Sierpiński carpet Julia sets of holomorphic maps

YANG Fei

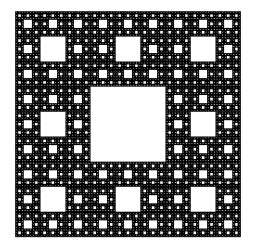
Nanjing University

joint with Yuming Fu, Weiyuan Qiu, Yongcheng Yin and Jinsong Zeng

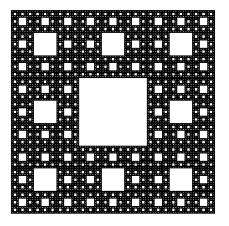
ONE DAY FUNCTION THEORY MEETING

London, De Morgan House September 2, 2019

• □ > • < </p>
• □ > • < </p>



The middle ninths square Sierpiński carpet S₃



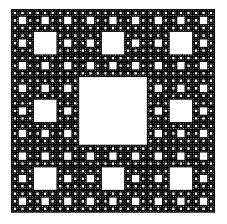
carpet S₃

According to Whyburn (1958), if a subset $S \subset \widehat{\mathbb{C}}$ satisfies

- S is compact;
- *S* is connected;
- *S* is locally connected;
- S has empty interior; and
- The complementary components of *S* are bounded by pairwise disjoint simple closed curves;

then *S* is homeomorphic to S_3 , and *S* is also called a **Sierpiński carpet** (**carpet** in short).

• • • • • • • • • • •



carpet S₃

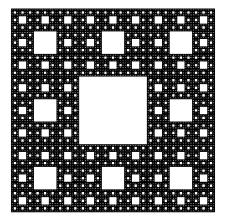
Equivalently, S can be written as

$$S = \widehat{\mathbb{C}} \setminus \bigcup_{i \in \mathbb{N}} D_i,$$

where

- Each D_i is a Jordan disk;
- diam $(D_i) \rightarrow 0$ as $i \rightarrow \infty$;
- The **peripheral circles** $\{C_i = \partial D_i\}_{i \in \mathbb{N}}$ satisfy $C_i \cap C_j = \emptyset$ for all $i \neq j$; and

• S has empty interior.

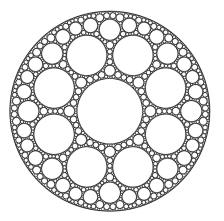


		888
		888
		:: <u>::</u> :: <u>::</u> ::
		888
<u></u>		
		888
	<u></u> <u></u>	
		888
	<u></u>	
		888
	<u></u>	
		# # #
	· · · <u>· · · · · · · · · · · · · · · · </u>	
	<u> </u>	

carpet $F_{5,1}$

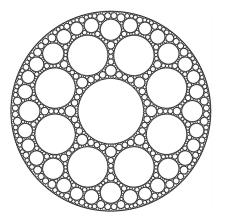
• • • • • • • • • • • •

carpet S₃



a round carpet

・ロト ・ 日 ・ ・ ヨ ・ ・



a carpet Julia set

・ロト ・ 日 ・ ・ 日 ・ ・ 日

a round carpet

Interesting subjects

All Sierpiński carpets are the same in the sense of homeomorphism.

People are interested in their geometric properties:

- Quasisymmetric equivalent;
- Quasisymmetric rigidity;
- Area and Hausdorff dimension.

Dynamical classification:

• Topological conjugacy on the Julia sets.

Quasisymmetric geometries

A homeomorphism $f : X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is called **quasisymmetric** if there is a distortion control function $\eta : [0, \infty) \to [0, \infty)$ which is also a homeomorphism such that

$$rac{d_Y(f(a),f(b))}{d_Y(f(a),f(c))} \leq \eta\left(rac{d_X(a,b)}{d_X(a,c)}
ight)$$

for every triple of distinct points $a, b, c \in X$, and in this case (X, d_X) , (Y, d_Y) are called **quasisymetrically equivalent**.

Note: $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is quasisymmetric \iff It is quasiconformal.

Quasisymmetric geometries

A homeomorphism $f : X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is called **quasisymmetric** if there is a distortion control function $\eta : [0, \infty) \to [0, \infty)$ which is also a homeomorphism such that

$$rac{d_Y(f(a),f(b))}{d_Y(f(a),f(c))} \leq \eta\left(rac{d_X(a,b)}{d_X(a,c)}
ight)$$

for every triple of distinct points $a, b, c \in X$, and in this case (X, d_X) , (Y, d_Y) are called **quasisymetrically equivalent**.

Note: $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is quasisymmetric \iff It is quasiconformal.

Two basic questions in quasiconformal geometry are

- Determine whether two given homeomorphic metric spaces are quasisymmetrically equivalent;
- Study the quasisymmetric rigidity (q.s. group) of a given metric space.

イロト 不得 とくほ とくほう

Quasisymmetrics of Sierpiński carpets

The set of quasisymmetric equivalence classes of (round) Sierpiński carpets in $\widehat{\mathbb{C}}$ is uncountable (Bonk-Kleiner-Merenkov, 2009).

The investigations of quasisymmetric equivalence between the given Sierpiński carpet and a round carpet (**q.s. uniformization**) were partly motivated by a problem in geometric group theory:

Kapovich-Kleiner conjecture (2000): if *G* is a Gromov hyperbolic group such that $\partial_{\infty}G$ is a Sierpiński carpet, then $\partial_{\infty}G$ is quasisymmetrically equivalent to a round Sierpiński carpet in $\widehat{\mathbb{C}}$.

Quasisymmetrics of Sierpiński carpets

The set of quasisymmetric equivalence classes of (round) Sierpiński carpets in $\widehat{\mathbb{C}}$ is uncountable (Bonk-Kleiner-Merenkov, 2009).

The investigations of quasisymmetric equivalence between the given Sierpiński carpet and a round carpet (**q.s. uniformization**) were partly motivated by a problem in geometric group theory:

Kapovich-Kleiner conjecture (2000): if *G* is a Gromov hyperbolic group such that $\partial_{\infty}G$ is a Sierpiński carpet, then $\partial_{\infty}G$ is quasisymmetrically equivalent to a round Sierpiński carpet in $\widehat{\mathbb{C}}$.

Theorem (Bonk-Merenkov, Ann. Math., 2013)

(1) Every quasisymmetric self-map of the standard carpet S_3 is a Euclidean isometry. (2) The carpets S_p and S_q are quasisymmetrically equivalent if and only if p = q.

Zeng-Su (2015) generalized this result to a special class of carpets $F_{n,p}$, and they proved that any S_m and $F_{n,p}$ are not quasisymmetrically equivalent.

Main tool: carpet modulus, which is an quasiconformal invariant.

-

A D > A B > A B > A B >

Quasisymmetrics of Sierpiński carpets

Theorem (Bonk, Invent. Math., 2011)

Suppose that the peripheral circles $\{C_i\}_{i\in\mathbb{N}}$ of a carpet S are **uniformly relatively** separated and are **uniform quasicircles**. Then there exists a quasiconformal map $\phi : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ such that $\phi(C_i)$ is a round circle for all $i \in \mathbb{N}$.

By uniformly relatively separated, it means that $\exists c > 0$ s.t. the *relative distance* $\Delta(C_i, C_j)$ of any two peripheral circles satisfies

$$\Delta(C_i, C_j) := \frac{\operatorname{dist}_{\sigma}(C_i, C_j)}{\min\{\operatorname{diam}_{\sigma}(C_i), \operatorname{diam}_{\sigma}(C_j)\}} \ge c.$$

Remark: Any S_m or $F_{n,p}$ is quasisymmetrically equivalent to a round carpet.

• • • • • • • • • • • •

Quasisymmetrics of Sierpiński carpet Julia sets

Theorem (Bonk-Lyubich-Merenkov, Adv. Math., 2016)

Let f, g be two **post-critically finite** rational maps whose Julia sets J(f) and J(g) are Sierpiński carpets. Then

- The peripheral circles C_f of J(f) (resp. J(g)) are uniform quasicircles and uniformly relatively separated. In particular, J(f) (resp. J(g)) is q.s. equivalent to a round carpet.
- Every q.s. homeo. from J(f) onto J(g) is the restriction of a Möbius map.
- The quasisymmetric group QS(J(f)) (resp. J(g)) is finite.

• • • • • • • • • • • •

Quasisymmetrics of Sierpiński carpet Julia sets

Theorem (Bonk-Lyubich-Merenkov, Adv. Math., 2016)

Let f, g be two **post-critically finite** rational maps whose Julia sets J(f) and J(g) are Sierpiński carpets. Then

- The peripheral circles C_f of J(f) (resp. J(g)) are uniform quasicircles and uniformly relatively separated. In particular, J(f) (resp. J(g)) is q.s. equivalent to a round carpet.
- Every q.s. homeo. from J(f) onto J(g) is the restriction of a Möbius map.
- The quasisymmetric group QS(J(f)) (resp. J(g)) is finite.

Qiu-Y.-Zeng (2019) generalized this result to semi-hyperbolic rational maps.

Quasisymmetrics of Sierpiński carpet Julia sets

Yin (1999): A rational map f is called **semi-hyperbolic** if the critical points in J(f) are non-recurrent and f has no parabolic periodic points.

Theorem (Qiu-Y.-Zeng, Fund. Math., 2019)

Let f be a semi-hyperbolic rational map whose Julia set J(f) is a Sierpiński carpet. Then

- C_f are uniform quasicircles.
- C_f are uniformly relatively separated if and only if $P_f \cap C_f = \emptyset$, where P_f is the post-critical set of f.
- If $P_f \cap C_f = \emptyset$, then the quasisymmetric group QS(J(f)) is finite.
- Suppose that $P_f \cap \mathscr{C}_f = \emptyset$ and J(g) is also a Sierpiński carpet, $\sharp(F(f) \cap P_f) < \infty$, $\sharp(F(g) \cap P_g) < \infty$. Then any quasisymmetric homeomorphism between J(f) and J(g) is the restriction of a Möbius transformation.

New ingredients

New ingredients in the proof:

Lemma (The modulus controls the relative distance)

Let $A \subset \widehat{\mathbb{C}}$ be an annulus with two boundary components γ_1 and γ_2 . If the modulus of *A* satisfies $mod(A) \ge m > 0$, then there exists a constant C(m) > 0 depending only on *m* such that the relative distance of γ_1 and γ_2 satisfies $\Delta(\gamma_1, \gamma_2) \ge C(m) > 0$.

Tool in the proof: Teichmüller's module theorem.

New ingredients

New ingredients in the proof:

Lemma (The modulus controls the relative distance)

Let $A \subset \widehat{\mathbb{C}}$ be an annulus with two boundary components γ_1 and γ_2 . If the modulus of *A* satisfies $mod(A) \ge m > 0$, then there exists a constant C(m) > 0 depending only on *m* such that the relative distance of γ_1 and γ_2 satisfies $\Delta(\gamma_1, \gamma_2) \ge C(m) > 0$.

Tool in the proof: Teichmüller's module theorem.

Lemma (Post-critically infinite and semi-hyperbolic)

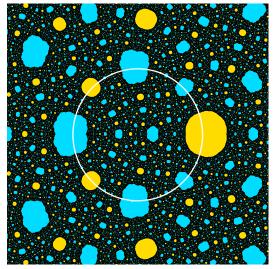
There exists a real quadratic polynomial $P_c(z) = z^2 + c$ such that:

- P_c is post-critically infinite in $J(P_c)$; and
- 0 is non-recurrent and $\omega(0) \cap \beta(P_c) = \emptyset$.

Kawahira-Kisaka (2018) also constructed such examples.

YANG F. (Nanjing Univ.)

Milnor and Tan Lei's example (1993)



The parameters

 $a \approx -0.138115091$ and $b \approx 0.303108805$

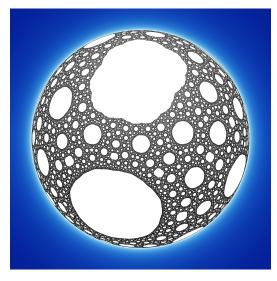
are chosen such that

 $f(z) = a\left(z + \frac{1}{z}\right) + b$

has two super-attracting periodic points with periods 3 and 4.

(a)

Pilgrim's example



The parameter

 $c \approx -0.69562$

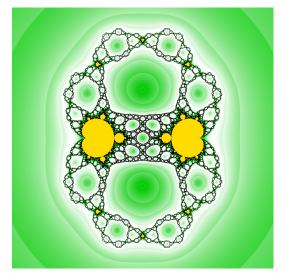
is chosen such that the post-critical set of

$$f_c(z) = c \frac{(z-1)^2(z+2)}{3z-2}$$

has exactly 4 points.

< ロ > < 回 > < 回 > < 回 >

Devaney-Look-Uminsky's Sierpiński holes (2005)



For $n \ge 2$ and $m \ge 1$, suppose that one free critical point ω_0 of

$$f_{\lambda}(z) = z^n + \frac{\lambda}{z^m}$$

is attracted by the immediate super-attracting basin B_{λ} of ∞ . If

$$f_{\lambda}^{\circ k}(\boldsymbol{\omega}_0) \in T_{\lambda} \neq B_{\lambda}$$

for some $k \ge 2$, then $J(f_{\lambda})$ is a Sierpiński carpet.

Devaney-Fagella-Garijo-Jarque's result (2014)

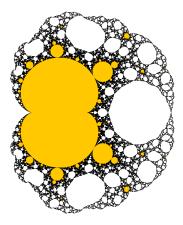
For each $p \ge 1$, define

 $V_p = \left\{ f \in \operatorname{Rat}_2 \middle| \begin{array}{c} f \text{ has a super-attracting} \\ \text{periodic pt with period } p \end{array} \right\}.$

イロト イポト イヨト イヨト

In particular, the non-escaping locus of V_1 is the Mandelbrot set.

Devaney-Fagella-Garijo-Jarque's result (2014)



Non-escaping locus in V_2

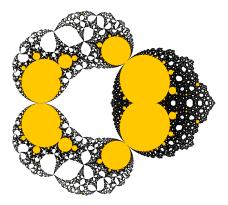
For each $p \ge 1$, define

$$V_p = \left\{ f \in \operatorname{Rat}_2 \middle| \begin{array}{c} f \text{ has a super-attracting} \\ \text{periodic pt with period } p \end{array} \right\}.$$

In particular, the non-escaping locus of V_1 is the Mandelbrot set.

According to Aspenberg-Yampolsky (2009) and Devaney-Fagella-Garijo -Jarque (2014), V_p contains Sierpiński holes if and only if $p \ge 3$.

Devaney-Fagella-Garijo-Jarque's result (2014)



Non-escaping locus in V_3

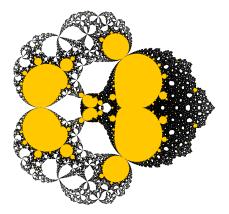
For each $p \ge 1$, define

 $V_p = \left\{ f \in \operatorname{Rat}_2 \middle| \begin{array}{c} f \text{ has a super-attracting} \\ \text{periodic pt with period } p \end{array} \right\}.$

In particular, the non-escaping locus of V_1 is the Mandelbrot set.

According to Aspenberg-Yampolsky (2009) and Devaney-Fagella-Garijo -Jarque (2014), V_p contains Sierpiński holes if and only if $p \ge 3$.

Devaney-Fagella-Garijo-Jarque's result (2014)



Non-escaping locus in V_4

For each $p \ge 1$, define

 $V_p = \left\{ f \in \operatorname{Rat}_2 \middle| \begin{array}{c} f \text{ has a super-attracting} \\ \text{periodic pt with period } p \end{array} \right\}.$

In particular, the non-escaping locus of V_1 is the Mandelbrot set.

According to Aspenberg-Yampolsky (2009) and Devaney-Fagella-Garijo -Jarque (2014), V_p contains Sierpiński holes if and only if $p \ge 3$.

(a)

Carpet Julia sets in other families

• Steinmetz (2008), the Morosawa-Pilgrim family:

$$f_t(z) = t \left(1 + \frac{(4/27)z^3}{1-z} \right), \text{ where } t \in \mathbb{C}^*.$$

• Look (2010), models for imaginary 3-circle inversions:

$$G_{\rho}(z) = \frac{-\rho^2 z^2}{z^3 - 1}, \text{ where } \rho \in \mathbb{C}^*.$$

• Xiao-Qiu-Yin (2014), the generalized McMullen maps:

$$f_{a,b}(z) = z^n + \frac{a}{z^n} + b$$
, where $n \ge 2, a, b \in \mathbb{C}^*$.

Carpet Julia sets in other families

• Fu-Y. (2015):

$$h_{\lambda}(z) = \frac{z^n(z^{2n} - \lambda^{n+1})}{z^{2n} - \lambda^{3n-1}},$$

where $n \ge 2$ and $\lambda \in \mathbb{C}^* - \{\lambda : \lambda^{2n-2} = 1\}.$

• Hu-Jimenez-Muzician (2012) and Hu-Muzician-Xiao (2018), The regularly ramified rational maps (for example):

$$f_{\lambda}(z) = f_{\lambda}^{(2,3,4)}(z) = \frac{\lambda z^4 (z^4 - 1)^4}{(z^4 + 1)^2 (z^4 - (1 + \sqrt{2})^4)^2 (z^4 - (1 - \sqrt{2})^4)^2}.$$

• Wang-Y.-Zhang-Liao (2019):

$$f_{\lambda}(z) = \frac{z^{2n} - \lambda^{3n+1}}{z^n(z^{2n} - \lambda^{n-1})},$$

where $n \ge 2$ and $\lambda \in \mathbb{C}^* - \{\lambda : \lambda^{2n+2} = 1\}.$

-

A criterion to generate carpet Julia sets

Theorem (Y., Proc. AMS, 2018)

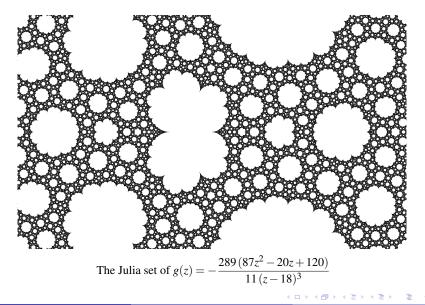
Let f be a rational map satisfying the following conditions:

- The Julia set of f is connected;
- There exist two different Fatou components U and V of f such that f(U) = U and $f^{-1}(U) = U \cup V$;
- If W is a connected component of $f^{-1}(V)$, then $\deg(f|_W) > \deg(f|_U)$; and
- The intersection of any critical orbit with U is non-empty; In particular, f has degree at least 3.

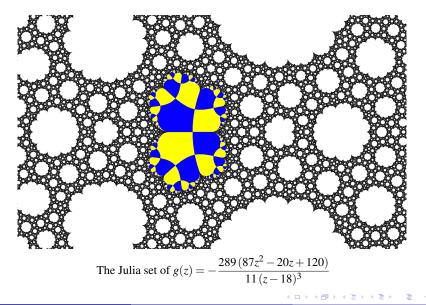
Then the Julia set of f is a Sierpiński carpet.

Applications: McMullen family, Morosawa-Pilgrim family, generating parabolic carpet Julia sets etc.

A parabolic carpet Julia set



A parabolic carpet Julia set



Some known results on $P_c(z) = z^2 + c$:

• Inou-Shishikura (2006): There exist *c*'s (Siegel and Cremer parameters) such that the post-critical set of P_c is disjoint with the β -fixed point.

Some known results on $P_c(z) = z^2 + c$:

- Inou-Shishikura (2006): There exist *c*'s (Siegel and Cremer parameters) such that the post-critical set of P_c is disjoint with the β -fixed point.
- Buff-Chéritat (2012), Avila-Lyubich (2015): There exist quadratic Julia sets with positive area (Cremer, Siegel or infinitely renormalizable).

Some known results on $P_c(z) = z^2 + c$:

- Inou-Shishikura (2006): There exist *c*'s (Siegel and Cremer parameters) such that the post-critical set of P_c is disjoint with the β -fixed point.
- Buff-Chéritat (2012), Avila-Lyubich (2015): There exist quadratic Julia sets with positive area (Cremer, Siegel or infinitely renormalizable).

Theorem (Y.-Yin, preprint, 2018, a refinement of Shishikura's result)

There exist **non-renormalizable** quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two.

Some known results on $P_c(z) = z^2 + c$:

- Inou-Shishikura (2006): There exist *c*'s (Siegel and Cremer parameters) such that the post-critical set of P_c is disjoint with the β -fixed point.
- Buff-Chéritat (2012), Avila-Lyubich (2015): There exist quadratic Julia sets with positive area (Cremer, Siegel or infinitely renormalizable).

Theorem (Y.-Yin, preprint, 2018, a refinement of Shishikura's result)

There exist **non-renormalizable** quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two.

Lyubich, Shishikura (1991): such Julia sets have zero area.

Some known results on $P_c(z) = z^2 + c$:

- Inou-Shishikura (2006): There exist *c*'s (Siegel and Cremer parameters) such that the post-critical set of P_c is disjoint with the β -fixed point.
- Buff-Chéritat (2012), Avila-Lyubich (2015): There exist quadratic Julia sets with positive area (Cremer, Siegel or infinitely renormalizable).

Theorem (Y.-Yin, preprint, 2018, a refinement of Shishikura's result)

There exist **non-renormalizable** quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two.

Lyubich, Shishikura (1991): such Julia sets have zero area.

Theorem (Fu-Y., Math. Z., 2019)

- There exist carpet Julia sets with positive area.
- There exist carpet Julia sets with Hausdorff dimension two but with zero area.

Bounds and consequence

Some known results:

• Barański-Wardal (2015): For $f_{\lambda,n}(z) = z^n + \lambda/z^n$ with $n \ge 2$, there exists $\lambda = \lambda(n)$ such that $J(f_{\lambda,n})$ is a Sierpinski carpet, and

 $\lim_{n\to\infty}\dim_H(J(f_{\lambda,n}))=1.$

Bounds and consequence

Some known results:

• Barański-Wardal (2015): For $f_{\lambda,n}(z) = z^n + \lambda/z^n$ with $n \ge 2$, there exists $\lambda = \lambda(n)$ such that $J(f_{\lambda,n})$ is a Sierpinski carpet, and

 $\lim_{n\to\infty}\dim_H(J(f_{\lambda,n}))=1.$

Qiu-Y. (2018): If \mathcal{H} is a Sierpinski carpet hyperbolic component, then

 $\sup_{f\in\mathscr{H}}\dim_H(J(f))=2.$

3

Bounds and consequence

Some known results:

O Barański-Wardal (2015): For $f_{\lambda,n}(z) = z^n + \lambda/z^n$ with $n \ge 2$, there exists $\lambda = \lambda(n)$ such that $J(f_{\lambda,n})$ is a Sierpinski carpet, and

 $\lim_{n\to\infty}\dim_H(J(f_{\lambda,n}))=1.$

Qiu-Y. (2018): If \mathscr{H} is a Sierpinski carpet hyperbolic component, then

 $\sup_{f\in\mathscr{H}}\dim_H(J(f))=2.$

Theorem (Fu-Y., 2019)

There exist carpet Julia sets with Hausdorff dim. equaling to any given $s \in (1,2)$ *.*

The sharpness of the result?

Let f be a rational map whose Julia set is a Sierpinski carpet. If f has

• (Przytycki, 2006) an attracting basin U; or

(based on Zdunik, 1990) a parabolic basin U,

then $\dim(J(f)) \ge \dim(\partial U) > 1$.

э

The sharpness of the result?

Let f be a rational map whose Julia set is a Sierpinski carpet. If f has

• (Przytycki, 2006) an attracting basin U; or

(based on Zdunik, 1990) a parabolic basin U,

then $\dim(J(f)) \ge \dim(\partial U) > 1$.

How about the Siegel case?

э

The sharpness of the result?

Let f be a rational map whose Julia set is a Sierpinski carpet. If f has

• (Przytycki, 2006) an attracting basin U; or

(based on Zdunik, 1990) a parabolic basin U,

then $\dim(J(f)) \ge \dim(\partial U) > 1$.

How about the Siegel case?

Theorem (Cheraghi-DeZotti-Y., preprint, 2019)

Suppose that $f(z) = e^{2\pi i \alpha} z + z^2$ has a Siegel disk whose boundary does not contain the critical point. If α is of sufficiently high type, then the post-critical set of f has Hausdorff dimension two.

3

Carpet Julia sets with dim greater than 1

Theorem (Fu-Y., 2019)

Let f be a rational map having a Sierpiński carpet Julia set. Then $\dim_H(J(f)) > 1$ if any one of the following conditions holds:

- *f contains an attracting basin;*
- *f* contains a parabolic basin; or
- f is renormalizable and the small filled Julia set contains a sufficiently high type quadratic Siegel disk.

Remark: If a Sierpiński carpet rational map contains a Siegel disk, then the boundary of this Siegel disk contains no critical points.

Carpet Julia sets with dim greater than 1

Theorem (Fu-Y., 2019)

Let f be a rational map having a Sierpiński carpet Julia set. Then $\dim_H(J(f)) > 1$ if any one of the following conditions holds:

- f contains an attracting basin;
- *f* contains a parabolic basin; or
- I is renormalizable and the small filled Julia set contains a sufficiently high type quadratic Siegel disk.

Remark: If a Sierpiński carpet rational map contains a Siegel disk, then the boundary of this Siegel disk contains no critical points.

We conjecture that all carpet Julia sets have Hausdorff dim strictly great than 1.

Carpet Julia sets with dim greater than 1

Theorem (Fu-Y., 2019)

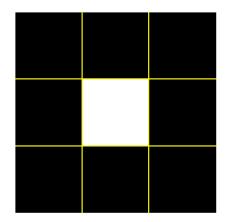
Let f be a rational map having a Sierpiński carpet Julia set. Then $\dim_H(J(f)) > 1$ if any one of the following conditions holds:

- *f contains an attracting basin;*
- *f* contains a parabolic basin; or
- I is renormalizable and the small filled Julia set contains a sufficiently high type quadratic Siegel disk.

Remark: If a Sierpiński carpet rational map contains a Siegel disk, then the boundary of this Siegel disk contains no critical points.

We conjecture that all carpet Julia sets have Hausdorff dim strictly great than 1. But ...

Sierpinski carpets with dimension one

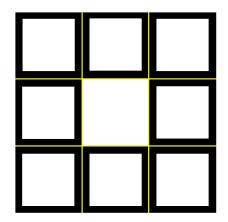


Constructing a Sierpinski carpet with dimension one (Courtesy of Huojun Ruan)

YANG F. (Nanjing Univ.)	

<ロ> < 回 > < 回 > < 回 > <

Sierpinski carpets with dimension one

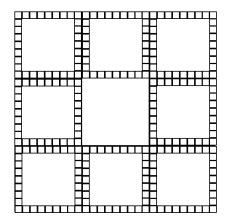


Constructing a Sierpinski carpet with dimension one (Courtesy of Huojun Ruan)

YANG F. (Nanjing Univ.)	

イロト イロト イヨト

Sierpinski carpets with dimension one



Constructing a Sierpinski carpet with dimension one (Courtesy of Huojun Ruan)

• • • • • • • • • •

THANK YOU FOR YOUR ATTENTION !

2