Hausdorff dimension of irrational indifferent attractors

YANG Fei (杨飞)

Nanjing University

Conference of Complex Analysis in China 2018

Beijing University of Posts and Telecommunications

Beijing Nov 10, 2018

YANG F. (Nanjing Univ.)

Indifferent fixed points

Consider the holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

The local dynamics of f near 0 depends on λ :

- $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{Q}$ (rational indifferent): Parabolic point;
- **2** $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ (irrational indifferent): Siegel disk or Cremer point.

Indifferent fixed points

Consider the holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

The local dynamics of f near 0 depends on λ :

- **(**) $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{Q}$ (rational indifferent): Parabolic point;
- **2** $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ (irrational indifferent): Siegel disk or Cremer point.

In order to study the irrational indifferent case, an idea is to consider the **perturbations** of rational indifferent.

< ロト < 同ト < ヨト < ヨト

Phenomenon

It was known that the Julia set **does not depend continuously** at the parabolic parameters. One of the interesting phenomenon during the perturbation is **parabolic implosion**.

4 6 1 1 4

Phenomenon

Although the Julia set **does not depend continuously** at the parabolic parameters, it turns out that the (disturbed) Fatou coordinate does (restricted on some truncated chessboard).

A B > A B >

Developments

The main tools to analyze such bifurcation are **Fatou coordinates** and **horn maps**, which were developed by:

- Douady-Hubbard (1984-85): landing of external rays at the M-set (Orsay notes), the straightening of polynomial-like maps;
- Lavaurs (1989): the non-local connectivity of the connectedness locus of cubic polynomials (Ph.d thesis);
- Douady (1994): the discontinuity of the Julia sets;
- Shishikura (1998): the Hausdorff dim of ∂M (an invariant class);
- S Yampolsky (2003): cylinder renormalization for critical circle maps;
- Inou-Shishikura (2006): near-parabolic renormalization (a new invariant class).

イロト イポト イヨト イヨト

Two recent remarkable results

Application of **parabolic implosion**:

Theorem (Astorg-Buff-Dujardin-Peters-Raissy, Ann. Math. 2016)

There exist 2-dimensional polynomial mappings having wandering domains.

Application of (near-) parabolic renormalization:

Theorem (Buff-Chéritat, Ann. Math. 2012)

There exist quadratic Julia sets with positive area. (Siegel, Cremer, infinitely satellite renormalizable)

- **A P b b b b b**

Two recent remarkable results

Application of **parabolic implosion**:

Theorem (Astorg-Buff-Dujardin-Peters-Raissy, Ann. Math. 2016)

There exist 2-dimensional polynomial mappings having wandering domains.

Application of (near-) parabolic renormalization:

Theorem (Buff-Chéritat, Ann. Math. 2012)

There exist quadratic Julia sets with positive area. (Siegel, Cremer, infinitely satellite renormalizable)

Actually, there exist quadratic Feigenbaum Julia sets (locally connected and infinitely primitively renormalizable) with positive area (Avila-Lyubich, 2015).

イロト イポト イヨト イヨト

Two recent remarkable results

Application of parabolic implosion:

Theorem (Astorg-Buff-Dujardin-Peters-Raissy, Ann. Math. 2016)

There exist 2-dimensional polynomial mappings having wandering domains.

Application of (near-) parabolic renormalization:

Theorem (Buff-Chéritat, Ann. Math. 2012)

There exist quadratic Julia sets with positive area. (Siegel, Cremer, infinitely satellite renormalizable)

Actually, there exist quadratic Feigenbaum Julia sets (locally connected and infinitely primitively renormalizable) with positive area (Avila-Lyubich, 2015).

Before stating the basic scheme, let's recall ...

イロト イポト イヨト イヨト

Hausdorff dim of the the boundary of M-set

Denote $P_c(z) = z^2 + c$, where $c \in \mathbb{C}$. The **Mandelbrot set** is defined as

 $\mathsf{M} := \{ c \in \mathbb{C} : \lim_{n \to \infty} P_c^{\circ n}(0) \neq \infty \}.$

Theorem (Shishikura, Ann. Math. 1998) H-dim $(\partial M) = 2$.

YANG F. (Nanjing Univ.)

イロト イヨト イヨト イヨ

Hausdorff dim of the the boundary of M-set

Idea of the proof:

- perturb parabolic periodic points;
- (2) transferring the dim result from dynamical planes to parameter plane.

▲ @ ▶ ▲ ∃ ▶

Hausdorff dim of the the boundary of M-set

Idea of the proof:

- perturb parabolic periodic points;
- (2) transferring the dim result from dynamical planes to parameter plane.

A class was defined:

$$\mathscr{F}_{0} = \begin{cases} f: Dom(f) \to \mathbb{C} \\ f(0) = 0, f'(0) = 1, f: Dom(f) \setminus \{0\} \to \mathbb{C}^{*} \text{ is a branched covering with a unique critical value } \\ cv_{f}, all critical points are of local degree 2 \end{cases}$$

The class satisfies $\mathscr{R}_0(\mathscr{F}_0) \subset \mathscr{F}_0$, where \mathscr{R}_0 is **parabolic renormalization** operator.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Inou-Shishikura's class

Let $P(z) = z(1+z)^2$. Then P has a parabolic fixed point at 0 and **two simple** critical points -1 and $cp_P = -\frac{1}{3}$ with P(-1) = 0 and $cv_P = P(cp_P) = -\frac{4}{27}$. Let V be a Jordan domain of $\mathbb C$ containing 0 and define

$$IS_0 := \left\{ \begin{array}{l} f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \\ f = Q \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \\ \varphi(0) = 0, \ \varphi'(0) = 1 \text{ and} \\ \varphi \text{ has a q.c. extension to } \mathbb{C} \end{array} \right\}$$

The class IS_0 is equipped a natural Teichmüller metric.

- **A P F A B F A**

Inou-Shishikura's class

Let $P(z) = z(1+z)^2$. Then P has a parabolic fixed point at 0 and **two simple** critical points -1 and $cp_P = -\frac{1}{3}$ with P(-1) = 0 and $cv_P = P(cp_P) = -\frac{4}{27}$. Let V be a Jordan domain of $\mathbb C$ containing 0 and define

$$IS_0 := \left\{ \left. f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \right| \begin{array}{l} \varphi : V \to \mathbb{C} \text{ is univalent,} \\ \varphi(0) = 0, \ \varphi'(0) = 1 \text{ and} \\ \varphi \text{ has a q.c. extension to } \mathbb{C} \end{array} \right. \right\}$$

The class IS_0 is equipped a natural Teichmüller metric.

For $\alpha \in \mathbb{R}$, define

$$IS_{\alpha} = \{f(z) = f_0(e^{2\pi i\alpha}z) : e^{-2\pi i\alpha} \cdot Dom(f_0) \rightarrow \mathbb{C} \mid f_0 \in IS_0\}.$$

For all $f \in IS_{\alpha}$, the critical value is always $cv = -\frac{4}{27}$.

イロト イポト イヨト イヨト

The renormalization operator is hyperbolic

Let N be a positive integer. Denote

$$\mathsf{HT}_{N} := \{ \alpha = [0; a_{1}, a_{2}, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_{n} \ge N \text{ for all } n \ge 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \Subset V'$ and a number ε_0 such that for all $f \in IS_{\alpha}$ with $\alpha \in (0, \varepsilon_0]$, then $\Re f$ is well-defined so that

• $\mathscr{R}f = P \circ \psi^{-1} \in IS_{1/\alpha}$. Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$ for $N \ge 1/\varepsilon_0$, then \mathscr{R} can be iterated infinitely many times.

The renormalization operator is hyperbolic

Let N be a positive integer. Denote

$$\mathsf{HT}_{N} := \{ \alpha = [0; a_{1}, a_{2}, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_{n} \geq N \text{ for all } n \geq 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \Subset V'$ and a number ε_0 such that for all $f \in IS_{\alpha}$ with $\alpha \in (0, \varepsilon_0]$, then $\Re f$ is well-defined so that

- $\Re f = P \circ \psi^{-1} \in IS_{1/\alpha}$. Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$ for $N \ge 1/\varepsilon_0$, then \Re can be iterated infinitely many times.
- **2** There exists a constant 0 < v < 1, such that for all $f, g \in IS_{\alpha}$ with $\alpha \in (0, \varepsilon_0]$, the operator \mathscr{R} is a uniform contraction in the fiber direction:

 $\mathsf{d}_{\mathsf{Teich}}(\pi \circ \mathscr{R}(f), \pi \circ \mathscr{R}(g)) \leq v \,\mathsf{d}_{\mathsf{Teich}}(\pi(f), \pi(g)),$

where $\pi : IS_{\beta} \to IS_0$ is the projection defined by $\pi(h) = h(e^{-2\pi i\beta}z)$.

for $z^2 + c$ and high type

Area of the Julia sets and post-critical sets:

- **1** Buff-Chéritat (Ann. Math. 2012): Quadratic Julia sets with positive area.
- Avila-Lyubich (arXiv 2015): Quadratic Feigenbaum Julia sets with positive area.
- Scheraghi (CMP 2013): Zero area of post-critical set for Brjuno.
- Cheraghi (Ann. Sci. École Norm. Sup. 2019): zero area of post-critical set for non-Brjuno.

for $z^2 + c$ and high type

Area of the Julia sets and post-critical sets:

- **1** Buff-Chéritat (Ann. Math. 2012): Quadratic Julia sets with positive area.
- **a** Avila-Lyubich (arXiv 2015): Quadratic Feigenbaum Julia sets with positive area.
- Scheraghi (CMP 2013): Zero area of post-critical set for Brjuno.
- Cheraghi (Ann. Sci. École Norm. Sup. 2019): zero area of post-critical set for non-Brjuno.

Topology of the post-critical sets:

- Shishikura-Y. (arXiv 2016): Douady-Sullivan's conjecture and Herman's conjecture.
- Ocheraghi (arXiv 2017): Topology of the post-critical sets (hedgehogs).
- Scheraghi-Pedramfar (preprint 2018): Complex Feigenbaum phenomena.

イロト 不得下 イヨト イヨト

for $z^2 + c$ and high type

Other applications:

- Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture.
- Cheraghi-Shishikura (arXiv 2015): MLC at unbounded type infinitely satellite renormalization pts.
- Avila-Cheraghi (JEMS 2018): Statistical properties (uniquely ergodic on the post-critical set) and small cycles.
- Self-similarity of bounded type Siegel disks.

< ロト < 同ト < ヨト < ヨト

for $z^2 + c$ and high type

Other applications:

- Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture.
- Cheraghi-Shishikura (arXiv 2015): MLC at unbounded type infinitely satellite renormalization pts.
- Avila-Cheraghi (JEMS 2018): Statistical properties (uniquely ergodic on the post-critical set) and small cycles.
- Self-similarity of bounded type Siegel disks.

Remark: Recently, Dudko, Lyubich and Selinger (arXiv 2017, 2018) developed a theory called "Pacman renormalization" (combines features of two classical Renormalization Theories: Quadratic-like and Siegel), which can be used to prove

- **1** The self-similarity of the Mandelbrot set near Siegel parameters.
- In MLC at some bounded type infinitely satellite renormalization pts.
- **③** The local connectivity of the infinitely satellite renormalization Julia sets.
- ∃ some bounded type infinitely satellite renormalization Julia sets with positive area.

Hedgehogs

Let f be a non-linear holomorphic system with the form

$$f(z)=e^{2\pi\mathrm{i}lpha}z+\mathscr{O}(z^2), ext{ where } lpha\in\mathbb{R}\setminus\mathbb{Q}.$$

Pérez-Marco proved that if f and f^{-1} are defined and univalent in a **neighborhood** of the closure of a Jordan domain $U \subset \mathbb{C}$ containing 0, then there exists a compact, full and connected set $K = K_{f,U}$ contained in \overline{U} such that $0 \in K$, $K \cap \partial U \neq \emptyset$ and $f(K) = f^{-1}(K) = K$.

Siegel compacta: K's

hedgehog: if K is not contained in the closure of a linearization domain.

イロト イポト イヨト イヨト

Topology and geometry of hedgehogs

If ∂U is C^1 -smooth, Pérez-Marco proved that

- K is in unique.
- the non-linearizable hedgehogs (i.e. 0 is a Cremer point) have no interior and they are not locally connected at any point different from the fixed point.

▲ □ ► ▲ □ ► ▲

Topology and geometry of hedgehogs

If ∂U is C^1 -smooth, Pérez-Marco proved that

- K is in unique.
- the non-linearizable hedgehogs (i.e. 0 is a Cremer point) have no interior and they are not locally connected at any point different from the fixed point.

For $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$, it is known that

- (McMullen, 1998) dim $(\partial \Delta_{\alpha}) \leq \dim_{H}(J_{\alpha}) < 2$ if α is of bounded type.
- (Graczyk-Jones, 2002): Δ_{α} quasicircle and cp $\in \partial \Delta_{\alpha}$, then dim_{*H*}($\partial \Delta_{\alpha}$) > 1.
- (Cheraghi, 2013, 2016) Area $(K \setminus \Delta_{\alpha}) = 0$ if $\alpha \in HT_N$.

イロト イポト イヨト イヨト

Topology and geometry of hedgehogs

If ∂U is C^1 -smooth, Pérez-Marco proved that

- K is in unique.
- the non-linearizable hedgehogs (i.e. 0 is a Cremer point) have no interior and they are not locally connected at any point different from the fixed point.

For $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$, it is known that

- (McMullen, 1998) dim $(\partial \Delta_{\alpha}) \leq \dim_{H}(J_{\alpha}) < 2$ if α is of bounded type.
- (Graczyk-Jones, 2002): Δ_{α} quasicircle and $cp \in \partial \Delta_{\alpha}$, then $\dim_{H}(\partial \Delta_{\alpha}) > 1$.
- (Cheraghi, 2013, 2016) Area $(K \setminus \Delta_{\alpha}) = 0$ if $\alpha \in HT_N$.

Biswas constructed some non-linearizable hedgehogs of holomorphic germs s.t.

- (2008) they have Hausdorff dimension one.
- (2016) they have positive area.

<ロ> (日) (日) (日) (日) (日)

Main result

For $\alpha \in \mathsf{HT}_N$,

- If $\alpha \in \mathscr{H}$, then $cp \in \Delta_{\alpha}$;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, then $cp \notin \Delta_{\alpha}$;
- If $\alpha \notin \mathcal{B}$, then 0 is Cremer.

3

イロト イヨト イヨト イヨト

Main result

For $\alpha \in HT_N$,

- If $\alpha \in \mathscr{H}$, then $cp \in \Delta_{\alpha}$;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, then $cp \notin \Delta_{\alpha}$;
- If $\alpha \notin \mathcal{B}$, then 0 is Cremer.

Theorem (Cheraghi-DeZotti-Y., 2018)

There exists N > 0 such that for all $\alpha \in HT_N \setminus \mathscr{H}$ and all $f \in IS_{\alpha}$, the post-critical set of f has Hausdorff dimension two.

Corollary

For all $\alpha \in HT_N \setminus \mathscr{H}$, $J(P_\alpha)$ has Hausdorff dimension two.

Image: A math a math

Main result

For $\alpha \in HT_N$,

- If $\alpha \in \mathscr{H}$, then $cp \in \Delta_{\alpha}$;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, then $cp \notin \Delta_{\alpha}$;
- If $\alpha \notin \mathcal{B}$, then 0 is Cremer.

Theorem (Cheraghi-DeZotti-Y., 2018)

There exists N > 0 such that for all $\alpha \in HT_N \setminus \mathscr{H}$ and all $f \in IS_{\alpha}$, the post-critical set of f has Hausdorff dimension two.

Corollary

For all $\alpha \in HT_N \setminus \mathscr{H}$, $J(P_\alpha)$ has Hausdorff dimension two.

Question: Is there any $\alpha \notin \mathscr{H}$ s.t. $Area(J(P_{\alpha})) = 0$?

• • • • • • • • • • • •

McMullen's criterion

Proposition (McMullen, 1987)

Let $\{\mathscr{K}_n\}_{n=0}^{\infty}$ be a sequence satisfying the **nesting conditions**. Let $\delta_{n+1} > 0$ such that for all $1 \leq i \leq I_n$ and $K_{n,i} \in \mathscr{K}_n$, we have

$$\mathsf{density}(\mathscr{K}_{n+1}, \mathsf{K}_{n,i}) := \mathsf{density}\Big(\cup_{j=1}^{l_{n+1}} \mathsf{K}_{n+1,j}, \mathsf{K}_{n,i}\Big) \geq \delta_{n+1}.$$

Suppose that for each $K_{n,i} \in \mathscr{K}_n$ with $n \ge 1$,

diam $K_{n,i} \leq d_n < 1$, where $d_n \rightarrow 0$ as $n \rightarrow \infty$.

Then the Hausdorff dimension of $\bigcap_n \mathscr{K}_n$ satisfies

$$\dim_{H}\left(\bigcap_{n\in\mathbb{N}}\mathscr{K}_{n}\right)\geq 2-\limsup_{n\to\infty}\frac{\sum_{k=1}^{n+1}|\log\delta_{k}|}{|\log d_{n}|}.$$

A I > A = A A

Result on exponential maps

Image: A math a math

Application (McMullen, 1987): dim_H($J(\lambda e^z)$) = 2, where $0 < \lambda < 1/e$.

YANG F. (Nanjing Univ.)

Result on exponential maps

Application (McMullen, 1987): dim_H($J(\lambda e^z)$) = 2, where $0 < \lambda < 1/e$.

Silva (1988): hairs are C^{∞} . Karpińska (1999): dim_H(end points) = 2 and dim_H(hairs without end points) = 1.

YANG F. (Nanjing Univ.)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Topology of post-critical sets (maximal hedgehogs)

Cheraghi (2017): For high type rotation numbers,

- If $\alpha \notin \mathcal{B}$, P(f) is a Cantor bouquet;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, P(f) is a one-sided hairy circle.

4 6 1 1 4

Topology of post-critical sets (maximal hedgehogs)

Cheraghi (2017): For high type rotation numbers,

- If $\alpha \notin \mathcal{B}$, P(f) is a Cantor bouquet;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, P(f) is a one-sided hairy circle.

Cheraghi-DeZotti-Y. (2018): For high type rotation numbers,

• There exist $\alpha \notin \mathscr{B}$ and $\alpha \in \mathscr{B} \setminus \mathscr{H}$, such that Karpinska's paradox holds.

Find sets satisfying the nesting conditions

- **◆ 伊 →** → 王 →

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

• Is there any f such that $\dim_H(\partial \Delta_f) = 2$?

- **A P A B A A**

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

- Is there any f such that $\dim_H(\partial \Delta_f) = 2?$
- Are there two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \dim_H(\partial \Delta_{\alpha_n}) = 2$ and $\lim_{n \to \infty} \dim_H(\partial \Delta_{\beta_n}) = 1$?

- **A B A B A B A B**

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

- Is there any f such that $\dim_H(\partial \Delta_f) = 2?$
- Are there two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \dim_H(\partial \Delta_{\alpha_n}) = 2$ and $\lim_{n \to \infty} \dim_H(\partial \Delta_{\beta_n}) = 1$?
- Is dim_H : {Siegel disk boundaries} \rightarrow [1,2] surjective?

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

- Is there any f such that $\dim_H(\partial \Delta_f) = 2?$
- Are there two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \dim_H(\partial \Delta_{\alpha_n}) = 2$ and $\lim_{n \to \infty} \dim_H(\partial \Delta_{\beta_n}) = 1$?
- Is dim_H : {Siegel disk boundaries} \rightarrow [1,2] surjective?
- Can dim_{*H*}({Siegel disk boundaries}) contain any interval?

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

- Is there any f such that $\dim_H(\partial \Delta_f) = 2?$
- Are there two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \dim_H(\partial \Delta_{\alpha_n}) = 2$ and $\lim_{n \to \infty} \dim_H(\partial \Delta_{\beta_n}) = 1$?
- Is dim_H : {Siegel disk boundaries} \rightarrow [1,2] surjective?
- Can dim_{*H*}({*Siegel disk boundaries*}) contain any interval?
- Let f be a rational map containing a Siegel disk. Does it imply $\dim_H(J_f) > 1$?

For non-linearizable hedgehogs, are all hairs C^{∞} ? (this is true for hyperbolic λe^{z})

For Siegel disks, there are following questions:

- Is there any f such that $\dim_H(\partial \Delta_f) = 2?$
- Are there two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \dim_H(\partial \Delta_{\alpha_n}) = 2$ and $\lim_{n \to \infty} \dim_H(\partial \Delta_{\beta_n}) = 1$?
- Is dim_H : {Siegel disk boundaries} \rightarrow [1,2] surjective?
- Can dim_{*H*}({Siegel disk boundaries}) contain any interval?
- Let f be a rational map containing a Siegel disk. Does it imply $\dim_H(J_f) > 1$?

THANK YOU FOR YOUR ATTENTION !