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THE h-p VERSION OF THE FINITE ELEMENT METHOD
WITH QUASIUNIFORM MESHES (*)

by L. BABUSKA (%), Manil Surt (%)

Abstract. — The classical error estimates for the h-version of the finite element method are
extended for the h-p version. The estimates are expressed as explicit functions of h and p and are
shown to be optimal. The estimates are given for the case where the solution u € H*and the case
when u has singularities at the corners of the domain.

Résumé. — Les estimations d’erreur classiques de la version h de la méthode des éléments finis
sont étendues aux cas de la version h-p. Ces estimations sont exprimées explicitement en fonction
de h et de p, et on montre qu’'elles sont optimales.

Ces estimations sont données dans le cas oit u appartient & H* et dans le cas oit u présente des
singularités aux coins du domaine.

1. INTRODUCTION

There are three versions of the finite element method : the A-version, the
p-version and the h-p version. The h-version is the standard one, where the
degree p of the elements is fixed, usually on low level, typically
p =1,2,3 and the accuracy is achieved by properly refining the mesh. The
p-version, in contrast, fixes the mesh and achieves the accuracy by
increasing the degree p of the elements uniformly or selectively. The A-p
version is the combination of both.

The standard h-version has been thoroughly investigated theoretically
(see e.g. [1, 9, 20] and others) and many program codes are available, both
commercial and research. The p-version and the h-p version are new
developments. There is only one commercial code, the system PROBE
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200 1. BABUSKA, M. SURI

(Noetic Technologies, St. Louis) (!). Theoretical aspects have been studied
only recently. The first theoretical paper appeared in 1981 (see [6]). See also
[2, 5,7, 10, 11, 14] for most recent results. For the numerical, computatio-
nal, implementational and engineering aspects of the A-p version we refer to
[3, 21-24].

The classical form of the error estimate for the A-version with quasiuni-
form mesh is

(1.1a) |lug — upgll HY(@) =C() h“_llluony"(n)
where
(1.1b) m=min (k,p +1)

and the constant C (p) depends on p in an unspecified way. (See e.g. [1, 9,
20] and others.)

The main purpose of this paper is to analyze the A-p version with a
quasiuniform mesh and uniform p and get an error estimate which is
simultaneously optimal in both p and h. We show that the estimate (1.1) can
be written in the form

-t
(1.2) luo — uFE"y’(Q) =C ;k'j ||”o “1—1’*(9)
with
m= min (k’ p+ 1)

and C independent of A, p and u,. We will also prove estimates for the A-p
version when the solution has singularities in the corners of the domain and
in the case when essential (Dirichlet) conditions are prescribed but are not
in the subspace of finite elements. Finally, we will present a numerical

example illustrating the applicability of the developed (asymptotic) theory
in a range of 4 and p used in practice.

2. THE NOTATION

For O« R? a polygonal domain, x = (x;,x,) € R?, we let L,(Q) =
H(Q), H*(Q), HX(Q), k = 0 integer, denote the usual Sobolev spaces. For
u € H*(Q) we denote by |ul| xoand |u|, , the usual norm and seminorm,
respectively. For k = 0 nonintegral, we define H*¥(Q2) and | 4, q DY the K-

(") In addition there is code FIESTA for solving 3 dimensional elasticity problems having p-
version features but using only 1=p =4,
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THE h-p FINITE ELEMENT METHOD 201
method of the interpolation theory [8]. If I is an interval or a segment, then
we define H*(I), |- |, ,» k=0 analogously.

For 0 <t =<1, we will denote by ¢ . ||, ; the norm of the interpolation
space (H°(I), H{(I)),. This norm is equivalent to the Il - Il , norm when

t#i. Fort=%—, we obtain a norm
' 1
ol - 1 %,1 =1 lazyw
which is not equivalent to the || . || 1 , norm (see [17]). Moreover, if A is an
3

end point of 7, we may analogously define 4|| . ||, ; to be the norm of the
space (H(I), Hy(I)), where Hy(I) = {ue H'(I),u(4) =0}.
Given p >0, let

R(p) = {Gpx)|[x1| <p, [x2] <P} -

For any Q c R? we will denote py = sup {diam (B)|B a ball in Q}.
The set of all algebraic polynomials of degree (total) less than or equal to
p on Q will be denoted by 2,(Q). By 2;(Q) we will denote the set of all
polynomials of degree less than or equal to p in each variable on . For
T = R? a straight segment, we define 2,(I") as the set of polynomials on I of
degree less than or equal to p in s (s being the length parameter of I').
Let k > 0. Then by H¥gr(R(x)) =« H*(R(x)) we denote the space of all
periodic functions with period 2 x. By B,(R(x)) (G2(R(x))) we denote the

space of all trigonometric polynomials of (total) degree (degree in every
variable) less than or equal to p.

3. THE MODEL PROBLEM

3.1. The formulation of the problem.

Consider the following model problem

3.1) —Au+u=f in Q
(3.2a) u=g on I!

ou _ 2
(3.2b) F_bonr

where QcR? is a polygonal domain with vertices A;, i =1,...,n+1,
Al = Au+ 1s

s \J L, =1\ I, TI=T'ul®,

i=i"""""l i=jla--"jn2
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202 I. BABUSKA, M. SURI

Figure 3.1. — The scheme and notation of the polygonal domain.

I is the boundary 9Q of Q and ', j =1, ..., n, are the open sides of the
boundary 9Q (see fig. 3.1).

The internal angle at A; is denoted by w;. We allow the possibility that
w; = 7 or 2 m. The case w; = 2 7 describes the slit (cracked) domain while
the case w; = 7 is introduced to deal with the abrupt change of the type of
the boundary condition or with nonsmoothness of g or b at the correspond-
ing vertex. When (2 is stated to be a Lipschitz polygonal domain, then it will
be assumed that w, <2w, i =1,2,...,n.

Let AY(Q) = {ve H(Q),v=00nT!}. For u,ve H(Q) we let

@ o= |

uvdx , (u,v)1,9=f (Vu.Vo+uv)dx.
Q Q

We interpret now (3.1) and (3.2) in the standard variational sense namely
we seek u € H'(Q) so that

(3.30) u=g on I

and

(3.36) (4,00 = (froha+ | bods
T

holds for all v e H}(Q).
We will assume that the solution u of (3.1) and (3.2) is

(3.4) U=u +uU;+ Uz
where
(3.4a) u € HQ) N B} (Q), k=1
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THE h-p FINITE ELEMENT METHOD 203

(3.4b) u, € HYQ), ky=>3/2
(3.4¢) uy=Y a,uy; € H(Q),

i=1
(3.4d) Uz, =r |1°gri|yi @;(6,) x: (r;)

where r;, 6; are polar coordinates with respect to the origin located at the
vertex A;, «;>0, v,=0 integer, ¢;(6;) is an analytic function in
8, and x;(r;) is the C® cut-off function so that u; ; =0 for r, =p; >0,
p; sufficiently small.

The form (3.4) is the typical form of the solution of (3.1)-(3.2) (and of a
system of second order) (see e.g. [4, 12, 16]). The assumption that
k = 3/2 is usually satisfied in practice and hence is not a severe restriction.

3.2. The finite element method

Let M = {B"}, h=0 be a family of meshes ©"= (S} where
S'< Q is an open triangle or parallelogram. Let A = diam (S*) and
pst be as defined in Section 2. We shall assume that the family {B"} is

regular in the sense that there exist positive constants o, T independent of 4
such that for all S*e G* G'e #

(3.5q) max hgh = h
h
(3.5b) h_s‘h =3
hs?'
3.5¢ —=o.
(3.50) .

(Condition (3.5b) is obviously the condition of quasiuniformity of the

mesh). Further we assume that with "= {S!}, i=1,2,...,m,,
my

Q= Uff‘ and that each pair %, S‘;’,’i # j has either an entire side or a
i=1

vertex in common, or has empty intersection.

Let F ," be an affine mapping with Jacobian having positive determinant
which maps S}‘ onto the standard square Q = (—1,1)x (- 1,1) when
S;‘ is a parallelogram and onto the standard triangle

T = {(xl,xz)L— 1 <X < 1, -1 <Xy ﬁxl}

when § ]h is a triangle. Let now ¥~ ;‘(Q) < H'(Q) denote the set of functions u
such that if wug denotes the restriction of u to Ste B" then
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204 I. BABUSKA, M. SURI

usho (F)~' € 22(Q) if S} is a parallelogram and ugso (F})~' € 2,(T) if
S’ is a triangle. We will then write ust€ 2, ($Handue v ,’,‘(Q). Further-
more, we let ¥ 4(Q) = ¥ }(Q) N A{(Q).

The mesh " on Q induces a partition £/ = {v!;},j=1,2, ..., m(i) of
I;, i =1,...,n. Denote by N,-h,j, j=0,1,...,m(i) the nodal points of
£l (i.e. the end points of v} ;). We let ¥ *(I;) =« H(T;) be the set of
functions u such that the restriction uyr of uon y,'-', j is a polynomial of degree
=< p. Moreover, v z TH<er?v ;‘(I‘i) will denote those polynomials that vanish
on NI, j=0,1,...,m().

Let gI',‘ el U7 "(I';) be the approximation of g (see (3.2)) described

Fict‘l
below. The h-p version of the finite element method consists now (for given
p and h) of finding u,f’ eV }’,'(Q) such that

(3.6a) ul=gh on TI!
(3.65) o= (fovdoa+ | bods

holds for all v e ¥ Q).

To define g we denote by gr, the restriction of g on T; c I' and assume
that gr, € H'(T;) with r> 1.

We define now g%, p=1 so that

(3.7a) ghrevir,), T,cI!

376y Ghr(NE)=gWNE), j=1,..,m(@), i=iy..,i,

(3.7¢) J (gh.r,) w'ds = J gwds, T,cI!
T; T:

holds for all w e ¥4(T,).

Remark : 1If we restrict (3.7b) to j =0, m(i)only (N}o=A,, Ni",m(,-) =
A; . 1), then (3.7b) is satisfied as a consequence of (3.7¢).

4. THE CONVERGENCE OF THE h-p VERSION: THE CASE OF THE SOLUTION
ue HY(Q)

In this section we will analyze the rate of convergence of the h-p version
when the solution of (3.1), (3.2) has the form (3.4) with u; = 0.
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THE h-p FINITE ELEMENT METHOD 205

4.1. Basic approximation results

We present here some approximation results which will play an essential
role later.

LEMMA 4.1: Let S = Q or S = T be the standard square or triangle. Then
there exists a family of operators {#,},p =1,2,3, ..., f,: H*(S) - 2,(5)
such that for any 0 <q <k, ue H*S)

(4.1a) "u—ﬁpu”q’sst‘("‘q)Hullk,s, k=0

(4.1b) [@-tu)®)| <Cp~*Djuf, s, k=1, xe§

where we denote 2,(S) = WE(S) for S=Q and Z,(5)= 9’;(8) for
S = T. The constant C in (4.1a), (4.1b) is independent of u and p but depends
on k.

Moreover, if u€ P,(S), then i,(u) = u.

Proof : The proof of this lemma is an adaptation of the proof given in [5].
Hence we will only outline the proof. y

Let ry> 1 so that § < R(r). Since S is a Lipschitz domain, there exists an
extension operator T mapping H*(S) into H*(R(2 ry)) such that

(4.20) Tu=0 on R(Zro)—R(%ro)
(4.2b) ITully r@ry<Clulys

where C is independent of u. For a concrete construction of T we refer, for
example, to [4, 19].
w
2
(4.3) R(2r)ox = (x1, %) = P(§)

= (2rysin &, 2 rysin &)

Let @ be the one-to-one mapping of R( ) onto R(2ry):

with (§1,§2)=§ER<%).
Further, we let

5 - 3
(4.4) R=<I>1[R(§r0>]cR(%)
where @~ ! denotes the inverse mapping of ®. Let v = Tu and
(4.5) V(€)= v(®(®)).
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206 I. BABUSKA, M. SURI
Because of (4.2a) we easily see that

(4.6) Supp V(¢)c R.

In addition it can be readily seen that

(4.7a) V € Hpgr(R(m)),
(4.7b) v e, remy =< C llulle s

(4.7¢) V(&) is a symmetric function with respect to the lines & ; = + % ,

-

i=1,2.
Let us expand the function V in terms of its Fourier series

«©

VEL, &)= Y Y a; RICEY

j=-0 l=-w
For any p = 1 we define
i) for S=0Q:
(4.82) V=3 Y a e'Uh +1%)
lil=p |1 =p
ii) for S=T:
(4.8b) W V=Y aet,

l+ 11 =p

Then quite similarly as in [5] we have for 0 <g =<k

(4.9a) |V -4, V| <Cp~*Du|, s k=0

q, R(m)

(4.9b) (Vv -, VEN|<Cp *Vull, s, k=1.

Because (7, V)(® !(x)) € 2,(S) and @ is a regular mapping of R(rg)
(ro <% ) on S, (4.9) yields the lemma immediately.

Let us quote now the following scaling result.

LEMMA 4.2 : Let Q and QF be two open subsets of R" such that there exists
an affine mapping F(x)= B(x)+b of Q" onto Q and F(Q")= Q. Let
diam (Q) =1, pgo=K, diam (Q*)=h, pg=Kh. If the function
b € H™(Q), m=0 integer, then v = v o F € H™(Q") and

-m

|9

NI

(4.10a) [0 op < Ch 0
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n

(4.10b) 18] <Ch" 2|v] o

m,

where C depends on K and K but not on Q, h, v.

For the proof see [9], Theorem 3.1.2.
The estimate of the error of the approximation of g by gﬁ is given in

LEMMA 43: Let r=1,0=<t=<1, p=1, then

(4.110) o9 =gl = € T Nl
o

(4.11b) ollg—gﬁll,,risCF||9||,,r,.

where

(4.11¢c) v=min (r,p +1)

and C is independent of g, p and h.

The proof is given in [13]. The main idea is to expand ¢’ in Legendre
polynomials on every ! ; of the partitioning of I'; induced by the mesh
B”, prove (4.11) for r and ¢ inte¥ral and by the interpolation argument
obtain (4.11) in full generality.

Let us prove now :

LEMMA 4.4: Let S" and S be the triangle or parallelogram satisfying the
conditions of Lemma 4.2. Then for any i € H*(Q) corresponding to the
function u € H*(Q"), k=0 we have

(4.12) inf || —pll, o <Ch* ull, o
PE2,(Q)

where p = min (p + 1, k) and C depends on K, K, k but is independent of p
and u.

Proof: For k =0 the result follows immediately from Lemma 4.2 taking
p =0. Hence let k= 0. Assume first that &k is an integer. Then

k k
inf u—pll, g< inf Hu—mmn+ S lal g+ Y mnﬁ}

ﬁe.@p(ﬂ) ﬁe?l,(ﬂ) i=p+1 i=p+1
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k
where ) =0 for k <p +1. Using Theorem 3.1.1 of [9], we see that

i=p+1

k
inf “ﬁ_ﬁ"k’nsc Z h’”i,n
[)E?P(Q) i=pn

k

=C ¥ B Yu|, o (by4.100)
i=p

< Ch* Yu|, o

and (4.12) is proven for k integer. For general Kk we use an interpolation
argument.
Let us prove now :

LEMMA 4.5: Let S" be a triangle or parallelogram with vertices
A; satisfying conditions (3.5). Let u € H*(S*). Then there exists a constant C
depending on k, v, o but independent of u, p and h and a sequence
zhe 2,(8"), p=1,2, ... (see def. of P,(S")in Section 3.2) such that for any
Osg=sk :

A A4

(4.13a) ”u—zp”q’shSCF "u”k,sh’ k=0
(A 125L) V£ _ BNCN R*-1 T 1.1 xeSh
\T.150) | (& p;\.&;l§vpk_1"u"k’sn, K>1, XE
(4.13¢) p=min (p +1, k)

If k> 3/2, then we can assume that z!(A;) = u(A;).
Further, for ¢ — %

h-

t)
Qllu _Zh”;,'ys C —pT—l— "u"k,sh

4

where <y is any side of ;.
Proof: Let 1, be the operator introduced in Lemma 4.1. Define now
m  HYS") - 2,(5")
so that
mwhu = (i, (uo F1))oF

where F is the linear mapping of S$”onto T, respectively Q (see Section 3.2).
Denoting # = u o F~! we get from Lemmas 4.1 and 4.4 for g <k
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(4.14) o~ 4, a o= @-p)—#,@-p)],
<Cp~*~9 inf 2 -2l s
pe?,(5) '

<Cp* DR u|, o
Combining (4.14) with Lemma 4.2 we get for O=sm=<g=<k
lu—mpul a=Ch*="p= EDluj, o
and hence
(4.15) |u—mhull, o= Ch=0p~ E= ], .
Now analogously for k> 1 and £ € S
416  |@-ma)@)| <Cp~* D inf fa-p|,
P e P2y(S)
<Cp~® " Vr Y|, o
and (4.13) is proven.

If k > 3/2 then we modify z},’ analogously as in Theorem 4.1 of [S]. We get
z},‘(Ai) = u(A4;) and by interpolation

ollu—zp||, < CR®=p=E=Dju||, g

where v is any side of S".
The proof of the following theorem is a modified version of Theorem 4.1
in [5].

THEOREM 4.6 : Let u be the solution of (3.1-3.2), u € H*(Q), k > 3/2 and
for T, T let g; € H'(T,), r=k — 1/2, where g, is the restriction of g to
T;. Then for each p=1 and h >0, there exists ¢} € ¥ () such that

(4.17a) o =g; on I'

h h*~
@) Ju=stl, 0 =€ 2 (Wl o+ S Nl )
(4.17¢) p=min (p +1, k)

where gg is defined by (3.7) and C is independent of u, p, h, and
B
First we will introduce

LEMMA 4.7: Let S=Q or S=T and let y= A A, be a side of S. Let
Y e P,(y) such that W(A;) =0, i =1,2. Then there exists an extension
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vEZP,(S), v=bon~y, v=0o0n 45—~y and
(4.18) vl s=Collbllyy, ,

where the constant C is independent of p and .

The lemma follows from Theorems 7.4 and 7.5 presented in the Appen-
dix.

Proof of Theorem 4.6 : Let {S”} = B" Then by Lemma 4.5 there ex1sts

i € 2,(S!) such that z!, =u at all vertices of S!. Let now +"

S;'ﬂ S¥ and let N,, N, be the end points of vy*. Then zP, 1’;,1 =
wl-’f, is a polynomial on " of degree at most p, and w],,(ul,) =0
i =1,2. We now map 5/ U 57 onto §; U §; by a continuous linear mapping

F where S; and §; are congruent images of Q or 7, suitably placed as shown
in figure 4.1.

Using the notation used in the proof of Lemma 4.5 we get, by Lemma 4.5

||u_2;:ill1,s\c _1”u"k sk
2 -z 18 is analogously bounded. Also by Lemma 4.5,

ol Wil <olla—2ll,, , +olla =201, ,

=C ;ﬁ (Noell, s+ Noell, 5p)

Applying Lemma 4.7 there exists § € 2,(S;) so that

“ljlnlysisonwi,l”uz,y

$=w,;, on v
and )
IIJ:O on 65,—'}'

Si
yh [/ . 1y
—_—
Se

Figure 4.1. — Scheme for the map of two neighboring elements.
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: h 5h h  _ h
Hence we can modify z, ; to Z, ; so that Z, ; =z, , on v" and

~h h*-1
25, —ulll,s,.hs C?_‘I (““"k,s,"+ el g, 52 -

Repeating this process we construct 2%

»,; similarly on each S;’.
Defining &, so that its restriction on S} is 2 ; we get i € ¥ /()

~ h*
”u - (Pg”LQSCF ”u”k,n'

Finally if as}' NT! = v* 2 &, we have to modify z},’,j so that z! ; = gﬁ on
v". Using (4.11a) and realizing that

2 2
2 lglzy, =< llgllsr,
7

we can proceed quite analogously as before and complete the proof.

Remark : By the imbedding theorem we have |g|,_,, ¢ < |lu||, o and
hence the second term in (4.17b) can be omitted.

4.2, The approximation results for 1 < k<32

In the previous section we analyzed the case when the solution u of (3.1)-
(3.2) belongs to H*(Q), k> 3/2. We will now analyze the case when
ue H(Q), 1 <k <3/2 and g = 0. In addition, we will assume that Q is a
Lipschitz domain.

As shown in [4], given any 7=0 and k=1, the function u can be
decomposed so that
(4.19) u="10+o

v e Hy(Q)
o' € HY{(Q) N H}(Q)
and for any k>¢g=>1
(4.20a) 1ol g =<t ully o

(4.20D) | o = t""‘||u||q’n.

Mo

Let 2=k=>3/2, and 1 =<q=<3/2. Then by Theorem 4.6 there exists
ot € ¥ Q) such that

¢f=0 on TI!

¢t h Chk_l t
”m ‘PP”],Qs PTI”w”k’Q

vol. 21, n° 2, 1987
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since for p=1, min (p + 1, k) = k. Hence
lw—eplly o= 10,0+ Ilm’—%'illl,n

f g1 B
s(,(tq 1y tq "> el o
P
Choosing ¢t = h/p we get

h h*-1
@2 a0 =€ (5 )" Mo = C oy el

since
min (p +1,9)=g¢q, qg=<32.

We remark that the assumption that Q is a Lipschitz domain was used in the
proof of decomposition (4.20). (4.21) shows that in Theorem 4.6 we can
replace the restriction & = 3/2 by k > 1 provided that g = 0. In fact, we need
less namely that g|. € H'(T;), T; < o r=1

4.3. The rate of convergence of the h-p version of the finite element method
We will prove now

THEOREM 4.8: Let u€ H¥Q), k>1 be the solution of (3.1)-(3.2).
Assume further that g is such that

u=u +u,
u, € HYQ) N A}(Q)
u, € HYQ), k=312

and that ) is a Lipschitz domain if k,<3/2. Let u},’ be the finite element
solution of (3.1)-(3.2) as defined in Section 3.2, then

(4220) ” h“] Q = C(k) k 1 ”u”k Q
(4.22b) k = min (kl, k,)
(4.22¢) p=min (p +1,k)

where C is independent of u, h, p but depends on Q, 7, o.

Proof: If g =0 then (4.22) follows immediately from Theorem 4.6 and
(4.21).
If g % 0, then denote by U,’,‘ the exact solution of the problem (3.1)-(3.2)
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THE h-p FINITE ELEMENT METHOD 213

when replacing g by gh Denoting o = u — U we sce that

—Aw+w0=0

o

FZ
o =0 on
w=g-—gh on T'.

By Lemma 4.3 we have

hv—l/Z .
oll@llyp,rr <C —=—5 lull, » where v=min (r,p +1)

and r = k — 1/2 by the imbedding theorem. Because

"‘”"1 o = inf ol q

over all v € H(Q) such that v = o on I'!, we have

h
ol o=Collely = Cp,, 7 1%lleq-

By Theorem 4.6 and the basic properties of the finite element method we
get for any ¢} € ¥ (Q),
lus = Upll o< Clles— Ul q

sC(”u - (PZ”LQ + "u - U:"LQ)
he !
=C pk__l “u”k,ﬂ

and Theorem 4.8 is proven.

4.4. Optimality of the asymptotic rate of convergence

In this section we will prove that the estimate in Theorem 4.8 is optimal.
To do so we will use the concept of the n-width. For details, see e.g. [18].
Denote

D,(H'Q), HXQ))= inf  sup infllu—v|,
S,cHY(Q) ueH* ves, ’
dimS,=n lullga=1

the n-width in the sense of Kolmogrov. Then by Theorem 2.5.1 and 2.5.2 of
[1] we have

(4.23) D,(HY(Q), H*(Q))= Cn~ *-1/2,
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Let us now compute the dimension of the space ¥~ ;,’(Q) in terms of p and h.

The number of elements is of order O ( hlz ) . Over each element we have
2
O (p*) polynomial basis functions. Hence, n = dim ¥ }(Q)<C 1;;—2 Hence

for p + 1= k we have
k=1
R\ k-1 - (==
(4.24) u~ “:“Ln = C(k)< p ) ull,o=<Ck)n ( 2 ) el q-
Comparing (4.24) with (4.23) we see that the estimate is optimal.

5. THE CONVERGENCE RATE OF THE h-p VERSION. THE CASE OF THE SINGULAR
SOLUTION

In Section 4 we analyzed the rate of the h-p version when the solution of
(3.1)-(3.2) has the form (3.4) with u; = 0. Now we will analyze the rate of
convergence in the case u = u,;. For simplicity and without a loss of
generality we will assume that n =1 in (3.4¢).

5.1. An approximation result

Consider the square R = R (h)defined in Section 2. Let (7, 6) denote the
polar coordinates with the origin at 0 (see fig. 5.1). For k=1 let

S, be the subset of R bounded by the lines Ll:ix, +4 = «{x, + &) and

(h,h)

[ a
B si,

(h,~h)

Figure 5.1. — Scheme of R(h), Q, Si;.
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L2:x;+h=r«r(x,+h). Let S be the region S, N {(r,0)|r<p}

(0 <p< g ) .
We will consider the approximation of a function » with support in

S¢ for some ko > k which vanishes on the lines L}, L2 We will assume that
the function # has the form

¢.1) u(r, 0) = r¥{logr|"xo 7 ) #(©)

where ® and x, are sufficiently smooth functions (e.g. C* functions) such
that 0 s xpo =<1, xo(r) =1 for0<r<§,x0(r) 0 for r>—— O0<p<1/2

and ®(6;) = ©(6,) =0 where 6;, 8, are polar coordlnates of the lines
Lland L2

Let Q be the region bounded by the lines Ly, L2, and x; = —g,
Xy = —g. We will estimate the approximation error |u
uy e 2,(R).

u:lll,g’

We first map R = R (k) onto the square R = R(1) by the transformation

X; i s . . 5 .
X = 7 O equivalently (7, 8) = <% , 9). This maps Q into Q. Then, if
i(7,8) = u(r, 8) we have

5.2) u(7, 8) = h*7*|log h#|" xo(7) ©(8)

where i = 0 on the lines L} and L2, the maps of L} and L2 Since v is by
assumption a positive integer, we have for A,7 <1

(5.3) u(#, 0) = iC(l)h" 7 |log k|'|log 7"~ xo(7) @(8) = iﬂl-

1=0

By Theorem 5.1 of [5] there exists 2, € 22, ,(R) such that z, = 0 on the
lines L} and L2 and

[l — P"1Q<Cp llog h|' [logp|?~*.
Hence, we see that
LA P2 (R
Z p € p+2( )7
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s Fl r2
2,=0o0n L, and L, and

he 2 3
— Y |log |’ [logp|*~*
1=0

o

(5.4) Ja-2,], ,<C

}.‘u

=C

s—max (|log k|, [logp|Y).

b~

By suitably changing the constant in (5.4), we see that we may obtain a
2, € Z)(R) satisfying (5.4). By Lemma 4.2 the same estimate holds for
lu =2z, o so that we have

LEMMA 5.1: Let u be given by (5.1). Then there exists z, € .@;(R) such
that z, =0 on the lines L and L} and

hu
(5.5a) ||u——zp||l,Qng(h,p,'y)p—2;
where
(5-56) g(h, p,v) = max (|log k|, |log p|”)

and C is a constant independent of p and h.

5.2. The rate of convergence of the h-p version

We now return to the problem of approximating function wu; given in
(3.4d). To this end let

U3 = U3z 1 + U3z,

where
(5.6a) Us,1 = Us Xo( % )
(5.6b) u3’2=U3(1'—X0(£>) .

Obviously u; , =0 in the neighborhood of the origin.
Our first goal is to approximate u;, over the set of triangles or
parallelograms having a vertex at the origin as shown in figure 5.2.

We will assume that OB, < I" and OB,,.; T2 Let T =|_J) B; B;, ..
i=0
Then Lemma 5.1 yields the following result, the proof of which may be
found in [5].

LEMMA 5.2: Let u be given by (5.6a) with p (in the definition of
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Figure 5.2. — Scheme of the mesh in the neighborhood of the singularity.

Xo) Sufficiently small (depending on + and o only), then there exists
z, € H'(Q), z, € 2,(S]), z, =0 on OB, and on T such that

h(!
(5.7a) ||u—z,,”Hl(mng(h,p,y)I?;l

(5.7b) g(h, p,v) = max (|logh|", [logp|")
where C depends on o, v but is independent of p and h.

Let us consider now the function u =u;, given by (5.60). We have
u =0 for r < ph. Further,

IDPu| <C(B)r*~I#l |logr|
where B = (B, B;), B;=0, B, +B, = |B| and

Dhuo 2P u
8xf‘ 6‘)\:§32
Hence we have
(5.8) full, o< C(k)|logh|" max 1, he*1-%),

Denoting by u},’ the finite element approximation of u, we get by
Theorem 4.8
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h Rt
(5.9) [ — up||1’ns C(k)—k—_—1 el o
n—k+a

<C(k) llog k|

with k> 1 arbitrary and m = min (p +1, k). Let us take k=2a +1 in
(5.9). Then n—~k+a=m—a—1=min (a, p — a) so that

(o, a
(5.10) Ju—uk], <P gy
: P

If p is small with respect to «, we can select & so that C (k) k"~ k+*/pk-1
will be minimal. For example, with £ =2 we get

(5.11) lu —up, , < Ch®|logh|”.
Combining the estimates for u; ; and u; , we get:

THEOREM 5.3 : Let u be given by (3.4d). Then there exists qaz eV Z(Q)
such that

A . hmin (o, p—a)
(5.12a) ||u—<1>P||1 o <Cg(h,p,y)min (h“,—T—— )
? p «
{5.12b) g{h, p, v) =max (|log |, {logp|*)

and C depends on o, © but is independent of p and h.

Remark 1: When a is an integer and vy = 0, the estimate (5.12a) is very
pessimistic, since the solution u given by (3.4d) is smooth. When a is an
integer and vy =0, then the estimate (5.124) is a correct one.

Let us now summarize in one theorem the error estimate for the A-p
version with quasiuniform mesh and uniform p.

THEOREM 5.4 : Let Q) be a polygonal domain as introduced in Section 2.
Suppose that u, the solution of (3.1)-(3.2) can be written in the form (3.4).
Assume further if 1 <k, <3/2 that Q is a Lipschitz domain. Assume that
ul’,' is the finite element solution with triangular and parallelogram elements
satisfying (3.6) and the boundary condition on T defined by (3.7). Then

(5.13a) lu —up|l, o< C max (&, &) R
i
. . « hmi" (o, p — ;)
(5.13b) § =g, p,v)min (A", ——r
p 1
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(5.13¢c) g(h, p, ;) = max (|logh|™, |logp|™)

hmin(kl -1,ky-1,p)
(5.13d) £ =

min(k, — 1, k, — 1)
p

(5.13¢) R= Jlull o+ lually 0+ X ]

and C depends on 7, o in (3.5), Q, k;, v;, o; but is independent of
B h, p, u.

Remark 2 : We formulated Theorem 5.4 only in the frame of Sobolev
spaces. By interpolation arguments, it is also possible to formulate the
theorem in the frame of Besov spaces.

Remark 3 : We addressed only the case of the polygonal domain and
elements which are triangles or parallelograms. By the standard mapping
approach, the results are also valid for curvilinear elements.

6. APPLICATIONS

In this section we will study the consequences of Theorem 5.4 in
connection with computations.

First let us mention that although we discussed the Ah-p version in
connection with the problem (3.1)-(3.2), all conclusions are valid also for
the elasticity problem. In (3.4d) we assumed that o; are real. In the case of
the elasticity problem, o; are in general complex with Re o; > 0. The
estimate (5.13) is still valid with a; = Re «;.

Our theory is of asymptotic character. Hence it is important to see the
applicability of Theorem 5.4 in the range of practical parameters. To this
end let us consider the plane strain elasticity problem when 2 is an L-shaped
domain shown in figure 6.1.

Let us assume that on 9{) tractions are prescribed, i.e. I'' = &. The
solution of this problem is the displacement vector (u,, 4,) where

1

(6.1a) Uy = 2—ér°‘[(x —Q(a+1))cosad —acos (a —2)80]

6.16) ;= 515 r*[(x + O(a + 1)) sin a8 — a cos (a — 2) 8]
where

a = 0.544 483 737

Q = 0.543 075 579

G is the modulus of rigidity and k = 3 — 4 v where v is Poisson’s ratio which
we assume to be v = 0.3. T«e solution has a typical singularity at O. The
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B A

e
X oy

Figure 6.1. — L-shaped plane elastic body.

sides OA and OE are traction free. Instead of the norm || . }}, , we will be
interested in the energy norm || . || o which is equivalent to the || .||, , norm.

Denoting W(u), respectively W(u},’), to be the strain energy of the exact,
respectively the finite element solution, we have

(6.2) flu—upll o = (W) — WhH)?

and we define the relative error in the energy norm as

W) - Wt
6.3) lels & = [L——(f"—)}”

W(u)

In the next figures we will present the results of computations which were
performed with a computer program called PROBE [21, 23] developed by
Noetic Technologies Corporation, St Louis.

We will consider a uniform mesh with square elements as shown in
figure 6.2.

The solution u € H'**~¢(Q), & >0 arbitrary.
Theorem 5.4 gives for p =1 the estimate :

i (“’ -a)
64) = = € min [, B

P 2a
where C depends on « but is independent of 4 and p. Figure 6.3 shows the
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relative error in the energy norm |le|| . , (for different degrees p) in

dependence on h. We also show the slope A%in the figure. We see that with
respect to k the error is in the asymptotic range also for moderate p and A.

Figure 6.2. — The scheme of the uniform mesh.

40 |
# =] X
30 p=
x o =2
o= P + X
Fs 20 EANS i\x
wa =4 A *\\\
(@) P ~ o \
wZ 15 R G NS
E® R N
<x B, Ol
oY 0 [ ~del
T g 05444 B _gqgj
z s [ "B
7 Il B
6
1 Ll B .
2 4 6 8 10
MESH SIZE h

Figure 6.3. — The relative error in the energy norm in dependence on h.
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40
S
X
= ] |
£3 — |
T L N
& s S Rt
W ~hEg X
g 2 TS \Y\\T‘ k- 1\1 i
2% TS TN T\
28 | O T e NN
! 5 10 \\D|\ ....... - ]_-\g__gikgx
z 8 N A
- —L_}D h==
7 h=15 8
5 I S
| 2 3 4 5 678

DEGREE p OF ELEMENTS

Figure 6.4. — The relative error in the energy norm in dependence on p.

Figure 6.4 shows the error in dependence on p and different 4. Because of
the size of computations, only in the case 4 = 1/2 is the error given for
p=4. (For p=4 and h = 1/10, the number of degrees of freedom
N =5119). Estimate 6.4 gives the rate p~2* which appears only for
p = 3. For large p and small & we have N = p?/h? and hence

N

a

NIR

6.5) || —ué‘”Es C

(6.5) shows that if the measure of computational work is N, then the use of
higher p is preferable.

Figure 6.5 shows the dependence of the relative error in the energy norm
on the number of degrees of freedom N for various p. In addition, the
performance of the p-version for A = 1/2 is shown in the figure. We see that
P = 2 is more effective than p = 3, and asymptotically for p — oo, the higher
p are more effective as follows from (6.4). The p-version has a rate which is
twice that of the h-version (see also [5]).

We addressed in this paper only the case of the quasiuniform mesh. If the
mesh is strongly refined, then its performance is different. Figure 6.6 shows
the strongly refined mesh with » layers (n = 2). The mesh is a geometric
one with the ratio 0.15. The ratio 0.15 leads to nearly optimal convergence.
See [13, 14].
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Figure 6.5. — The relative error in the energy norm in dependence on N,
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Figure 6.6. — The strongly refined mesh with n = 2 layers.
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Figure 6.7 compares the performance of the A, p versions for the uniform
and strongly refined mesh for our example. The performance of the p-
version on strongly refined meshes is in practice very similar to the general
h-p version, leading to an exponential rate of convergence. We see that the
p-version performance depends very strongly on the mesh.

For more about
to [3].

the comparison between the 4, p and A-p version we refer

X [ | ]
« i ——xp=|
2 UNIFORM MESH e 4"'VERS'°N
; _________ ( u—~—- Oh= zp'VERSION
2 T N N R 1
ol N N | R ﬁ < ]oz7zz
Z 0 6 /
>
g 7
w
Z
w
z 4 AN
R N5 =8
x | OPRVERSION| Ny \ TP
g , | + +n=l %\ ‘
W O~=——0 N=2 ‘\\\o\\ ‘
w . — AN=3 /A
E | o——on=5 pH| * ~ I
= O\ O 05441
< N
ry) l 8 =
o7 =\ p=8
30 50
Rop=5
N
80 100 200 Q
\ p=6
T
\
\ _ﬁ/p =7

]
400 8001000 2000 4000 8000
NUMBER OF DEGREES OF FREEDOM

Figure 6.7. — The error in the energy norm in dependence on N for various meshes.

7. APPENDIX

Theorems 7.4 and 7.5 proven in this section are slightly generalized forms
of Lemma 4.7 and are of interest by themselves.
Let us consider the equilateral triangle 7 = ABC as shown in figure 7.1.

We denote

vy =vf Uy} =AP,UP B =A4B
v, =5 Uvys =AP,UP,C =AC,
v; =5 U~§ = BP, U P,C = BC
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A=00) ¥A B ¥} B=(,O) X

Figure 7.1. — The scheme of the equilateral triangle.

The notation is also shown in figure 7.1. Let f € 2,(v,). Then we define

f

(7.1) Fix,y) = > f@t)dr.

ol e

The value of F; at a point P € T depends only on the values f along the
segment 410,, O; = (x - 7: ) , Oy = (x + -\—/—_ ) 0) . We prove now
the following lemma.

LEMMA 7.1: Let f € 2,(v,) with f(A) = f(B) = 0 and let F{1 (x, y) be
defined by (7.1). Then

(7.2) a) F{x,y) e 21(T)
b) F(x,0) = f(x)
) FP, =< Coll fllu,q,
@) A|FI, s<Calfll,y O<k<1
&) p|FI, s<Cllflep O<k<1
ds) ||F1[f]||k’12csC||f||O,yl 0<k=1

d) |FI, c=<Clfll,, O<k<1

where the constant C is independent of p and f.
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Proof: It is immediate that (7.2b) holds. Let f=x"with Osn=<p
integer. Then

2 [x+=
F(x,y)=2iy3-J‘ ft”dt
G

zz—y(%j{(x+—\%)n+l- (X—%)n+l]
=2—y-$m[<x+\/l§->—<x—?/y—g)]l)n(x,)’)
1

=— __P,(x,y)e 2(T).
(n+1) n(:J)} ?p\ 7’

Hence (7.2a) holds.

To prove (7.2¢) we first extend f by zero to a function defined on the
entire x-axis R so that (see [18])

(7.3) 1fll1n, & < € oll fllin, y,

where we have used the same notation fto denote the extended function as
well. Then by (7.1) F;(x,y) is well defined on the entire half plane
Q= {(x,y)|y=0}. For (x,y)e Q we have

74)  Fy(ey)= f”’ FOYHG =1, y)dt = (f + HC, 9)))

where
wacre

V3 y y

7.5) Hx,y)=2—, —Z_sxs 2=

¢ ) 2y V3 V3
= 0 otherwise.

Let g(¢&) represent the Fourier transform of the function g(x) in the x
direction. Then by (7.4)

(7.6) Fi(g&,y)=FE& HE y)
where

- 1 V37 1 sin (&/+/3)
7.7) H(, y)= — Y2 o gy - 1 V>
77 HEY) ¢2«r2yj—y/ﬁe N TN

Let O = {(§y)|y =0} and calculate the H'(Q) norm of F,(x,y). By
Parseval’s equality, we have using (7.6)

152y = [FilEy = || 1F@P |G )ty +
¥ ﬂﬂ FOF| £ A )| deay + ﬂﬂ |F @A )|t dy .
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Now letting z = y&/ V3 we get, by (7.7),

0 0 a2
7, HE ) d =_1-J 3sin“zdz _ C
O N

~

Hence

(7.9) ﬂﬂ|f<&)12|§ﬁ(§,y)pzd§dys

<c J 1611 F©|" de<C I fI20n=C oll fIn.,. -

Also

O fie vy £ [cosz _sinz
5 6 y) = S [<22 02|

which is bounded at z = 0. Hence
7|2 aen| ar=cial,
o 19Y
so that

10 | 17@F] & ae | aay<

<C J &1 | (&) de< C ol £}, -

The third term can be bounded analogously. Using (7.8)-(7.10), (7.2¢)
follows. Inequalities (7.2ds), (7.2d,) follow immediately for k=0, k=1
and hence by an interpolation argument (see [8]) they hold for all
O<k=<l.

We prove now (7.2d;). Let the variable x be used to represent both the
distance from A along v, and the distance from A along -<y,. Denoting

(7.11) Gix)=1 J FQ)dt
* Jo
it is readily seen that
(7.12) AlFF p=alG@, 1= (0,12).
Using (9.9.1) of [15], p. 244 we get

(7.13) uG(x)“onC”f"o,yl"
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Further, integrating (7.11) by parts we have
1 .,
(7.14) 6@ = 16)-10-1 [ er@a
0
and hence
1 ! ¥ 1 * ! 1
cw=resL[iroa-re
0
1 [ , 1" .,
2_..51 x-0)f (t)dt+—J fr@ade.
x“Jo X Jo
Using 9.9.5 of {15], p. 245 with r =2 we get

1
e

and by 9.9.1 of [15], p. 244 we get

J: x-—1)f'(t)adt

sC"f'"o,I
0, [

|1 row|) <cirn,.
0 0,1

Hence

(7.15) 16l = CHF o

Combining (7.13) and (7.15) we get (7.2d,) for k = 0 and k = 1 and hence
by the interpolation argument (7.2d;) holds for all 0 < k < 1. The inequality
(7.2d,) is essentially the same as (7.2d;) and Lemma 7.1 is completely
proven.

Let now f = f; € 2,(v;), i =1,2,3. Then we denote by Fi[f"](x, y) the
polynomial extension of f; into 7, defined for i =1 by (7.1) and for
i = 2,3 by (7.1) after properly rotating the coordinates. Obviously Lemma
(7.1) is applicable for i =1,2,3 when properly interpreted through the
rotation of the coordinates.

We now prove

LEMMA 7.2: Let T be the triangle as in figure7.1 and f satisfy
f(A)=f(B)=f(C)=0 and f; = f| € Z,(vi), i =1,2,3 where by
f lvi we denote the restriction of f on y, Then there exists ®; € 2,(v;),
i=1,2 such that

(7.16) a) U=F{+F™e2,(T)
b) U=f;, on v;, i=1,2
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C) ||U||1,T$C[o||f1”1/2,y,+0||f2||m,,2]

2
a) Andxnk,y,.sc[z onfjnk,,,], =12, 0<k=1
1

j=

2
4 9l p=C ol Al g+ 5 Wik, |

2
4) cl@all, = C el g+ 3 ||f,~no,y,] , 0<k<1
j=1

where C is a constant independent of p and f.
Proof: Let ®; € 2,(y;). Then as in Lemma 1 we define

(7.17) G,-(x):%f & ()dt, i=1,2.
0
Condition (7.16b) will be satisfied if

(7.182)  ®,(x)+ G,(x) = <1>1(x)+)1-J: ®,(c)dt = f,(x)

(7.18b) D,(x)+G,(x) = ¢2(x)+%j: D,(t)dt = fr(x)

hold for all xe€J = (0,1). Since f; € £,(3) it is easy to see that
®; € 2#,(3) satisfying (7.18) exist. Due to the assumption on f we have
f1(0) = f,(0) = 0. ®; are uniquely determined up to a constant K with
®,(0) = K, 9,(0) = 0— K.
We now define

(7.19) () = D1(x) + Pr(x), dp(x) = @1(x) — Dy(x)

hi(x) = f1(&x) + f2x) s hy(x) = fi(x) — fo(x)
so that (7.18) yields

(7.200) o)+ 2 [ O d =)
0

(7.200) 0= 2 "0t = o).
0

Here ¥ (x) is unique, ¥, (0) = 0, while {,(x) is unique up to the constant K
such that ¢,(0) = 2 K.

We first analyze (7.20a). By differentiation we obtain
1 1 * 1 '
\,Jl——zj l'}l(t)dt"'—lpl:hl.
x“Jo X
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Using (7.20a) we get

29, h

The homogeneous solution of (7.21) is 1/x% A particular solution can be
found by using the method of variation of constants. Hence, substituting

P (x) = T(ch) into (7.21) we get
x

T'(x)=h{x*+hx
from which
1 X 21, 1 [*
b(x)=5 | hi()dr+= | thi(t)ar.
X Jo x“Jo
Integrating by parts we get
1 pe
0
the unique solution of (7.20a).

We now show that

7 92\ 1ol
i LJ} A” Y1

Let

~

F(x) = L thy(¢) di = — J (6 — t) hy (1) dr +x J hy(t)dr .
0

0
Then

FO_G6) o

where
G(x)= JO (c — t) hy(1) dr
Q(x>=§f: hy(e)dr .

Using (9.9.4) of [15], p. 245 with r = 2 and (9.9.1) of [15], p. 244 we obtain
”F(x)/xzuo’; = "G(x)/xzn(),; + ”QHO,J = C "hlno,a
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which yields (7.23) for k = 0. Next, differentiating (7.22) we get

x h x
(7.24) ¢(=h{+—2—3J‘ thl(t)dt—-—l=h{——13j 2h(t) dt .
x> Jo x x> Jo

Let
F(x)= Jx t2hi(t)dt = Jx (x —tY hi(t)dt
0 0

—xzj h{(t)dt+2xj thi(t)dt .
0 0
We have then

£Q)_S9)_0¢)+r@)

x3
where
G(x)= f (c — t R RIGt) di
0
1[x
0 =1 [Hwa
0
2
X" Jo
This gives

IFG)x, ;=< 1GE) X, 5+ 1Q g 5+ 1RG5 -

The first two terms can be bounded once more by |41, ; using (9.9.4) of
[15], p. 245 and (9.9.1), p. 244. Moreover,

R(x) = %2 [— L (& — 1) hi(t)dt +x L hl’(t)dt]

so that |[R]|, ; can also be bounded by |Ai] . This yields (7.23) for

k = 1. By the interpolation argument (see [8]) we get immediately (7.23).
Let us consider now (7.20b). Differentiating it and using once more (7.200)
we get

h,
(7.25) Y =hy + <
Integrating we get

Lhy(t
(7.26) Yo (x) = hy(x) — J Zt( Dar.
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(7.26) is that solution of (7.20b) with ,(1) = h,(1).
Once more we wish to show

(7.27) Allﬂlelk,;,sCAth!Ik,y O=<sk=<l.

Using (7.26) and (9.9.9) from [15], p. 245 with o = 0 we get
Ially ;=< Clikally ;-

Since h,(0) = f,(0) — f,(0) =0, (7.25) yields

and by (9.9.1) of [15], p. 244 we get

A“\"z"l,;s CAnhllll,a )

An interpolation argument leads immediately to (7.27). Hence we have
constructed solutions of (7.20a, b) such that (7.23) and (7.27) hold.
Coming back to (7.19), using k = 1/2 we see that for i = 1,2

Al ®illyy, < CLll fill g, o, + all f2ll iy, ]

y Y1

and applying Lemma 7.1 we get immediately (7.16¢c) and also (7.16d;).
Returning to (7.20) we see that with 3* = (1/2,1)

llWilly 5o =< ClsllPilly 5o + Ml 1, i=1,2.

Hence also
2
Bu@iukﬂ,*sc[anfiuk,,.,w 5 nf,-\lo,a] =12
j=1

wich immediately leads to (7.16d,), (7.16d,).
The following lemma is taken from [6].

LEMMA 7.3: Let T be the triangle as before, f be continuous on
oT, f, = f3=0and f, € P,(v,). Then there exists a polynomial v € QI(T)
such that

lolly, 7 =< Cllfill,

v=/f on v
v=0 on v5;v;

M1

where C is a constant independent of f and p.
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THEOREM 7.4 : Let T be the equilateral triangle shown in figure 7.1 and f
satisfy f(A) = f(B) = f(C)=0and f; = f| € P,(v;),i =1,2,3. Then
there exists U € P)(T) such that U = f on 3T and

3
nUszc[ZMVLQJ
i=1

where the constant C is independent of p and f.

Proof: Without loss of generality we can assume that f, = f3 = 0.
Let f;#0, f,=0. By Lemma 7.2 we construct ®;, ®, and U =
FI" 4+ FI*) Then Ue 2,(T), U=f,on v, i=1,2 and

(7.28) 1Ull, 7= Coll fillyp, .
Denote by g5 the trace of U on vy;. Then we have g;(B) = g;(C) =0 and
(7.29) 0“ g3 ” 12,3 <C 0“ flllyz, v

by applying Lemmas 7.2 and 7.1.
Because of (7.16d;) ||, |, £=C oll f1ll 1 ,, and hence using Lemma 7.1

we have also

(7.30) lgslly s < C ol fillyy,, -

Let now analogously as before

(1] 1]
v, - P FP,

so that

UIEQ;(T), U1=g30n'Y3, U1=00n'yl
and
(7.31) | U *h, r= Cyllgsl 12,9 Coll f1ll 12, %

Denote by gl!! the trace of U, on v,. Then gl'l(4) = gl')(C) = 0. Because of

(7.30), applying Lemma 7.1 and Lemma 7.2 analogously as before we
conclude that

1
1920,,,, < CUlgslly ¢ +oll g5, .= C ol Fill i,
Now applying Lemma 7.3 there is U, € Z)(T) such that

(7.32) 102, ,<C "gglnw =Colfillyp, 4,
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and
U, =gl on v,, U,=0 on vy, 7v;.
Let now
V=U-U+U,.

Then it is easy to see that Ve 2, (T), V=/f on v, V=0 on
v, ¥3 and because of (7.28), (7.31) and (7.32) we get

VIl r=<Coll fils s,

which concludes the proof of Theorem 7.4.

Let S= (x,y||x] <1, |y| <1) be a square and +v; its sides as shown in
figure 7.2

y
D=(-1,1) vz C=(,)
7a
S X
Y2
A=(-1,-1) B=(l,-1)
i

Figure 7.2. — The scheme of the square.

THEOREM 7.5: Let S be the square shown in figure7.2 and f satisfy
f(A) = f(B) = f(C) = f(D) = 0 and fi = f“yi € .?p('y,-), i = 1, ...,4.
Then there exists U € ?3(5’ ) such that U = f on 3S and

1005 =C( % ol filia,

i=1

where the constant C is independent of p and f.

Proof: Let T be triangle shown in figure 7.1 and

0= {E,nl(é,n)e T,n<3$}

be the trapezoid shown in figure 7.3.
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Y|c

(

A=(0,0) B=(1,0)

Figure 7.3. — Scheme of the trapezoid.

The mapping

(7.33) §=%+31g( y+§) 1r1—(1+y)3\/3

maps S onto Q. The mapping is obviously one-to-one and the Jacobian and
its inverse are bounded.
Let us first prove the theorem in the case that f; =0,i =2, 3, 4. Denote

fi®)=f1(2e-1),0<t<1.
Obviously f,(A) = f1(B) =0 and

Ollflllm,m = Coll f1 ”1/2,71 :

Let Ue 2X(T) such that U= f, on AB and U=0 on AC and
BC. By Theorem 7.4, U(§, m) exists and
”U||1,rs ¢ °”f1“1/2, e ¢ 0||f1"1/2,\r1 ’

Because U € 2,(T) we have

OEm)= Y ;&

O<k+j=p

=0skz+:i<pak’(l ig( y+ 5)) ((I+ )3‘/§)i

= U(x,y) € PXS)
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and
“U”1,ss c 0"f|l1/2,'yl :

Because f, = f; =0 we have U(x1,y)=0, U(x,—1) = f, and using
Lemma 7.1, Lemma 7.2 we conclude by similar arguments as used in the
proof of Theorem 7.4 that

1UG Dy, < Collfillyy,y, -
Of course U(x, 1) € Z,(v;) and U(x1,1) = 0. Hence with

V=U1)y+1)2
we see that

IV, s < CHUG D,y <ol filly, o,
and V(x,1) =U(x,1). Hence W=U-V € 22(S), W= f on 3S and
IWls=<Collfillin,y, -

The theorem is therefore proven in the case that f = 0 on three sides of S
and hence it holds also if fis general but f =0 at the vertices ABCD.

It remains to prove that in the general case there exist ® € 22(S) such
that ® has the same traces at ABCD as f and

T 4

(7.34) I, ssC[z il

To this end we define Flf‘](g, m) by (7.1) and define Fllm(x, y) by inserting
(7.33) for (&, m). Then |lF1[f‘](x + 1)” < Clfi ||0 and hence analog-

ously as above we can change Flf‘](x y) to F, so that F(x,+1) =0 and
|| H1 = C ol fillyp,,,- Changing the role of v, and v; we can analogously

construct F; e 9’3(5 ) so that
HF3HLS$C0"f3"1,2,y3, Fa(x,1)=f3» ﬁ3(x,—1):0

Hence ® = F| + F; ¢ 2}(Q) has the same traces at ABCD as fand (7.34)
holds. This completes the proof of Theorem 7.5.

Remark : Theorems 7.4, 7.5 also hold when fis not a polynomial. This is
known from the theory of Sobolev spaces. The importance of Theorems 7.4
and 7.5 lies in the fact that if f; are polynomials, then there exists a
polynomial extension.
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