k = 0 and k = 1 and hence
by the interpolation argument (7.2^) holds for ail 0 =s k =s 1. The inequality
(7.2d2) is essentially the same as (7.2dj) and Lemma 7.1 is completely
proven.

Let now ƒ = ƒi e ̂ ( 7 , ) , i = 1, 2, 3, Then we dénote by Flfi\x, y) the
polynomial extension of ƒ, into T, defined for î = 1 by (7,1) and for
j = 2, 3 by (7.1) after properly rotating the coordinates. Obviously Lemma
(7,1) is applicable for i = 1, 2, 3 when properly interpreted through the
rotation of the coordinates.

We now prove

LEMMA 7.2: Let T be the triangle as in figure 7A and f satisfy
= 0 and fi = f\yie0>p(yi), i = 1,2,3

ƒ) >ve dénote the restriction of f on 7 r TAen f/zere

Ï • = 1 , 2

e

(7.16) a) U =

b) U = on = 1,2
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du J*.IU7 j^c[lo| | / ; | |*J, » = 1, 2 ,

d3) L

L / = i

where C is a constant independent of p and ƒ

Proof: Let <ï>; e ^ ( 7 , ) . Then as in Lemma 1 we define

(7.17, < « , ) - ! £ • > •
Condition (7.16e) will be satisfied if

(7.18a) $ 1 ( i ) + G2(x) = <ï)1(x) + ^ | ®2(t)dt = f1(

(7.186)
1 f*
*Jo lt

hold for all ^ € 3 = (0,1). Since ft;E ^p(d) it is easy to see that
<ï>, e ^ ( 3 ) satisfying (7.18) exist. Due to the assumption on ƒ we have
fi(9) = f2(9) = 0- *i a r e uniquely determined up to a constant K with
*!<()) = *:, *2(0) = 0-JS:.

We now define

(7.19) *a(*) = *i(x) + * 2 ( r ) , *2(*) = * i (* ) - t f 2 (x )

so that (7.18) yields

f = hx{x)

(7.206)

Here ^ ( JC) is unique, *|ii(0) = 0, while i|f2(jc) is unique up to the constant K
such that *|i2(0) = 2ÜC.

We first analyze (7.20a). By differentiation we obtain

1

xl Jo
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Using (7.20ö) we get

(7.21) ^ + ^ 1 = ^ + '

The homogeneous solution of (7.21) is l/x\ A particular solution can be
found by using the method of variation of constants» Hence, substituting
^ ( J C ) = ^ Ê p into (7.21) we get

from which

*i(*)=h f t2K(t)dt+1 r
X2Jo X2J

Integrating by parts we get

(7,22) *i<*)=M*)-i r ^
x2 Jo

the unique solution of (7.20a).

We now show that

(7.23)

Let

Then

Jo Jo Jo

o

where

G(x)=

Using (9.9.4) of [15], p. 245 with r = 2 and (9.9.1) of [15], p. 244 we obtain

A2!|0>3^ ||G(x)A2||0iî+ ||fi|lo,,«C||Mo,;,
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which yields (7.23) for k = 0. Next, differentiating (7.22) we get

(7.24) *i = h{ + ~ P thx{t) dt-^ = hl-±-\Z t2h[{t) dt.
3 Jo * X3 Jo

Y1 ' x3

Let

F(x) = ['t2h[(t)dt= \* (x-tfhi(f)dt
Jo Jo

- x 2 \h[(t)dt + 2x \thi(t)dt.
Jo Jo

We have then

where

G(x)= [ {x-tfh[(t)dt
Jo

ö(x) = -
x

2 f1 ,
~*2Jo 1

This gives

l*3 | | (U^||G(x)x3 | | (U +

The first two terms can be bounded once more by \\h{ \\Q 3 using (9.9.4) of
[15], p. 245 and (9.9.1), p. 244. Moreover,

so that ||J?H0|3 can also be bounded by 11^1^^ This yields (7.23) for
k = 1. By the interpolation argument (see [8]) we get immediately (7.23).
Let us consider now (7.20&). Differentiating it and using once more (7.206)
we get

(7.25) M = hi + ̂ .

Integrating we get

(7.26) *i(?) = h2(x)
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(7.26) is that solution of (7.20&) with \|>2(1) - A
Once more we wish to show

(7-27) A M k , 3 * s C \ k i

Using (7.26) and (9.9.9) from [15], p. 245 with a = 0 we get

Since h2(0) = A(0 ) - / 2 ( 0 ) = 0, (7.25) yields

x

and by (9.9.1) of [15], p. 244 we get

An interpolation argument leads immediately to (7.27). Hence we have
constructed solutions of (7.20a, b) such that (7.23) and (7.27) hold.

Coming back to (7.19), using k = 1/2 we see that for i = 1, 2

and applying Lemma 7.1 we get immediately (7.16c) and also (7.16^).
Returning to (7,20) we see that with 3* = (1/2,1)

Hence also

i = 1 , 2

wich immediately leads to (7.16d2)> (7.16d3).
The following lemma is taken from [6].

LEMMA 7.3 : Let T be the triangle as bejbre, f be continuons on
a r , f2 = f3 = 0 and fx e &p(yi). Then there exists apolynomial v e 0>\{T)
such that

v = fx on yx

v = 0 on 72> ^3

where C is a constant independent of f and p.
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T H E O REM 7.4 : Let T be the equilateral triangle shown in figure 7.1 and f
satisfy f(A) = ƒ(B) = ƒ(C) = 0 and ƒ, = ƒ |% e ^ ( 7 , ) , ï = 1, 2, 3. 77«?n

eatfste 17 e @\{T) such that U = f on dT and

Lt = 1

where the constant C is independent of p and ƒ

Proof: Without loss of generality we can assume that f2 = ƒ3 = 0.
Let fi # 0, f2 = 0. By Lemma 7.2 we construct <!>!, <E>2 and l

F[®l] + Fl*2\ Then Ue 0>P(T), U = f( onyt, i = 1,2 and

Dénote by g3 the trace of U on 73. Then we have g3(B) = g3(C) = 0 and

by applying Lemmas 7.2 and 7.1.
c ^ C 01| / i || 1/2Because of (7.16d3) || *21| x c ^ C 01| / i || 1/2 and hence using Lemma 7.1

we have also

(7-30) i

Let now analogously as before

so that

Ux e 0>l
p(T) , Ux = ^3 on 73 , £/i = 0 on 71

and

(7.31) H t / ^ r ^ C-Ö\\g3\\^y3 * C^ll A||1/277i

Dénote by ^|1] the trace of U1 on 72. Then ÖT|1](A ) = g^\C ) = 0. Because of
(7.30), applying Lemma 7.1 and Lemma 7.2 analogously as before we
conclude that

Now r̂pplyingr Lemma' 7.3 there is ü\ e &>ftT) sudrthat

(7.32) W U z W ^
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Let now
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U2 = 9[2] on 72 , U2 = 0 on yl9 73 .

V = U - Ux + t/2 .

Then it is easy to see that F Ê ^ ( T ) , F = ƒx on 7l3 F = 0 on
72, 73 and because of (7.28), (7.31) and (7.32) we get

which concludes the proof of Theorem IA,
Let 5 = (*, >> | |JC | < 1, \y\ < l ) b e a square and 7̂  its sides as shown in

figure 7.2

D=H,I) 73

A=(-l,-l) B=(l,-D

Figure 7.2. — The scheme of the square.

THEOREM 7.5 : Let S be the square shown in figure 7.2 and f satisfy
f(A)= f(B)=f(C) = f(D) = 0 and ff = f \yf e ^p(yt)9 / = ! , . . . , 4.
Then there exists U e &l(S) such that U = ƒ on dS and

where the constant C is independent of p and ƒ.

Proof: Let T be triangle shown in figure 7.1 and

be the trapezoid shown in figure 7.3.
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y
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A=(0,0) B=(I,O)

Figure 7.3. — Scheme of the trapezoid.

The mapping

(7.33) ç 3 N/3
16

maps S onto £?. The mapping is obviously one-to-one and the Jacobian and
its inverse are bounded.

Let us first prove the theorem in the case that ƒ,== 0, i = 2 , 3 , 4. Dénote

= fx{B) = 0 andObviously

Let Üe0>*(T) such that O = ƒa on Â5 and C7 = 0 on ÂC and

5C. By Theorem 7.4, £7(6, TÏ) exists and

Because Ü e we have
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and

Because ƒ2 = ƒ3 = O we have U(± 1,y) = 0, U(x, — l) = f1 and using
Lemma 7.1, Lemma 7.2 we conclude by similar arguments as used in the
proof of Theorem 7.4 that

Of course U(x, l)e0>p(y3) and U(± 1,1) = 0. Hence with

we see that

and V(x,l) - U(x, 1). Hence W = U- V e &*(S), W = ƒ on dS and

The theorem is therefore proven in the case that ƒ = 0 on three sides of S
and hence it holds also if ƒ is gênerai but ƒ = 0 at the vertices ABCD.

It remams to prove that in the gênerai case there exist # € £Pp(S) such
that <ï> has the same traces at ABCD as ƒ and

(7-34) l l*l l i ,5« c | io | | / i | | i a J -
Li = 1 J

To this end we define F ^ f ê , t\) by (7.1) and define F^l](x9y)by inserting

(7.33) for (Ç, TI). Then ( I F ^ 1 ^ , + 1 ) 1 ^ *= C | | / i | |0 t 7 i and hence analog-

ously as above we can change F\ (X9 y) to Fx so that F(x, + 1) = 0 and

« ̂  ^ o li / i || m 7 • Changing the rôle of ^ and 73 we can analogously

J(construct F3 e ^J (S) so that

Hence <ï> = Ft + F3 G &\{Q) has the same traces at ABCD as ƒ and (7.34)
holds. This complètes the proof of Theorem 7.5.

Remark : Theorems 7.4, 7.5 also hold when ƒ is not a polynomial. This is
known from the theory of Sobolev spaces. The importance of Theorems 7.4
and 7.5 lies in the fact that if ƒ,- are polynomials, then there exists a
polynomial extension.
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