Dimension paradox of irrationally indifferent attractors

YANG Fei

Nanjing University

joint with Davoud Cheraghi and Alexandre DeZotti

INTERNATIONAL CONFERENCE OF COMPLEX ANALYSIS IN CHINA 2019

Hangzhou, Zhejiang University September 18, 2019

Consider the non-linear holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C} \setminus \{0\}$.

 $f: U \to \mathbb{C}$ defines a dynamical system: $z_{n+1} = f(z_n)$.

Consider the non-linear holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C} \setminus \{0\}$.

 $f: U \to \mathbb{C}$ defines a dynamical system: $z_{n+1} = f(z_n)$. Question (Poincaré): Whether *f* is locally linearizable?

$$egin{array}{cccc} D \subset U & \stackrel{f}{\longrightarrow} f(D) \ & & & & & \downarrow \phi \ & & & & \downarrow \phi \ & & & & & & \downarrow \phi \ & & & & & & & & \lambda \mathbb{D} \end{array}$$

• • • • • • • • • • • • • •

Consider the non-linear holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C} \setminus \{0\}$.

 $f: U \to \mathbb{C}$ defines a dynamical system: $z_{n+1} = f(z_n)$. Question (Poincaré): Whether *f* is locally linearizable?

$$egin{array}{ccc} D \subset U & \stackrel{f}{\longrightarrow} f(D) \ & & & & & \downarrow \phi \ & & & & \downarrow \phi \ & & & & & & \downarrow \phi \ & & & & & & & & \lambda \mathbb{D} \end{array}$$

• $0 < |\lambda| < 1 \text{ or } |\lambda| > 1: (\checkmark, \text{Keenigs}, 1884)$

Consider the non-linear holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C} \setminus \{0\}$.

 $f: U \to \mathbb{C}$ defines a dynamical system: $z_{n+1} = f(z_n)$. Question (Poincaré): Whether *f* is locally linearizable?

$$egin{array}{cccc} D \subset U & \stackrel{f}{\longrightarrow} f(D) \ & & & & & \downarrow \phi \ & & & & \downarrow \phi \ & & & & & & \downarrow \phi \ & & & & & & & & \lambda \mathbb{D} \end{array}$$

• $0 < |\lambda| < 1 \text{ or } |\lambda| > 1$: (\checkmark , Kanigs, 1884)

2 $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{Q}$: rationally indifferent, parabolic (×, Lean-Fatou, 1897)

Consider the non-linear holomorphic germ

$$f(z) = \lambda z + a_2 z^2 + \cdots$$
, where $\lambda \in \mathbb{C} \setminus \{0\}$.

 $f: U \to \mathbb{C}$ defines a dynamical system: $z_{n+1} = f(z_n)$. Question (Poincaré): Whether *f* is locally linearizable?

$$egin{array}{cccc} D \subset U & \stackrel{f}{\longrightarrow} f(D) \ & & & & & \downarrow \phi \ & & & & \downarrow \phi \ & & & & & & \downarrow \phi \ & & & & & & & & \lambda \mathbb{D} \end{array}$$

● $0 < |\lambda| < 1 \text{ or } |\lambda| > 1$: (\checkmark , Kænigs, 1884)

(a) $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{Q}$: rationally indifferent, parabolic (×, Lean-Fatou, 1897)

(a) $\lambda = e^{2\pi i \alpha}$ with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$: irrationally indifferent

イロト イポト イラト イラト

Near 0, $f(z) = e^{2\pi i \alpha} z + O(z^2)$ is close to the aperiodic rotation $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ ($\alpha \in \mathbb{R} \setminus \mathbb{Q}$).

Question: Does the dynamics of *f* behave like R_{α} ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Near 0, $f(z) = e^{2\pi i \alpha} z + O(z^2)$ is close to the aperiodic rotation $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ ($\alpha \in \mathbb{R} \setminus \mathbb{Q}$).

Question: Does the dynamics of *f* behave like R_{α} ?

Kasner (1912): Always Yes \rightsquigarrow Pfeiffer (1917): Sometimes no \rightsquigarrow Julia (1919): Always No

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Near 0, $f(z) = e^{2\pi i \alpha} z + O(z^2)$ is close to the aperiodic rotation $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ $(\alpha \in \mathbb{R} \setminus \mathbb{Q}).$

Question: Does the dynamics of *f* behave like R_{α} ?

Kasner (1912): Always Yes → Pfeiffer (1917): Sometimes no → Julia (1919): Always No

Theorem (Cremer, 1928)

Any rational map f (deg $(f) = d \ge 2$) cannot be locally linearized at 0 if

$$\limsup_{q\to\infty} \sqrt[d^q]{1/|\lambda^q-1|} = \infty.$$

イロト イポト イヨト イヨト

Near 0, $f(z) = e^{2\pi i \alpha} z + O(z^2)$ is close to the aperiodic rotation $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ ($\alpha \in \mathbb{R} \setminus \mathbb{Q}$).

Question: Does the dynamics of *f* behave like R_{α} ?

Kasner (1912): Always Yes → Pfeiffer (1917): Sometimes no → Julia (1919): Always No

Theorem (Cremer, 1928)

Any rational map f (deg $(f) = d \ge 2$) cannot be locally linearized at 0 if

$$\limsup_{q\to\infty}\sqrt[d^q]{1/|\lambda^q-1|}=\infty.$$

Theorem (Siegel, 1942)

Any holomorphic germ f can be locally linearized at 0 if

 $1/|\lambda^q - 1| < P(q)$ for all $q \ge 1$, where P is a polynomial.

Near 0, $f(z) = e^{2\pi i \alpha} z + O(z^2)$ is close to the aperiodic rotation $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ ($\alpha \in \mathbb{R} \setminus \mathbb{Q}$).

Question: Does the dynamics of *f* behave like R_{α} ?

Kasner (1912): Always Yes → Pfeiffer (1917): Sometimes no → Julia (1919): Always No

Theorem (Cremer, 1928)

Any rational map f (deg $(f) = d \ge 2$) cannot be locally linearized at 0 if

$$\limsup_{q\to\infty}\sqrt[d^q]{1/|\lambda^q-1|}=\infty.$$

Theorem (Siegel, 1942)

Any holomorphic germ f can be locally linearized at 0 if

 $1/|\lambda^q - 1| < P(q)$ for all $q \ge 1$, where P is a polynomial.

Irrational numbers

Diophantine condition of order $\leq \kappa$:

$$\mathscr{D}(\kappa) := \left\{ \alpha \in (0,1) : \exists \varepsilon > 0 \text{ s.t. } \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}} \text{ for every rational } \frac{p}{q} \right\}.$$

э

Irrational numbers

Diophantine condition of order $\leq \kappa$:

$$\mathscr{D}(\kappa) := \left\{ \alpha \in (0,1) : \exists \varepsilon > 0 \text{ s.t. } \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}} \text{ for every rational } \frac{p}{q} \right\}.$$

• $\cap_{\kappa>2}\mathscr{D}(\kappa)$ has full measure.

э

ヘロト ヘアト ヘビト ヘビト

Irrational numbers

Diophantine condition of order $\leq \kappa$:

$$\mathscr{D}(\kappa) := \left\{ \alpha \in (0,1) : \exists \varepsilon > 0 \text{ s.t. } \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}} \text{ for every rational } \frac{p}{q} \right\}.$$

- $\ \, \bullet \ \, \cap_{\kappa>2} \mathscr{D}(\kappa) \text{ has full measure.}$

$$\alpha = [0; a_1, a_2, \cdots, a_n, \cdots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots}}}$$

satisfies $\sup_n \{a_n\} < \infty$. • Let $p_n/q_n = [0; a_1, \cdots, a_n]$. Then $\alpha \in \mathscr{D} = \bigcup_{\kappa \ge 2} \mathscr{D}(\kappa) \Leftrightarrow \sup_n \{\frac{\log q_{n+1}}{\log q_n}\} < \infty$.

Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if α belongs to

$$\mathscr{B} = \left\{ \alpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} \frac{\log q_{n+1}}{q_n} < \infty \right\}.$$

Remark: $\mathscr{D}(2) \subsetneq \mathscr{D} \subsetneq \mathscr{B}$.

イロト イポト イヨト イヨト

Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if α belongs to

$$\mathscr{B} = \left\{ lpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} \frac{\log q_{n+1}}{q_n} < \infty
ight\}.$$

Remark: $\mathscr{D}(2) \subsetneq \mathscr{D} \subsetneq \mathscr{B}$.

Theorem (Yoccoz, 1988)

If $\alpha \notin \mathcal{B}$, then $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ is not locally linearizable at the origin.

Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if α belongs to

$$\mathscr{B} = \left\{ lpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} rac{\log q_{n+1}}{q_n} < \infty
ight\}.$$

Remark: $\mathscr{D}(2) \subsetneq \mathscr{D} \subsetneq \mathscr{B}$.

Theorem (Yoccoz, 1988)

If $\alpha \notin \mathcal{B}$, then $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ is not locally linearizable at the origin.

Conjecture (Douady, 1986): If a non-linear holomorphic function (entire or rational) is locally linearizable, then the rotation number is necessarily in \mathcal{B} .

Remark: This conjecture is still open for cubic polynomials.

YANG F. (Nanjing Univ.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Siegel disk and Cremer point

The **maximal** open subset of U containing 0 in which f is conjugated to its linear part $R_{\alpha}: z \mapsto e^{2\pi i \alpha} z$ is the **Siegel disk** Δ_f centered at 0.

A Siegel disk with golden mean rotation number $\alpha = [0; 1, 1, \dots, 1, \dots]$

Siegel disk and Cremer point

The **maximal** open subset of U containing 0 in which f is conjugated to its linear part $R_{\alpha} : z \mapsto e^{2\pi i \alpha} z$ is the **Siegel disk** Δ_f centered at 0.

A Siegel disk with golden mean rotation number $\alpha = [0; 1, 1, \dots, 1, \dots]$

If f not linearizable at 0, then 0 is called a **Cremer point** of f.

Aim and motivation

A rational map either acts ergodically on the sphere, or its **post-critical set** P(f) (i.e., the closure of the critical orbits) behaves as a measure-theoretic **attractor**:

$$\lim_{n\to\infty} d_{\widehat{\mathbb{C}}}(f^{\circ n}(z), P(f)) = 0, \text{ for almost all } z \in J(f).$$

In particular, any Cremer point or the boundary point of a Siegel disk of a rational map is accumulated by at least one critical orbit in the Julia set.

• • • • • • • • • • • • •

Aim and motivation

A rational map either acts ergodically on the sphere, or its **post-critical set** P(f) (i.e., the closure of the critical orbits) behaves as a measure-theoretic **attractor**:

$$\lim_{n\to\infty} d_{\widehat{\mathbb{C}}}(f^{\circ n}(z), P(f)) = 0, \text{ for almost all } z \in J(f).$$

In particular, any Cremer point or the boundary point of a Siegel disk of a rational map is accumulated by at least one critical orbit in the Julia set.

Aim: To understand the local dynamics near an irrationally indifferent fixed point:

- Near the closure of the Siegel disk;
- Near the Cremer point;

and to study the properties of the irrationally indifferent **attractors** (i.e., the post-critical set associated to the Siegel disk or Cremer point).

< ロ > < 同 > < 回 > < 回 > < 回 > <

The boundaries of Siegel disks

Recall

$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2 \text{ with } \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Topology of the boundaries of Siegel disks:

- (Douady-Herman, Zakeri, Shishikura, Zhang, 1980s-2011): For rational f with $\deg(f) \ge 2$, $\partial \Delta_f$ is a Jordan curve if α is of **bounded type**.
- (Petersen-Zakeri, 2004): for almost all α , $\partial \Delta_{P_{\alpha}}$ is a Jordan curve.
- (Zhang, 2014): for all non-linear poly. f and **almost all** α , $\partial \Delta_f$ is a Jordan curve.
- (Geyer, Chéritat, Keen-Zhang, Zakeri, Zhang, 2001-2016) The boundaries of the Siegel disks of some transcendental entire functions are Jordan domains.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The boundaries of Siegel disks

Recall

$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2 \text{ with } \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Topology of the boundaries of Siegel disks:

- (Douady-Herman, Zakeri, Shishikura, Zhang, 1980s-2011): For rational f with $\deg(f) \ge 2$, $\partial \Delta_f$ is a Jordan curve if α is of **bounded type**.
- (Petersen-Zakeri, 2004): for almost all α , $\partial \Delta_{P_{\alpha}}$ is a Jordan curve.
- (Zhang, 2014): for all non-linear poly. f and **almost all** α , $\partial \Delta_f$ is a Jordan curve.
- (Geyer, Chéritat, Keen-Zhang, Zakeri, Zhang, 2001-2016) The boundaries of the Siegel disks of some transcendental entire functions are Jordan domains.
- (Chéritat, 2011) $\exists f \text{ s.t. } \partial \Delta_f \text{ is a pseudo circle } (f \text{ is injective in Dom}(f)).$

< ロ > < 同 > < 回 > < 回 > .

The boundaries of Siegel disks

Recall

$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2 \text{ with } \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Topology of the boundaries of Siegel disks:

- (Douady-Herman, Zakeri, Shishikura, Zhang, 1980s-2011): For rational f with $\deg(f) \ge 2$, $\partial \Delta_f$ is a Jordan curve if α is of **bounded type**.
- (Petersen-Zakeri, 2004): for almost all α , $\partial \Delta_{P_{\alpha}}$ is a Jordan curve.
- (Zhang, 2014): for all non-linear poly. f and **almost all** α , $\partial \Delta_f$ is a Jordan curve.
- (Geyer, Chéritat, Keen-Zhang, Zakeri, Zhang, 2001-2016) The boundaries of the Siegel disks of some **transcendental entire functions** are Jordan domains.
- (Chéritat, 2011) $\exists f \text{ s.t. } \partial \Delta_f \text{ is a pseudo circle } (f \text{ is injective in Dom}(f)).$

Remark: The topology of $\partial \Delta_{P_{\alpha}}$ has not been completely understood.

-

ヘロン ふぼう くほう くほう

The boundaries of Siegel disks

Recall

$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2 \text{ with } \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Geometry of the boundaries of Siegel disks:

- (McMullen, 1998): $\dim_H(\partial \Delta_{P_{\alpha}}) \leq \dim_H(J_{P_{\alpha}}) < 2$ if α is of **bounded type**.
- (Graczyk-Jones, 2002): if $\partial \Delta_f$ quasicircle and cp $\in \partial \Delta_f$, then dim_{*H*}($\partial \Delta_f$) > 1.
- (Avila-Buff-Chéritat, 2004): $\exists \alpha \text{ s.t. } \partial \Delta_{P_{\alpha}} \text{ is smooth, hence } \dim_{H}(\partial \Delta_{P_{\alpha}}) = 1.$
- (Petersen-Zakeri, 2004): for almost all α , area $(\partial \Delta_{P_{\alpha}}) = \operatorname{area}(J_{P_{\alpha}}) = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The boundaries of Siegel disks

Recall

$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2 \text{ with } \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Geometry of the boundaries of Siegel disks:

- (McMullen, 1998): $\dim_H(\partial \Delta_{P_{\alpha}}) \leq \dim_H(J_{P_{\alpha}}) < 2$ if α is of **bounded type**.
- (Graczyk-Jones, 2002): if $\partial \Delta_f$ quasicircle and cp $\in \partial \Delta_f$, then dim_{*H*}($\partial \Delta_f$) > 1.
- (Avila-Buff-Chéritat, 2004): $\exists \alpha \text{ s.t. } \partial \Delta_{P_{\alpha}} \text{ is smooth, hence } \dim_{H}(\partial \Delta_{P_{\alpha}}) = 1.$
- (Petersen-Zakeri, 2004): for almost all α , area $(\partial \Delta_{P_{\alpha}}) = area(J_{P_{\alpha}}) = 0$.

Problem: What are the topology and geometry of the attractors of the Cremer case?

-

イロン イボン イヨン イヨン

Hedgehogs

Let f be a non-linear holomorphic system with the form

$$f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$$
, where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Pérez-Marco (1997) proved that if f and f^{-1} are defined and univalent in a **neighborhood** of the closure of a Jordan domain $U \subset \mathbb{C}$ containing 0, then there exists a compact, full and connected set $K = K_{f,U}$ contained in \overline{U} such that $0 \in K$, $K \cap \partial U \neq \emptyset$ and $f(K) = f^{-1}(K) = K$.

• • • • • • • • • • • • •

Hedgehogs

Let f be a non-linear holomorphic system with the form

$$f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$$
, where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Pérez-Marco (1997) proved that if f and f^{-1} are defined and univalent in a **neighborhood** of the closure of a Jordan domain $U \subset \mathbb{C}$ containing 0, then there exists a compact, full and connected set $K = K_{f,U}$ contained in \overline{U} such that $0 \in K$, $K \cap \partial U \neq \emptyset$ and $f(K) = f^{-1}(K) = K$.

Siegel compacta: *K*'s **hedgehog**: if *K* is not contained in the closure of a linearization domain.

イロト イポト イラト イラ

Hedgehogs

Let f be a non-linear holomorphic system with the form

$$f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$$
, where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Pérez-Marco (1997) proved that if f and f^{-1} are defined and univalent in a **neighborhood** of the closure of a Jordan domain $U \subset \mathbb{C}$ containing 0, then there exists a compact, full and connected set $K = K_{f,U}$ contained in \overline{U} such that $0 \in K$, $K \cap \partial U \neq \emptyset$ and $f(K) = f^{-1}(K) = K$.

Siegel compacta: K's

hedgehog: if K is not contained in the closure of a linearization domain.

If ∂U is C^1 -smooth, Pérez-Marco (1994, 1996) proved that

• *K* is in unique;

• the non-linearizable hedgehogs (i.e. 0 is a Cremer point) have no interior and they are **not locally connected** at any point different from the fixed point.

(日)

YANG F. (Nanjing Univ.)

Dimension paradox of irrationally indifferent attractors

Hangzhou, September 18, 2019 10 / 26

2

イロン イボン イヨン イヨン

Milnor (2006): "As far as I know, no useful picture of the Julia set near such a point has ever been produced, either by computer or by theory."

A hedgehog of a toy model (not a holomorphic map) by Chéritat

Parabolic bifurcation

The irrationally indifferent and parabolic cases are related by dynamical bifurcations. It was known that the Julia set **does not depend continuously** at the parabolic parameters. One of the important phenomenon is **parabolic bifurcation**.

Parabolic bifurcation

Although the Julia set **does not depend continuously** at the parabolic parameters, it turns out that the (perturbed) Fatou coordinate does (restricted on some truncated chessboard).

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Developments

The main tools to analyze such bifurcation are **Fatou coordinates** and **horn maps**, which were developed by:

- Douady-Hubbard (1984-85): landing of external rays at the M-set (Orsay notes), the straightening of polynomial-like maps;
- Lavaurs (1989): the non-local connectivity of the connectedness locus of cubic polynomials (Ph.d thesis);
- Douady (1994): the discontinuity of the Julia sets;
- Shishikura (1998): the Hausdorff dim of ∂M (an invariant class);
- S Yampolsky (2003): cylinder renormalization for critical circle maps;
- Inou-Shishikura (2006): near-parabolic renormalization (a new invariant class).

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Developments

The main tools to analyze such bifurcation are **Fatou coordinates** and **horn maps**, which were developed by:

- Douady-Hubbard (1984-85): landing of external rays at the M-set (Orsay notes), the straightening of polynomial-like maps;
- Lavaurs (1989): the non-local connectivity of the connectedness locus of cubic polynomials (Ph.d thesis);
- Douady (1994): the discontinuity of the Julia sets;
- Shishikura (1998): the Hausdorff dim of ∂M (an invariant class);
- S Yampolsky (2003): cylinder renormalization for critical circle maps;
- Inou-Shishikura (2006): near-parabolic renormalization (a new invariant class).

Remark: Near-parabolic renormalization \mathscr{R} (acted on Inou-Shishikura's class) is a very powerful tool to study the quadratic maps with irrationally indifferent fixed points. In particular, one can use this tool to study the properties of Cremer attractors.

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Inou-Shishikura's class

Let $P(z) = z(1+z)^2$. Then *P* has a parabolic fixed point at 0 and **two simple** critical points -1 and $cp_P = -\frac{1}{3}$ with P(-1) = 0 and $cv = P(cp_P) = -\frac{4}{27}$.

Inou-Shishikura's class

Let $P(z) = z(1+z)^2$. Then *P* has a parabolic fixed point at 0 and **two simple** critical points -1 and $cp_P = -\frac{1}{3}$ with P(-1) = 0 and $cv = P(cp_P) = -\frac{4}{27}$. Let *V* be a Jordan domain of \mathbb{C} containing 0 and define

$$IS_0 := \left\{ f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \middle| \begin{array}{c} \varphi : V \to \mathbb{C} \text{ is univalent,} \\ \varphi(0) = 0, \ \varphi'(0) = 1 \end{array} \right\}.$$

Inou-Shishikura's class

Let $P(z) = z(1+z)^2$. Then *P* has a parabolic fixed point at 0 and **two simple** critical points -1 and $cp_P = -\frac{1}{3}$ with P(-1) = 0 and $cv = P(cp_P) = -\frac{4}{27}$. Let *V* be a Jordan domain of \mathbb{C} containing 0 and define

$$IS_0 := \left\{ f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} \middle| \begin{array}{c} \varphi : V \to \mathbb{C} \text{ is univalent,} \\ \varphi(0) = 0, \ \varphi'(0) = 1 \end{array} \right\}.$$

$$IS_{\alpha} = \{f(z) = f_0(e^{2\pi i\alpha}z) : e^{-2\pi i\alpha} \cdot Dom(f_0) \to \mathbb{C} \mid f_0 \in IS_0\}.$$

Let *N* be a positive integer. Denote

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \subseteq V'$ and an integer $N \ge 2$ such that for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in (0, 1/N]$, then $\mathscr{R}f$ is well-defined so that

$$\mathscr{R}f = P \circ \psi^{-1} \in IS_{1/\alpha}.$$

Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$, then \mathscr{R} can be iterated infinitely many times.

Let *N* be a positive integer. Denote

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \subseteq V'$ and an integer $N \ge 2$ such that for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in (0, 1/N]$, then $\Re f$ is well-defined so that

$$\mathscr{R}f = P \circ \psi^{-1} \in IS_{1/\alpha}.$$

Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$, then \mathscr{R} can be iterated infinitely many times.

Problem: How large is N?

Let *N* be a positive integer. Denote

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \subseteq V'$ and an integer $N \ge 2$ such that for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in (0, 1/N]$, then $\Re f$ is well-defined so that

$$\mathscr{R}f = P \circ \psi^{-1} \in IS_{1/\alpha}.$$

Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$, then \mathscr{R} can be iterated infinitely many times.

Problem: How large is N? 100?

Let *N* be a positive integer. Denote

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}.$$

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying $V \subseteq V'$ and an integer $N \ge 2$ such that for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in (0, 1/N]$, then $\mathscr{R}f$ is well-defined so that

$$\mathscr{R}f = P \circ \psi^{-1} \in IS_{1/\alpha}.$$

Moreover, ψ extends to a univalent function from V' to \mathbb{C} . In particular, if $\alpha \in HT_N$, then \mathscr{R} can be iterated infinitely many times.

Problem: How large is N? 100? Maybe even 10^6 is a good result.

Post-critical sets and Herman's condition

Theorem (Inou-Shishikura, 2006)

 $\forall \alpha \in \operatorname{HT}_N \text{ and all } f \in IS_{\alpha} \cup \{P_{\alpha}\}, \operatorname{Dom}(f) \text{ contains the post-critical set}$

$$\Lambda_f = \bigcup_{k \in \mathbb{N}} f^{\circ k}(\mathbf{cp}_f).$$

Remark: $\Lambda_f \cup \Delta_f$ is the **maximal hedgehog** of f centered at 0, where Δ_f is the Siegel disk (if any) of f centered at 0.

Post-critical sets and Herman's condition

Theorem (Inou-Shishikura, 2006)

 $\forall \alpha \in \operatorname{HT}_N \text{ and all } f \in IS_{\alpha} \cup \{P_{\alpha}\}, \operatorname{Dom}(f) \text{ contains the post-critical set}$

$$\Lambda_f = \bigcup_{k \in \mathbb{N}} f^{\circ k}(\mathrm{cp}_f).$$

Remark: $\Lambda_f \cup \Delta_f$ is the **maximal hedgehog** of f centered at 0, where Δ_f is the Siegel disk (if any) of f centered at 0.

Herman's condition:

 $\mathscr{H} := \left\{ \alpha \in (0,1) \setminus \mathbb{Q} \middle| \begin{array}{c} \text{every orientation-preserving analytic circle diffeo.} \\ \text{of rotation number } \alpha \text{ is anal. conj. to } z \mapsto e^{2\pi i \alpha} z \end{array} \right\}.$

Herman-Yoccoz (1984): $\mathscr{D} \subsetneq \mathscr{H} \subsetneq \mathscr{B}$; and Yoccoz (2002): Arithmetic characterization of \mathscr{H} .

(日)

Topology of attractors

Theorem (Cheraghi, 2017)

 $\forall \alpha \in \operatorname{HT}_N$ and all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$, one of the following statements hold:

- If $\alpha \in \mathscr{H}$, then $\operatorname{cp}_f \in \partial \Delta_f$ and $\Lambda_f = \partial \Delta_f$ is a Jordan curve;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, then $cp_f \notin \partial \Delta_f$ and Λ_f is a **one-side hairy circle**;
- If $\alpha \notin \mathcal{B}$, then 0 is Cremer and Λ_f is a **Cantor bouquet**.

Topology of attractors

Theorem (Cheraghi, 2017)

 $\forall \alpha \in \operatorname{HT}_N$ and all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$, one of the following statements hold:

- If $\alpha \in \mathscr{H}$, then $cp_f \in \partial \Delta_f$ and $\Lambda_f = \partial \Delta_f$ is a Jordan curve;
- If $\alpha \in \mathscr{B} \setminus \mathscr{H}$, then $cp_f \notin \partial \Delta_f$ and Λ_f is a **one-side hairy circle**;
- If $\alpha \notin \mathcal{B}$, then 0 is Cremer and Λ_f is a **Cantor bouquet**.

Independently,

Theorem (Shishikura-Y., 2016)

- $\forall \alpha \in \operatorname{HT}_N \text{ and all } f \in IS_{\alpha} \cup \{P_{\alpha}\}, \text{ then }$
 - If $\alpha \in \mathscr{B}$ ($\Leftrightarrow \Delta_f \neq \emptyset$), then $\partial \Delta_f$ is a **Jordan curve**;
 - $\operatorname{cp}_f \in \partial \Delta_f$ if and only if $\alpha \in \mathscr{H}$.

Remark: Ghys, Herman, Pérez-Marco, Geyer, Chéritat-Roesch, Benini-Fagella studied the sufficiency of the Herman's condition.

イロト イポト イヨト イヨト

Cantor bouquet

Definition

A **Cantor bouquet** is a compact subset of the plane which is homeomorphic to a set of the form

 $\{re^{2\pi i\theta} \in \mathbb{C}: \mathbf{0} \le r \le R(\theta)\},\$

where $R : \mathbb{R}/\mathbb{Z} \to [0,\infty)$ satisfies

- $R^{-1}(0)$ is dense in \mathbb{R}/\mathbb{Z} ;
- $(\mathbb{R}/\mathbb{Z}) \setminus R^{-1}(0) \text{ is dense in } \mathbb{R}/\mathbb{Z};$
- for each $\theta_0 \in \mathbb{R}/\mathbb{Z}$,

$$\limsup_{\theta \to \theta_0^+} R(\theta) = R(\theta_0) = \limsup_{\theta \to \theta_0^-} R(\theta).$$

< 口 > < 同

One-sided hairy circle

Definition

A **one-sided hairy circle** is a compact subset of the plane which is homeomorphic to a set of the form

 $\{re^{2\pi i\theta} \in \mathbb{C}: 1 \le r \le R(\theta)\},\$

where $R : \mathbb{R}/\mathbb{Z} \to [1,\infty)$ satisfies

- $R^{-1}(1)$ is dense in \mathbb{R}/\mathbb{Z} ;
- $(\mathbb{R}/\mathbb{Z}) \setminus R^{-1}(1) \text{ is dense in } \mathbb{R}/\mathbb{Z};$
- for each $\theta_0 \in \mathbb{R}/\mathbb{Z}$,

$$\limsup_{\theta \to \theta_0^+} R(\theta) = R(\theta_0) = \limsup_{\theta \to \theta_0^-} R(\theta).$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cheraghi (2013, 2019): Area $(\Lambda_f) = 0$ for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in HT_N$.

Cheraghi (2013, 2019): Area $(\Lambda_f) = 0$ for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in HT_N$.

Theorem (Cheraghi-DeZotti-Y., 2019)

There exists N > 0 *such that for all* $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ *with* $\alpha \in HT_N \setminus \mathcal{H}$ *, then*

 $\dim_H(\Lambda_f \setminus \overline{\Delta}_f) = 2.$

Cheraghi (2013, 2019): Area $(\Lambda_f) = 0$ for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in HT_N$.

Theorem (Cheraghi-DeZotti-Y., 2019)

There exists N > 0 *such that for all* $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ *with* $\alpha \in HT_N \setminus \mathcal{H}$ *, then*

 $\dim_H(\Lambda_f \setminus \overline{\Delta}_f) = 2.$

Biswas constructed some non-linearizable hedgehogs of holomorphic germs s.t.

- (2008) they have Hausdorff dimension one;
- (2016) they have positive area.

Cheraghi (2013, 2019): Area $(\Lambda_f) = 0$ for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in HT_N$.

Theorem (Cheraghi-DeZotti-Y., 2019) There exists N > 0 such that for all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$ with $\alpha \in HT_N \setminus \mathscr{H}$, then $\dim_H(\Lambda_f \setminus \overline{\Delta}_f) = 2.$

Biswas constructed some non-linearizable hedgehogs of holomorphic germs s.t.

- (2008) they have Hausdorff dimension one;
- (2016) they have positive area.

Corollary

For all $\alpha \in \operatorname{HT}_N \setminus \mathscr{H}, J(P_\alpha)$ has Hausdorff dimension two.

イロト イポト イヨト イヨト

We use \mathscr{E}_f to denote the set of *one-sided* endpoints (which are not contained in $\overline{\Delta}_f$) of the components of $\Lambda_f \setminus \overline{\Delta}_f$.

Theorem (Dimension paradox)

There exist two infinite sets $J \subset \mathscr{B} \setminus \mathscr{H}$ and $S \subset (\mathbb{R} \setminus \mathbb{Q}) \setminus \mathscr{B}$ such that for all $\alpha \in (J \cup S) \cap HT_N$ and all $f \in IS_{\alpha} \cup \{P_{\alpha}\}$, we have

$$\dim_H \left((\Lambda_f \setminus \overline{\Delta}_f) \setminus \mathscr{E}_f \right) = 1 \quad and \quad \dim_H (\mathscr{E}_f) = 2.$$

Remark: *J* contains $\alpha = [0; a_1, a_2, \cdots]$, where

$$a_1 = N$$
 and $a_{n+1} = \lfloor e^{2^n a_n} \rfloor$ for $n \ge 1$

and *S* contains $\alpha = [0; a_1, a_2, \cdots]$, where

$$a_1 = N$$
 and $a_{n+1} = \lfloor e^{e^{a_n}} \rfloor$ for $n \ge 1$.

Results on exponential maps

Devaney-Krych (1984): $J(\lambda e^z)$ is a Cantor bouquet, for $0 < \lambda < 1/e$. McMullen (1987): dim_{*H*} $(J(\lambda e^z)) = 2$ for all $\lambda \in \mathbb{C} \setminus \{0\}$.

Silva (1988): hairs are C^{∞} . Karpińska (1999): dim_{*H*}(*end points*) = 2 and dim_{*H*}(*hairs without end points*) = 1.

YANG F. (Nanjing Univ.)

McMullen's criterion

Proposition (McMullen, 1987)

Let $\{\mathscr{K}_n\}_{n=0}^{\infty}$ be a sequence satisfying the **nesting conditions**. Let $\delta_{n+1} > 0$ such that for all $1 \le i \le l_n$ and $K_{n,i} \in \mathscr{K}_n$, we have

density
$$(\mathscr{K}_{n+1}, K_{n,i}) := \text{density}\left(\bigcup_{j=1}^{l_{n+1}} K_{n+1,j}, K_{n,i}\right) \ge \delta_{n+1}.$$

Suppose that for each $K_{n,i} \in \mathscr{K}_n$ with $n \ge 1$,

diam $K_{n,i} \leq d_n < 1$, where $d_n \to 0$ as $n \to \infty$.

Then the Hausdorff dimension of $\bigcap_n \mathscr{K}_n$ satisfies

$$\dim_H\left(\bigcap_{n\in\mathbb{N}}\mathscr{K}_n\right)\geq 2-\limsup_{n\to\infty}\frac{\sum_{k=1}^{n+1}|\log\delta_k|}{|\log d_n|}.$$

YANG F. (Nanjing Univ.)

Find sets satisfying the nesting conditions

THANK YOU FOR YOUR ATTENTION !

イロト イポト イヨト イヨト