The high type quadratic Siegel disks are Jordan domains

YANG Fei

Nanjing University

joint with Mitsuhiro Shishikura
Topics in Complex Dynamics 2019
From combinatorics to transcendental dynamics

Barcelona University, Barcelona
March 25, 2019

Siegel disk and continued fractions

Let $0<\alpha<1$ be irrational, f non-linear holo., $f(0)=0$ and $f^{\prime}(0)=e^{2 \pi i \alpha}$.
The maximal region in which f is conjugate to $R_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z$ is a simply connected domain Δ_{f} called the Siegel disk of f centered at 0 .

Siegel disk and continued fractions

Let $0<\alpha<1$ be irrational, f non-linear holo., $f(0)=0$ and $f^{\prime}(0)=e^{2 \pi i \alpha}$.
The maximal region in which f is conjugate to $R_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z$ is a simply connected domain Δ_{f} called the Siegel disk of f centered at 0 .

Let

$$
\alpha=\left[0 ; a_{1}, a_{2}, \cdots, a_{n}, \cdots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

be the continued fraction expansion of α. Then

$$
\frac{p_{n}}{q_{n}}=\left[0 ; a_{1}, a_{2}, \cdots, a_{n}\right]=\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}}}}
$$

converges to α exponentially fast.

Siegel-Brjuno-Yoccoz

Diophantine condition of order $\leq \kappa$:

$$
\mathscr{D}(\kappa):=\left\{\alpha \in(0,1): \exists \varepsilon>0 \text { s.t. }\left|\alpha-\frac{p}{q}\right|>\frac{\varepsilon}{q^{\kappa}} \text { for every rational } \frac{p}{q}\right\} .
$$

Theorem (Siegel, 1942)

The holomorphic germ f has a Siegel disk at 0 if $\alpha \in \mathscr{D}(\kappa)$ for some $\kappa \geq 2$.

- $\cap_{\kappa>2} \mathscr{D}(\kappa)$ has full measure.
- $\mathscr{D}(2)$ has measure 0 and $\alpha \in \mathscr{D}(2)$ is of bounded type, i.e. $\sup _{n}\left\{a_{n}\right\}<\infty$.
- $\alpha \in \mathscr{D}=\cup_{\kappa \geq 2} \mathscr{D}(\kappa) \Leftrightarrow$ $\sup _{n}\left\{\frac{\log q_{n+1}}{\log q_{n}}\right\}<\infty$.

Siegel-Brjuno-Yoccoz

Diophantine condition of order $\leq \kappa$:

$$
\mathscr{D}(\kappa):=\left\{\alpha \in(0,1): \exists \varepsilon>0 \text { s.t. }\left|\alpha-\frac{p}{q}\right|>\frac{\varepsilon}{q^{\kappa}} \text { for every rational } \frac{p}{q}\right\} .
$$

Theorem (Siegel, 1942)

The holomorphic germ f has a Siegel disk at 0 if $\alpha \in \mathscr{D}(\kappa)$ for some $\kappa \geq 2$.

- $\cap_{\kappa>2} \mathscr{D}(\kappa)$ has full measure.
- $\mathscr{D}(2)$ has measure 0 and $\alpha \in \mathscr{D}(2)$ is of bounded type, i.e. $\sup _{n}\left\{a_{n}\right\}<\infty$.
- $\alpha \in \mathscr{D}=\cup_{\kappa \geq 2} \mathscr{D}(\kappa) \Leftrightarrow$ $\sup _{n}\left\{\frac{\log q_{n+1}}{\log q_{n}}\right\}<\infty$.

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$
\mathscr{B}=\left\{\alpha \in(0,1) \backslash \mathbb{Q}: \sum_{n} \frac{\log q_{n+1}}{q_{n}}<\infty\right\}
$$

Remark: $\mathscr{D} \subsetneq \mathscr{B}$.

Siegel-Brjuno-Yoccoz

Conjecture (Douady, 1986)

If a non-linear holomorphic function (entire or rational) has a Siegel disk, then the rotation number is necessarily in \mathscr{B}.

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$
\mathscr{B}=\left\{\alpha \in(0,1) \backslash \mathbb{Q}: \sum_{n} \frac{\log q_{n+1}}{q_{n}}<\infty\right\} .
$$

Remark: $\mathscr{D} \subsetneq \mathscr{B}$.

Siegel-Brjuno-Yoccoz

Conjecture (Douady, 1986)

If a non-linear holomorphic function (entire or rational) has a Siegel disk, then the rotation number is necessarily in \mathscr{B}.

Theorem (Yoccoz, 1988)

If $\alpha \notin \mathscr{B}$, then $P_{\alpha}(z)=e^{2 \pi i \alpha} z+z^{2}$ has no Siegel disk at the origin.

Remark: Douady's conjecture is still open even for cubic polynomials.

Some progresses have been made by Pérez-Marco, Geyer, Okuyama, Manlove, Cheraghi ...

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$
\mathscr{B}=\left\{\alpha \in(0,1) \backslash \mathbb{Q}: \sum_{n} \frac{\log q_{n+1}}{q_{n}}<\infty\right\}
$$

Remark: $\mathscr{D} \subsetneq \mathscr{B}$.

Siegel disks

The Siegel disk of $f(z)=e^{2 \pi i \alpha} z+z^{2}$, where

$$
\alpha=\frac{\sqrt{5}-1}{2}=[0 ; 1,1,1, \cdots]
$$

The Siegel disk of $f(z)=\frac{e^{\pi \mathrm{i}(\sqrt{5}-1)} z}{(1-z)^{2}}$

Siegel disks

The Siegel disk of $f(z)=e^{\pi \mathrm{i}(\sqrt{5}-1)} z e^{z}$

The Siegel disk of $f(z)=e^{\pi \mathrm{i}(\sqrt{5}-1) / 2} \sin (z)$

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is always a Jordan domain.

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is always a Jordan domain.

When $\alpha \in \mathscr{D}(2)$ is of bounded type:
Theorem (Zhang, 2011)
The bounded type Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map ($\operatorname{deg} \geq 2$) is always a Jordan domain.

When $\alpha \in \mathscr{D}(2)$ is of bounded type:

Theorem (Zhang, 2011)
The bounded type Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map

Theorem (Zakeri, 2010)

The bounded type Siegel disk of a non-linear $f(z)=P(z) e^{Q(z)}$ is a quasi-disk, where P, Q are polys., $f(0)=0, f^{\prime}(0)=\lambda=e^{2 \pi \mathrm{i} \alpha}$.

- (Geyer, 2001) $f(z)=\lambda z e^{z}$
- (Keen-Zhang, 2009)

$$
f(z)=\left(\lambda z+a z^{2}\right) e^{z}
$$

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is always a Jordan domain.

When $\alpha \in \mathscr{D}(2)$ is of bounded type:
Theorem (Zhang, 2011)
The bounded type Siegel disk of a rational map ($\operatorname{deg} \geq 2$) is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map
- (Zhang, 2005) $f(z)=\lambda \sin (z)$
- (Y., 2013) $f(z)=\lambda \sin (z)+a \sin ^{3}(z)$
- (Chéritat, 2006)
some "simple" entire functions
- (Chéritat-Epstein, 2018)
some holo. maps with at most 3 singular values.

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is always a Jordan domain.
When $\alpha \in \mathscr{P} \mathscr{Z}$ is of Petersen-Zakeri type:

$$
\log a_{n}=O(\sqrt{n}) \text { as } n \rightarrow \infty,
$$

where $\mathscr{D}(2) \subsetneq \mathscr{P} \mathscr{Z} \subset \cap_{\kappa>2} \mathscr{D}(\kappa)$, and $\mathscr{P} \mathscr{Z}$ has full measure in $(0,1)$:

Theorem (Petersen-Zakeri, 2004)
For all $\alpha \in \mathscr{P} \mathscr{Z}$, the Siegel disk of
$P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$ is a Jordan domain.

- (Zhang, 2014) all polynomials
- (Zhang, 2016) $f(z)=e^{2 \pi i \alpha} \sin (z)$

Douady-Sullivan's conjecture

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map $(\operatorname{deg} \geq 2)$ is always a Jordan domain.

When $\alpha \in \mathscr{P} \mathscr{Z}$ is of Petersen-Zakeri type:

$$
\log a_{n}=O(\sqrt{n}) \text { as } n \rightarrow \infty,
$$

where $\mathscr{D}(2) \subsetneq \mathscr{P} \mathscr{Z} \subset \cap_{\kappa>2} \mathscr{D}(\kappa)$, and $\mathscr{P} \mathscr{Z}$ has full measure in (0,1):

Theorem (Petersen-Zakeri, 2004)
For all $\alpha \in \mathscr{P} \mathscr{Z}$, the Siegel disk of $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$ is a Jordan domain.

- (Zhang, 2014) all polynomials
- (Zhang, 2016) $f(z)=e^{2 \pi i \alpha} \sin (z)$

Theorem (Avila-Buff-Chéritat, 2004)

$\exists \alpha$ s.t. the boundary of the Siegel disk of P_{α} is smooth.

Theorem (Buff-Chéritat, 2007)

$\exists \alpha$ s.t. the boundary of the Siegel disk of P_{α} is C^{r} but not C^{r+1}.

Some related work has been done by Pérez-Marco, Rogers, Shen, ...

Counter-examples

Siegel disk of $f(z)=\lambda e^{z-\lambda}$, where $\lambda=e^{\pi \mathrm{i}(\sqrt{5}-1)}$:

Theorem (Chéritat, 2011)

There is a holomorphic germf such that the corresponding Siegel disk Δ_{f} is compactly contained in $\operatorname{Dom}(f)$ but $\partial \Delta_{f}$ is a pseudo-circle, which is not locally connected.

Herman's conjecture

Conjecture (Herman, 1986?)

The boundary of the Siegel disk (non-linear, entire or rational) contains at least one singular value if and only if the rotation number $\alpha \in \mathscr{H}$.

Herman's condition:

$$
\mathscr{H}:=\left\{\alpha \in(0,1) \backslash \mathbb{Q} \left\lvert\, \begin{array}{l}
\text { every orientation-preserving analytic circle diffeo. } \\
\text { of rotation number } \alpha \text { is anal. conj. to } z \mapsto e^{2 \pi \mathrm{i} \alpha} z
\end{array}\right.\right\} .
$$

- (Herman-Yoccoz, 1984): $\mathscr{D} \subsetneq \mathscr{H} \subsetneq \mathscr{B}$;
- (Yoccoz, 2002): Arithmetic characterization of \mathscr{H} :

$$
\mathscr{H}=\left\{\alpha \in \mathscr{B}: \forall m \geq 0, \exists n>m \text { s.t. } r_{\alpha_{n-1}} \circ \cdots \circ r_{\alpha_{m}}(0) \geq \mathscr{B}\left(\alpha_{n}\right)\right\},
$$

where $\alpha_{k}=\left[0 ; a_{k+1}, a_{k+2}, \cdots\right], \mathscr{B}\left(\alpha_{n}\right)$ is the Brjuno sum of α_{n} and

$$
r_{\alpha}(x)= \begin{cases}\frac{1}{\alpha}\left(x-\log \frac{1}{\alpha}+1\right) & \text { if } \quad x \geq \log \frac{1}{\alpha} \\ e^{x} & \text { if } \quad x<\log \frac{1}{\alpha}\end{cases}
$$

Herman's conjecture

Conjecture (Herman, 1986?)

The boundary of the Siegel disk (non-linear, entire or rational) contains at least one singular value if and only if the rotation number $\alpha \in \mathscr{H}$.

Herman's conjecture (the 'if' part) holds in the following cases:

- (Ghys, 1984): $\Delta_{f} \Subset \operatorname{Dom}(f)$ and $\partial \Delta_{f}$ is a Jordan curve.
- (Herman, 1985): $f(z)=z^{d}+c$ and $f(z)=e^{a z}$, where $d \geq 2$ and $a \in \mathbb{C} \backslash\{0\}$.
- (Rogers, 1998): f polynomial, then $\partial \Delta_{f}$ contains a critical point or $\partial \Delta_{f}$ is indecomposable continuum.
- (Graczyk-Świątek, 2003): $\Delta_{f} \Subset \operatorname{Dom}(f)$ and α is of bounded type.
- (Chéritat-Roesch, 2016): The poly. with two critical values.
- (Benini-Fagella, 2018): A special class of transcendental entire functions with two singular values.
Some related work has also been done by Rippon, Rempe, Buff-Fagella, ...
Buff-Chéritat-Rempe (2009) proved the 'only if' part for a family of toy models.

Main result

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently high type, and assume that $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$ has a Siegel disk Δ_{α}. Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2 \pi i \alpha} / 2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathscr{H}$.

High type: if α belongs to

$$
\mathrm{HT}_{N}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \mid a_{n} \geq N \text { for all } n \geq 1\right\}
$$

for some large N.
HT_{N} has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

Main result

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently high type, and assume that $P_{\alpha}(z)=e^{2 \pi i \alpha} z+z^{2}$ has a Siegel disk Δ_{α}. Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2 \pi i \alpha} / 2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathscr{H}$.

High type: if α belongs to

$$
\mathrm{HT}_{N}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \mid a_{n} \geq N \text { for all } n \geq 1\right\}
$$

for some large N.
HT_{N} has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

Cheraghi (2017), independently, gave another proof of the Main result. He studied the topology of the post-critical set of all maps in the Inou-Shishikura's class $I S_{\alpha}$ (in particular, of P_{α}) and for all $\alpha \in \mathrm{HT}_{N}$.

Main result

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently high type, and assume that $P_{\alpha}(z)=e^{2 \pi i \alpha} z+z^{2}$ has a Siegel disk Δ_{α}. Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2 \pi i \alpha} / 2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathscr{H}$.

High type: if α belongs to

$$
\mathrm{HT}_{N}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \mid a_{n} \geq N \text { for all } n \geq 1\right\}
$$

for some large N.
HT_{N} has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

Cheraghi (2017), independently, gave another proof of the Main result. He studied the topology of the post-critical set of all maps in the Inou-Shishikura's class $I S_{\alpha}$ (in particular, of P_{α}) and for all $\alpha \in \mathrm{HT}_{N}$.

Avila-Lyubich (2015): $\partial \Delta_{f}$ is a quasi-circle if $f \in I S_{\alpha} \cup\left\{P_{\alpha}\right\}$ with $\alpha \in \mathrm{HT}_{N} \cap \mathscr{D}(2)$.

Inou-Shishikura's invariant class

Our proof is also valid for all the maps in Inou-Shishikura's class $I S_{0}$:

$$
I S_{0} \supsetneq\left\{\begin{array}{l|l}
f: \operatorname{Dom}(f) \rightarrow \mathbb{C} & \begin{array}{l}
0 \in \operatorname{Dom}(f) \text { open } \subset \mathbb{C}, f \text { is holo. in } \operatorname{Dom}(f), \\
f(0)=0, f^{\prime}(0)=1, f: \operatorname{Dom}(f) \backslash\{0\} \rightarrow \mathbb{C} \text { © is a } \\
\text { branched covering with a unique critical value } \\
c v_{f}, \text { all critical points are of local degree 2 }
\end{array}
\end{array}\right\} .
$$

The following maps (their variations or renormalization) are contained in $I S_{\alpha}$:

- $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$;
- $g_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} \frac{z}{(1-z)^{2}}$;
- $P_{n, \alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z\left(1+\frac{z}{n}\right)^{n}, n \geq 2$;
- $E_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z e^{z}$,
- $S_{\alpha}(z)=e^{\pi \mathrm{i} \alpha} \sin (z)$.

Inou-Shishikura's invariant class

Our proof is also valid for all the maps in Inou-Shishikura's class $I S_{0}$:

$$
I S_{0} \supsetneq\{f: \operatorname{Dom}(f) \rightarrow \mathbb{C} \mid
$$ $\left.\begin{array}{l}0 \in \operatorname{Dom}(f) \text { open } \subset \mathbb{C}, f \text { is holo. in } \operatorname{Dom}(f), \\ f(0)=0, f^{\prime}(0)=1, f: \operatorname{Dom}(f) \backslash\{0\} \rightarrow \mathbb{C}^{*} \text { is a } \\ \text { branched covering with a unique critical value } \\ c v_{f}, \text { all critical points are of local degree } 2\end{array}\right\}$.

The following maps (their variations or renormalization) are contained in $I S_{\alpha}$:

- $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$;
- $g_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} \frac{z}{(1-z)^{2}}$;
- $P_{n, \alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z\left(1+\frac{z}{n}\right)^{n}, n \geq 2$;
- $E_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z e^{z}$,
- $S_{\alpha}(z)=e^{\pi i \alpha} \sin (z)$.

Theorem (Inou-Shishikura, 2008)
$\exists \varepsilon_{0}>0$, s.t. if $0<\alpha<\varepsilon_{0}$ then the near-parabolic renorm.

$$
\mathscr{R}: I S_{\alpha} \cup\left\{P_{\alpha}, g_{\alpha}\right\} \rightarrow I S_{1 / \alpha}
$$

is well-defined. Moreover,

- \mathscr{R} can be iterated infinitely many times if $\alpha \in \mathrm{HT}_{N}$ for $N>1 / \varepsilon_{0}$.
- The operator \mathscr{R} is hyperbolic.

Idea of the proof I

For $f_{0}:=f \in I S_{\alpha} \cup\left\{P_{\alpha}, g_{\alpha}\right\}$ with $\alpha_{0}:=\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in \operatorname{HT}_{N}$, define $f_{n}=\mathscr{R}^{\circ n} f_{0}$.
Then $f_{n} \in I S_{\alpha_{n}}$ for all $n \geq 1$, where $\alpha_{n}=\left[0 ; a_{n+1}, a_{n+2}, \cdots\right]$.

Idea of the proof I

For $f_{0}:=f \in I S_{\alpha} \cup\left\{P_{\alpha}, g_{\alpha}\right\}$ with $\alpha_{0}:=\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in \mathrm{HT}_{N}$, define $f_{n}=\mathscr{R}^{\circ n} f_{0}$.
Then $f_{n} \in I S_{\alpha_{n}}$ for all $n \geq 1$, where $\alpha_{n}=\left[0 ; a_{n+1}, a_{n+2}, \cdots\right]$.
For the first part (Douady-Sullivan's conjecture), the main steps are:
(1) For each $n \in \mathbb{N}$, construct a continuous curve $\gamma_{n}^{0}:[0,1] \rightarrow \mathbb{C}$ in the Fatou coordinate plane of f_{n}, s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a continuous closed curve in Δ_{n};
(2) Obtain a sequence of continuous curves $\left\{\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$ in the Fatou coordinate plane of f_{0} by renormalization tower, s.t. $\left\{\Phi_{0}^{-1}\left(\gamma_{0}^{n}\right)\right\}_{n \in \mathbb{N}}$ is a sequence of continuous closed curves in Δ_{0};
(3) Prove that $\left\{\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$ converges uniformly to a continuous curve $\gamma^{\infty}:[0,1] \rightarrow \mathbb{C}$ and show that $\Phi_{0}^{-1}\left(\gamma^{\infty}\right)$ is exactly $\partial \Delta_{0}$.

Idea of the proof I

For $f_{0}:=f \in I S_{\alpha} \cup\left\{P_{\alpha}, g_{\alpha}\right\}$ with $\alpha_{0}:=\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in \mathrm{HT}_{N}$, define $f_{n}=\mathscr{R}^{\circ n} f_{0}$.
Then $f_{n} \in I S_{\alpha_{n}}$ for all $n \geq 1$, where $\alpha_{n}=\left[0 ; a_{n+1}, a_{n+2}, \cdots\right]$.
For the first part (Douady-Sullivan's conjecture), the main steps are:
(1) For each $n \in \mathbb{N}$, construct a continuous curve $\gamma_{n}^{0}:[0,1] \rightarrow \mathbb{C}$ in the Fatou coordinate plane of f_{n}, s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a continuous closed curve in Δ_{n};
(2) Obtain a sequence of continuous curves $\left\{\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$ in the Fatou coordinate plane of f_{0} by renormalization tower, s.t. $\left\{\Phi_{0}^{-1}\left(\gamma_{0}^{n}\right)\right\}_{n \in \mathbb{N}}$ is a sequence of continuous closed curves in Δ_{0};
(3) Prove that $\left\{\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$ converges uniformly to a continuous curve $\gamma^{\infty}:[0,1] \rightarrow \mathbb{C}$ and show that $\Phi_{0}^{-1}\left(\gamma^{\infty}\right)$ is exactly $\partial \Delta_{0}$.

Key point: The convergence of the curves $\left\{\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$ is based on the contraction of renormalization operator (consider the inverse).
Note: The convergence may not be exponentially fast!

Fatou coordinates and near-parabolic renorm.

For each f_{n}, the perturbed petal \mathscr{P}_{n} and Fatou coordinate Φ_{n} satisfy $\Phi_{n}(\mathrm{cv})=1$, $\Phi_{n}\left(\mathscr{P}_{n}\right)=\left\{\zeta \in \mathbb{C}: 0<\operatorname{Re} \Phi_{n}(z)<\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}\right\}$ and $\Phi_{n}\left(f_{n}(z)\right)=\Phi_{n}(z)+1$.

Fatou coordinates and near-parabolic renorm.

Fatou coordinates and near-parabolic renorm.

Fatou coordinates and near-parabolic renorm.

Renormalization tower

The domain of definition of Φ_{n}^{-1} (of level $n \in \mathbb{N}$) can be extended to:

$$
\mathscr{D}_{n}=\Phi_{n}\left(\mathscr{P}_{n}\right) \bigcup_{j=0}^{k_{n}+k^{\prime}}\left(\Phi_{n}\left(S_{n}^{0}\right)+j\right)
$$

Renormalization tower

The domain of definition of Φ_{n}^{-1} (of level $n \in \mathbb{N}$) can be extended to:

$$
\mathscr{D}_{n}=\Phi_{n}\left(\mathscr{P}_{n}\right) \bigcup_{j=0}^{k_{n}+k^{\prime}}\left(\Phi_{n}\left(S_{n}^{0}\right)+j\right)
$$

\exists anti-holo. map $\chi_{n}: \mathscr{D}_{n} \rightarrow \mathscr{D}_{n-1}$ s.t.

and $\chi_{n}(1)=\boldsymbol{k}^{\prime \prime} \leq C$.
$\chi_{n}=\chi_{n, 0}: \mathscr{D}_{n} \rightarrow \mathscr{D}_{n-1}$ is uniformly contractive w.r.t. hyperbolic metrics.

The construction of the curves

The height $\eta_{n}=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}}$ is chosen s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a closed curve in Δ_{n}.

The construction of the curves

The height $\eta_{n}=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}}$ is chosen s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a closed curve in Δ_{n}.

The construction of the curves

The height $\eta_{n}=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}}$ is chosen s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a closed curve in Δ_{n}.

The construction of the curves

The height $\eta_{n}=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}}$ is chosen s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a closed curve in Δ_{n}.

The construction of the curves

The height $\eta_{n}=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}}$ is chosen s.t. $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a closed curve in Δ_{n}.

The sequence of curves is convergent

Proposition

There exists a constant $K>0$ such that for all $n \in \mathbb{N}$, we have

$$
\sum_{i=0}^{n} \sup _{t \in[0,1]}\left|\gamma_{0}^{j}(t)-\gamma_{0}^{i+1}(t)\right| \leq K .
$$

In particular, $\left(\gamma_{0}^{n}(t):[0,1] \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ converges uniformly as $n \rightarrow \infty$.

Key of the proof:
Study the contraction factors between the adjacent renornormalization levels.

The sequence of curves is convergent

Proposition

There exist positive constants C_{0}, C_{1} and C_{2} such that for all $n \geq 1$,
(1) (Cheraghi, 2013) If $\zeta \in \mathscr{D}_{n}$ with $\operatorname{Im} \zeta \geq 1 /\left(4 \alpha_{n}\right)$, then

$$
\left|\chi_{n}^{\prime}(\zeta)-\alpha_{n}\right| \leq C_{0} \alpha_{n} e^{-2 \pi \alpha_{n} \operatorname{Im} \zeta} .
$$

(3) (Shishikura-Y., 2018) If $\zeta \in \mathscr{D}_{n}$ with $\operatorname{Im} \zeta \in\left[-2,1 /\left(4 \alpha_{n}\right)\right]$ and $\rho:=\min \left\{|\zeta|,\left|\zeta-1 / \alpha_{n}\right|\right\} \geq C_{1}$, then

$$
\left|\chi_{n}^{\prime}(\zeta)\right| \leq \frac{\alpha_{n}}{1-e^{-2 \pi \alpha_{n}\left(\rho-C_{2} \log (2+\rho)\right)}}\left(1+\frac{C_{0}}{\rho}\right),
$$

where C_{1} and C_{2} are chosen such that $\rho-C_{2} \log (2+\rho) \geq 2$ if $\rho \geq C_{1}$.

The sequence of curves is convergent

Contraction $\asymp \alpha_{n}$

Contraction from $c \in(0,1)$ to $\asymp \alpha_{n}$

Other places:
Contraction in
hyperbolic metric

Remark: The convergence of $\left\{\gamma_{0}^{n}\right\}_{n \in \mathbb{N}}$ is exponentially fast if

- α_{0} is of bounded type; or
- $\mathscr{B}\left(\alpha_{n+1}\right) \geq C / \alpha_{n}$ for some $C>0$ (for example $a_{n+1}=e^{a_{n}}$).

Idea of the proof II

For the second part (Herman's conjecture), the main steps are:
(1) For each $n \in \mathbb{N}$, construct a canonical simple arc

$$
\gamma_{n}:[0,1) \rightarrow \mathbb{C}
$$

in \mathscr{D}_{n} with $\gamma_{n}(0)=1$, s.t.

$$
\Gamma_{n}:=\Phi_{n}^{-1}\left(\gamma_{n}\right)
$$

is a simple arc in $\operatorname{Dom}\left(f_{n}\right)$ connecting cv and 0 , and

$$
s_{n}\left(\gamma_{n-1}\right)=\gamma_{n},
$$

where $s_{n}:=\Phi_{n} \circ \mathbb{E x p}$.

Idea of the proof II

(2) Define a class of irrational numbers $\mathscr{\mathscr { H }}_{N}$ in $\mathscr{B}_{N}=\mathscr{B} \cap \mathrm{HT}_{N}$: $\widetilde{\mathscr{H}_{N}}=\left\{\begin{array}{l|l}\alpha \in \mathscr{B}_{N} & \begin{array}{l}\forall \zeta \in \gamma_{0} \backslash\{1\}, \exists n \geq 1, \text { s.t. } \\ \operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}\left(\alpha_{n}\right)\end{array}\end{array}\right\}$,
where

$$
\widetilde{\mathscr{B}}\left(\alpha_{n}\right)=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+M
$$

(0) Prove that $\mathrm{cv} \in \partial \Delta_{0}$ if and only if $\alpha \in \widetilde{\mathscr{H}_{N}}$.

Lemma

Idea of the proof II

\exists constants $D_{0}, D_{1}>0$ s.t. for all $n \geq 1$,
(1) If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta \geq \frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+D_{0}$, then

$$
\left|\operatorname{Im} s_{n}(\zeta)-\frac{1}{\alpha_{n}}\left(\operatorname{Im} \zeta-\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}\right)\right| \leq \frac{D_{1}}{\alpha_{n}}
$$

(2) If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta<\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+D_{0}$, then

$$
\left|\log \left(3+\operatorname{Im} s_{n}(\zeta)\right)-2 \pi \operatorname{Im} \zeta\right| \leq D_{1}
$$

Recall: Arithmetic characterization of \mathscr{H} (Yoccoz, 2002):

$$
\mathscr{H}=\left\{\begin{array}{l|l}
\alpha \in \mathscr{B} & \begin{array}{l}
\forall m \geq 0, \exists n>m \text { s.t. } \\
r_{n-1} \circ \cdots \circ r_{m}(0) \geq \mathscr{B}\left(\alpha_{n}\right)
\end{array}
\end{array}\right\},
$$

where

$$
r_{n}(x)= \begin{cases}\frac{1}{\alpha_{n}}\left(x-\log \frac{1}{\alpha_{n}}+1\right), & \text { if } x \geq \log \frac{1}{\alpha_{n}} \\ e^{x}, & \text { if } x<\log \frac{1}{\alpha_{n}} .\end{cases}
$$

(2) Define a class of irrational numbers $\widetilde{\mathscr{H}}_{N}$ in $\mathscr{B}_{N}=\mathscr{B} \cap \mathrm{HT}_{N}$:

$$
\widetilde{\mathscr{H}_{N}}=\left\{\begin{array}{l|l}
\alpha \in \mathscr{B}_{N} & \begin{array}{l}
\forall \zeta \in \gamma_{0} \backslash\{1\}, \exists n \geq 1, \text { s.t. } \\
\operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}\left(\alpha_{n}\right)
\end{array}
\end{array}\right\},
$$

where

$$
\widetilde{\mathscr{B}}\left(\alpha_{n}\right)=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+M
$$

(3) Prove that $\mathrm{cv} \in \partial \Delta_{0}$ if and only if $\alpha \in \widetilde{\mathscr{H}_{N}}$.
(9) Prove that $\widetilde{\mathscr{H}_{N}}=\mathscr{H} \cap \mathrm{HT}_{N}$.

Lemma

Idea of the proof II

\exists constants $D_{0}, D_{1}>0$ s.t. for all $n \geq 1$,
(1) If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta \geq \frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+D_{0}$, then

$$
\left|\operatorname{Im} s_{n}(\zeta)-\frac{1}{\alpha_{n}}\left(\operatorname{Im} \zeta-\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}\right)\right| \leq \frac{D_{1}}{\alpha_{n}} .
$$

(2) If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta<\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+D_{0}$, then

$$
\left|\log \left(3+\operatorname{Im} s_{n}(\zeta)\right)-2 \pi \operatorname{Im} \zeta\right| \leq D_{1}
$$

Recall: Arithmetic characterization of \mathscr{H}
(Yoccoz, 2002):

$$
\mathscr{H}=\left\{\begin{array}{l|l}
\alpha \in \mathscr{B} & \begin{array}{l}
\forall m \geq 0, \exists n>m \text { s.t. } \\
r_{n-1} \circ \cdots \circ r_{m}(0) \geq \mathscr{B}\left(\alpha_{n}\right)
\end{array}
\end{array}\right\},
$$

where

$$
r_{n}(x)= \begin{cases}\frac{1}{\alpha_{n}}\left(x-\log \frac{1}{\alpha_{n}}+1\right), & \text { if } x \geq \log \frac{1}{\alpha_{n}} \\ e^{x}, & \text { if } x<\log \frac{1}{\alpha_{n}}\end{cases}
$$

(2) Define a class of irrational numbers $\widetilde{\mathscr{H}}_{N}$ in $\mathscr{B}_{N}=\mathscr{B} \cap \mathrm{HT}_{N}$:

$$
\widetilde{\mathscr{H}_{N}}=\left\{\begin{array}{l|l}
\alpha \in \mathscr{B}_{N} & \begin{array}{l}
\forall \zeta \in \gamma_{0} \backslash\{1\}, \exists n \geq 1, \text { s.t. } \\
\operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}\left(\alpha_{n}\right)
\end{array}
\end{array}\right\},
$$

where

$$
\widetilde{\mathscr{B}}\left(\alpha_{n}\right)=\frac{\mathscr{B}\left(\alpha_{n+1}\right)}{2 \pi}+M
$$

(3) Prove that $\mathrm{cv} \in \partial \Delta_{0}$ if and only if $\alpha \in \widetilde{\mathscr{H}_{N}}$.
(9) Prove that $\widetilde{\mathscr{H}_{N}}=\mathscr{H} \cap \mathrm{HT}_{N}$.

THANK YOU FOR YOUR ATTENTION!

