Parabolic renormalization and applications

YANG Fei (杨飞)

Nanjing University

Conference of Complex Analysis in China 2024

Shenzhen University

January 8, 2025

• • • • • • • • • • • •

$$f: X \to X$$
$$x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

• Complex 1-dim:

$$X = \widehat{\mathbb{C}}, \ f \text{ rational map (e.g. } z^2 + c, \ z^n + \lambda/z^n);$$

$$X = \mathbb{C}, \ f \text{ transcendental entire function (e.g. } \lambda e^z, \lambda \sin z).$$

• Complex high dim: $X = \mathbb{C}^n$ with $n \ge 2$ (e.g. Henon map):

$$f: \mathbb{C}^2 \to \mathbb{C}^2: \binom{z}{w} \mapsto \binom{z^2 + c - aw}{z}, \ a \neq 0.$$

$$f: X \to X$$
$$x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

• Complex 1-dim:

$$X = \widehat{\mathbb{C}}, \ f \text{ rational map (e.g. } z^2 + c, \ z^n + \lambda/z^n);$$

$$X = \mathbb{C}, \ f \text{ transcendental entire function (e.g. } \lambda e^z, \lambda \sin z).$$

- Complex high dim: $X = \mathbb{C}^n$ with $n \ge 2$ (e.g. Henon map).
- **Real** 1-dim: X = [0, 1], \mathbb{T} or \mathbb{R} , where *f* is C^r , smooth, or real analytic.

$$f: X \to X$$

 $x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

• Complex 1-dim:

$$X = \widehat{\mathbb{C}}, \ f \text{ rational map (e.g. } z^2 + c, \ z^n + \lambda/z^n);$$

$$X = \mathbb{C}, \ f \text{ transcendental entire function (e.g. } \lambda e^z, \lambda \sin z).$$

- Complex high dim: $X = \mathbb{C}^n$ with $n \ge 2$ (e.g. Henon map).
- **Real** 1-dim: X = [0, 1], \mathbb{T} or \mathbb{R} , where *f* is C^r , smooth, or real analytic.
- Transcendental meromorphic: $f : \mathbb{C} \to \widehat{\mathbb{C}}$ (e.g. $\lambda \tan z$).

$$f: X \to X$$

 $x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

• Complex 1-dim:

$$X = \widehat{\mathbb{C}}, \ f \text{ rational map (e.g. } z^2 + c, \ z^n + \lambda/z^n);$$

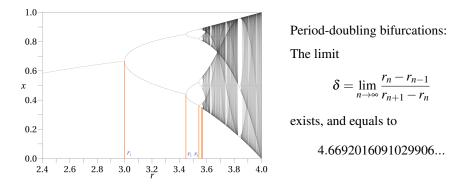
$$X = \mathbb{C}, \ f \text{ transcendental entire function (e.g. } \lambda e^z, \lambda \sin z).$$

- Complex high dim: $X = \mathbb{C}^n$ with $n \ge 2$ (e.g. Henon map).
- **Real** 1-dim: $X = [0, 1], \mathbb{T}$ or \mathbb{R} , where *f* is C^r , smooth, or real analytic.
- Transcendental meromorphic: $f : \mathbb{C} \to \widehat{\mathbb{C}}$ (e.g. $\lambda \tan z$).

Partially motivated by: Newton's method for root-finding: $f(z) = z - \frac{g(z)}{g'(z)}$.

Model of population variation: Logistic map

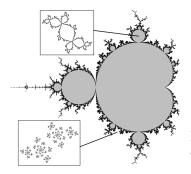
$$x_{n+1} = rx_n(1-x_n)$$
, where $r \in [0,4]$ and $x_n \in [0,1]$.



Universality of the **Feigenbaum constant**: δ is the same for $x_{n+1} = r \sin(x_n), ...$

- Lanford (Bull. AMS 1982; Computer-assisted)
- Lyubich (Ann. Math. 1999; non-numerical proof by complex dynamics)

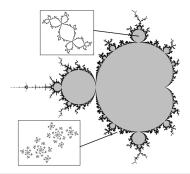
• • • • • • • • • • • •



Objects in 1-dim

- **Dynamical planes** (Julia and Fatou sets / components, ...)
- **Parameter spaces** (Mandelbrot / Multibrot set, bifurcation loci, hyperbolic components, capture domains, ...)

Dimension, measure, connectivity, local connectivity, ergodicity, rigidity, hyperbolic density ...



Objects in 1-dim

- **Dynamical planes** (Julia and Fatou sets / components, ...)
- **Parameter spaces** (Mandelbrot / Multibrot set, bifurcation loci, hyperbolic components, capture domains, ...)

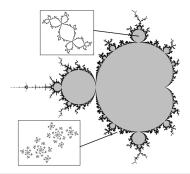
Dimension, measure, connectivity, local connectivity, ergodicity, rigidity, hyperbolic density ...

• • • • • • • • • • • •

Douady (1980s): You first plow in the dynamical planes and then harvest in the parameter space.

Main tools (far from exhaustive):

- Classical: Montel, distortion theorems, modulus, hyperbolic metric;
- *QC*: Surgery, holomorphic motion, Thurston theorem, Teichmüller theory;
- *Dynamics*: renormalization theories (various: polynomial-like, sector, parabolic and near-parabolic, pacman);
- Puzzles, orbifold, several complex variables, arithmetics ...



Objects in 1-dim

- **Dynamical planes** (Julia and Fatou sets / components, ...)
- **Parameter spaces** (Mandelbrot / Multibrot set, bifurcation loci, hyperbolic components, capture domains, ...)

Dimension, measure, connectivity, local connectivity, ergodicity, rigidity, hyperbolic density ...

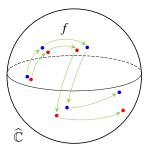
• • • • • • • • • • • •

Douady (1980s): You first plow in the dynamical planes and then harvest in the parameter space.

Main tools (far from exhaustive):

- Classical: Montel, distortion theorems, modulus, hyperbolic metric;
- *QC*: Surgery, holomorphic motion, Thurston theorem, Teichmüller theory;
- *Dynamics*: renormalization theories (various: polynomial-like, sector, **parabolic** and **near-parabolic**, pacman);
- Puzzles, orbifold, several complex variables, arithmetics ...

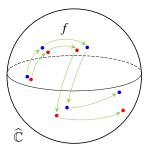
Fatou and Julia



Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be rational. The **Fatou set** (or stable set) of f: $F(f) := \{z \in \widehat{\mathbb{C}} : \{f^{\circ n}\}_{n \in \mathbb{N}} \text{ is equicontinuous at } z\}.$ The **Julia set** (or chaotic set) $J(f) := \widehat{\mathbb{C}} \setminus F(f).$

Image: A math a math

Fatou and Julia



Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be rational. The **Fatou set** (or stable set) of f: $F(f) := \{z \in \widehat{\mathbb{C}} : \{f^{\circ n}\}_{n \in \mathbb{N}} \text{ is equicontinuous at } z\}.$ The **Julia set** (or chaotic set) $J(f) := \widehat{\mathbb{C}} \setminus F(f).$

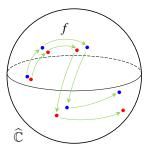
The following maps satisfy $J(f) = \widehat{\mathbb{C}}$:

$$f(z) = \frac{(z^2+1)^2}{4z(z^2-1)}, \quad f(z) = 1 - \frac{2}{z^2}.$$

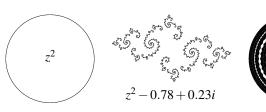
If $J(f) \neq \widehat{\mathbb{C}}$, then they have no interior. How complex can they be?

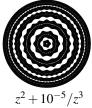
• • • • • • • • • •

Fatou and Julia



Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be rational. The **Fatou set** (or stable set) of f: $F(f) := \{z \in \widehat{\mathbb{C}} : \{f^{\circ n}\}_{n \in \mathbb{N}} \text{ is equicontinuous at } z\}.$ The **Julia set** (or chaotic set) $J(f) := \widehat{\mathbb{C}} \setminus F(f).$





Sullivan (1983): If *f* is *hyperbolic*, then $\dim_H J(f) < 2$.

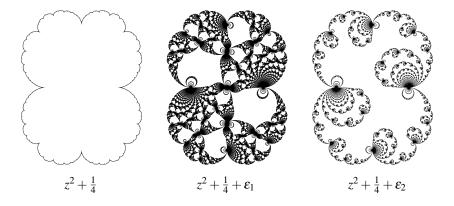
Pf. Distortion theorem.

Also true for *parabolic* maps.

• • • • • • • • • • • •

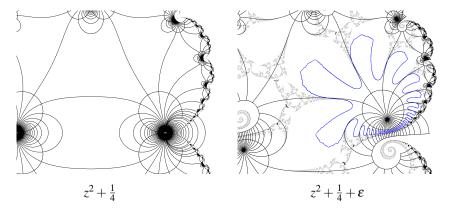
Parabolic bifurcations

Douady (1994, see also Qiu-Yin 1995) and Wu (1999) proved that J(f) does not move continuously at parabolic parameters. One of the important phenomenon is the parabolic bifurcation.



Parabolic bifurcations

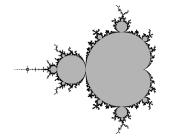
Although J(f) does not move continuously at parabolic parameters, it turns out that the (perturbed) *Fatou coordinate* does (restricting on some truncated chessboard).



Hausdorff dim of J and M

Denote $p_c(z) = z^2 + c$, where $c \in \mathbb{C}$. The **Mandelbrot set** is

$$\mathbf{M} := \{ c \in \mathbb{C} : \lim_{n \to \infty} p_c^{\circ n}(0) \neq \infty \}.$$



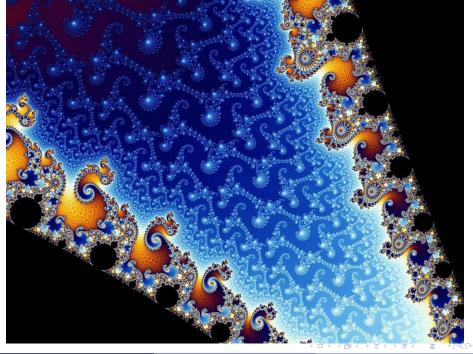


Theorem (Shishikura, Ann. Math., 1998)

- $\dim_H(J(p_c)) = 2$ for generic $c \in \partial M$;
- $\dim_H(\partial \mathbf{M}) = 2.$

Ingredients in the proof:

- Parabolic perturbation and *twice* near-parabolic renormalization;
- Holomorphic motion.



For polynomials,

Zero area of Julia sets

- \Rightarrow (NILF) No invariant line field Conjecture
- \Rightarrow (HD) Hyperbolic density Conjecture

For polynomials,

Zero area of Julia sets

- \Rightarrow (NILF) No invariant line field Conjecture
- \Rightarrow (HD) Hyperbolic density Conjecture

Zero area: Very fruitful results, especially for quadratic polynomials:

- (Douady-Hubbard, Lyubich 1980s): Geometrically finite;
- (Lyubich, Shishikura 1991):

At most finitely (polynomial-like)renorm and without irrationally indifferent periodic points (*Siegel* or *Cremer*);

- (Petersen 1996, McMullen 1998, Yampolsky 1999, Petersen-Zakeri 2004): Siegel disks with almost all rotation numbers;
- (Yarrington 1995, Avila-Lyubich 2008, A. Dudko-Sutherland 2020): Some ∞- renorm.

A D > A D > A D > A D >

Conjecture (Douady, 1990s)

There exist quadratic polynomials having Julia sets of **positive area**.

Theorem (Buff-Chéritat, Ann. Math., 2012)

There exist quadratic polynomials having Julia sets of positive area, and moreover, they either have a Cremer point, a Siegel point, or are ∞ -renormalizable.

Conjecture (Douady, 1990s)

There exist quadratic polynomials having Julia sets of **positive area**.

Theorem (Buff-Chéritat, Ann. Math., 2012)

There exist quadratic polynomials having Julia sets of positive area, and moreover, they either have a Cremer point, a Siegel point, or are ∞ -renormalizable.

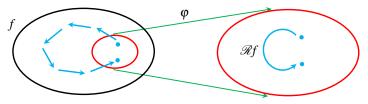
Theorem (Avila-Lyubich, Ann. Math., 2022)

There exist ∞ -renormalizable quadratic polynomials having locally connected Julia sets of positive area.

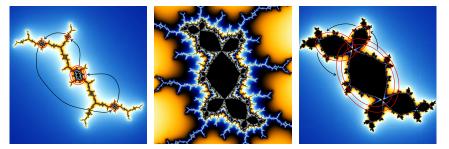
A key ingredient in both proofs:

Inou-Shishikura's invariant class under **parabolic / near-parabolic renormalization** to control the post-critical sets of perturbations of polynomials.

(Polynomial-like) renormalization

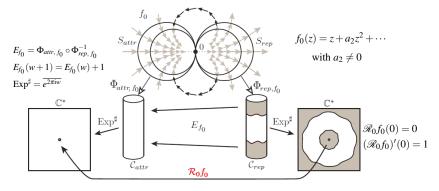


Renormalization $\Re f$ = first return map of f after rescaling = $\varphi \circ f^{\circ k} \circ \varphi^{-1}$ (if return time $\equiv k$)



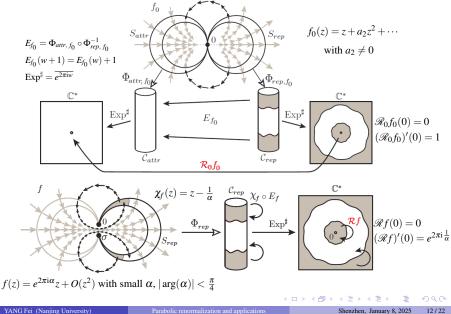
< ロ > < 回 > < 回 > < 回 > < 回</p>

Parabolic and near-parabolic renormalizations



< ロ > < 回 > < 回 > < 回 >

Parabolic and near-parabolic renormalizations



Two invariant classes

To prove dim_{*H*}(∂ M) = 2, Shishikura (1998) introduced a class \mathscr{F}_0 of holomorphic parabolic maps, s.t.

 $\mathscr{R}_0(\mathscr{F}_0) \subset \mathscr{F}_0,$

where \mathcal{R}_0 is the **parabolic renorm** operator.

Two invariant classes

To prove dim_{*H*}(∂ M) = 2, Shishikura (1998) introduced a class \mathscr{F}_0 of holomorphic parabolic maps, s.t.

 $\mathscr{R}_0(\mathscr{F}_0) \subset \mathscr{F}_0,$

where \mathscr{R}_0 is the **parabolic renorm** operator.

For a near-parabolic map $f = e^{2\pi i \alpha} h$ with $h \in \mathscr{F}_0$, the **near-parabolic renorm** can be expressed as a skew product:

 $\mathscr{R}: (\alpha, h) \mapsto (\frac{1}{\alpha}, \mathscr{R}_{\alpha} h),$

where \mathscr{R}_{α} is the **renorm in the fiber direction** and $(\mathscr{R}_{\alpha}h)(z) = z + O(z^2)$. However,

 $\mathscr{R}_{\alpha}(\mathscr{F}_0) \not\subset \mathscr{F}_0 \quad \text{for any small } \alpha \neq 0.$

3

Two invariant classes

To prove dim_{*H*}(∂ M) = 2, Shishikura (1998) introduced a class \mathscr{F}_0 of holomorphic parabolic maps, s.t.

 $\mathscr{R}_0(\mathscr{F}_0) \subset \mathscr{F}_0,$

where \mathscr{R}_0 is the **parabolic renorm** operator.

For a near-parabolic map $f = e^{2\pi i \alpha} h$ with $h \in \mathscr{F}_0$, the **near-parabolic renorm** can be expressed as a skew product:

 $\mathscr{R}: (\alpha, h) \mapsto (\frac{1}{\alpha}, \mathscr{R}_{\alpha} h),$

where \mathscr{R}_{α} is the **renorm in the fiber direction** and $(\mathscr{R}_{\alpha}h)(z) = z + O(z^2)$. However,

 $\mathscr{R}_{\alpha}(\mathscr{F}_0) \not\subset \mathscr{F}_0 \quad \text{for any small } \alpha \neq 0.$

Inou and Shishikura (2008) introduced a class \mathscr{F}_1 of holomorphic parabolic maps, s.t.

 $\mathscr{R}_{\alpha}(\mathscr{F}_1) \subset \mathscr{F}_1$ for all sufficiently small α .

Then \mathscr{R} can be iterated infinitely many times on $f = e^{2\pi i \alpha} h$, where $h \in \mathscr{F}_1$ and α is of sufficiently **high type** (the continued fraction coefficients are all large enough).

イロン 不得 とくほ とくほ とうほう

MLC conjecture

Conjecture (Douady-Hubbard, 1980s)

The Mandelbrot set is locally connected.

For quadratic polynomials $p_c(z) = z^2 + c$,

 $MLC \Longrightarrow NILF$ conjecture $\iff HD$ conjecture.

• • • • • • • • • • • •

MLC conjecture

Conjecture (Douady-Hubbard, 1980s)

The Mandelbrot set is locally connected.

For quadratic polynomials $p_c(z) = z^2 + c$,

 $MLC \Longrightarrow NILF$ conjecture $\iff HD$ conjecture.

MLC holds in the following cases:

- At most finitely renormalizable (Yoccoz 1990s);
- Some infinitely renormalizable (Lyubich 1997, Jiang 2003, Kahn 2006, Kahn-Lyubich 2008-2009, Levin 2011, Cheraghi-Shishikura 2015, Dudko-Lyubich 2023-2024);
- On \mathbb{R} (Dudko-Kahn-Lyubich 2023, announced).

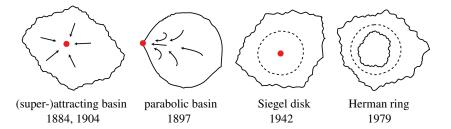
Cheraghi and Shishikura's proof is based on the near-parabolic renormalization.

Sullivan's eventually periodic theorem

Theorem (Sullivan, Ann. Math., 1985)

The Fatou components of all rational maps are eventually periodic.

Classification of periodic Fatou components of rational maps:



Regularity of boundaries of Fatou components

Theorem (Roesch-Yin, Sci. China Math., 2022)

All bounded attracting and parabolic components of polynomials are Jordan domains.

Puzzle techniques: Kozlovski-Shen-van Strien nest + Kahn-Lyubich modulus lemma.

Regularity of boundaries of Fatou components

Theorem (Roesch-Yin, Sci. China Math., 2022)

All bounded attracting and parabolic components of polynomials are Jordan domains.

Puzzle techniques: Kozlovski-Shen-van Strien nest + Kahn-Lyubich modulus lemma.

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of any rational map (deg ≥ 2) is a Jordan domain.

Theorem (Petersen-Zakeri, Ann. Math., 2004)

For almost all α , the Siegel disk of $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ is a Jordan domain.

Theorem (Zhang, Invent. Math., 2011)

All bounded type Siegel disks of rational maps are quasi-disks.

Tools: Blaschke models + surgery + (relative Schwarz lemma).

High type Siegel disks

Theorem (Shishikura-Y., JEMS, 2024)

Let α be of sufficiently **high type**, and assume that $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ has a Siegel disk Δ_{α} . Then

- $\partial \Delta_{\alpha}$ is a Jordan curve; and
- $\partial \Delta_{\alpha}$ contains a critical point if and only if α is of Herman type.

High type:

$$\mathrm{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \geq N \text{ for all } n \geq 1 \}$$

for some large N.

Main tool: Near-parabolic renormalization (based on Inou-Shishikura's class \mathscr{F}_1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

High type Siegel disks

Theorem (Shishikura-Y., JEMS, 2024)

Let α be of sufficiently **high type**, and assume that $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ has a Siegel disk Δ_{α} . Then

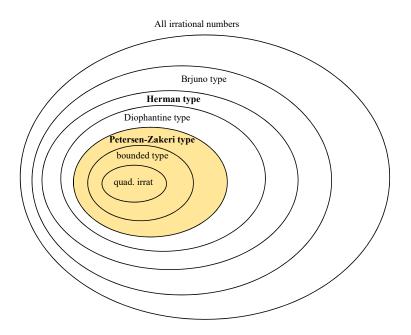
- $\partial \Delta_{\alpha}$ is a Jordan curve; and
- $\partial \Delta_{\alpha}$ contains a critical point if and only if α is of Herman type.

High type:

$$\mathrm{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \geq N \text{ for all } n \geq 1 \}$$

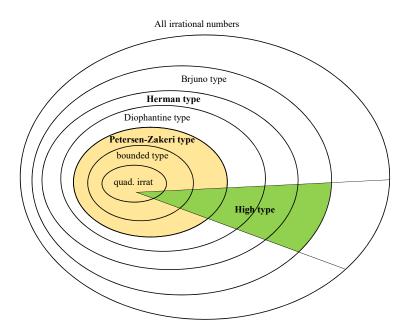
for some large N.

Main tool: Near-parabolic renormalization (based on Inou-Shishikura's class \mathscr{F}_1). Cheraghi (2022, arXiv), independently, gave another proof.



æ

ヘロト ヘアト ヘビト ヘビト



æ

ヘロト ヘアト ヘビト ヘビト

Cantor Julia sets

Theorem (Qiu-Yin, Sci. China Math., 2009; Kozlovski-van Strien, PLMS, 2009)

The Julia set of a polynomial is a Cantor set **if and only if** each critical component of the filled-in Julia set is aperiodic.

Theorem (Yin-Zhai, Forum Math., 2010)

Cantor Julia sets of rational maps carry no invariant line fields.

Cantor Julia sets

Theorem (Qiu-Yin, Sci. China Math., 2009; Kozlovski-van Strien, PLMS, 2009)

The Julia set of a polynomial is a Cantor set **if and only if** each critical component of the filled-in Julia set is aperiodic.

Theorem (Yin-Zhai, Forum Math., 2010)

Cantor Julia sets of rational maps carry no invariant line fields.

Question (folk)

Does there exist a Cantor Julia set having positive area?

Based on the parabolic perturbation and Shishikura's result:

Theorem (Y., IMRN, 2021)

There exist Cantor Julia sets having Hausdorff dimension two.

YANG Fei (Nanjing University)

• • • • • • • • • • • •

More Julia sets of positive area

Theorem (Y., 2024)

For any meromorphic function $f : \mathbb{C} \to \widehat{\mathbb{C}}$ in Shishikura's class \mathscr{F}_0 , there exists $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $f_{\alpha} = e^{2\pi i \alpha} f$ has a Cremer point (resp. Siegel disk) and a Julia set of positive area.

In particular, the following maps belong to \mathscr{F}_0 :

Operator Polynomials:
$$z \mapsto z(1+z)^n$$
 for $n \ge 1$, and $z \mapsto z(1+z)^2(1+\frac{1}{2}z)$,

2 *Rationals*:
$$z \mapsto z/(1-z)^n$$
 for $n \ge 2$, and $z \mapsto z(1-z)^3/(1-\frac{8}{9}z)$.

Remark:

- Every $f_{\alpha} = e^{2\pi i \alpha} f$ with $f : \mathbb{C} \to \widehat{\mathbb{C}}$ in \mathscr{F}_0 is **not** polynomial-like renorm;
- Polynomial case: Qiao-Qu (2020) for n = 2, X. Zhang (2022) for $n \ge 21$.

The renormalization in the proof **depends only on near-parabolic**, but not on sector and others.

Other harvests and further developments

- Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;
- Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture;
- Scheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
- **Y**. (Adv. Math. 2024): Smooth degenerate Herman rings;

.

Other harvests and further developments

- Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;
- Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture;
- Scheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
- Y. (Adv. Math. 2024): Smooth degenerate Herman rings;

Extend to higher local degrees:

- (Chéritat 2022): Invariant class for unicritical maps (No numerical calculations);
- (Y. 2024) Invariant class for cubic unicritical maps (following Inou-Shishikura).

Developments:

.

- Extend high type to more rotation numbers: [Kapiamba 2022], [D. Dudko-Lyubich 2022], [Qu 2024];
- Extend unicritical to multi-critical?

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Other harvests and further developments

- Cheraghi (CMP 2013, ASENS 2019): Zero area of post-critical set;
- Cheraghi-Chéritat (Invent. Math. 2015): Marmi-Moussa-Yoccoz conjecture;
- Scheraghi-DeZotti-Y. (arXiv 2020): H-dim of post-critical set and dim paradox;
- Smooth degenerate Herman rings;

Extend to higher local degrees:

- (Chéritat 2022): Invariant class for unicritical maps (No numerical calculations);
- (Y. 2024) Invariant class for cubic unicritical maps (following Inou-Shishikura).

Developments:

.

- Extend high type to more rotation numbers: [Kapiamba 2022], [D. Dudko-Lyubich 2022], [Qu 2024];
- Extend unicritical to multi-critical?

Questions

- (1) (Milnor 1992) Does there exist a Cremer Julia set of area zero?
- (2) (Avila-Lyubich 2015) Does there exist $c \in \mathbb{R}$ s.t. $\operatorname{area}(J(z^2 + c)) > 0$?

Thank you for your attention!

<ロ> < 回 > < 回 > < 回 > <