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Linearization problem

Consider the non-linear holomorphic germ

f(z) =Az+ax?+---, where A € C\ {0}.

f: U — C defines a dynamical system: z,+1 = f(zy)-
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Consider the non-linear holomorphic germ
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Question (Poincaré): Whether f is locally linearizable?
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Q@ 0<|A|<lor|A|>1: (v, Keenigs, 1884)
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Linearization problem

Consider the non-linear holomorphic germ
f(z) =Az+ax?+---, where A € C\ {0}.

f: U — C defines a dynamical system: z,1 = (zn)-

Question (Poincaré): Whether f is locally linearizable?

pcu —L f(p)

e e

D Az AD

Q@ 0<|A|<lor|A|>1: (v, Keenigs, 1884)
@ 1 =M% with o € Q: rationally indifferent, parabolic (<, Lean-Fatou, 1897)
Q@ A =*™% with o € R\ Q: irrationally indifferent
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Irrationally indifferent

Near 0, f(z) = e*™%z 4+ 0O(z2) is close to the aperiodic rotation Ry : z — 2%z
p

(@ e R\Q).

Question: Does the dynamics of f behave like Ry, ?
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Irrationally indifferent

Near 0, f(z) = *™%z+ O(z?) is close to the aperiodic rotation Rg : z+— €>71%z

(@ e R\Q).

Question: Does the dynamics of f behave like Ry, ?

Kasner (1912): Always Yes ~» Pfeiffer (1917): Sometimes no ~~
Julia (1919): Always No
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Irrationally indifferent

Near 0, f(z) = *™%z+ O(z?) is close to the aperiodic rotation Rg : z+— €>71%z

(@ e R\Q).

Question: Does the dynamics of f behave like Ry, ?

Kasner (1912): Always Yes ~» Pfeiffer (1917): Sometimes no ~~
Julia (1919): Always No

Theorem (Cremer, 1928)
Any rational map f (deg(f) = d > 2) cannot be locally linearized at 0 if

limsup 4/1/|A9 — 1] = co.

g—re
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Irrationally indifferent

Near 0, f(z) = *™%z+ O(z?) is close to the aperiodic rotation Rg : z+— €>71%z

(@ e R\Q).

Question: Does the dynamics of f behave like Ry, ?

Kasner (1912): Always Yes ~» Pfeiffer (1917): Sometimes no ~~
Julia (1919): Always No

Theorem (Cremer, 1928)
Any rational map f (deg(f) = d > 2) cannot be locally linearized at 0 if

limsup 4/1/|A4 — 1| = oo.

g—re

Theorem (Siegel, 1942)

Any holomorphic germ f can be locally linearized at 0 if

1/|A?—1| < P(q) for all ¢ > 1, where P is a polynomial.
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Irrational numbers

Diophantine condition of order < x:

€
o— I—)‘ > — for every rational 1—7} .
q| 4 q

2(x) = {a €(0,1): Je>0s.t.
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Irrational numbers

Diophantine condition of order < x:

p

€
2(x) = {a €(0,1): Je>0s.t. |la— —‘ > — foreveryrationallz}.
q q q

Q@ Ny=22(k) has full measure.
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Irrational numbers

Diophantine condition of order < x:

p

€
2(x) = {Oc €(0,1): Je>0s.t. |la— ‘ > — foreveryrationalp}.
q q

Q@ Ny=22(k) has full measure.

© 2(2) has measure 0 and a € 2(2) is called bounded type (constant type). This
is equivalent to the continued fractional expansion

o= [0201702,"‘ aany"'] =

satisfies sup, {an} < o.

@ Letpy/gn=[0sa1,-+,a,). Then & € 7 = Uxn 7(K) > sup, { ezl } < oo
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Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if & belongs to

%:{ae(o,l)\Q: ;logﬂ@w}.

n

Remark: 2(2) C 2 C A.
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Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if & belongs to

%:{ae(o,l)\Q: ;logﬂ@w}.

n

Remark: 2(2) C 2 C A.

=

Theorem (Yoccoz, 1988)

If & & B, then Py(z) = €M%z 472 is not locally linearizable at the origin.
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Brjuno type

Theorem (Brjuno, 1965)

Any holomorphic germ f can be locally linearized at 0 if o belongs to

@:{ae(o,l)\Q: ;logﬂow}.

n

Remark: 2(2) C 2 C A.

=

Theorem (Yoccoz, 1988)
If & & B, then Py(z) = €M%z 472 is not locally linearizable at the origin. J

Conjecture (Douady, 1986): If a non-linear holomorphic function (entire or rational)
is locally linearizable, then the rotation number is necessarily in Z.

Remark: This conjecture is still open for cubic polynomials.
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Siegel disk and Cremer point

The maximal open subset of U containing 0 in which f is conjugated to its linear part
Rg : 2+ €M% is the Siegel disk Ay centered at 0.

A Siegel disk with golden mean rotation number @ = [0;1,1,---,1,---]
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Siegel disk and Cremer point

The maximal open subset of U containing 0 in which f is conjugated to its linear part
Rg : 2+ €M% is the Siegel disk Ay centered at 0.

A Siegel disk with golden mean rotation number @ = [0;1,1,---,1,---]

If f not linearizable at 0, then 0 is called a Cremer point of f.
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Aim and motivation

A rational map either acts ergodically on the sphere, or its post-critical set P(f) (i.e.,
the closure of the critical orbits) behaves as a measure-theoretic attractor:

r}i_r}rolod@(fo"(z),P(f)) =0, for almost all z € J(f).

In particular, any Cremer point or the boundary point of a Siegel disk of a rational
map is accumulated by at least one critical orbit in the Julia set.
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Aim and motivation

A rational map either acts ergodically on the sphere, or its post-critical set P(f) (i.e.,
the closure of the critical orbits) behaves as a measure-theoretic attractor:

r}i_r}rolod@(fo"(z),P(f)) =0, for almost all z € J(f).

In particular, any Cremer point or the boundary point of a Siegel disk of a rational
map is accumulated by at least one critical orbit in the Julia set.

Aim: To understand the local dynamics near an irrationally indifferent fixed point:
@ Near the closure of the Siegel disk;
@ Near the Cremer point;

and to study the properties of the irrationally indifferent attractors (i.e., the
post-critical set associated to the Siegel disk or Cremer point).
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Topology and geometry

The boundaries of Siegel disks

Recall _
Po(z) = ¥M% + 22 with a € R\ Q.

Topology of the boundaries of Siegel disks:
@ (Douady-Herman, Zakeri, Shishikura, Zhang, 1980s-2011): For rational f with
deg(f) > 2, dAy is a Jordan curve if a is of bounded type.
o (Petersen-Zakeri, 2004): for almost all &, dAp, is a Jordan curve.
@ (Zhang, 2014): for all non-linear poly. f and almost all o, dAy is a Jordan curve.

o (Geyer, Chéritat, Keen-Zhang, Zakeri, Zhang, 2001-2016) The boundaries of the
Siegel disks of some transcendental entire functions are Jordan domains.
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Topology and geometry

The boundaries of Siegel disks

Recall _
Po(z) = ¥M% + 22 with a € R\ Q.

Topology of the boundaries of Siegel disks:
@ (Douady-Herman, Zakeri, Shishikura, Zhang, 1980s-2011): For rational f with
deg(f) > 2, dAy is a Jordan curve if a is of bounded type.
o (Petersen-Zakeri, 2004): for almost all &, dAp, is a Jordan curve.
@ (Zhang, 2014): for all non-linear poly. f and almost all o, dAy is a Jordan curve.

o (Geyer, Chéritat, Keen-Zhang, Zakeri, Zhang, 2001-2016) The boundaries of the
Siegel disks of some transcendental entire functions are Jordan domains.

o (Chéritat, 2011) 3 f s.t. dAy is a pseudo circle (f is injective in Dom(f)).

Remark: The topology of dAp, has not been completely understood.
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Topology and geometry

The boundaries of Siegel disks

Recall A
Py(z) = e¥M% + 22 with o € R\ Q.

Geometry of the boundaries of Siegel disks:
@ (McMullen, 1998): dimy (dAp,) < dimg(Jp,) < 2 if a is of bounded type.
o (Graczyk-Jones, 2002): if dAs quasicircle and cp € dAy, then dimy (dAr) > 1.
o (Avila-Buff-Chéritat, 2004): Ja s.t. dAp, is smooth, hence dimg (dAp,) = 1.
@ (Petersen-Zakeri, 2004): for almost all ¢, area(dAp,) = area(Jp,) = 0.
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Topology and geometry

The boundaries of Siegel disks

Recall A
Py(z) = ™%+ 22 with o € R\ Q.

Geometry of the boundaries of Siegel disks:
@ (McMullen, 1998): dimy (dAp,) < dimg(Jp,) < 2 if a is of bounded type.
o (Graczyk-Jones, 2002): if dAs quasicircle and cp € dAy, then dimy (dAr) > 1.

o (Avila-Buff-Chéritat, 2004): Ja s.t. dAp,, is smooth, hence dimy (dAp, ) = 1.
@ (Petersen-Zakeri, 2004): for almost all ¢, area(dAp,) = area(Jp,) = 0.

Problem: What are the topology and geometry of the attractors of the Cremer case?
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Hedgehogs

Let f be a non-linear holomorphic system with the form

f(z) = ™%+ 0(2%), where a € R\ Q.

Pérez-Marco (1997) proved that if f and f~! are defined and univalent in a
neighborhood of the closure of a Jordan domain U C C containing 0, then there
exists a compact, full and connected set K = K 7 contained in U such that 0 € K,
KNoU#0andf(K)=f"'(K) =K.
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Hedgehogs

Let f be a non-linear holomorphic system with the form
f(z) =M%z 4+ 6(7%), where a € R\ Q.

Pérez-Marco (1997) proved that if f and f~! are defined and univalent in a
neighborhood of the closure of a Jordan domain U C C containing 0, then there
exists a compact, full and connected set K = K 7 contained in U such that 0 € K,
KNoU#0andf(K) =f"'(K) =K.

Siegel compacta: K’s
hedgehog: if K is not contained in the closure of a linearization domain.
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Hedgehogs

Let f be a non-linear holomorphic system with the form
f(z) = ™%+ 0(2%), where a € R\ Q.

Pérez-Marco (1997) proved that if f and f~! are defined and univalent in a
neighborhood of the closure of a Jordan domain U C C containing 0, then there
exists a compact, full and connected set K = K 7 contained in U such that 0 € K,
KNoU#0andf(K) =f"'(K) =K.
Siegel compacta: K’s
hedgehog: if K is not contained in the closure of a linearization domain.
If U is C'-smooth, Pérez-Marco (1994, 1996) proved that

@ K is in unique;

o the non-linearizable hedgehogs (i.e. 0 is a Cremer point) have no interior and

they are not locally connected at any point different from the fixed point.
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What do hedgehogs look like?
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What do hedgehogs look like?

Milnor (2006): “As far as I know, no useful picture of the Julia set near such a point
has ever been produced, either by computer or by theory.”
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What do hedgehogs look like?

A hedgehog of a toy model (not a holomorphic map) by Chéritat
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Parabolic bifurcation

The irrationally indifferent and parabolic cases are related by dynamical bifurcations.
It was known that the Julia set does not depend continuously at the parabolic
parameters. One of the important phenomenon is parabolic bifurcation.
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Parabolic bifurcation

Although the Julia set does not depend continuously at the parabolic parameters, it
turns out that the (perturbed) Fatou coordinate does (restricted on some truncated
chessboard).

eV
=
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Developments

The main tools to analyze such bifurcation are Fatou coordinates and horn maps,
which were developed by:

@ Douady-Hubbard (1984-85): landing of external rays at the M-set (Orsay notes),
the straightening of polynomial-like maps;

@ Lavaurs (1989): the non-local connectivity of the connectedness locus of cubic
polynomials (Ph.d thesis);

© Douady (1994): the discontinuity of the Julia sets;
@ Shishikura (1998): the Hausdorff dim of dM (an invariant class);
@ Yampolsky (2003): cylinder renormalization for critical circle maps;

@ Inou-Shishikura (2006): near-parabolic renormalization (a new invariant class).
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Developments

The main tools to analyze such bifurcation are Fatou coordinates and horn maps,
which were developed by:

@ Douady-Hubbard (1984-85): landing of external rays at the M-set (Orsay notes),
the straightening of polynomial-like maps;

@ Lavaurs (1989): the non-local connectivity of the connectedness locus of cubic
polynomials (Ph.d thesis);

© Douady (1994): the discontinuity of the Julia sets;

@ Shishikura (1998): the Hausdorff dim of dM (an invariant class);

@ Yampolsky (2003): cylinder renormalization for critical circle maps;

@ Inou-Shishikura (2006): near-parabolic renormalization (a new invariant class).
Remark: Near-parabolic renormalization & (acted on Inou-Shishikura’s class) is a

very powerful tool to study the quadratic maps with irrationally indifferent fixed
points. In particular, one can use this tool to study the properties of Cremer attractors.
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Inou-Shishikura’s class

Let P(z) = z(1 +2)?. Then P has a parabolic fixed point at 0 and two simple critical
points —1 and cpp = —1 with P(—1) =0 and cv = P(cpp) = — 5.
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Inou-Shishikura’s class

Let P(z) = z(1 +2)?. Then P has a parabolic fixed point at 0 and two simple critical
points —1 and cpp = —1 with P(—1) =0 and cv = P(cpp) = — . Let V be a Jordan
domain of C containing 0 and define

1S = {f:Poqfl . o(V) %:\

@ : V — C is univalent, }
¢(0)=0, ¢'(0)=1
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Inou-Shishikura’s class

Let P(z) = z(1 +2)?. Then P has a parabolic fixed point at 0 and two simple critical
points —1 and cpp = —1 with P(—1) =0 and cv = P(cpp) = — . Let V be a Jordan
domain of C containing 0 and define

1S := {f:Po<P_1:(P(V)—>(C‘ @ : V — Cis univalent, }

¢(0)=0, 9'(0) =1

A {1+2)
N N N —
9 \ cpp .0\) /c/vx 0 \\)
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Infinite renormalization

Let N be a positive integer. Denote

HTy :={a=1[0;a1,az,---] € (0,1)\Q | a, > N forall n > 1}.

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying V @ V' and an integer N > 2 such
that for all f € ISq U {Py } with o € (0,1/N], then Zf is well-defined so that

Hf =Poy ' €IS 4.

Moreover, W extends to a univalent function from V' to C. In particular, if o« € HTy,
then Z can be iterated infinitely many times.
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Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying V @ V' and an integer N > 2 such
that for all f € ISq U {Py } with o € (0,1/N], then Zf is well-defined so that

Hf =Poy ' €IS 4.

Moreover, W extends to a univalent function from V' to C. In particular, if o« € HTy,
then Z can be iterated infinitely many times.

Problem: How large is N?
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Infinite renormalization

Let N be a positive integer. Denote

HTy :={a=1[0;a1,az,---] € (0,1)\Q | a, > N forall n > 1}.

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying V @ V' and an integer N > 2 such
that for all f € ISq U {Py } with o € (0,1/N], then Zf is well-defined so that

Hf =Poy ' €IS 4.

Moreover, W extends to a univalent function from V' to C. In particular, if o« € HTy,
then Z can be iterated infinitely many times.

Problem: How large is N? 100?
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Infinite renormalization

Let N be a positive integer. Denote

HTy :={a=1[0;a1,az,---] € (0,1)\Q | a, > N forall n > 1}.

Theorem (Inou-Shishikura, 2006)

There are two Jordan domains V and V' satisfying V @ V' and an integer N > 2 such
that for all f € ISq U {Py } with o € (0,1/N], then Zf is well-defined so that

Hf =Poy ' €IS 4.

Moreover, W extends to a univalent function from V' to C. In particular, if o« € HTy,
then Z can be iterated infinitely many times.

Problem: How large is N? 100? Maybe even 10° is a good result.
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Post-critical sets and Herman’s condition

Theorem (Inou-Shishikura, 2006)
VYo € HTy and all f € ISy U{Py }, Dom(f) contains the post-critical set

Ay = |k (epy).

keN

Remark: Ay U Ay is the maximal hedgehog of f centered at 0, where Ay is the Siegel
disk (if any) of f centered at 0.
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Post-critical sets and Herman’s condition

Theorem (Inou-Shishikura, 2006)
VYo € HTy and all f € ISy U{Py }, Dom(f) contains the post-critical set

Ay = |k (epy).

keN

Remark: Ay U Ay is the maximal hedgehog of f centered at 0, where Ay is the Siegel
disk (if any) of f centered at 0.

Herman’s condition:

A= {ae(o,l)\@

every orientation-preserving analytic circle diffeo. }

of rotation number « is anal. conj. to z — ¢**i%

Herman-Yoccoz (1984): & C ¢ C A, and
Yoccoz (2002): Arithmetic characterization of 7.
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Topology of attractors

Theorem (Cheraghi, 2017)

VYo € HTy and all f € IS U{ Py}, one of the following statements hold:
o Ifa €, thencp; € dAr and Ay = Ay is a Jordan curve;
o Ifa € B\, then cpy & dAr and Ay is a one-side hairy circle;
o If a & B, then 0 is Cremer and Ay is a Cantor bouquet.
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Topology of attractors

Theorem (Cheraghi, 2017)

VYo € HTy and all f € IS U{ Py}, one of the following statements hold:
o Ifa €, thencp; € dAr and Ay = Ay is a Jordan curve;
o Ifa € B\, then cpy & dAr and Ay is a one-side hairy circle;
o If a & B, then 0 is Cremer and Ay is a Cantor bouquet.

Independently,

Theorem (Shishikura-Y., 2016)

VYo € HTy and all f € ISy U{Py}, then
o Ifa€ B (& Ay #0), then dAs is a Jordan curve;
° cps € dAr ifand only if o € H.

Remark: Ghys, Herman, Pérez-Marco, Geyer, Chéritat-Roesch, Benini-Fagella
studied the sufficiency of the Herman’s condition.
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Definition

A Cantor bouquet is a compact subset of
the plane which is homeomorphic to a set
of the form

{r?™0 cC:0<r<R(8)},
where R : R/Z — [0, ) satisfies
@ R '(0) is dense in R/Z;
Q@ (R/Z)\R~'(0) is dense in R/Z;
@ foreach 6y € R/Z,

limsupR(0) = R(6y) = limsupR(8).

66, 06,

YANG E. (Nanjing Univ.)

Cantor bouquet

Hangzhou, September 18, 2019
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One-sided hairy circle

Definition

A one-sided hairy circle is a compact
subset of the plane which is
homeomorphic to a set of the form

{r?™0 cC:1<r<R(8)},
where R : R/Z — [1,0) satisfies
@ R7'(1)is dense in R/Z;
@ (R/Z)\R™!(1) is dense in R/Z;
@ foreach 6y e R/Z,

limsupR(0) = R(6y) = limsupR(0).
66, 06,
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Main results

Cheraghi (2013, 2019): Area(Ay) =0 for all f € ISq U {Py } with @ € HT.
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Cheraghi (2013, 2019): Area(Ay) =0 for all f € ISq U {Py } with @ € HT.

Theorem (Cheraghi-DeZotti-Y., 2019)
There exists N > 0 such that for all f € ISq U{Pq} with oo € HIy \ S, then

dimH(Af \Zf) =2,
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Main results

Cheraghi (2013, 2019): Area(Ay) =0 for all f € ISq U {Py } with @ € HT.

Theorem (Cheraghi-DeZotti-Y., 2019)
There exists N > 0 such that for all f € ISq U{Pq} with oo € HIy \ S, then

dimg (Ar \ Ar) = 2.

Biswas constructed some non-linearizable hedgehogs of holomorphic germs s.t.
@ (2008) they have Hausdorff dimension one;

@ (2016) they have positive area.
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Main results

Cheraghi (2013, 2019): Area(As) =0 for all f € ISq U {Py} with o € HTy.

Theorem (Cheraghi-DeZotti-Y., 2019)
There exists N > 0 such that for all f € ISq U{Pq} with oo € HIy \ S, then

dimg (Ar \ Ar) = 2.

Biswas constructed some non-linearizable hedgehogs of holomorphic germs s.t.
@ (2008) they have Hausdorff dimension one;
@ (2016) they have positive area.

Corollary
For all @ € HTy \ A7, J(P¢) has Hausdorff dimension two.
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Main results
We use &; to denote the - set of one-sided endpoints (which are not contained in Zf) of
the components of Ay \ Ay.

Theorem (Dimension paradox)

There exist two infinite sets ] C B\ and S C (R\ Q) \ & such that for all
a € (JUS)NHTy and all f € ISq U{Py}, we have

dimy ((Af\A)\ &) =1 and dimy(&)=2.

Remark: J contains o = [0;ay,as,-- |, where
ay=Nanda,, | = Lezn””J forn>1
and S contains @ = [0;ay,ay, - - -], where

ay=Nanda,,; = || forn> 1.
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Results on exponential maps

Devaney-Krych (1984): J(Ae?) is a Cantor bouquet, for 0 < A < 1/e.
McMullen (1987): dimy (J(Ae?)) =2 forall A € C\ {0}.

Silva (1988): hairs are C*.
Karpiriska (1999): dimy (end points) = 2 and dimg (hairs without end points) = 1.
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McMullen’s criterion

Proposition (McMullen, 1987)

Let {7}, be a sequence satisfying the nesting conditions. Let &, > 0 such that for all
1<i<l,and K, ; € J#;,, we have

ln+l
density (A1, K i) 1= denSitY( U KnJrl,]'aKn,i) > 8pp1-
Jj=1
Suppose that for each K, ; € %, withn > 1,

diamK,, ; < d, < 1, where d, — 0 as n — oo.

Then the Hausdorff dimension of 1, /7, satisfies

ntl S
dimy; () A7) 2 2 limsup Zi=L 108 &
. B [logdp|
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Find sets satisfying the nesting conditions

+ Do

1
Qp41
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THANK YOU FOR YOUR ATTENTION !

YANG F. (Nan;
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