Local connectivity of Julia sets for rational maps with Siegel disks

YANG Fei

Nanjing University

Joint with Shuyi Wang, Gaofei Zhang and Yanhua Zhang

CMS 2022 ANNUAL CONFERENCE

Wuhan

Feb 20, 2023

YANG Fei (Nanjing Univ.)

Local connectivity of Julia sets with Siegel disks

CMS 2022, Feb 20, 2023 1/12

A (1) > A (1) > A

Complex dynamical systems

$$f: X \to X$$

 $x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

イロン イロン イヨン イヨン

Complex dynamical systems

$$f: X \to X$$

 $x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map. The **Fatou set** (or stable set) of f: $F(f) := \{z \in \widehat{\mathbb{C}} : \{f^{\circ n}\}_{n \in \mathbb{N}} \text{ is equicontinuous at } z\}.$

Complex dynamical systems

$$f: X \to X$$
$$x \mapsto f(x) \mapsto f(f(x)) \mapsto f(f(f(x))) \mapsto \dots \mapsto f^{\circ n}(x) \mapsto \dots$$

Complex dynamical systems: *X* complex manifold, *f* holomorphic.

Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map. The **Fatou set** (or stable set) of f: $F(f) := \{z \in \widehat{\mathbb{C}} : \{f^{\circ n}\}_{n \in \mathbb{N}} \text{ is equicontinuous at } z\}.$ The **Julia set** (or chaotic set) $J(f) := \widehat{\mathbb{C}} \setminus F(f).$ Each connected component of F(f) (resp. J(f)) is called a **Fatou** (resp. **Julia**) component.

• • • • • • • • • • • • •

2

イロト イロト イヨト イヨト

2

イロト イロト イヨト イヨト

2

イロト イロト イヨト イヨト

YANG Fei (Nanjing Univ.)

Local connectivity of Julia sets with Siegel disks

CMS 2022, Feb 20, 2023 3 / 12

Sullivan's eventually periodic theorem

Theorem (Sullivan, Ann. Math., 1985)

The Fatou components of all rational maps are eventually periodic.

Classification of periodic Fatou components of rational maps:

parabolic basin 1897

Siegel disk 1942

Herman ring 1979

• • • • • • • • • • • •

Study Julia sets from Fatou sets

Carathéodory (1913):

The biholomorphic map $\phi : \mathbb{D} \to U \subset \widehat{\mathbb{C}}$ can be extended to a continuous map $\overline{\phi} : \overline{\mathbb{D}} \to \overline{U} \iff \partial U$ is **Locally Connected**. In particular, $\overline{\phi}$ is a homeomorphism $\iff \partial U$ is a Jordan curve.

• • • • • • • • • • • • •

Study Julia sets from Fatou sets

Carathéodory (1913):

The biholomorphic map $\phi : \mathbb{D} \to U \subset \widehat{\mathbb{C}}$ can be extended to a continuous map $\overline{\phi} : \overline{\mathbb{D}} \to \overline{U} \iff \partial U$ is **Locally Connected**. In particular, $\overline{\phi}$ is a homeomorphism $\iff \partial U$ is a Jordan curve.

If LC holds: Dynamics from Fatou components to the Julia set continuously.

Local connectivity of Julia sets

The connected Julia sets are locally connected in the following cases:

- Hyperbolic, Subhyperbolic (Douady-Hubbard, 1980s)
- Geometrically finite (Tan-Yin, 1996)
- Semi-hyperbolic (Carleson-Jones-Yoccoz, 1994; Yin, 1999)
- Collet-Eckmann (Graczyk-Smirnov, 1998)
- Real polynomials (Levin-van Strien, 1998; Clark-van Strien-Trejo, 2017)
- At most finitely many renormalizable polynomials (Yoccoz, 1980s; Kozlovski-van Strien, 2009)
- Some infinitely renormalizable quadratics (Lyubich, Kahn, Levin, ..., 1997-now)
- Newton maps (Roesch, 2008; Drach-Schleicher, 2022; Wang-Yin-Zeng, 2022)
- McMullen maps (Qiu-Wang-Yin, 2012)
- Complex box mappings (Clark-Drach-Kozlovski-van Strien, 2022) ...

-

Local connectivity of Julia sets

The **connected** Julia sets are **locally connected** in the following cases:

- Hyperbolic, Subhyperbolic (Douady-Hubbard, 1980s)
- Geometrically finite (Tan-Yin, 1996)
- Semi-hyperbolic (Carleson-Jones-Yoccoz, 1994; Yin, 1999)
- Collet-Eckmann (Graczyk-Smirnov, 1998)
- Real polynomials (Levin-van Strien, 1998; Clark-van Strien-Trejo, 2017)
- At most finitely many renormalizable polynomials (Yoccoz, 1980s; Kozlovski-van Strien, 2009)
- Some infinitely renormalizable quadratics (Lyubich, Kahn, Levin, ..., 1997-now)
- Newton maps (Roesch, 2008; Drach-Schleicher, 2022; Wang-Yin-Zeng, 2022)
- McMullen maps (Qiu-Wang-Yin, 2012)
- Complex box mappings (Clark-Drach-Kozlovski-van Strien, 2022) ...

Expanding metrics: Hyperbolic, orbifold, ...

Combinatorial tools: Puzzles developed by Yoccoz, Branner-Hubbard, Lyubich, Kozlovski-Shen-van Strien, Roesch, ...

Analytic tools: Grötzsch inequality on modulus, Kahn-Lyubich covering lemma ...

イロト イポト イヨト イヨト

Siegel disks

The Siegel disk of
$$f(z) = e^{2\pi i \alpha} z + z^2$$
, where
 $\alpha = \frac{\sqrt{5}-1}{2} = [0; 1, 1, 1, \cdots]$

・ロト ・日子・ ・ ヨト・

LC of Julia sets: with Siegel disks

Theorem (Petersen, Acta Math., 1996)

For any bounded type α , the Julia set of $P(z) = e^{2\pi i \alpha} z + z^2$ is locally connected.

 $\alpha = [0; a_1, a_2, \cdots, a_n, \cdots]$ is of **bounded type** if $\sup_n \{a_n\} < \infty$.

LC of Julia sets: with Siegel disks

Theorem (Petersen, Acta Math., 1996)

For any bounded type α , the Julia set of $P(z) = e^{2\pi i \alpha} z + z^2$ is locally connected.

 $\alpha = [0; a_1, a_2, \cdots, a_n, \cdots]$ is of **bounded type** if $\sup_n \{a_n\} < \infty$.

Main Theorem (Wang-Y.-Zhang-Zhang, arXiv, 2022)

Suppose f is a **rational** map with Siegel disks such that J(f) is connected, and moreover, the forward orbit of every critical point of f satisfies one of the following:

- It is finite; or
- It lies in an attracting basin; or
- Solution It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Main Theorem (Wang-Y.-Zhang-Zhang, arXiv, 2022)

Suppose f is a **rational** map with Siegel disks such that J(f) is connected, and moreover, the forward orbit of every critical point of f satisfies one of the following:

- It is finite; or
- It lies in an attracting basin; or
- Solution It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Difficulties: no expanding metrics, no puzzles, nor analytic Blaschke models.

Main Theorem (Wang-Y.-Zhang-Zhang, arXiv, 2022)

Suppose f is a **rational** map with Siegel disks such that J(f) is connected, and moreover, the forward orbit of every critical point of f satisfies one of the following:

- It is finite; or
- It lies in an attracting basin; or
- Solution It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Difficulties: no expanding metrics, no puzzles, nor analytic Blaschke models. It provides an alternative proof of Petersen's result without using puzzles.

• • • • • • • • • • • •

- Main Theorem (Wang-Y.-Zhang-Zhang, arXiv, 2022)
- Suppose f is a **rational** map with Siegel disks such that J(f) is connected, and moreover, the forward orbit of every critical point of f satisfies one of the following:
 - It is finite; or
 - It lies in an attracting basin; or
 - It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Immediate consequences: The Julia sets of following maps are locally connected:

- Cubic polynomials in Zakeri's curves;
- Cubic Newton maps with a bounded type Siegel disk;
- McMullen maps $z \mapsto z^m + \lambda/z^n$ $(m \ge 2, n \ge 1)$ with a bounded type Siegel disk.

イロン イボン イヨン イヨン

Main Lemma

The *postcritical set* of *f* is $\mathscr{P}(f) := \overline{\bigcup_{n \ge 1} f^n(\operatorname{Crit}(f))}$.

Main Lemma (WYZZ, 2022)

Let f be deg ≥ 2 rational having a fixed bounded type Siegel disk Δ with dist_{$\widehat{\mathbb{C}}$}($\mathscr{P}(f) \setminus \partial \Delta, \partial \Delta$) > 0. Then $\forall \varepsilon > 0$, and \forall Jordan domain $V_0 \subset \widehat{\mathbb{C}} \setminus \overline{\Delta}$ with $\emptyset \neq \overline{V}_0 \cap \mathscr{P}(f) \subset \partial \Delta$, $\exists N = N(\varepsilon, V_0, f) \geq 1$, s.t. diam_{$\widehat{\mathbb{C}}$}(V_n) $< \varepsilon$ for all $n \geq N$, where V_n is any connected component of $f^{-n}(V_0)$.

Parallel to classical Shrinking Lemma (Tan-Yin 1996, Lyubich-Minsky 1997): $\overline{V}_0 \cap \mathscr{P}(f) = \emptyset$.

• □ > < 同 > < Ξ > <</p>

Further developments

Work in progress (Fu-Y., based on the Main Lemma):

• LC of the Julia set of Siegel rational maps with **parabolic** points;

• Mating Siegel and parabolic quadratic polynomials.

Further developments

Work in progress (Fu-Y., based on the Main Lemma):

- LC of the Julia set of Siegel rational maps with **parabolic** points;
- Mating Siegel and parabolic quadratic polynomials.

Potential topics and challenges:

- Extending the bounded type rotation numbers to unbounded type;
- Allowing the critical orbits to have larger degrees of freedom.

Thank you for your attention!

YANG Fei (Nanjing Univ.)

Local connectivity of Julia sets with Siegel disks

CMS 2022, Feb 20, 2023 12 / 12