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Complex dynamical systems

f: X=X
= f(x) = f(F) = U)o = 7 ) e

Complex dynamical systems: X complex manifold, f holomorphic.

@ Complex 1-dim:

X = C, f rational map (e.g. 2 +c, 2" +A/7");
X =C, f transcendental entire function (e.g. Ae*, A sinz).

@ Complex high dim: X = C" with n > 2 (e.g. Henon map):
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Complex dynamical systems

f: X=X
x> f(x) = f(F(x) = f(F(F(x) = o f7 () -

Complex dynamical systems: X complex manifold, f holomorphic.

o Complex 1-dim:

X=C, f rational map (e.g. 2> +¢, "+ 4 /7");
X = C, f transcendental entire function (e.g. A€°, A sinz).

@ Complex high dim: X = C" with n > 2 (e.g. Henon map).
@ Real 1-dim: X =[0,1], T or R, where f is C", smooth, or real analytic.

YANG Fei (Nanjing University) Parabolic renormalization and applications Shenzhen, January 8, 2025 2/22



Complex dynamical systems

f: X=X
x> f(x) = f(F) = fUF())) = = 7 )

Complex dynamical systems: X complex manifold, f holomorphic.

o Complex 1-dim:

X = C, f rational map (e.g. 2 +c, 2" +A/7");
X = C, f transcendental entire function (e.g. €%, A sinz).

o Complex high dim: X = C" with n > 2 (e.g. Henon map).
@ Real I-dim: X = [0, 1], T or R, where f is C", smooth, or real analytic.

@ Transcendental meromorphic: f: C — C (e.g. Atanz).
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Complex dynamical systems

f: X=X
x> f(x) = f(F) = fUF())) = = 7 )

Complex dynamical systems: X complex manifold, f holomorphic.
o Complex 1-dim:

X = C, f rational map (e.g. 2 +c, 2" +A/7");
X = C, f transcendental entire function (e.g. €%, A sinz).

o Complex high dim: X = C" with n > 2 (e.g. Henon map).
@ Real I-dim: X = [0, 1], T or R, where f is C", smooth, or real analytic.

@ Transcendental meromorphic: f: C — C (e.g. Atanz).

Partially motivated by: Newton’s method for root-finding: f(z) =z —
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Model of population variation: Logistic map

X1 =1x,(1 —x,), where r € [0,4] and x,, € [0,1].

1.0
7 ;M ‘W Period-doubling bifurcations:
0.8~
4 The limit
xO.G, ; / ‘\ S T
0.4 \ n=eeryy] — I
i \ exists, and equals to
0.2
o 07 4.6692016091029906...
24 26 28 30 32 54 36 38 40

Universality of the Feigenbaum constant: § is the same for x,,, 1 = rsin(x,), ...

o Lanford (Bull. AMS 1982; Computer-assisted)
@ Lyubich (Ann. Math. 1999; non-numerical proof by complex dynamics)
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Objects in 1-dim

o Dynamical planes (Julia and Fatou sets /
components, ...)

o Parameter spaces (Mandelbrot / Multibrot set,
bifurcation loci, hyperbolic components,
capture domains, ...)

Dimension, measure, connectivity, local connectivity,
ergodicity, rigidity, hyperbolic density ...
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Objects in 1-dim

o Dynamical planes (Julia and Fatou sets /
components, ...)

o Parameter spaces (Mandelbrot / Multibrot set,
bifurcation loci, hyperbolic components,
capture domains, ...)

Dimension, measure, connectivity, local connectivity,
ergodicity, rigidity, hyperbolic density ...

Douady (1980s): You first plow in the dynamical planes and then harvest in the
parameter space.

Main tools (far from exhaustive):
@ Classical: Montel, distortion theorems, modulus, hyperbolic metric;
@ QC: Surgery, holomorphic motion, Thurston theorem, Teichmiiller theory;
@ Dynamics: renormalization theories (various: polynomial-like, sector, parabolic
and near-parabolic, pacman);
@ Puzzles, orbifold, several complex variables, arithmetics ...
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Fatou and Julia

Letf: C — C be rational.
The Fatou set (or stable set) of f:

F(f):= {z¢ C: {f*"}en is equicontinuous at z}.

The Julia set (or chaotic set) J(f) := C \ F(f).

C
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Fatou and Julia

Letf: C — C be rational.
The Fatou set (or stable set) of f:

F(f):= {z€ C: {f*"}ncn is equicontinuous at z}.
The Julia set (or chaotic set) J(f) := C \ F(f).
C

The following maps satisfy J(f) = C:

2 2
=2 jw-1-2

IfJ(f) # C, then they have no interior. How complex can they be?
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Fatou and Julia

Letf: C — C be rational.
The Fatou set (or stable set) of f:

F(f):= {z€C: {f*"},en is equicontinuous at z}.

The Julia set (or chaotic set) J(f) := C \F(f).

(@l

Sullivan (1983):
If f is hyperbolic,
then dimg J(f) < 2.

Pf. Distortion theorem.

Also true for parabolic
maps.
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Parabolic bifurcations

Douady (1994, see also Qiu-Yin 1995) and Wu (1999) proved that J(f) does not
move continuously at parabolic parameters. One of the important phenomenon is the
parabolic bifurcation.
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Parabolic bifurcations

Although J(f) does not move continuously at parabolic parameters, it turns out that

the (perturbed) Fatou coordinate does (restricting on some truncated chessboard).

7 f>m Y

\\\ )

N~

Zz—i—%—i—s
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Hausdorff dim of J and M

Denote p.(z) = z> + ¢, where ¢ € C. The Mandelbrot set is

M:={ceC: 1i_r>np§"(0) # oo}

Ingredients in the proof:
Theorem (Shishikura, Ann. Math., 1998) e Parabolic perturbation and
o dimgy (J(p.)) = 2 for generic ¢ € IM; twice near-parabolic

o dimy(IM) = 2. renormalization;
@ Holomorphic motion.
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Area of Julia sets

For polynomials,

Zero area of Julia sets
= (NILF) No invariant line field Conjecture
= (HD) Hyperbolic density Conjecture
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Area of Julia sets

For polynomials,

Zero area of Julia sets
= (NILF) No invariant line field Conjecture
= (HD) Hyperbolic density Conjecture

Zero area: Very fruitful results, especially for quadratic polynomials:

@ (Douady-Hubbard, Lyubich 1980s):
Geometrically finite;

@ (Lyubich, Shishikura 1991):
At most finitely (polynomial-like)renorm and without irrationally indifferent
periodic points (Siegel or Cremer);

o (Petersen 1996, McMullen 1998, Yampolsky 1999, Petersen-Zakeri 2004):
Siegel disks with almost all rotation numbers;

o (Yarrington 1995, Avila-Lyubich 2008, A. Dudko-Sutherland 2020):
Some oo- renorm.
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Area of Julia sets

Conjecture (Douady, 1990s)

There exist quadratic polynomials having Julia sets of positive area.

Theorem (Buff-Chéritat, Ann. Math., 2012)

There exist quadratic polynomials having Julia sets of positive area, and moreover,
they either have a Cremer point, a Siegel point, or are co-renormalizable.
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Area of Julia sets

Conjecture (Douady, 1990s)

There exist quadratic polynomials having Julia sets of positive area.

Theorem (Buff-Chéritat, Ann. Math., 2012)

There exist quadratic polynomials having Julia sets of positive area, and moreover,
they either have a Cremer point, a Siegel point, or are co-renormalizable.

Theorem (Avila-Lyubich, Ann. Math., 2022)

There exist co-renormalizable quadratic polynomials having locally connected Julia
sets of positive area.

A key ingredient in both proofs:

Inou-Shishikura’s invariant class under parabolic / near-parabolic renormalization

to control the post-critical sets of perturbations of polynomials.
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(Polynomial-like) renormalization

9
f
Renormalization Zf = first return map of f after rescaling
= @ofko@~! (if return time = k)
} o
v O
O
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Parabolic and near-parabolic renormalizations

-
fo

. Sattr Srep folz) = 2+ a4

Ey = Dy, To Oq’rep fo with ay # 0
Epy(w+1) =Ep(w)+1
Exp“ = e éﬂf"-, Ty, repfo

c* Cc*

Expf Expf
~— %0f0 (0) =0
k (Zofo)'(0) =1
\ Cattr Crep
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Parabolic and near-parabolic renormalizations

. -
fo

folz) =z+a?+--

o Srep
Efo = Daur, fo Oq)qu fo

with ap #0

Epy(w+1) =Ep(w)+1

Exp? = 27 Dus 1, repsfy

c c-
Expt
= Rofp(0) =0

(%0f0)' (0) =1
Zf(0)=0
(%f) (0) = E7a
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Two invariant classes

To prove dimg (dM) = 2, Shishikura (1998) introduced a class .%; of holomorphic
parabolic maps, s.t.

Fo(Fo) C Fo,

where % is the parabolic renorm operator.
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Two invariant classes

To prove dimg (dM) = 2, Shishikura (1998) introduced a class .%; of holomorphic
parabolic maps, s.t.
Zo(F0) C Fo,

where % is the parabolic renorm operator.

For a near-parabolic map f = ™%/ with h € .%, the near-parabolic renorm can be
expressed as a skew product:

R (a,h) — (&, %),
where %, is the renorm in the fiber direction and (%Z4h)(z) = z+ O(z*). However,

Ro(Fo) ¢ Fo for any small o # 0.
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Two invariant classes

To prove dimg (dM) = 2, Shishikura (1998) introduced a class .%; of holomorphic
parabolic maps, s.t.
Zo(F0) C Fo,

where %, is the parabolic renorm operator.

For a near-parabolic map f = ™%/ with h € .%, the near-parabolic renorm can be
expressed as a skew product:

R (a,h) — (&, %),
where %, is the renorm in the fiber direction and (%Z4h)(z) = z+ O(z*). However,
Ro(Fo) ¢ Fo for any small o # 0.
Inou and Shishikura (2008) introduced a class .%; of holomorphic parabolic maps, s.t.

Ro(F1) C F for all sufficiently small .

Then Z can be iterated infinitely many times on f = ¢**%h, where h € .%) and « is of
sufficiently high type (the continued fraction coefficients are all large enough).
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MLC conjecture

Conjecture (Douady-Hubbard, 1980s)

The Mandelbrot set is locally connected.

For quadratic polynomials p.(z) = Z?+c,

MLC = NILF conjecture <= HD conjecture.
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MLC conjecture

Conjecture (Douady-Hubbard, 1980s)

The Mandelbrot set is locally connected.

For quadratic polynomials p.(z) = 72 +c,

MLC = NILF conjecture <= HD conjecture.

MLC holds in the following cases:
@ At most finitely renormalizable (Yoccoz 1990s);

@ Some infinitely renormalizable (Lyubich 1997, Jiang 2003, Kahn 2006,
Kahn-Lyubich 2008-2009, Levin 2011, Cheraghi-Shishikura 2015,
Dudko-Lyubich 2023-2024);

@ On R (Dudko-Kahn-Lyubich 2023, announced).

Cheraghi and Shishikura’s proof is based on the near-parabolic renormalization.
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Sullivan’s eventually periodic theorem

The Fatou components of all rational maps are eventually periodic.

Theorem (Sullivan, Ann. Math., 1985) J

Classification of periodic Fatou components of rational maps:

OOO@

(super-)attracting basin ~ parabolic basin Siegel disk Herman ring
1884, 1904 1897 1942 1979
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Regularity of boundaries of Fatou components

Theorem (Roesch-Yin, Sci. China Math., 2022) J

All bounded attracting and parabolic components of polynomials are Jordan domains.

Puzzle techniques: Kozlovski-Shen-van Strien nest + Kahn-Lyubich modulus lemma.
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Regularity of boundaries of Fatou components

Theorem (Roesch-Yin, Sci. China Math., 2022)

All bounded attracting and parabolic components of polynomials are Jordan domains.

o

Puzzle techniques: Kozlovski-Shen-van Strien nest + Kahn-Lyubich modulus lemma.

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of any rational map (deg > 2) is a Jordan domain.

Theorem (Petersen-Zakeri, Ann. Math., 2004)

For almost all o, the Siegel disk of Py (z) = e*™%z+ 72 is a Jordan domain.

Theorem (Zhang, Invent. Math., 2011)
All bounded type Siegel disks of rational maps are quasi-disks.

Tools: Blaschke models + surgery + (relative Schwarz lemma).
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High type Siegel disks

Theorem (Shishikura-Y., JEMS, 2024)

Let o be of sufficiently high type, and assume that Py (z) = ¢*™%z+ 7% has a Siegel
disk Ag. Then
@ JAy is a Jordan curve; and

@ dAy contains a critical point if and only if o is of Herman type.

High type:
HTy :={a=[0;a;,a2,---] € (0,1)\Q | a, > Nforalln > 1}
for some large N.

Main tool: Near-parabolic renormalization (based on Inou-Shishikura’s class .77).
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High type Siegel disks

Theorem (Shishikura-Y., JEMS, 2024)

Let o be of sufficiently high type, and assume that Py (z) = ¢*™%z+ 7% has a Siegel
disk Ag. Then

@ JAy is a Jordan curve; and

@ dAy contains a critical point if and only if o is of Herman type.

High type:
HTy :={a=[0;a;,a2,---] € (0,1)\Q | a, > Nforalln > 1}
for some large N.
Main tool: Near-parabolic renormalization (based on Inou-Shishikura’s class .77).

Cheraghi (2022, arXiv), independently, gave another proof.
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All irrational numbers

Brjuno type
Herman type
Diophantine type
etersen-Zakeri type

bounded type

quad. irrat
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All irrational numbers

Brjuno type
Herman type

Diophantine type

-Zakeri type

bounded type
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Cantor Julia sets

Theorem (Qiu-Yin, Sci. China Math., 2009; Kozlovski-van Strien, PLMS, 2009)

The Julia set of a polynomial is a Cantor set if and only if each critical component of
the filled-in Julia set is aperiodic.

v

Theorem (Yin-Zhai, Forum Math., 2010)

Cantor Julia sets of rational maps carry no invariant line fields.
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Cantor Julia sets

Theorem (Qiu-Yin, Sci. China Math., 2009; Kozlovski-van Strien, PLMS, 2009)

The Julia set of a polynomial is a Cantor set if and only if each critical component of
the filled-in Julia set is aperiodic.

v

Theorem (Yin-Zhai, Forum Math., 2010)

Cantor Julia sets of rational maps carry no invariant line fields.

Question (folk)

Does there exist a Cantor Julia set having positive area?

Based on the parabolic perturbation and Shishikura’s result:

Theorem (Y., IMRN, 2021) J

There exist Cantor Julia sets having Hausdorff dimension two.
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More Julia sets of positive area

Theorem (Y., 2024)

For any meromorphic function f : C — C in Shishikura’s class F, there exists
a € R\ Q such that fy = e*™%f has a Cremer point (resp. Siegel disk) and a Julia set
of positive area.
In particular, the following maps belong to %:
Q Polynomials: z+— z(1+2)" forn > 1, and z— z(1 +2)*(1 + 2);
@ Rationals: z+—z/(1—2)" forn >2, and 2+ z(1—2)*/(1— §2).

Remark:

o Every fy, = ™% withf: C — C in % is not polynomial-like renorm;
@ Polynomial case: Qiao-Qu (2020) for n = 2, X. Zhang (2022) for n > 21.

The renormalization in the proof depends only on near-parabolic, but not on sector
and others.
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Other harvests and further developments

@ Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;

@ Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa- Yoccoz conjecture;
© Cheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
Q Y. (Adv. Math. 2024): Smooth degenerate Herman rings;
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Other harvests and further developments

@ Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;

© Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture;
© Cheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
Q Y. (Adv. Math. 2024): Smooth degenerate Herman rings;

Extend to higher local degrees:
@ (Chéritat 2022): Invariant class for unicritical maps (No numerical calculations);
@ (Y. 2024) Invariant class for cubic unicritical maps (following Inou-Shishikura).

Developments:

@ Extend high type to more rotation numbers:
[Kapiamba 2022], [D. Dudko-Lyubich 2022], [Qu 2024];
o Extend unicritical to multi-critical?
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Other harvests and further developments

@ Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;

© Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture;
© Cheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
Q Y. (Adv. Math. 2024): Smooth degenerate Herman rings;

Extend to higher local degrees:
@ (Chéritat 2022): Invariant class for unicritical maps (No numerical calculations);
@ (Y. 2024) Invariant class for cubic unicritical maps (following Inou-Shishikura).
Developments:
@ Extend high type to more rotation numbers:
[Kapiamba 2022], [D. Dudko-Lyubich 2022], [Qu 2024];
o Extend unicritical to multi-critical?
Questions
(1) (Milnor 1992) Does there exist a Cremer Julia set of area zero?
(2) (Avila-Lyubich 2015) Does there exist ¢ € R s.t. area(J(z> +c¢)) > 0?
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Thank you for your attention!

YANG Fei (Na
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