SIEGEL DISKS AND RELATED TOPICS

FEI YANG

ABSTRACT. We survey some results on Siegel disks.

Discrete dynamical systems:
X=X
z e f(@) = f(f(@) - fM) = F @) =
Complex dynamical systems: X complex manifold, f holomorphic

e rational: 22 + ¢
e transcendental entire: Ae*, Asin(z)
e transcendental meromorphic: \tan(z)

History (1-dim):
_ 1)
f'(2)

e Fatou, Julia (1920s): based on Montel theorem, Kleinian groups.

e Newton (1670s): N¢(z) = =

(examples vs theory)

— Poincaré (1880s). Nonlinear holomorphic germ f : U — C:
f(2) =Xz +0(?%), X#0.
Question 1. Whether f is locally linearizable? (Applications in celestial mechanics).

p — (D)

ek
D 222 AD

o (Koenigs, 1884 [Koe84]) If |A| # 1, yes. .
o (Leau-Fatou, 1897 [Lea97], [Fat19]) If A = *™ o € Q, no, except f" = id
for some n > 1.

1. IRRATIONALLY INDIFFERENT FIXED POINTS
Set A = 2™ a € R\ Q.
Question 2. Does the dynamics of f(2) = Az+0(2%) behave as Ro(z) = Az = €2™1%2?
e Kasner (1912): Always yes?

o Pfeiffer (1917): Sometimes no?
e Julia (1919): Always no for nonlinear rational maps?

Theorem 1.1 (Cremer, 1928, Math. Ann. [Cre28]). 3o € R\Q, s.t. ¢ does not
exist for any non-linear polynomial.

Date: July 25, 2023.
This lecture was given in a mini-course during a summer school held in TSMIF, Sanya, from July
24 to 25, 2023.
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Proof. Let f(z) = Az + --- 4+ 2% where A = ¢?™® o € R\ Q, d > 2. Suppose the
conjugacy ¢ is defined in ID(0,0) with 0 < § < 1, i.e.,

D(0,§) ——
IR
e,

Consider the fixed points of f¢, where ¢ > 1, they satisfy
fllz)—z=2" 4. 4+ (N = 1)z =0.

Denote them by 0,21, - -, 2q0—1. Note that f9(z) = ¢~ !(\9¢(z)) has no fixed point
in D(0, §) except 0. Hence

di—-1
5 << Iyl = =1, Vgx1. (1.1)
j=1

Now we construct an o € (0,1) \ Q such that (1.1)) does not hold.
Take a sequence of positive integers:
2< << < qp <, with g1 > qi + 1.

and denote

— 1
a=>_ TS (1.2)

k=1

Note that if 0 < a < 3,

Tia —Tia
— €

do < ‘62”10‘ -1 =2 = 2|sin(7a)| < 27a.

Hence

o0
2mi- 2%k 3 i
P\qu _ 1{ = le m=k+1 24m — 1| =< 29— qk+1

Taking logarithm of ((1.1)), and setting ¢ = 2%, we have
d?>™ log§ < (qk — qr+1)log2 + C, where C' > 1 is universal.
This implies

1
C I IOgEdz%

< , Vk>1 1.3
Gk+1 S Qr + log2 | Tog?2 (1.3)

Suppose qr — +oo very fast, e.g., log qx+1 = k- 2%. Then, for « defined in (|1.2]),
(1.3) does not hold for any d > 2 and any 0 < § < 1. O

Remark (Cremer). If « is very “close” to a rational number, e.g., if

e ()

imsup (| —— = 400

q—>+oop AT —1]

for an integer d > 2, then any rational map f(z) = Az + O(z?) of degree d is not
locally linearizable at 0.
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Theorem 1.2 (Siegel, 1942, Ann. Math. [Sie42]). If

1 _
|)\q_1|<cqm 1

for some ¢ > 0, k > 2 and all integers q > 1, then any holomorphic germ f(z) =
Az + O(22) is locally linearizable at 0.

Idea of the proof: Based on ¢(f(z)) = Ap(z), prove that the convergence radius of
©(2) = 2+ 3,51 bp2™ is positive.

For any ¢ > 1, let p € Z, s.t. |ga — p| < % Then
dlga —p| < |NT—1| = ‘eQ“i(q“*p) — 1| = 2|sin(m (g — p))| < 27[qa — p|.

Hence
1 1l q e
|)\q_1’<cq <A —1\>qﬁ_1<:)\qa—p]>qﬁ_1
5
o a_P] > £
q q

Definition (Diophantine of order < k).
D(k) := {a eR\Q

Obviously, D(k) C D(x') if k < K'.

9
a—p‘>ﬁ,vpe<@}.
q q q

de >0,k > 2 s.t.

Remark. (1) Every algebraic number is Diophantine (by Liouville).
Indeed, let @ € R\ Q be a root of the polynomial g of degree d > 1 with integer
coefficients. Without loss of generality, assume that g(p/q) # 0, Vp/q € Q. Then

1
<o (D) =lo@-a(2)]<ar]a-2).
q q q q
Hence v/2 € D(2) and v/2 € D(3).
(2) D(24) :=(),»2 P() has full measure in R.
(3) D(2) # 0 has zero measure.
(4) D(k) =0,V0 < Kk < 2.
- Continued fraction expansion
1
(O)l)\(@aa:[alua27a3a"']: 1 )
ap+ ————
as +
as+
where a,, € Z;. The n-th convergent to a:
Dn _ 1
7—[@17(127"',an]— 1 )
n ai + i
az + 1
S S
G
where p,, g, € Z, are coprime integers.
Note
p_ 1 opp_ 1 az

q  ar 612_(11+é_ala2+17
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Inductively, for n > 2,

Gn = OnGn-1+ qn—2, qo =1, q = ay,
Pn = AQpPp—1 +Pn—2, Po = 07 pP1 = 1.

By studing the closest returns of R,(z) = €™z, one has

(1) N =1 > A" — 1], Vk=1,2,-- ,gns1 — 1 and k # gp.

(2) 75 <M —1]< qul, Vn > 1.

Hence
a € D(k) & gny1 < C(Iﬁ_la

where C > 0 is a constant. In particular,

a €D(2) S qui1 = nt1Gn + gn-1 < Cq,, & sup {a,} < +o0.
n

Every a € D(2) is called bounded type (or constant type). For example,

VvE—-1 1

2 1
=3

1+

o= € D(2).

1+
Remark. Quadratic irrational < {a,},>1 is eventually periodic < « is the root of
a quadratic polynomial with integer coefficients. (v2 =1+ 1[2,2,2,---])

Theorem 1.3 (Brjuno, 1965 [Brj65], [Brj71]; Rissman, 1967 [Riis67]). If

i log(Qn—H) < +oo}
q )

n=1 n

aEB::{aER\Q

then any holomorphic germ f(z) = €™z + O(2?) is locally linearizable.
Remark. (1) We have
D(2) ¢ D(2+) S D(k) ¢ D := | J D(x) € B.
VK>2 >2
(2) If ap41 = €, then a € B\ D.
Theorem 1.4 (Yoccoz, 1988 [Yoc88|, [Yoc95]). If a & B, then f(z) = e*™z + 22

is not locally linearizable at 0. Moreover, f has the small cycles property: every
neighborhood of 0 contains infinitely many periodic orbits.

For f(z) = e2™%z + O(2?), the origin is called a
e Siegel point, if f is locally linearizable at 0;
e (Cremer point, otherwise.
Theorem 1.5 (Pérez-Marco, 1990 [Pér90]). We have
(1) If
o0
Z log log(gn+1)
dn

< 0,
n=1
then every germ f(z) = e*™%z + O(22) which has a Cremer point at 0 has the
small cycles property.
(2) If the sum above diverges, then 3 f(z) = €?™* + O(22) which has a Cremer
point at 0 but has no small cycles.
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Conjecture 1 (Douady, 1980s). Suppose f(z) = €2™% + O(z?) is a non-Mdbius
rational map / transcendental entire function having a Siegel point at 0. Then « € B.
Known results:

o Pérez-Marco (1993 [Pér93]): Structurally stable polynomials.
e Geyer (2001, 2019 [Gey0l, [Gey19]) and Okuyama (2001, [OkuOl]): Julia-
saturated polynomials, including

f(z):)\z<1+§>d and g(z) =X

e Geyer (2001, [Gey0I]) and Okuyama (2005 [Oku05]): Structurally finite tran-
scendental entire functions, including f(z) = Aze®.
e Manlove (2015): Julia-saturated rational maps.

(1—i—z)d—1.

The proofs are based on Yoccoz’s result.

Remark. Douady’s conjecture is still open for cubic polynomials Az 4+ agz? + 23, the
sine family Asin z, and the exponential family A(e® — 1).

Question 3. Does there exist a € R \ @, s.t. 0 is a Cremer point for any nonlinear
transcendental function f(z) = €™z 4+ 0(22)?
2. SIEGEL DISKS

Definition. For

f(z) =€ %24 0(%):0eU - C,
The Siegel disk Ay of f at 0 is the biggest open subset of U containing 0 on which f
is analytically conjugate to R, (2) = €2™%z (i.e., locally linearizable).

Each Ay is simply connected, cannot contain any periodic or critical points.

Conjecture 2 (Douady-Sullivan, 1986 [Dou87]). The Siegel disks of rational maps
(deg > 2) are Jordan domains.

— Motivation

For a rational map f : C— (@, the Fatou set and Julia set are defined by (other
definitions including equicontinuous, closure of repelling periodic points etc):

F(f) :={z € C: {f™}nen is a normal family in a neighborhood of z},
()= C\E().

Classification of periodic Fatou components of rational maps (by Sullivan [Sul85]):

OO

attracting basin parabolic basin Siegel disk Herman ring

e The dynamics in F'(f) has been completely understood (no Baker and wan-
dering domains);
e The dynamics on J(f) is difficult.
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Let Crit(f) be the set of critical points and the postcritical set of f is

P(f) = [ f(Crit(f)).

n>1

They play an essential role in the dynamics of f (contraction vs expanding). By
Fatou (1920s):

e UNCrit(f) # 0 if U is an attracting or parabolic basin (i.e., critical periodic
Fatou components).
e QU C P(f) if U is a Siegel disk or Herman ring.

By qc surgery (Shishikura [Shi87]), Siegel disks and Herman rings can be trans-
formed into each other.

Theorem 2.1 (McMullen, 1988 [McMS88]). Let U be a simply connected fixed Fatou
component of a rational map f with deg(f) = 2. Then f : U — U is conformally
conjugate to a Blaschke product g : D — D, where

n
i0 FTa
= h ; € D.
g(z)=e il_ll o where a;

(303

I I

g
—

By Carathéodory, the dynamics of g|sp can be transferred to f|sy continuously
(resp. homeomorphically) if U is locally connected (resp. a Jordan curve).

LC of 9U implies Jordan in the following cases:

e All bounded Fatou components (attracting, parabolic, Siegel) of polynomials;
e Siegel disks of rational maps.

Theorem 2.2 (Roesch-Yin, 2008 [RY08, RY22]). For polynomials, all bounded crit-
ical Fatou components are Jordan domains.

— Quadratic Siegel disks (Topology of dAf and the position of critical points)
An orientation-preserving homeomorphism h : R — R is called quasisymmetric if
Jk > 1 s.t.

<k, VzxzeR, Vt>0.
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One can define quasisymmetric for a homeomorphism ¢ : T — T similarly via the
following diagram

R—— R
le%iw le%z
T 2 T
The rotation number of g : T — T is
rot(g) :== lim ! mod 1.

n—-+4oo n

Theorem 2.3 (Herman-Swiatek, 1986 [Her86], |[SwiS8|). Let g : T — T be a real-
analytic critical circle homeomorphism of rotation number . Then g is quasisym-
metrically conjugate to Ry (z) = €*™% if and only if a is of bounded type.

Now we show how to use qc surgery transforming cubic Blaschke products to a
quadratic polynomials.

It is not hard to check that

z
2 22 :T—T

1-3z2
is a real-analytic critical circle homeomorphism. Va € (0,1)\ Q, 31 7(a) € (0,1) s.t.

9 2 —3
132

ga(Z) _ e271'i7'(o¢)

has rotation number «.

Let o € D(2). By Herman-Swiatek, 3 quasisymmetric map ¢ : T — T s.t.
$0ga 0@ ' (2) = Ra(z) = 22,
Then 3 a homeomorphism ® : D — D s.t.
®:D—Disqe, Plr=¢, @0)=0.
Define

) 9a(2) 2eC \ D
G(z) = {@_1 oRy0®(2), zeD.

Then G:C — Cis a quasi-regular map of degree 2. Let g be the standard ellipse
field. Define p = ®*pug in D. Then p is invariant in D under G:

= (@7 o Ry o @)= 2" (RL(® 0 @) m) ) = o = .
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V z in the drop U,, C @\ﬁ which is mapped onto D by G™, where n > 1 is minimal,
define p at z as p = (G™)*u = (g2)*p. In the rest place, define p = pg. Then G*pu = p
on C. Note that ||u|lcc < 1. By MRMT (measurable Riemann mapping theorem),

Jqc v : C— (@, s.t. Y up = p and 1 fixes 0, 1, co.

Note that R . R
(Ca ,u) — ((Ca ,u)

! !

€. 10) —= (€, o).
Then f =1 oGoy~!: C—Cisa quadratic rational map. By
o f7H(00) = 00, f(0) =0,
o f: (D) — (D) is conjugate to R, : D — D by a conformal map ® o)1 :
(D) — D, and
e 1 is a critical point of f,

we have f(z) = e?™(z — %)

Theorem 2.4 (Douady-Herman, 1986 [Dou87|). Ya € D(2), the boundary of the
Siegel disk Ay of Po(z) = €™z + 22 is a quasi-circle passing through the critical

627\'1(1

point We = —
By a similar method but considering

: zZ—aQa
_ 6271*17'2:2

T —as’ a> 3,

9(2)
we have

Theorem 2.5 (Herman, 1986). 3a € B\ D(2), s.t. A, of P, is a quasi-circle not
passing through we,.

By studying more general Blaschke products, Douady-Herman’s result has been
extended to
e Zakeri (1999) [Zak99]: cubic polynomials,
e Shishikura (2001) [Shi0O1]: all polynomials.

Theorem 2.6 (Zhang, Invent. Math. 2011 [Zhall]). Every bounded type Siegel disk
of a rational map (deg > 2) is bounded by a quasi-circle passing through at least one
critical point.

The proof: invariant curves in Ay are uniform quasi-circles.
Difficulty: The quasisymmetric constants have no uniform bound.

Remark. (1) Douady-Sullivan’s conjecture holds for bounded type «.
(2) Petersen (2004) [Pet04]: The inverse of Zhang’s result is also true.

Theorem 2.7 (Zakeri, Duke Math. J. 2010 [Zak10]). Every bounded type Siegel disk
centered at 0 of f(z) = P(2)e®®), where P,Q are polynomials, is bounded by a quasi-
circle in C which contains at least one critical point of f.

Remark. (1) Constructing transcendental meromorphic Blaschke models.
(2) This generalizes the results of
e Geyer (2001) [GeyOl1]: Aze®; and
e Keen-Zhang (2009) [KZ09]: (Az + az?)e?.
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Some other families on this topic (for bounded type «): the sine family Asinz
(Zhang, 2005 [Zha05]) and transcendental entire functions with 3 singular values
(Chéritat-Epstein, 2018 [CE1S]).

Theorem 2.8 (G. David, 1988 [Dav8§|, Solutions de I’equation de Beltrami avec
llitlloo = 1). Suppose p € L>=°(C), Jeo,C,a > 0, s.t. V0 < e < &,

area({z € C: |u(z)| >1—¢}) < C-e =. (2.1)
Then 3 homeomorphism h : C — C, s.t. % = u% and h is unique if requiring
h(0) =0 and h(1) = 1.

Recall the qc surgery process of transforming g, into P, with o = [a1,a9,---] €
(0,1) \ Q, especially about the definition of .

Theorem 2.9 (Petersen-Zakeri, Ann. Math. 2004 [PZ04]). If loga, < O(y/n) as
n — oo, then the globally defined p satisfies (2.1), and moreover, A, of Py is a
David-circle passing through the critical point w,,.

Remark. (1) PZ has full measure in (0,1), where
PZ:={a € (0,1)\Q:loga, < O(y/n) as n — oo}.

(2) D(2) € PZ C D(2+) = (0 D(x).
Petersen-Zakeri’s result has been generalized to

e All polynomials and Asinz by Zhang (2014, 2016) [Zhal4l, [Zhal6];

e Special « satisfying

log? a, < nlogn -loglogn---loglog---logn,
k times

by L. Shen (2018) [Shel§], based on studying degenerated Beltrami equations
due to Astala-Iwaniec-Martin.

Theorem 2.10 (Avila-Buff-Chéritat, Acta Math. 2004 [ABC04]). 3a € B\ PZ, s.t.
0A, of P, is C*-smooth.

- Buff-Chéritat (2007) [BCO7]: Ja, s.t. A, is C7 but not C7 1.
Question 4. Does there exist a € B, s.t. H-dim(0Ay) = 27

High type irrational numbers:
HTy :=={a=[a1,a2,---] € (0,1)\ Q| an = N,Vn > 1}.
Theorem 2.11 (Shishikura-Y., Cheraghi; arXiv, 2021 [SY21], [Che22]). For any
sufficiently high type o, if Pa(z) = €™z 4+ 22 has a Siegel disk Ay, then
e 0A, is a Jordan curve; and
e 0A, contains a critical point if and only if « is of Herman type.

The proof: Constructing continuous curves converging to the boundary, by para-
bolic renormalization (Inou-Shishikura [ISOS§]).
High type numbers has non-empty intersection with usual types of irrationals.

Theorem 2.12 (Chéritat, Math. Ann., 2011 [Ché11]). 3 f(z) = €2™*24+0O(2?) whose
Siegel disk Ay is compactly contained in Dom(f) but 0Ay is a pseudo-circle, which
is not locally connected.

The proof: Range’s approximate theorem.
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All irrational numbers

Brjuno type

Herman type

Diophantine type

Petersen-Zakeri typ€
bounded type

=y

3. LOCAL CONNECTIVITY OF JULIA SETS WITH SIEGEL DISKS

Motivation:
LC of J(f) implies:

e well understanding of global dynamics (dynamics from F'(f) to J(f) continu-

ously);
e combinatoric model for J(f) of polynomials.

Two ways to prove local connectivity: The first is proving the local connectivity

point by point. The second is:

Theorem 3.1 (Whyburn, 1942). A compact subset X in C is locally connected if

and only if the following two conditions hold:

(a) The boundary of every component of@ \ X is locally connected; and

(b) Ye > 0, there are only finitely many components of C \ X whose spherical

diameters > €.

Locally connected not locally connected
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Hyperbolic ~» subhyperbolic ~» geometrically finite ~»

Tools in the proof:

(1) Expanding metrics;

(2) Puzzles developed by Yoccoz [Hub93|, Branner-Hubbard [BH92|, Lyubich
[Lyu97], Kozlovski-Shen-van Strien [KSS07], Roesch [Roe0§], - - -.

(3) Grotzsch modulus inequality, Kahn-Lyubich covering lemma [KL09].

Theorem 3.2 (Petersen, Acta Math. 1996 [Pet96]). For any bounded type «, the
Julia set of Pa(2) = €™z + 22 is locally connected.

The proof: Cubic Blaschke model

z—3
1-3z

ga(z) — eQﬂ'iT(a)ZQ
and Petersen’s puzzle. The principle:

diam(T',) < C - length(Z,)
and length (7,,) — 0 as n — oo, where C' > 1 is a constant.

Remark. Petersen-Zakeri (2004) [PZ04] has generalized the result to almost all a.
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Theorem 3.3 (Wang-Y.-Zhang-Zhang, arXiv, 2022 [WYZZ22]). Suppose f is a ra-
tional map with Siegel disks such that the Julia set J(f) is connected, and moreover,
the forward orbit of every critical point of f satisfies one of the following:

(a) It is finite; or

(b) It lies in an attracting basin; or

(c) It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Difficulties: no expanding metric, no puzzles, nor analytic Blaschke models.
Idea of the proof: Constructing quasi-Blaschke models.

30

o C \A — C \ D conformal, and ¢ : C—C quasiconformal.
Denote z* = 1/z. Define

) — pofopl(z) if € C\D,
Gl2) : { ((ﬁofoqﬁfl(z*))* if z € D.
Let P(G) = 6(P(f) \ A).

Main Lemma. Ve > 0,V Jordan disk Vo C C\D with § # VoNP(G) C T, 3N >
s.t. Yn > N, diamz(Vy,) < e, where {Vi,}n>o s any pullback sequence of Vo in C \ ]D)

0 contraction place
*\
2)|dz|

Main Lemma = control the size of Fatou components.

Main Lemma + argument of homotopy class of the curves in immediate attracting
basins = boundaries of attracting basins are locally connected.

Combining Zhang’s result on Siegel disks [Zhall] = above theorem (WYZZ).

Developments: Parabolic basins are allowed (Fu-Y., arxiv, 2023 [F'Y23]).
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