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Abstract. Let f be a rational map whose Julia set J(f) is disconnected. It is
proved that there exists a rational map g such that g has a family of buried Julia
components on which g is quasiconformally conjugate to f on J(f) if and only if
f has no parabolic basins and rotation domains. This extends the previous result
about burying connected Julia sets to the disconnected case. Moreover, the limit
behaviors of the conformal dimensions of successively burying Julia sets are also
studied.

1. Introduction

1.1. Backgrounds. For a given rational map f : Ĉ → Ĉ, the Fatou set F (f) of
f is defined to be the set of points at which the family of iterations {f◦n}n>0 of
f forms a normal family in the sense of Montel. A connected component of the
Fatou set is called a Fatou component. According to Sullivan [Sul85], each Fatou
component U of f is eventually periodic. That is, there exist two integers k > 0 and
p > 1 such that f◦(k+p)(U) = f◦k(U). Moreover, based on the dynamical behaviors,
the periodic Fatou components of f can be divided into exactly five types: super-
attracting basins, attracting basins, parabolic basins, Siegel disks and Herman rings
[MS98]. For the former three types of periodic Fatou components, the points therein
are attracted by super-attracting, attracting and parabolic periodic cycles respectively
under iterations. For the latter two types, the restriction of f , or some iterate of f
therein, are holomorphically conjugate to an irrational rotation of a disk and an
annulus respectively. The complement of the Fatou set is called the Julia set, which
we denote by J(f). Each connected component of J(f) is called a Julia component.

A point c ∈ Ĉ is called a critical point of f if f is not injective in any neighborhood
of c and f has exactly 2 deg(f) − 2 critical points counted by multiplicity. The
dynamical behavior of f is dominated by the forward orbits of critical points (see
[Lyu83], [McM94, §3.3] and [Mil06, §§8-11, 15]). For more details on the dynamics of
rational maps, one may refer to [Bea91b], [CG93] or [Mil06].

An interesting and important problem in complex dynamics is to describe the
topology of the Julia sets. A Julia component (or a point on the Julia set) is called
buried if it is not on the boundary of any Fatou component. Since the Julia set
of any non-linear polynomial coincides with the boundary of the unbounded Fatou
component, the buried points cannot occur in polynomial Julia sets. The first example
of buried Julia component was constructed by McMullen in [McM88], who considered
a family of rational maps which is given by

fλ(z) = zl + λ/zm, where l > 2,m > 1 and λ ∈ C.
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McMullen proved that if 1/l+ 1/m < 1 and λ 6= 0 is small enough, then the Julia set
J(fλ) is a Cantor set of circles which is homeomorphic to the Cartesian product of
the standard middle third Cantor set and the unit circle. In particular, such a Julia
set contains infinitely many buried Julia components which are Jordan curves (see
also [DLU05]). More such examples can be found in [XQY14] and [QYY15].

As a generalization of Beardon’s result [Bea91a], Qiao proved that for a rational
map f of degree at least two, J(f) has buried components if and only if J(f) is
disconnected and F (f) has no completely invariant component [Qia95]. This provides
a criterion to justify which kinds of rational maps contain buried Julia components. In
particular, some buried Julia components which are singletons can be found in cubic
rational maps. Later, some specific rational maps of degree at least 5 containing
buried Julia components which are Jordan curves or singletons were studied further
(see [PT00], [BDGR08], [GMR13] and the references therein).

In 2015, Godillon constructed a family of cubic rational maps and proved that for
suitable parameters, the corresponding Julia sets contain a buried Julia component
which is homeomorphic to the Julia set of z 7→ 1/(z − 1)2. In particular, it is neither
a Jordan curve nor a singleton [God15]. Godillon’s example is optimal in terms of
degree since quadratic rational maps cannot contain any buried Julia components
(see [Yin92] and [Mil93]). Later, a different method to construct more such kind of
examples appeared in [WY20].

1.2. Main results. In [McM88, Theorem 3.4], McMullen proved the following result:
if a rational map f has an invariant non-singleton Julia component J0, then there
exists a rational map g such that f : J0 → J0 is quasiconformally conjugate to

g : J(g) → J(g), i.e., there exists a quasiconformal mapping φ : Ĉ → Ĉ such that
φ(J0) = J(g) and φ ◦ f = g ◦ φ holds on J0. For the definitions and properties of
quasiconformal mappings, we refer to [LV73], [Ahl06] and [BF14]. McMullen’s result
implies that one may extract some rational maps with connected Julia sets from the
rational maps with disconnected Julia sets. As an inverse procedure of McMullen,
the following question was asked in [WY20]:

Question 1.1. Could any connected Julia set appear as a buried Julia component
of a higher degree rational map?

The following result provides an answer to this question.

Theorem 1.2 (The connected case, [WY20]). Let f be a rational map of degree d > 2

whose Julia set J(f) 6= Ĉ is connected. Then there is a rational map g such that g
has a buried Julia component on which g is quasiconformally conjugate to f on J(f)
if and only if f has no parabolic basins and Siegel disks. If such g exists, then the
degree of g can be chosen such that deg(g) 6 7d− 2.

The proof of Theorem 1.2 is based on quasiconformal surgery and singular pertur-
bation. In order to control the degree of g as small as possible, the main perturbation
in [WY20] is made at critical values, but not at critical points, which is different from
the classical cases. One may also refer to [WZL22] for another proof of Theorem 1.2
which avoids the use of quasiconformal surgery. Based on Theorem 1.2, it is natural
to ask:

Question 1.3. Could any disconnected Julia set appear as a family of buried Julia
components of a higher degree rational map?
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A periodic Fatou component is called a rotation domain if it is a Siegel disk or a
Herman ring. In this paper, we prove the following result.

Theorem A (The disconnected case). Let f be a rational map whose Julia set J(f)
is disconnected. Then there is a rational map g such that g has a family of buried
Julia components on which g is quasiconformally conjugate to f on J(f) if and only
if f has no parabolic basins and rotation domains. If such g exists, then deg(g) can
be chosen such that it is less than a number depending only on deg(f).

Theorem 1.2 and Theorem A imply that a rational map can have buried Julia
components which are “almost” arbitrary. For example, the rational map f can have
a Cantor Julia set, can have a Cremer point and can be infinitely renormalizable.
The proof of Theorem A is based on successive perturbations and quasiconformal
surgery. See Figure 1 for an example, which illustrates the process of perturbations
of the cubic polynomial f(z) = z3 − 13

6 z
2 + 2

3 whose Julia set is disconnected.

Let F be the family of all rational maps with disconnected Julia sets having no
parabolic basins and rotation domains. By Theorem A, for any f ∈ F , there exists
g ∈ F having a family of buried Julia components on which g is quasiconformally
conjugate to f on J(f). Hence the following set is non-empty and actually consists
of infinite elements:

Buried(f) :=



 g ∈ F

∣∣∣∣∣∣

∃ a quasiconformal mapping ϕ : Ĉ→ Ĉ
such that ϕ(J(f)) is buried in J(g) and
ϕ ◦ f |J(f) = g ◦ ϕ|J(f)



 .

For each g ∈ Buried(f), the set Buried(g) is also well-defined. Hence such process of
burying Julia sets can be repeated infinitely often.

Let (X, dX) and (Y, dY ) be two metric spaces. Suppose that there exist two home-
omorphisms h : X → Y and ψ : [0,+∞)→ [0,+∞) such that

dY (h(x), h(y))

dY (h(x), h(z))
6 ψ

(
dX(x, y)

dX(x, z)

)

for any distinct points x, y, z ∈ X. Then (X, dX) and (Y, dY ) are said to be quasisym-
metrically equivalent to each other. The conformal dimension dimC(X) of a compact
set X is the infimum of the Hausdorff dimensions of all metric spaces which are qua-
sisymmetrically equivalent to X. The quasisymmetric geometries of the Julia sets
of rational maps, including the quasisymmetric uniformization and conformal dimen-
sion etc, have attracted many people’s interests. For examples, see [MT10], [HP12],
[BLM16], [QYY16], [QYY18], [LM18], [QYZ19], [PT21], [Par22] and the references
therein.

According to [Hei01, Theorem 11.14, p. 92], any compact subset X of Ĉ is qua-

sisymmetrically equivalent to ϕ(X) for any quasiconformal mapping ϕ : Ĉ → Ĉ.
Hence by definition, for any given f ∈ F , we have

dimC(J(f)) 6 dimC(J(g)), for all g ∈ Buried(f).

This implies that if fn+1 ∈ Buried(fn) for all n > 0, then {dimC(J(fn))}n>0 forms
an increasing sequence and it must have a limit since the conformal dimension of any

Julia set in Ĉ is at most 2. A natural question is about the limit of the sequence
{dimC(J(fn))}n>0. We give a partial answer to this question.
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Figure 1: The Julia sets of

f(z) = z3 − 13

6
z2 +

2

3
, h(z) = f(z) +

λ

(z − 2/3)2
and g(z) = 1/

( 1

h(z)
+ µz4

)

(from the top down), where λ = µ = 10−9. The middle and bottom Julia sets,
respectively, contain a family of semi-buried and buried components which are home-
omorphic to the top Julia set.
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Theorem B. There exist two sequences of hyperbolic rational maps (fn)n>0 and
(gn)n>0 in F satisfying fn+1 ∈ Buried(fn) and gn+1 ∈ Buried(gn) for all n > 0 with
f0 = g0 and dimC(J(f0)) ∈ (1, 2) such that

lim
n→∞

dimC(J(fn)) = 2 and lim
n→∞

dimC(J(gn)) < 2.

The rational maps in Theorem B will be chosen in Cantor circle hyperbolic compo-
nents since their dynamics can be characterized clearly and the conformal dimensions
of the corresponding Julia sets can be calculated precisely.

1.3. Sketch of the proofs. The proof of Theorem A is inspired by Theorem 1.2.
Since the necessity part is similar, we only consider the sufficiency. Let f be a rational
map with a disconnected Julia set. We use singular perturbations and quasiconformal
surgery to obtain two rational maps h and g, such that the Julia set of h has a family
of “semi-buried” Julia components (see §3) and g contains a family of “fully buried”
Julia components (see §4) which are homeomorphic copies of J(f) respectively. Note
that all Fatou components of f in Theorem 1.2 are simply connected while some
attracting Fatou components of f in this paper are infinitely connected.

Compared to Theorem 1.2, there are three main differences in the proof of Theorem
A. The first difference is: we need to use quasiconformal surgery to transfer infinitely
connected attracting Fatou components to super-attracting ones (The surgery is dif-
ferent from the simply connected case, see §2). The second difference is: we need to
consider more complicated combinations of holomorphic coverings while showing that
h has a family of “semi-buried” Julia components and g contains a family of “fully
buried” Julia components (in Theorem 1.2 we only need to consider the annulus-to-
annulus combination). The third difference is: we need to consider Cantor Julia sets
and find Julia sets of higher degree rational maps containing them as buried Julia
components and this case is quite different (see §4).

For Theorem B, we first consider a hyperbolic rational map with Cantor circle
Julia set. Then we use another Cantor circle Julia set to bury the previous one, and
this process can be repeated infinitely many times. It was known that the conformal
dimension of the Cantor circle Julia sets of hyperbolic rational maps depend only
on some combinatorial information which can be calculated precisely. Theorem B
will be proved by applying quasiconformal surgery and arranging the combinatorial
information on Cantor circle Julia sets suitably (see §5).

Notations. Let N, R and C, respectively, be the set of natural, real and complex
numbers. For a ∈ C and r > 0, we denote D(a, r) := {z ∈ C : |z − a| < r},
Dr := D(0, r), Tr := ∂Dr, D := D1 and T := T1. For 0 < r < 1, we denote
Ar := {z ∈ C : r < |z| < 1} and its conformal modulus is mod(Ar) = 1

2π log 1
r .

For a Jordan curve γ ⊂ Ĉ \ {∞}, we use D(γ) to denote the connected component

of Ĉ \ γ which does not contain ∞. For two disjoint connected compact subsets γ1
and γ2 in Ĉ which are not singletons, we use A(γ1, γ2) (or A(γ2, γ1)) to denote the

unique annular component of Ĉ \ (γ1 ∪ γ2).
Acknowledgements. We would like to thank the referee for very careful reading and
helpful suggestions which improve the readability and the rigor of this paper. This
work was supported by the National Natural Science Foundation of China (grant
Nos. 12071118, 12222107, 12071210).
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2. Attracting to super-attracting

Since singular perturbations are generally carried out at super-attracting periodic
points, this requires us to transfer the geometric attracting cycles to super-attracting
ones by quasiconformal surgery. In fact, such a surgery is well known for simply con-
nected periodic attracting Fatou components. See [CG93, Theorem 5.1, p. 106] and
[BF14, Exercise 4.2.2, p. 168]. In this section, we show that such kind of surgery can
be performed in multiply connected attracting basins (actually infinitely connected
by [Mil06, Theorem 8.9, p. 83]).

A map F : U → Ĉ is called quasi-regular if it can be written as F = G ◦ φ, where
φ : U → φ(U) is a quasiconformal mapping defined in the open set U and G : φ(U)→
Ĉ is holomorphic. For other equivalent characterizations of quasi-regular maps, see
[BF14, §1.6]. The following lemma is very useful when performing quasiconformal
surgery.

Lemma 2.1 ([Shi87]). Let F : Ĉ → Ĉ be a quasi-regular map. Suppose there exist

an open set E ⊂ Ĉ and an integer N > 0 satisfying the following two conditions:

• F (E) ⊂ E; and

• ∂F/∂z = 0 holds in E and on Ĉ \ F−N (E) a.e.

Then there is a quasiconformal mapping ϕ : Ĉ→ Ĉ such that ϕ ◦F ◦ϕ−1 is rational.

Lemma 2.1 was established by Shishikura although its original statement is more
general. One may refer to [Shi87, §3] or [BF14, Proposition 5.2] for more details.

Lemma 2.2. Let f be a rational map having a p-cycle of attracting Fatou components
{Bi : 1 6 i 6 p}. Then there exists a rational map g and a quasiconformal mapping

ϕ : Ĉ→ Ĉ such that

• ϕ ◦ f = g ◦ ϕ holds in a neighborhood of J(f) and J(g) = ϕ(J(f)); and
• {ϕ(Bi) : 1 6 i 6 p} is a p-cycle of super-attracting Fatou components of g.

Proof. Without loss of generality, we assume that p = 1 and B is a fixed attracting
Fatou component of f which contains the fixed point 0 with multiplier λ ∈ D \ {0}.
Let Ω be the maximal linearizable domain of f in B containing 0. Then there exists
a conformal map φ : Ω→ D such that φ(f(z)) = λφ(z) for all z ∈ Ω and ∂Ω contains
at least one critical point c of f . Note that f(∂Ω) = φ−1(T|λ|) is a smooth Jordan
curve and f : Ω → f(Ω) is conformal. By [Pil96, Proposition 2.8], Ω is a Jordan
domain and f : Ω→ f(Ω) is a homeomorphism.

We choose two Jordan domains V1, V2 in B with smooth boundaries such that
Ω ⊂ V1, V 1 ⊂ V2 and V 2 \ Ω is disjoint with the critical orbits of f . Let Ui be
the connected component of f−1(Vi) containing Ω, where i = 1, 2. We conclude
that U1 ⊂ U2, each connected component of ∂Ui is a smooth Jordan curve and each
component of f−1(V2 \ V 1) is an annulus containing no critical orbits. Without loss
of generality, we assume that the boundaries of V1 and V2 are sufficiently close to ∂Ω
such that V 2 ⊂ U1. See Figure 2.

Without loss of generality, we assume that ∞ 6∈ U2. Then there exists a small
ε > 0 such that gε(U1) is a Jordan domain contained in V1, where

gε(z) := ε(f(z)− f(c)) + c.

Let A be a connected component of f−1(V2 \ V 1) in U2 \ U1. Then A is an annulus
containing no critical orbits whose boundary components ∂1A and ∂2A are smooth,
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c
0

ΩU1

U2

gε

gε

f

f V2

V1

c
f(Ω)

0

Ω

Figure 2: A sketch of the surgery construction which transfers an attracting fixed
point to a super-attracting one. Some special curves and points are marked.

where ∂iA is the boundary component of A contained in ∂Ui for i = 1, 2. Hence there
exists an integer dA > 1 such that

deg(gε|∂1A) = deg(f |∂2A) = dA.

Therefore, there exists a continuous map h : A→ V 2 \ gε(U1) such that

• h|A : A→ V2 \ gε(U1) is a quasi-regular covering map of degree dA; and
• h|∂1A = gε and h|∂2A = f .

For quasi-regular interpolation in annuli, we refer to [BF14, §2.3.2]. Define

F (z) :=





f(z) if z ∈ Ĉ \ U2,
gε(z) if z ∈ U1,
h(z) otherwise.

Then F : Ĉ→ Ĉ is a quasi-regular map whose degree is deg(f).
Define E := U1. Since V 2 ⊂ U1, we have F (E) ⊂ V1 ⊂ V2 ⊂ E and ∂F/∂z = 0

holds in E and on Ĉ\F−1(E) a.e. By Lemma 2.1, there exists a quasiconformal map

ϕ : Ĉ→ Ĉ such that g := ϕ ◦ F ◦ ϕ−1 is a rational map. Note that F (c) = gε(c) = c.
It follows that ϕ(c) is a fixed super-attracting fixed point of g. Since the surgery is
performed only in Fatou components, the rest statements hold. �

Remark. The proof of Lemma 2.2 is valid for any attracting Fatou component B,
no matter B is simply connected or infinitely connected. If B is simply connected,
then as mentioned before, one can use surgery to make the dynamics in B to be
unicritical. However, because of the Riemann-Hurwitz formula, one cannot pinch all
critical points into only one if B is infinitely connected.

3. Burying boundaries of Fatou components

In this section, we perform the quasiconformal surgery on a given rational map f
with disconnected Julia set to obtain a new rational map h such that the homeomor-
phic image of the Julia set J(f) is “semi-buried” by the Julia components of h. Then
we perform another quasiconformal surgery on h to obtain a rational map g such that
the homeomorphic image of J(f) is fully buried by the Julia components of g.
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3.1. Basic classifications and definitions. By [Bea91b, Theorem 5.6.2], the num-
ber of Fatou components of a rational map is either 0, 1, 2 or ∞. Since J(f) is
disconnected, we don’t need to consider the first case. The following result shows
that we don’t need to consider the third case either.

Lemma 3.1. Let f be a rational map whose Julia set is disconnected. Then

(a) f has either exactly one or infinitely many Fatou components;
(b) If f has infinitely many Fatou components, then it has at most one attract-

ing or parabolic basin consisting of finitely many Fatou components, and in
particular, if such a basin exists then it consists of only one Fatou component
which is completely invariant.

Proof. (a) It is sufficient to prove that if U1 and U2 are the only Fatou components of
f , then J(f) is connected. Iterating f twice if necessarily, we assume that U1 and U2

are completely invariant. Then ∂U1 = J(f) = ∂U2. Therefore, U1 and U2 are simply
connected and J(f) is connected.

(b) Suppose f has two attracting or parabolic basins consisting of finitely many
Fatou components. Iterating f finitely many times if necessary, we conclude that
f has two completely invariant Fatou components. By a similar argument to Part
(a), it follows that J(f) is connected, which is a contradiction. Hence f has at most
one attracting or parabolic basin consisting of finitely many Fatou components U1,
· · · , Un. Iterating f finitely many times if necessary, we assume that U1, · · · , Un are
completely invariant. Similarly as above, we must have n = 1 and U1 is completely
invariant under f . �

Based on Lemma 3.1(a), we consider the following two cases:

• Case I: f has infinitely many Fatou components;
• Case II: f has exactly one Fatou component which is completely invariant.

In the rest place of this section, we consider Case I and the second case will be
discussed in §4.

Let f be a rational map with disconnected Julia set which does not contain par-
abolic basins and rotation domains. Then all periodic Fatou components of f are
attracting or super-attracting. By Lemma 2.2, without loss of generality, we assume
in the following that the periodic Fatou components f are all super-attracting.

Suppose f has infinitely many Fatou components and has degree d > 2. Then there
exists a p-cycle of super-attracting periodic Fatou components O = {B1, · · · , Bp} of
f such that the grand orbit of O has infinitely many components, where p > 1 and

f(Bj) = Bj+1 for 1 6 j 6 p− 1 and f(Bp) = B1.

According to Böttcher’s theorem (see [Mil06, Theorem 9.3]), there exist simply con-
nected domains Uj ⊂ Bj and conformal maps φj : Uj → Drj with rj ∈ (0, 1], where
1 6 j 6 p, such that

φj ◦ f◦p(z) = (φj(z))
d0 , for z ∈ Uj ,

where d0 =
∏p
j=1 dj > 2 and dj = deg(f |Uj ) > 1 for 1 6 j 6 p. Moreover, either

Uj = Bj and rj = 1 for all 1 6 j 6 p, or ∂Uj is a subset of Bj containing a critical
point of f for some 1 6 j 6 p and 0 < rj < 1 for all 1 6 j 6 p. Note that the
potential function z 7→ |φj(z)| for z ∈ Uj can be extended continuously to Bj by

Lj(z) := |φj(f◦kp(z))|1/d
k
0 ,
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where k > 0 is the minimal integer such that f◦kp(z) ∈ Uj .
Definition. An equipotential curve γ in Bj is a connected component of Lj(z) = C
for some constant C ∈ (0, 1). We call that γ has potential Lj(γ) = C.

Since the grand orbit of O = {B1, · · · , Bp} has infinitely many components, there
exists 1 6 j 6 p such that f−1(Bj) \ Bj−1 6= ∅ (resp., f−1(B1) \ Bp 6= ∅ if j = 1).
Without loss of generality, we assume that f−1(B1) \Bp 6= ∅ and ∞ ∈ f−1(B1) \Bp
with f(∞) = 0, where 0 ∈ U1 ⊂ B1 is a p-periodic point. Let V1 be the connected
component of f−1(B1) containing ∞ and let m1 > 1 be the local degree of f at ∞.

3.2. Holomorphic coverings I. For a Jordan curve γ ⊂ Ĉ \ {∞}, we use D(γ) to

denote the connected component of Ĉ \ γ which does not contain ∞. The following
lemma is slightly similar to [WY20, Lemma 3.1].

Lemma 3.2 (holomorphic covering between disks I, see Figure 3). Let ` > 1 be an

integer satisfying ` > (d1 + d0
m1

)/(d
1/(2d−2)
0 − 1). Then there exist equipotential curves

γ1, α, β, γp+1 ⊂ U1 with L1(γ1) > L1(α) > L1(β) > L1(γp+1), equipotential curve1

γ2 ⊂ U2 and a holomorphic branched covering map F : D(α)→ Ĉ \D(γ2) satisfying
the following conditions:

(a) F (0) =∞ and F : D(α) \ {0} → C \D(γ2) is a degree ` covering map;
(b) F (α) = γ2 and F (β) = η, where η is a real-analytic Jordan curve in V1

separating ∞ from ∂V1 such that f(Ĉ \D(η)) ⊂ D(γp+1); and

(c) The closed annulus A(β, γ1) is disjoint with the critical grand orbits of f .

Proof. For small r ∈ (0, r1), let γ1, γp+1 be the equipotential curves in U1 such that

L1(γ1) = r and L1(γp+1) = rd0 . Note that f has exactly 2d−2 critical points counted
by multiplicity, where d = deg(f) > 2. Besides the super-attracting periodic points
in O = {B1, · · · , Bp}, the attracting basin of O contains at most other 2d− 3 critical
orbits. According to the local dynamics of f◦p near the super-attracting point 0, the
equipotential curves passing through critical orbits divide the annulus A(γ1, γp+1)
into at most 2d − 2 subannuli and each of them is disjoint with the critical grand
orbit of f . There exists an equipotential curve β ⊂ U1 and the small r ∈ (0, r1) can
be chosen such that the closed annulus A(β, γ1) is disjoint with the critical grand
orbits of f and moreover,

L1(β) = rd
C
0 ∈ (rd0 , r), where C = 1/(2d− 2).

Let α be an equipotential curve in U1 such that L1(α) = s ∈ (rd
C
0 , r). Then we have

L1(γ1) > L1(α) > L1(β) > L1(γp+1). For 2 6 j 6 p, we denote γj := f◦(j−1)(γ1).
Then γj is an equipotential curve in Uj for all 1 6 j 6 p. See Figure 3.

Note that φ1 : D(α) → D(0, s) is the restriction of the Böttcher map. For ` > 1,

we define Q`(z) = z`/s` : D(0, s) → D. Let ψ1 : Ĉ \D(γ2) → D be a conformal map
such that ψ1(∞) = 0. Define

F := ψ−11 ◦Q` ◦ φ1.
Then F : D(α) → Ĉ \ D(γ2) is a holomorphic branched mapping with degree `,
F (0) =∞ and 0 is the unique possible critical point. Since

Q` ◦ φ1(β) = {w ∈ C : |w| = rd
C
0 `/s`} ⊂ D, (3.1)

1If p = 1, then U2 = U1 and γ2 is regarded as an equipotential in U1.
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γ1
α

β
γp+1

f(η)

Ĉ

0

∞

γ2 γp

∂U1

∂U2 ∂Up

∂V1

η

Figure 3: In the dynamical plane of f , some curves in the definition of F : D(α) →
Ĉ \D(γ2) are marked.

it follows that η := F (β) = ψ−11 ({w ∈ C : |w| = rd
C
0 `/s`}) is a real-analytic Jordan

curve separating ∞ from γ2.
We need to find a sufficient condition to guarantee that η is contained in V1 and

f(Ĉ \D(η)) ⊂ D(γp+1). Since the degree of the restriction of f on U1 is d1, the map
f can be written near the origin as

f(z) = f(0) + b1z
d1 +O(zd1+1),

where b1 6= 0 is a constant depending only on f . If r > 0 is sufficiently small, then
there exists a constant C1 > 0 independent of r such that D(γ2) = f(D(γ1)) is a
Jordan disk centered at f(0) with Euclidean radius about C1r

d1 . More specifically, r
can be chosen small enough such that

D(f(0), C1r
d1/2) ⊂ D(γ2) ⊂ D(f(0), 2C1r

d1).

Take a large R > 1 such that the round circle TR ⊂ V1 separates ∞ from ∂V1.
There exists a constant C2 > 0 depending on C1 but independent of the large R >
1 and small r > 0 such that the conformal modulus of mod(D \ D(ψ1(TR))) =
mod(A(γ2,TR)) satisfies

1

2π
log

R

rd1
− C2 6 mod(D \D(ψ1(TR))) 6

1

2π
log

R

rd1
+ C2, (3.2)

where A(γ2,TR) is the annulus in Ĉ bounded by γ2 and TR. By the Koebe distor-
tion theorem (see [Pom75, p. 21] or [Dur83, p. 33]), there exists a constant C3 > 1
independent of large R > 1 and small r > 0 such that

C−13 |w2| 6 |w1| 6 C3|w2|, for all w1, w2 ∈ ψ1(TR).

Since ψ1(TR) is a Jordan curve in D separating ∂D from 0, it follows from (3.2) that
there exists a constant C4 > 0 independent of large R > 1 and small r > 0 such that

log |w| > log
rd1

R
− C4, for all w ∈ ψ1(TR).
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In order to guarantee that η ⊂ V1, by (3.1), it is sufficient to obtain the inequality

log
rd

C
0 `

s`
6 log

rd1

R
− C4. (3.3)

Since the local degree of f at ∞ is m1 and f(∞) = 0, it implies that f can be
written near ∞ as

f(z) = b0/z
m1 +O(1/zm1+1),

where b0 6= 0 is a constant depending only on f . In order to guarantee f(Ĉ \D(η)) ⊂
D(γp+1), it is sufficient to obtain the inequality

log
1

Rm1
< log rd0 − C5, (3.4)

where C5 > 0 is a constant depending on f but independent of large R and small

r. Note that d0, d1, m1, ` are positive integers and s ∈ (rd
C
0 , r). Since r > 0 can

be arbitrarily small (and hence R > 1 should be sufficiently large) and s can be
arbitrarily close to r, by (3.3) and (3.4), it is sufficient to guarantee that

rd
C
0 `

r`
<
rd1

R
and

1

R
< r

d0
m1 .

This is equivalent to (dC0 −1)`−d1 > d0
m1

, i.e., ` > (d1 + d0
m1

)/(dC0 −1), as desired. �

Remark. If one can use a surgery to reduce the number of critical orbits in the
attracting basin of O, then the number C ∈ (0, 1] can be magnified and the bound
of ` can be improved. In particular, if B1 is simply connected, then one can choose
C = 1 after performing a surgery on f . See [WY20, Lemma 3.1].

Based on Lemma 3.2, we define:

H(z) :=





f(z) if z ∈ Ĉ \D(γ1),
F (z) if z ∈ D(α),
ζ(z) if z ∈ A(α, γ1),

where ζ : A(α, γ1)→ D(γ2) is a continuous map satisfying

• ζ : A(α, γ1) → D(γ2) is a quasi-regular and branched covering map of degree
d1 + `; and
• ζ|γ1 = f and ζ|α = F .

Hence H : Ĉ→ Ĉ is a quasi-regular map of degree d+ `. For the existence of ζ, i.e.,
the annulus-to-disk quasi-regular interpolation, see [PT99, Lemma 2.1] and [BF14,
Lemma 7.47].

Corollary 3.3. There exists a quasiconformal mapping ϕ1 : Ĉ → Ĉ fixing 0, 1 and
∞ such that h := ϕ1 ◦H ◦ ϕ−11 is a rational map of degree d+ ` satisfying

• h has a 2-cycle of super-attracting Fatou components containing ϕ1(D(β)) ∪
ϕ1(Ĉ \D(η)) and the 2-cycle {0,∞}; and
• The closed annulus ϕ1(A(β, γ1)) is disjoint with the forward orbits of the crit-

ical values of h.

Proof. We define an open set E1 := D(β) ∪ (Ĉ \ D(η)). By Lemma 3.2, H(E1) ⊂
E1 and H is holomorphic in E1 ∪ (Ĉ \ H−p(E1)). By Lemma 2.1, there exists a

quasiconformal mapping ϕ1 : Ĉ→ Ĉ fixing 0, 1 and ∞ such that h = ϕ1 ◦H ◦ϕ−11 is
a rational map of degree d+ ` having a 2-cycle of super-attracting Fatou components
containing ϕ1(E1) and the 2-cycle {0,∞}. By Lemma 3.2(c) and the quasi-regular
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interpolation ζ in the definition of H, the annulus ϕ1(A(β, γ1)) is disjoint with the
forward orbits of the critical values of h. �

3.3. Semi-buried property. Let J ′ be a Julia component of h and W a connected

component of Ĉ\J ′. If J ′ is disjoint with the boundary of any Fatou component of h in
W , then we call that J ′ is semi-buried from W under h. Let ϕ1 be the quasiconformal
mapping introduced in Corollary 3.3, and A the super-attracting basin of f containing
O = {B1, · · · , Bp}.
Proposition 3.4. Every component of ϕ1(J(f)) is a Julia component of h which is
semi-buried from every component of ϕ1(A) under h.

Proof. We first prove that ϕ1(J(f)) ⊂ J(h). Indeed, since ∂A = J(f), for any
z0 ∈ ϕ1(J(f)) and any open neighborhood U of z0, there exists z1 ∈ U and a minimal
` > 0 such that h◦`(z1) ∈ ϕ1(D(β)). Since z1 will be attracted by the 2-cycle {0,∞}
under h eventually while the orbit of z0 is contained in ϕ1(J(f)), this implies that
{h◦k}k∈N is not equi-continuous in U . Hence z0 ∈ J(h) and ϕ1(J(f)) ⊂ J(h).

We now prove that for each component W of A and each component J∗ of ∂W ,
there exist sequences of Julia components {J ′k}k∈N and Fatou components {U ′k}k∈N
of h in ϕ1(W ) which converge to ϕ1(J∗) in the Hausdorff metric. Note that

B1 =
⋃

k>0

f−kp(D(α)) ∩B1 =
⋃

k>0

f−kp(D(β)) ∩B1,

where B1 is the Fatou component of f containing 0. By Lemma 3.2(c), for each k > 0,
every component W k

α of f−kp(D(α))∩B1 and every component W k
β of f−kp(D(β))∩

B1, are bounded by finitely many Jordan equipotential curves with the following
potentials respectively:

(L1(α))1/d
k
0 and (L1(β))1/d

k
0 .

Let J∗ be a component of ∂B1. For any k > 0, there exist a component W k
α of

f−kp(D(α)) ∩B1 and a component W k
β of f−kp(D(β)) ∩B1 such that

• Every component of W k
α \W k

β is an annulus whose closure is disjoint with the

critical orbit of f ;

• J∗ is contained in a component Xk
α of Ĉ\W k

α and a component Xk
β of Ĉ\W k

β ,

where Xk
β \Xk

α is a component of W k
α \W k

β ; and

• f◦kp : Xk
β \Xk

α → A(α, β) and h◦kp : ϕ1(X
k
β \Xk

α)→ ϕ1(A(α, β)) are holomor-
phic covering maps between annuli.

By Lemma 3.2 and Corollary 3.3, ϕ1(α) and ϕ1(β) are contained in the Fatou set of h.
Since ϕ1(J(f)) ⊂ J(h), it follows that ϕ1(A(α, β)) contains a Julia component J ′0 of

h separating ϕ1(α) from ϕ1(β). Therefore, ϕ1(X
k
β \Xk

α) contains a Julia component

J ′k of h separating ϕ1(∂X
k
α) from ϕ1(∂X

k
β) and

(L1(β))1/d
k
0 < L1(z) < (L1(α))1/d

k
0 for any z ∈ ϕ−11 (J ′k). (3.5)

This implies that the Hausdorff distance between J∗ and ϕ−11 (J ′k) tends to zero as
k → ∞. Equivalently, the sequence of Julia components {J ′k}k∈N of h in ϕ1(B1)
converges to ϕ1(J∗) in the Hausdorff metric.

Note that ϕ1(∂X
k
α) is contained in the Fatou set of h for each k > 0. Let U ′k be the

Fatou component of h containing ϕ1(∂X
k
α). Then by a completely similar argument

as above, {U ′k}k∈N converges to ϕ1(J∗) in the Hausdorff metric. By considering the
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preimages of ϕ1(B1) under h, it follows that for each component W of A and each
component J∗ of ∂W , ϕ1(J∗) is semi-buried from ϕ1(W ) under h.

Let J0 be a Julia component of f . In the following we prove that ϕ1(J0) is a Julia
component of h. We have proved that ϕ1(J0) ⊂ J(h). On the other hand, if ϕ1(J0)
is a proper subset of a Julia component J ′ of h, then there exists z ∈ J ′ \ ϕ1(J0)
such that ϕ−11 (z) ∈ A. However, by (3.5) this is impossible. Hence ϕ1(J0) is a Julia
component of h which is semi-buried under h from every component of ϕ1(A). �

3.4. From semi-buried to buried. We have assumed that f has infinitely many
Fatou components. If each attracting basin of f has infinitely many components,
one can perform the same surgery as above in each attracting basin and Theorem
A can be proved directly in this special case (this will be discussed in a moment).
However, we also needs to consider the case that some attracting basin consists of
only finite many components. By Lemma 3.1(b), we assume that f has infinitely
many Fatou components and also a completely invariant Fatou component which is
super-attracting.

Let h be the rational map obtained in Corollary 3.3. In this section, we perform
the surgery on h to obtain a rational map g and one can see that the semi-buried
Julia component of h can be transferred to a fully buried Julia component of g.

By changing coordinates if necessary, we assume that 1 is the super-attracting fixed
point in the completely invariant Fatou component of f . By Corollary 3.3, h has a

completely invariant Fatou component B̃ which is infinitely connected and contains
the super-attracting fixed point 1. According to Böttcher’s theorem, there exist a

simply connected domains Ũ ⊂ B̃ and a conformal map φ̃ : Ũ → Dr̃ with r̃ ∈ (0, 1),
such that

φ̃ ◦ h(z) = (φ̃(z))d̃, for z ∈ Ũ ,
where d̃ = deg(h|

Ũ
) > 2. Moreover, ∂Ũ is a subset of B̃ containing a critical point of

h. Similar to §3.1, the potential function L̃ in B̃ and the equipotential curves in B̃

can be defined accordingly. Let Ṽ be the Fatou component of h containing ∞.

Lemma 3.5 (holomorphic covering between disks II, see Figure 4). Let m̃ be an

integer satisfying m̃ > d̃/(d̃1/(2d−2) − 1). Then there exist equipotential curves γ̃1,

α̃, β̃, γ̃2 ⊂ Ũ surrounding 1 with L̃(γ̃1) > L̃(α̃) > L̃(β̃) > L(γ̃2) and a holomorphic

branched covering map H̃ : D(α̃)→ Ĉ \D(γ̃2) satisfying the following conditions:

(a) H̃(1) =∞ and H̃ : D(α̃) \ {1} → C \D(γ̃2) is a degree m̃ covering map;

(b) H̃(α̃) = γ̃2 and H̃(β̃) = η̃, where η̃ is a real-analytic Jordan curve in Ṽ

separating ∞ from ∂Ṽ such that Ĉ \D(η̃) is contained in Ṽ ; and

(c) The closed annulus A(β̃, γ̃1) is disjoint with the critical grand orbits of h.

The proof of Lemma 3.5 is completely similar to Lemma 3.2 by setting γ̃2 = h(γ̃1)
(see also [WY20, Lemma 2.1]). We omit the details.

Based on Lemma 3.5, we define:

G(z) :=





h(z) if z ∈ Ĉ \D(γ̃1),

H̃(z) if z ∈ D(α̃),

ζ̃(z) if z ∈ A(α̃, γ̃1),

where ζ̃ : A(α̃, γ̃1)→ D(γ̃2) is a continuous map satisfying
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γ̃1

α̃ β̃

γ̃2

1

Ĉ

0

∞

∂Ũ

∂Ṽ

η̃

Figure 4: In the dynamical plane of h, some curves in the definition of H̃ : D(α̃) →
Ĉ \D(γ̃2) are marked.

• ζ̃ : A(α̃, γ̃1) → D(γ̃2) is a quasi-regular and branched covering map of degree

d̃+ m̃; and

• ζ̃|γ̃1 = h and ζ̃|α̃ = H̃.

Then G : Ĉ→ Ĉ is a quasi-regular map of degree d+ `+ m̃. As before, the existence

of ζ̃ is also guaranteed by the annulus-to-disk quasi-regular interpolation.

Corollary 3.6. There exists a quasiconformal mapping ϕ2 : Ĉ → Ĉ fixing 0, 1 and
∞ such that g := ϕ2 ◦G ◦ ϕ−12 is a rational map of degree d+ `+ m̃ satisfying

• g has a 2-cycle of super-attracting Fatou components containing the 2-cycle
{0,∞}; and

• The closed annulus ϕ2(A(γ̃1, β̃)) is disjoint with the forward orbits of the crit-
ical values of g.

Proof. Define the open set E2 := Ṽ ∪ h(Ṽ ). By Lemma 3.5, G(E2) ⊂ E2 and G

is holomorphic in E2 ∪ (Ĉ \ G−2(E2)). Then the result follows by Lemmas 2.1 and
3.5. �

Based on Lemma 3.5 and Corollary 3.6, the following result can be proved com-
pletely similar to Proposition 3.4.

Proposition 3.7. Every component of ϕ2(∂B̃) is a Julia component of g which is

semi-buried from ϕ2(B̃) under g.

Now we can give a proof of Theorem A in Case I, i.e., when f has infinitely many
Fatou components.

Proof of Theorem A in Case I. The proof of the necessity, i.e., if f has a parabolic
basin or a rotation domain, then one cannot find a rational map g such that g has a
family of buried Julia components on which g is quasiconformally conjugate to f on
J(f), is based on the analysis of local dynamics near parabolic fixed point and the
boundary of rotation domains. For details, see [WY20, p. 7307]. For the sufficiency,
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suppose that f is a rational map of degree d > 2 having no parabolic basins and
rotation domains whose Julia set J(f) is disconnected.

Case I.1. We first consider the case that each attracting basin of f has infinitely
many components. By Lemma 2.2, we assume that each attracting basin is super-
attracting. Then by Lemma 3.2, Corollary 3.3 and Proposition 3.4, one can perform
the same surgery in each super-attracting basin of f to obtain a quasiconformal

mapping ϕ̂ : Ĉ→ Ĉ and a rational map ĥ, such that

• For each Fatou component W of f and each component J∗ of ∂W , ϕ̂(J∗)
is semi-buried from ϕ̂(W ) under ĥ, and in particular, every component of

ϕ̂(J(f)) is a buried Julia component of ĥ; and

• f : J(f) → J(f) is conjugate to ĥ : ϕ̂(J(f)) → ϕ̂(J(f)) by a restriction of

ϕ̂ : Ĉ→ Ĉ.

Note that every attracting basin contains at least one critical point, and that if an
attracting basin has components which are not simply connected then it contains at
least 2 critical points. Hence f has at most 2d−3 attracting basins since f has 2d−2
critical points counted by multiplicity and J(f) is disconnected. Thus by Lemma 3.2,

deg(ĥ) can be chosen such that it is less than a number depending only on d.

Case I.2. Next we consider the case that each attracting basin A1, · · · , An of f
has infinitely many components except a completely invariant attracting Fatou com-

ponent Ã. By Lemma 2.2, we assume that each attracting basin is super-attracting.
By Lemma 3.2, Corollary 3.3 and Proposition 3.4, one can perform the same surgery

in each A1, · · · , An to obtain a quasiconformal mapping ϕ̂ : Ĉ → Ĉ and a rational

map ĥ, and then by Lemma 3.5, Corollary 3.6 and Proposition 3.7, we perform the

surgery in ϕ̃(Ã) to obtain a quasiconformal mapping ϕ : Ĉ→ Ĉ and a rational map
g such that

• For each Fatou component W of f and each component J∗ of ∂W , ϕ(J∗)
is semi-buried from ϕ(W ) under g, and in particular, every component of
ϕ(J(f)) is a buried Julia component of g; and
• f : J(f) → J(f) is conjugate to g : ϕ(J(f)) → ϕ(J(f)) by a restriction of

ϕ : Ĉ→ Ĉ.

Similarly, f has at most 2d−3 attracting basins. By Lemmas 3.2 and 3.5, deg(g) can
be chosen such that it is less than a number depending only on d. �

Remark. By changing the order of perturbations, the above Case I.2 can be proved

in another way, i.e., one first maps the super-attracting periodic points in Ai to Ã and

then maps the super-attracting fixed point in Ã back to A1. Figure 1 is generated
by this idea.

4. Burying Julia sets with only one Fatou component

In this section, we assume that f is a rational map of Case II, i.e., it has exactly one
Fatou component B which is completely invariant, and moreover, B is an attracting
basin whose boundary is disconnected. By Lemma 2.2, without loss of generality,
we assume that B is super-attracting. We will perform a surgery on f to obtain a
rational map which is considered in the previous section.

Since J(f) = ∂B is disconnected, up to changing coordinates, we assume that f
has a critical point ∞ in B whose forward orbit is infinite:

∞ 7→ 0 7→ 1 7→ · · · .
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Moreover, there exists a small Jordan disk Ω1 in B containing 1 with smooth boundary
such that

• Ω1 \ {1} is disjoint with the critical orbits of f ; and
• Ω0 ∩ Ω1 = ∅, where Ω0 is the component of f−1(Ω1) that contains 0.

Let Ω∞ be the component of f−1(Ω0) that contains∞. Then f : Ω∞\{∞} → Ω0\{0}
and f : Ω0 \ {0} → Ω1 \ {1} are covering maps. Moreover, Ω1 can be chosen small
enough such that

f◦m(Ω∞) ∩ f◦n(Ω∞) = ∅, for any different m,n > 0.

Lemma 4.1 (see Figure 5). There exist smooth Jordan curves γ1, α, β in Ω0 \ {0}
separating 0 from ∂Ω0 such that γ1 separates α from ∂Ω0, α separates β from γ1 and
β separates 0 from α, a Jordan curve γ2 in Ω1 \ {1} separating 1 from ∂Ω1, a Jordan
curve η in Ω∞ \ {∞} separating ∞ from ∂Ω∞, and a conformal map F : D(α) →
Ĉ \D(γ2) such that F (0) =∞ and F (β) = η.

 
 
 
 
 
 
 
 
 
 

γ1
α

β

Ĉ

0 1

∞

γ2

η

∂Ω0

∂Ω1

∂Ω∞

Figure 5: In the dynamical plane of f , some curves in the definition of F : D(α) →
Ĉ \D(γ2) are marked.

Proof. Let γ2 be a smooth Jordan curve in Ω1 separating 1 from ∂Ω1. Let γ1 be the
component of f−1(γ2) in Ω0. Let α and β be two smooth Jordan curves in D(γ1)

such that α separates 0 from γ1 and β separates 0 from α. Let F : D(α)→ Ĉ\D(γ2)
be a conformal map such that F (0) =∞. Then η = F (β) is a smooth Jordan curve
separating ∞ from γ2. In fact, we can choose β sufficiently close to 0 such that η is
a Jordan curve in Ω∞. �

Based on Lemma 4.1, similar to §3.2 we define:

H(z) :=





f(z) if z ∈ Ĉ \D(γ1),
F (z) if z ∈ D(α),
ζ(z) if z ∈ A(α, γ1),

where ζ : A(α, γ1)→ D(γ2) is a continuous map satisfying
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• ζ : A(α, γ1) → D(γ2) is a quasi-regular and branched covering map of degree
deg(f |0) + 1, where deg(f |0) is the local degree of f at 0; and
• ζ|γ1 = f and ζ|α = F .

Then H : Ĉ → Ĉ is a quasi-regular map of degree d + 1. As before, the existence of
ζ is also guaranteed by the annulus-to-disk quasi-regular interpolation.

Corollary 4.2. There exists a quasiconformal mapping ϕ : Ĉ→ Ĉ fixing 0, 1 and ∞
such that h := ϕ ◦H ◦ ϕ−1 is a rational map of degree d+ 1 satisfying

• h has a 2-cycle of super-attracting points {0,∞} whose attracting basin con-
sists of infinitely many Fatou components; and
• Each component of ϕ(J(f)) is a Julia component of h.

Proof. Let z0 be the super-attracting fixed point in B. There exists a small Jordan
disk U0 containing z0 such that f(U0) ⊂ U0 and U0 is disjoint with Ω1. We define an
open set

E :=
⋃

n>0

f◦n(D(γ2)) ∪ U0.

By Lemma 4.1, H(E) ⊂ E and H is holomorphic in E ∪ (Ĉ \H−1(E)). By Lemma

2.1, there exists a quasiconformal mapping ϕ : Ĉ → Ĉ fixing 0, 1 and ∞ such that
h := ϕ ◦H ◦ ϕ−1 is rational map of degree d+ 1 having a 2-cycle of super-attracting
points {0,∞}.

Let B0 and B∞ be the Fatou components of h containing 0 and ∞ respectively.
Note that ϕ(A(α, γ1)) is contained in the super-attracting basin of 1. It follows that
B0 ⊂ ϕ(D(α)) and B∞ ⊂ ϕ(Ω∞). Denote X :=

⋃
n>0 f

−n(Ω0). Since Ω1 \ {1} is
disjoint with the critical orbits of f , we conclude that X consists of infinitely many
disjoint Jordan disks and each component of ϕ(X) contains a Fatou component which
is the preimage of B0. This implies that the attracting basin of {0,∞} consists of
infinitely many Fatou components.

For any Julia component J0 of f and any neighborhood U of ϕ(J0), there exists
z ∈ U whose forward orbit is attracted by the super-attracting fixed point ϕ(z0) of
h. This implies that ϕ(J0) is contained in the Julia set of h. Note that J(h) ⊂
ϕ(J(f)) ∪ ϕ(X). Since Ω1 ⊂ B, we have X ⊂ B and hence ϕ(J(f)) ∩ ϕ(X) = ∅. Let
J ′ be the Julia component of h containing ϕ(J0). Then J ′ ⊂ ϕ(J(f)) or J ′ ⊂ ϕ(X).
But the latter case is impossible. Hence J ′ ⊂ ϕ(J(f)) and we have J ′ = ϕ(J0), i.e.,
each component of ϕ(J(f)) is a Julia component of h. �

Proof of Theorem A in Case II. We only consider the sufficiency. Suppose that f
is a rational map of degree d > 2 having exactly one Fatou component B which
is completely invariant, and moreover, B is an attracting basin whose boundary is
disconnected. By Corollary 4.2, we obtain a rational map h of degree d + 1 and a

quasiconformal mapping ϕ : Ĉ→ Ĉ such that

• Every component of ϕ(J(f)) is a Julia component of h;
• f : J(f) → J(f) is conjugate to h : ϕ(J(f)) → ϕ(J(f)) by the restriction of
ϕ; and
• h has infinitely many Fatou components.

Therefore, one can perform the same surgery in the previous section to h and obtain

a rational map g and a quasiconformal mapping ϕ̃ : Ĉ→ Ĉ such that

• f : J(f) → J(f) is conjugate to g : ϕ̃(J(f)) → ϕ̃(J(f)) by the restriction of
ϕ̃; and
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• ϕ̃(J(f)) are buried Julia components of g.

Since h has degree d+ 1, it follows that the degree of g can be chosen such that it is
less than a number depending only on d. �

Remark. If f has exactly one Fatou component which is completely invariant and
J(f) has a non-singleton component, then one can also use the same method as in
[WY20, §5] to prove Theorem A. However, if J(f) is a Cantor set, then the method
there cannot work.

5. Proof of Theorem B

In this section, we study the conformal dimension of Cantor circle Julia sets and
prove Theorem B.

5.1. Geometries of Cantor circle Julia sets. The dynamics of rational maps with
Cantor circle Julia sets has been studied extensively. See [McM88], [DLU05], [HP12],
[QYY15], [QYY16], [QY21], [LQY22] and the references therein. In this subsection
we recall all possible combinations of the rational maps whose Julia sets are Cantor
circles. For details, see [QYY15] and [QY21].

Let f be a hyperbolic rational map of degree d > 2 whose Julia set is a Cantor
set of circles. Note that the complement of any Cantor circle Julia set (i.e., the
Fatou set) consists of two simply connected components and countably many nested
doubly connected components. Without of loss generality, we assume that the two
simply connected Fatou components of f , denoted by D0 and D∞, contain 0 and ∞
respectively.

Note that all the doubly connected Fatou components of f are iterated to D0 or
D∞ eventually. For n > 2, let D1, · · · , Dn−1 be the annular components such that
f−1(D0 ∪D∞) = D0 ∪D∞ ∪

⋃n−1
i=1 Di, where {Di}16i6n−1 are labeled such that Di

separates Di′ from Di′′ for all 0 6 i′ < i < i′′ 6 n− 1. Let Ai be the annulus between
Di−1 and Di, where 1 6 i 6 n− 1 and An the annulus between Dn−1 and D∞. Then

f−1(A) =
⋃n
i=1Ai, where A = Ĉ \ (D0 ∪D∞). See Figure 6.

D0 A1 D1 A2 · · · An−1 Dn−1 An D∞

Figure 6: The structure of the Cantor circle Julia sets on the Riemann sphere.

Note that f |Ai : Ai → A is a covering map and we suppose that deg(f |Ai : Ai →
A) = di, where 1 6 i 6 n. Then deg(f |Di : Di → D0 or D∞) = di + di+1, where
1 6 i 6 n − 1. Moreover, deg(f |D0) = d1 and deg(f |D∞) = dn. Up to a conformal
conjugacy, the map f belongs to one of the following three types.

Type I: f(D0) = D∞, f(D∞) = D∞ and n > 2 is even. Moreover,

f−1(D0) =

n/2⋃

i=1

D2i−1 and f−1(D∞) = D0 ∪D∞ ∪
(n−2)/2⋃

i=1

D2i.
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Type II: f(D0) = D0, f(D∞) = D∞ and n > 3 is odd. Moreover,

f−1(D0) = D0 ∪
(n−1)/2⋃

i=1

D2i and f−1(D∞) = D∞ ∪
(n−1)/2⋃

i=1

D2i−1.

Type III: f(D0) = D∞, f(D∞) = D0 and n > 3 is odd. Moreover,

f−1(D0) = D∞ ∪
(n−1)/2⋃

i=1

D2i−1 and f−1(D∞) = D0 ∪
(n−1)/2⋃

i=1

D2i.

Note that f−1(A) =
⋃n
i=1Ai and each Ai is essentially contained in A. It follows

from Grötzsch’s module inequality that
n∑

i=1

di = d and

n∑

i=1

1

di
< 1. (5.1)

It is easy to check that for any n > 2, the equation (5.1) has a solution (d1, · · · , dn)
if and only if d > 5.

Definition (Combinations of Cantor circles). Let C be the collection of all the com-
binations with the form C = (κ; d1, · · · , dn), where κ ∈ {I, II, III} is the type, the
array of positive integers (d1, · · · , dn) satisfies (5.1), and

n > 2 is

{
even if κ = I,

odd if κ = II or III.

For a hyperbolic rational map f with Cantor circle Julia set, there exists at least
one combinatorial data C(f) = (κ; d1, · · · , dn) ∈ C corresponding to f . Moreover,
each combination C = (κ; d1, · · · , dn) ∈ C can be realized by a hyperbolic rational
map [QYY15] (see also [HP12]). Let HC be the set of all hyperbolic rational maps
whose Julia sets are Cantor circles. The following result was proved in [QY21, §5.1]
(see also [HP12, Proposition 1.1]).

Lemma 5.1. If f ∈ HC has the combination C = (κ; d1, · · · , dn) ∈ C , then the
conformal dimension of J(f) is

dimC(J(f)) = 1 + αd1,··· ,dn ,

where α = αd1,··· ,dn ∈ (0, 1) is the unique positive root of
n∑

i=1

( 1

di

)α
= 1.

5.2. Buried Cantor circle Julia sets. Let f be a hyperbolic rational map of degree
d > 5 whose Julia set is a Cantor set of circles. It is easy to see that a Julia component
J0 of f is buried if and only if J0 is not a preimage of ∂D0 and ∂D∞. The following
result implies that one may extract subsystem of Cantor circles from the rational
maps with “big” Cantor circle Julia sets.

Lemma 5.2. If f ∈ HC has the combination C = (κ; d1, · · · , dn) ∈ C , where n > 4,
then there exists g ∈ HC with the combination C′ = (κ′; d′1, · · · , d′m) ∈ C , where

2 6 m 6 n−1, and a quasiconformal mapping φ : Ĉ→ Ĉ such that φ(J(g)) are buried
Julia components of f and g : J(g)→ J(g) is conjugate to f : φ(J(g))→ φ(J(g)) by
the restriction of φ. In particular, g can be chosen such that

• If κ = I, then C′ = (I; dn−1, · · · , d2);
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• If κ = II, then C′ = (III; d2, · · · , dn−1); and
• If κ = III, then C′ = (II; d2, · · · , dn−1).

Proof. To clarify the construction, we only prove the case that κ = II since the rest
cases are completely similar. Let γ0 be a smooth Jordan curve in D0 separating 0
from ∂D0 and let γ∞ be a smooth Jordan curve in D∞ separating ∞ from ∂D∞.
There exist two holomorphic branched covering maps

F0 : D0 ∪A1 → Ĉ \D(γ∞) and F∞ : D∞ ∪An → D(γ0)

satisfying the following conditions:

• F0(0) =∞ and F0 : (D0∪A1)\{0} → C\D(γ∞) is a degree d2 covering map;
• F∞(∞) = 0 and F∞ : (D∞∪An)\{∞} → D(γ0)\{0} is a degree dn−1 covering

map.

We define:

G(z) :=





f(z) if z ∈ Ĉ \ (D0 ∪A1 ∪D1 ∪Dn−1 ∪An ∪D∞),
F0(z) if z ∈ D0 ∪A1,
F∞(z) if z ∈ D∞ ∪An,
ζ(z) if z ∈ D1 ∪Dn−1,

where ζ : D1 → A(∂D∞, γ∞) and ζ : Dn−1 → A(γ0, ∂D0) are annulus-to-annulus

quasi-regular interpolations of degrees d2 and dn−1 respectively, such that G : Ĉ→ Ĉ
is a quasi-regular map of degree d2 + · · ·+ dn−1.

We define an open set E := D0 ∪ A1 ∪ D∞ ∪ An. Then G(E) ⊂ E and G is

holomorphic in E ∪ (Ĉ \ G−1(E)). By Lemma 2.1, there exists a quasiconformal

mapping ϕ : Ĉ → Ĉ fixing 0, 1 and ∞ such that g := ϕ ◦ G ◦ ϕ−1 is a rational map
of degree d2 + · · ·+ dn−1 having a 2-cycle of super-attracting points {0,∞}.

We claim that the Julia set of g is a Cantor set of circles. In fact, according to
the surgery construction, the Julia set of g is contained in the union of finite many
annuli W := ϕ(

⋃n−1
i=2 Ai). Let (i0, i1, · · · , ik, · · · ) be any infinite sequence satisfying

ik ∈ {2, 3, · · · , n− 1} for all k ∈ N. We denote

Ji0i1···ik··· := {z ∈W : g◦k(z) ∈ ϕ(Aik), ∀ k ∈ N}.
Note that the identity id : ϕ(Ai) ↪→ W is not homotopic to a constant map for any
2 6 i 6 n − 1. By [PT00, Lemma 2.4 (Case 2)] and [PT00, Proposition (Case 2)],
every Ji0i1···ik··· is a Jordan curve separating 0 from ∞. Intuitively, each Ji0i1···ik··· is
the intersection of a sequence of nested annuli by taking preimages of g in W . In
particular, according to [McM88, Proposition 7.2],

J(g) = {Ji0i1···ik··· : ik ∈ {2, 3, · · · , n− 1}, ∀ k ∈ N}
is a Cantor set of circles and g has the combination C′ = (III; d2, · · · , dn−1). Moreover,
φ(J(g)) are Julia components of f and g : J(g)→ J(g) is conjugate to f : φ(J(g))→
φ(J(g)) by the restriction of φ = ϕ−1. Finally, φ(J(g)) are buried Julia components
of f since the forward orbit of φ(J(g)) under f is disjoint with ∂D0 ∪D∞. �

Remark. Lemma 5.2 can be seen as an inverse surgery procedure of burying Julia
sets in §3 and §4. Moreover, by using a similar surgery as above, the rational map g
can be chosen such that if C = (III; d1, · · · , dn) ∈ C , where n > 3 is odd, then g ∈ HC
has the combination C′ = (I; d1, · · · , dn−1) ∈ C ; If C = (I; d1, · · · , dn) ∈ C , where
n > 4 is even, then g ∈ HC has the combination C′ = (III; d1, · · · , dn−1) ∈ C .
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Proof of Theorem B. Let f0 be a hyperbolic rational map whose Julia set is a Cantor
set of circles with the combination C0 = (I; 3, 3) ∈ C . Such f0 can be chosen as
f0(z) = z3 + λ/z3, where λ 6= 0 is small enough (see [McM88] and [DLU05]). For
n > 1, we define a sequence of combinations as following

Cn := (I; dn, · · · , d1, 3, 3, d1, · · · , dn),

where
2

3
+ 2

(
n∑

i=1

1

di

)
< 1.

Let fn be a hyperbolic rational map whose Julia set is a Cantor set of circles with
the combination Cn, where n > 1. The existence of such fn’s are guaranteed by [HP12]
(see also [QYY15] for specific examples). For each fn+1, by Lemma 5.2 we obtain a

rational map f̂n ∈ HC with the same combination Cn as fn. According to [QY21,

Theorem 2.3], fn and f̂n are quasiconformally conjugate on their corresponding Julia

sets. Hence there exists a sequence of quasiconformal mappings (φn : Ĉ → Ĉ)n>0
such that φn(J(fn)) are buried Julia components of fn+1 and fn : J(fn) → J(fn) is
conjugate to fn+1 : φn(J(fn))→ φn(J(fn)) by the restriction of φn.

By Lemma 5.1, for n > 0, the conformal dimension of J(fn) is

dimC(J(fn)) = 1 + αn,

where αn ∈ (0, 1) is the unique positive root of

2

3αn
+ 2

(
n∑

i=1

1

dαn
i

)
= 1.

In particular dimC(J(f0)) = 1 + log 2/ log 3.
If we choose the sequence (dn)n>1 such that it grows to ∞ very fast, then there

exists a constant s0 < 1 such that αn 6 s0 for all n > 1. Indeed, one can choose

dn = 9n and s0 = log(
√

3 + 1)/ log 3.

If we choose the sequence (dn)n>1 such that it grows to ∞ suitably, then one can
obtain that limn→∞ αn = 1. Indeed, one can choose

dn = 3n+1 for all n > 1.

The proof is complete. �
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Sup. (4) 20 (1987), no. 1, 1–29.

[Sul85] D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-
Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418.

[WY20] Y. Wang and F. Yang, Julia sets as buried Julia components, Trans. Amer. Math. Soc.
373 (2020), no. 10, 7287–7326.

[WZL22] Y. Wang, G. Zhan, and L. Liao, Buried Julia components and Julia sets, Qual. Theory
Dyn. Syst. 21 (2022), no. 1, Paper No. 22, 29 pp.

[XQY14] Y. Xiao, W. Qiu, and Y. Yin, On the dynamics of generalized McMullen maps, Ergodic
Theory Dynam. Systems 34 (2014), no. 6, 2093–2112.

[Yin92] Y. Yin, On the Julia sets of quadratic rational maps, Complex Variables Theory Appl.
18 (1992), no. 3-4, 141–147.

School of Mathematics, Hunan University, Changsha, 410082, P. R. China
E-mail address: ouxyq@hnu.edu.cn

Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China
E-mail address: yangfei@nju.edu.cn


	1. Introduction
	1.1. Backgrounds
	1.2. Main results
	1.3. Sketch of the proofs

	2. Attracting to super-attracting
	3. Burying boundaries of Fatou components
	3.1. Basic classifications and definitions
	3.2. Holomorphic coverings I
	3.3. Semi-buried property
	3.4. From semi-buried to buried

	4. Burying Julia sets with only one Fatou component
	5. Proof of Theorem B
	5.1. Geometries of Cantor circle Julia sets
	5.2. Buried Cantor circle Julia sets

	References

