SIEGEL DISKS AND RELATED TOPICS

FEI YANG

ABSTRACT. We survey some results on Siegel disks.

Discrete dynamical systems:

$$f: X \to X$$

$$x \mapsto f(x) \mapsto f(f(x)) \mapsto \dots \mapsto f^n(x) = f(f^{n-1}(x)) \mapsto \dots$$

Complex dynamical systems: X complex manifold, f holomorphic

- rational: $z^2 + c$
- transcendental entire: λe^z , $\lambda \sin(z)$
- transcendental meromorphic: $\lambda \tan(z)$

History (1-dim):

- Newton (1670s): $N_f(z) = z \frac{f(z)}{f'(z)}$ (examples vs theory)
- Fatou, Julia (1920s): based on Montel theorem, Kleinian groups.
- Poincaré (1880s). Nonlinear holomorphic germ $f: U \to \mathbb{C}$:

$$f(z) = \lambda z + \mathcal{O}(z^2), \quad \lambda \neq 0.$$

Question 1. Whether f is locally linearizable? (Applications in celestial mechanics).

$$D \xrightarrow{f} f(D)$$
$$\downarrow ?\varphi \qquad \qquad \qquad \downarrow \varphi$$
$$\mathbb{D} \xrightarrow{z \mapsto \lambda z} \lambda \mathbb{D}$$

- (Kœnigs, 1884 [Koe84]) If $|\lambda| \neq 1$, yes.
- (Leau-Fatou, 1897 [Lea97], [Fat19]) If $\lambda = e^{2\pi i \alpha}, \alpha \in \mathbb{Q}$, no, except $f^n = id$ for some $n \ge 1$.

1. IRRATIONALLY INDIFFERENT FIXED POINTS

Set $\lambda = e^{2\pi i \alpha}, \ \alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Question 2. Does the dynamics of $f(z) = \lambda z + \mathcal{O}(z^2)$ behave as $R_{\alpha}(z) = \lambda z = e^{2\pi i \alpha} z$?

- Kasner (1912): Always yes?
- Pfeiffer (1917): Sometimes no?
- Julia (1919): Always no for nonlinear rational maps?

Theorem 1.1 (Cremer, 1928, Math. Ann. [Cre28]). $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}$, s.t. φ does not exist for any non-linear polynomial.

Date: July 25, 2023.

This lecture was given in a mini-course during a summer school held in TSMIF, Sanya, from July 24 to 25, 2023.

Proof. Let $f(z) = \lambda z + \cdots + z^d$, where $\lambda = e^{2\pi i \alpha}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $d \ge 2$. Suppose the conjugacy φ is defined in $\mathbb{D}(0, \delta)$ with $0 < \delta < 1$, i.e.,

$$\mathbb{D}(0,\delta) \xrightarrow{f} \cdot \\ \downarrow \varphi \qquad \qquad \downarrow \varphi \\ \cdot \xrightarrow{R_{\alpha}} \cdot$$

Consider the fixed points of f^q , where $q \ge 1$, they satisfy

$$f^{q}(z) - z = z^{d^{q}} + \dots + (\lambda^{q} - 1)z = 0.$$

Denote them by $0, z_1, \dots, z_{d^q-1}$. Note that $f^q(z) = \varphi^{-1}(\lambda^q \varphi(z))$ has no fixed point in $\mathbb{D}(0, \delta)$ except 0. Hence

$$\delta^{d^q} \leqslant \delta^{d^q - 1} \leqslant \prod_{j=1}^{d^q - 1} |z_j| = |\lambda^q - 1|, \quad \forall q \ge 1.$$

$$(1.1)$$

Now we construct an $\alpha \in (0, 1) \setminus \mathbb{Q}$ such that (1.1) does not hold.

Take a sequence of positive integers:

$$2 \leqslant q_1 < q_2 < \dots < q_k < \dots, \qquad \text{with } q_{k+1} > q_k + 1.$$

and denote

$$\alpha = \sum_{k=1}^{\infty} \frac{1}{2^{q_k}}.$$
(1.2)

Note that if $0 \leq \alpha \leq \frac{1}{2}$,

$$4\alpha \leqslant \left| e^{2\pi i\alpha} - 1 \right| = 2 \left| \frac{e^{\pi i\alpha} - e^{-\pi i\alpha}}{2} \right| = 2 \left| \sin(\pi \alpha) \right| \leqslant 2\pi\alpha.$$

Hence

$$\left|\lambda^{2^{q_k}} - 1\right| = \left|e^{2\pi \mathbf{i} \cdot 2^{q_k} \sum_{m=k+1}^{\infty} \frac{1}{2^{q_m}}} - 1\right| \asymp 2^{q_k - q_{k+1}}$$

Taking logarithm of (1.1), and setting $q = 2^{q_k}$, we have

 $d^{2^{q_k}} \log \delta \leq (q_k - q_{k+1}) \log 2 + C$, where C > 1 is universal.

This implies

$$q_{k+1} \leqslant q_k + \frac{C}{\log 2} + \frac{\log \frac{1}{\delta}}{\log 2} d^{2^{q_k}}, \quad \forall k \ge 1.$$

$$(1.3)$$

Suppose $q_k \to +\infty$ very fast, e.g., $\log q_{k+1} \ge k \cdot 2^{q_k}$. Then, for α defined in (1.2), (1.3) does not hold for any $d \ge 2$ and any $0 < \delta < 1$.

Remark (Cremer). If α is very "close" to a rational number, e.g., if

$$\limsup_{q \to +\infty} \left(\frac{1}{|\lambda^q - 1|} \right)^{\frac{1}{d^q}} = +\infty$$

for an integer $d \ge 2$, then any rational map $f(z) = \lambda z + \mathcal{O}(z^2)$ of degree d is not locally linearizable at 0.

Theorem 1.2 (Siegel, 1942, Ann. Math. [Sie42]). If

$$\frac{1}{|\lambda^q - 1|} < c \, q^{\kappa - 1}$$

for some c > 0, $\kappa \ge 2$ and all integers $q \ge 1$, then any holomorphic germ $f(z) = \lambda z + \mathcal{O}(z^2)$ is locally linearizable at 0.

Idea of the proof: Based on $\varphi(f(z)) = \lambda \varphi(z)$, prove that the convergence radius of $\varphi(z) = z + \sum_{n \ge 1} b_n z^n$ is positive.

For any $q \ge 1$, let $p \in \mathbb{Z}$, s.t. $|q\alpha - p| \le \frac{1}{2}$. Then

 $4|q\alpha - p| \le |\lambda^q - 1| = |e^{2\pi i(q\alpha - p)} - 1| = 2|\sin(\pi(q\alpha - p))| \le 2\pi |q\alpha - p|.$

Hence

$$\frac{1}{|\lambda^q - 1|} < cq^{\kappa - 1} \Leftrightarrow |\lambda^q - 1| > \frac{\varepsilon'}{q^{\kappa - 1}} \Leftrightarrow |q\alpha - p| > \frac{\varepsilon}{q^{\kappa - 1}}$$
$$\Leftrightarrow \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}}.$$

Definition (Diophantine of order $\leq \kappa$).

$$\mathcal{D}(\kappa) := \left\{ \alpha \in \mathbb{R} \setminus \mathbb{Q} \mid \exists \varepsilon > 0, \kappa \ge 2 \text{ s.t. } \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}}, \ \forall \frac{p}{q} \in \mathbb{Q} \right\}.$$

Obviously, $\mathcal{D}(\kappa) \subset \mathcal{D}(\kappa')$ if $\kappa < \kappa'$.

Remark. (1) Every algebraic number is Diophantine (by Liouville).

Indeed, let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be a root of the polynomial g of degree $d \ge 1$ with integer coefficients. Without loss of generality, assume that $g(p/q) \ne 0, \forall p/q \in \mathbb{Q}$. Then

$$\frac{1}{q^d} \leqslant \left| g\left(\frac{p}{q}\right) \right| = \left| g(\alpha) - g\left(\frac{p}{q}\right) \right| \leqslant M \left| \alpha - \frac{p}{q} \right|.$$

Hence $\sqrt{2} \in \mathcal{D}(2)$ and $\sqrt[3]{2} \in \mathcal{D}(3)$.

(2) $\mathcal{D}(2+) := \bigcap_{\kappa>2} \mathcal{D}(\kappa)$ has full measure in \mathbb{R} .

(3) $\mathcal{D}(2) \neq \emptyset$ has zero measure.

(4) $\mathcal{D}(\kappa) = \emptyset, \forall 0 < \kappa < 2.$

- Continued fraction expansion

$$(0,1) \setminus \mathbb{Q} \ni \alpha = [a_1, a_2, a_3, \cdots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}},$$

where $a_n \in \mathbb{Z}_+$. The *n*-th convergent to α :

$$\frac{p_n}{q_n} = [a_1, a_2, \cdots, a_n] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_n}}}},$$

where $p_n, q_n \in \mathbb{Z}_+$ are coprime integers.

Note

$$\frac{p_1}{q_1} = \frac{1}{a_1}, \quad \frac{p_2}{q_2} = \frac{1}{a_1 + \frac{1}{a_2}} = \frac{a_2}{a_1 a_2 + 1}, \quad \cdots$$

Inductively, for $n \ge 2$,

$$q_n = a_n q_{n-1} + q_{n-2}, \quad q_0 = 1, \quad q_1 = a_1,$$

 $p_n = a_n p_{n-1} + p_{n-2}, \quad p_0 = 0, \quad p_1 = 1.$

By studing the closest returns of $R_{\alpha}(z) = e^{2\pi i \alpha} z$, one has

- (1) $|\lambda^k 1| > |\lambda^{q_n} 1|$, $\forall k = 1, 2, \cdots, q_{n+1} 1$ and $k \neq q_n$. (2) $\frac{2}{q_{n+1}} \leq |\lambda^{q_n} 1| \leq \frac{2\pi}{q_{n+1}}, \quad \forall n \ge 1$.
- Hence

$$\alpha \in \mathcal{D}(\kappa) \Leftrightarrow q_{n+1} \leqslant C q_n^{\kappa - 1},$$

where C > 0 is a constant. In particular,

$$\alpha \in \mathcal{D}(2) \Leftrightarrow q_{n+1} = a_{n+1}q_n + q_{n-1} \leqslant Cq_n \Leftrightarrow \sup_n \{a_n\} < +\infty.$$

Every $\alpha \in \mathcal{D}(2)$ is called *bounded type* (or *constant type*). For example,

$$\alpha = \frac{\sqrt{5-1}}{2} = \frac{1}{1 + \frac{1}{1 +$$

Remark. Quadratic irrational $\Leftrightarrow \{a_n\}_{n \ge 1}$ is eventually periodic $\Leftrightarrow \alpha$ is the root of a quadratic polynomial with integer coefficients. $(\sqrt{2} = 1 + [2, 2, 2, \cdots])$

Theorem 1.3 (Brjuno, 1965 [Brj65], [Brj71]; Rüssman, 1967 [Rüs67]). If

$$\alpha \in \mathcal{B} := \left\{ \alpha \in \mathbb{R} \setminus \mathbb{Q} \mid \sum_{n=1}^{\infty} \frac{\log(q_{n+1})}{q_n} < +\infty \right\},$$

then any holomorphic germ $f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$ is locally linearizable.

Remark. (1) We have

$$\mathcal{D}(2) \subsetneq \mathcal{D}(2+) \subsetneq \mathcal{D}(\kappa) \subsetneq \mathcal{D} := \bigcup_{\kappa \geqslant 2} \mathcal{D}(\kappa) \subsetneq \mathcal{B}.$$

(2) If $a_{n+1} = e^{a_n}$, then $\alpha \in \mathcal{B} \setminus \mathcal{D}$.

Theorem 1.4 (Yoccoz, 1988 [Yoc88], [Yoc95]). If $\alpha \notin \mathcal{B}$, then $f(z) = e^{2\pi i \alpha} z + z^2$ is not locally linearizable at 0. Moreover, f has the small cycles property: every neighborhood of 0 contains infinitely many periodic orbits.

For $f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$, the origin is called a

- Siegel point, if f is locally linearizable at 0;
- Cremer point, otherwise.

Theorem 1.5 (Pérez-Marco, 1990 [Pér90]). We have

(1) If

$$\sum_{n=1}^{\infty} \frac{\log \log(q_{n+1})}{q_n} < \infty$$

then every germ $f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$ which has a Cremer point at 0 has the small cycles property.

(2) If the sum above diverges, then $\exists f(z) = e^{2\pi i \alpha} + \mathcal{O}(z^2)$ which has a Cremer point at 0 but has no small cycles.

Conjecture 1 (Douady, 1980s). Suppose $f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$ is a non-Möbius rational map / transcendental entire function having a Siegel point at 0. Then $\alpha \in \mathcal{B}$.

Known results:

- Pérez-Marco (1993 [Pér93]): Structurally stable polynomials.
- Geyer (2001, 2019 [Gey01, Gey19]) and Okuyama (2001, [Oku01]): Juliasaturated polynomials, including

$$f(z) = \lambda z \left(1 + \frac{z}{d}\right)^d$$
 and $g(z) = \lambda \frac{(1+z)^d - 1}{d}$

- Geyer (2001, [Gey01]) and Okuyama (2005 [Oku05]): Structurally finite transcendental entire functions, including $f(z) = \lambda z e^{z}$.
- Manlove (2015): Julia-saturated rational maps.

The proofs are based on Yoccoz's result.

Remark. Douady's conjecture is still open for cubic polynomials $\lambda z + a_2 z^2 + z^3$, the sine family $\lambda \sin z$, and the exponential family $\lambda (e^z - 1)$.

Question 3. Does there exist $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, s.t. 0 is a Cremer point for any nonlinear transcendental function $f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$?

2. Siegel disks

Definition. For

$$f(z) = e^{2\pi i\alpha} z + \mathcal{O}(z^2) : 0 \in U \to \mathbb{C},$$

The Siegel disk Δ_f of f at 0 is the biggest open subset of U containing 0 on which f is analytically conjugate to $R_{\alpha}(z) = e^{2\pi i \alpha} z$ (i.e., locally linearizable).

Each Δ_f is simply connected, cannot contain any periodic or critical points.

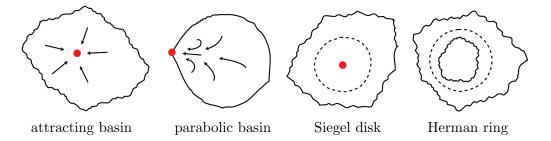
Conjecture 2 (Douady-Sullivan, 1986 [Dou87]). The Siegel disks of rational maps $(\deg \ge 2)$ are Jordan domains.

– Motivation

For a rational map $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, the Fatou set and Julia set are defined by (other definitions including equicontinuous, closure of repelling periodic points etc):

 $F(f) := \{ z \in \widehat{\mathbb{C}} : \{ f^n \}_{n \in \mathbb{N}} \text{ is a normal family in a neighborhood of } z \},$ $J(f) := \widehat{\mathbb{C}} \setminus F(f).$

Classification of periodic Fatou components of rational maps (by Sullivan [Sul85]):



- The dynamics in F(f) has been completely understood (no Baker and wandering domains);
- The dynamics on J(f) is difficult.

Let Crit(f) be the set of critical points and the *postcritical set* of f is

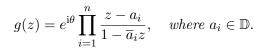
$$\mathcal{P}(f) := \overline{\bigcup_{n \ge 1} f^n(\operatorname{Crit}(f))}$$

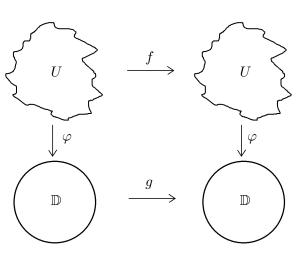
They play an essential role in the dynamics of f (contraction vs expanding). By Fatou (1920s):

- $U \cap \operatorname{Crit}(f) \neq \emptyset$ if U is an attracting or parabolic basin (i.e., critical periodic Fatou components).
- $\partial U \subset \mathcal{P}(f)$ if U is a Siegel disk or Herman ring.

By qc surgery (Shishikura [Shi87]), Siegel disks and Herman rings can be transformed into each other.

Theorem 2.1 (McMullen, 1988 [McM88]). Let U be a simply connected fixed Fatou component of a rational map f with $\deg(f) \ge 2$. Then $f: U \to U$ is conformally conjugate to a Blaschke product $g: \mathbb{D} \to \mathbb{D}$, where





By Carathéodory, the dynamics of $g|_{\partial \mathbb{D}}$ can be transferred to $f|_{\partial U}$ continuously (resp. homeomorphically) if ∂U is locally connected (resp. a Jordan curve).

LC of ∂U implies Jordan in the following cases:

- All bounded Fatou components (attracting, parabolic, Siegel) of polynomials;
- Siegel disks of rational maps.

Theorem 2.2 (Roesch-Yin, 2008 [RY08, RY22]). For polynomials, all bounded critical Fatou components are Jordan domains.

– Quadratic Siegel disks (Topology of $\partial \Delta_f$ and the position of critical points) An orientation-preserving homeomorphism $h : \mathbb{R} \to \mathbb{R}$ is called *quasisymmetric* if $\exists k > 1$ s.t.

$$\frac{1}{k} \leqslant \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \leqslant k, \quad \forall x \in \mathbb{R}, \; \forall t > 0.$$

 $\mathbf{6}$

One can define quasisymmetric for a homeomorphism $g:\mathbb{T}\to\mathbb{T}$ similarly via the following diagram

$$\begin{array}{ccc} \mathbb{R} & \stackrel{h}{\longrightarrow} & \mathbb{R} \\ & \downarrow e^{2\pi \mathrm{i} x} & \downarrow e^{2\pi \mathrm{i}} \\ \mathbb{T} & \stackrel{g}{\longrightarrow} & \mathbb{T}. \end{array}$$

The rotation number of $g: \mathbb{T} \to \mathbb{T}$ is

$$\operatorname{rot}(g) := \lim_{n \to +\infty} \frac{h^n(0)}{n} \mod 1.$$

Theorem 2.3 (Herman-Świątek, 1986 [Her86], [Świ88]). Let $g : \mathbb{T} \to \mathbb{T}$ be a realanalytic critical circle homeomorphism of rotation number α . Then g is quasisymmetrically conjugate to $R_{\alpha}(z) = e^{2\pi i \alpha} z$ if and only if α is of bounded type.

Now we show how to use qc surgery transforming cubic Blaschke products to a quadratic polynomials.

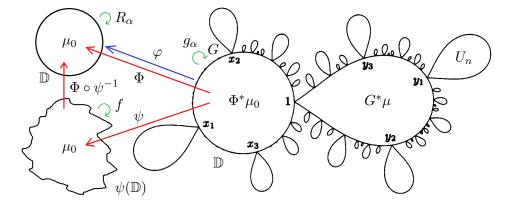
It is not hard to check that

$$z\mapsto z^2\frac{z-3}{1-3z}:\mathbb{T}\to\mathbb{T}$$

is a real-analytic critical circle homeomorphism. $\forall \alpha \in (0,1) \setminus \mathbb{Q}, \exists 1 \tau(\alpha) \in (0,1) \text{ s.t.}$

$$g_{\alpha}(z) = e^{2\pi i \tau(\alpha)} z^2 \frac{z-3}{1-3z},$$

has rotation number α .



Let $\alpha \in \mathcal{D}(2)$. By Herman-Świątek, \exists quasisymmetric map $\varphi : \mathbb{T} \to \mathbb{T}$ s.t.

$$\varphi \circ g_{\alpha} \circ \varphi^{-1}(z) = R_{\alpha}(z) = e^{2\pi i \alpha} z.$$

Then \exists a homeomorphism $\Phi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ s.t.

$$\Phi: \mathbb{D} \to \mathbb{D} \text{ is qc}, \quad \Phi|_{\mathbb{T}} = \varphi, \quad \Phi(0) = 0.$$

Define

$$G(z) := \begin{cases} g_{\alpha}(z) & z \in \widehat{\mathbb{C}} \setminus \mathbb{D} \\ \Phi^{-1} \circ R_{\alpha} \circ \Phi(z), & z \in \mathbb{D}. \end{cases}$$

Then $G: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is a quasi-regular map of degree 2. Let μ_0 be the standard ellipse field. Define $\mu = \Phi^* \mu_0$ in \mathbb{D} . Then μ is invariant in \mathbb{D} under G:

$$G^*\mu = (\Phi^{-1} \circ R_\alpha \circ \Phi)^*\mu = \Phi^* \Big(R^*_\alpha \big((\Phi \circ \Phi^{-1})^* \mu_0 \big) \Big) = \Phi^* \mu_0 = \mu.$$

FEI YANG

 $\forall z \text{ in the drop } U_n \subset \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}} \text{ which is mapped onto } \mathbb{D} \text{ by } G^n, \text{ where } n \geq 1 \text{ is minimal,}$ define μ at z as $\mu = (G^n)^* \mu = (g_\alpha^n)^* \mu$. In the rest place, define $\mu = \mu_0$. Then $G^* \mu = \mu$ on $\widehat{\mathbb{C}}$. Note that $\|\mu\|_{\infty} < 1$. By MRMT (measurable Riemann mapping theorem),

 $\exists \operatorname{qc} \psi : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}, \quad \text{s.t.} \quad \psi^* \mu_0 = \mu \text{ and } \psi \text{ fixes } 0, 1, \infty.$

Note that

$$\begin{array}{ccc} (\widehat{\mathbb{C}},\mu) & \stackrel{G}{\longrightarrow} & (\widehat{\mathbb{C}},\mu) \\ & \downarrow \psi & \qquad \qquad \downarrow \psi \\ (\widehat{\mathbb{C}},\mu_0) & \stackrel{f}{\longrightarrow} & (\widehat{\mathbb{C}},\mu_0). \end{array}$$

Then $f = \psi \circ G \circ \psi^{-1} : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is a quadratic rational map. By

- $f^{-1}(\infty) = \infty, f(0) = 0,$
- $f: \psi(\mathbb{D}) \to \psi(\mathbb{D})$ is conjugate to $R_{\alpha}: \mathbb{D} \to \mathbb{D}$ by a conformal map $\Phi \circ \psi^{-1}: \psi(\mathbb{D}) \to \mathbb{D}$, and
- 1 is a critical point of f,

we have $f(z) = e^{2\pi i\alpha} \left(z - \frac{z^2}{2}\right)$.

Theorem 2.4 (Douady-Herman, 1986 [Dou87]). $\forall \alpha \in \mathcal{D}(2)$, the boundary of the Siegel disk Δ_{α} of $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ is a quasi-circle passing through the critical point $\omega_{\alpha} = -\frac{e^{2\pi i \alpha}}{2}$.

By a similar method but considering

$$g(z) = e^{2\pi i \tau} z^2 \frac{z-a}{1-az}, \quad a > 3,$$

we have

Theorem 2.5 (Herman, 1986). $\exists \alpha \in \mathcal{B} \setminus \mathcal{D}(2)$, s.t. $\partial \Delta_{\alpha}$ of P_{α} is a quasi-circle not passing through ω_{α} .

By studying more general Blaschke products, Douady-Herman's result has been extended to

- Zakeri (1999) [Zak99]: cubic polynomials,
- Shishikura (2001) [Shi01]: all polynomials.

Theorem 2.6 (Zhang, Invent. Math. 2011 [Zha11]). Every bounded type Siegel disk of a rational map (deg ≥ 2) is bounded by a quasi-circle passing through at least one critical point.

The proof: invariant curves in Δ_f are uniform quasi-circles. Difficulty: The quasisymmetric constants have no uniform bound.

Remark. (1) Douady-Sullivan's conjecture holds for bounded type α . (2) Petersen (2004) [Pet04]: The inverse of Zhang's result is also true.

Theorem 2.7 (Zakeri, Duke Math. J. 2010 [Zak10]). Every bounded type Siegel disk centered at 0 of $f(z) = P(z)e^{Q(z)}$, where P, Q are polynomials, is bounded by a quasi-circle in \mathbb{C} which contains at least one critical point of f.

Remark. (1) Constructing transcendental meromorphic Blaschke models.

- (2) This generalizes the results of
 - Geyer (2001) [Gey01]: $\lambda z e^z$; and
 - Keen-Zhang (2009) [KZ09]: $(\lambda z + az^2)e^z$.

Some other families on this topic (for bounded type α): the sine family $\lambda \sin z$ (Zhang, 2005 [Zha05]) and transcendental entire functions with 3 singular values (Chéritat-Epstein, 2018 [CE18]).

Theorem 2.8 (G. David, 1988 [Dav88], Solutions de l'equation de Beltrami avec $\|\mu\|_{\infty} = 1$). Suppose $\mu \in L^{\infty}(\mathbb{C}), \exists \varepsilon_0, C, \alpha > 0, s.t. \forall 0 < \varepsilon \leq \varepsilon_0$,

area
$$(\{z \in \mathbb{C} : |\mu(z)| > 1 - \varepsilon\}) \leqslant C \cdot e^{-\frac{\alpha}{\varepsilon}}.$$
 (2.1)

Then \exists homeomorphism $h : \mathbb{C} \to \mathbb{C}$, s.t. $\frac{\partial h}{\partial \overline{z}} = \mu \frac{\partial h}{\partial z}$ and h is unique if requiring h(0) = 0 and h(1) = 1.

Recall the qc surgery process of transforming g_{α} into P_{α} with $\alpha = [a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q}$, especially about the definition of μ .

Theorem 2.9 (Petersen-Zakeri, Ann. Math. 2004 [PZ04]). If $\log a_n \leq \mathcal{O}(\sqrt{n})$ as $n \to \infty$, then the globally defined μ satisfies (2.1), and moreover, $\partial \Delta_{\alpha}$ of P_{α} is a David-circle passing through the critical point ω_{α} .

Remark. (1) PZ has full measure in (0, 1), where

$$PZ := \{ \alpha \in (0,1) \setminus \mathbb{Q} : \log a_n \leq \mathcal{O}(\sqrt{n}) \text{ as } n \to \infty \}.$$

(2)
$$\mathcal{D}(2) \subsetneq \mathrm{PZ} \subsetneq \mathcal{D}(2+) = \bigcap_{\kappa > 2} \mathcal{D}(\kappa)$$

Petersen-Zakeri's result has been generalized to

- All polynomials and $\lambda \sin z$ by Zhang (2014, 2016) [Zha14], [Zha16];
- Special α satisfying

$$\log^2 a_n \leqslant n \log n \cdot \log \log n \cdots \log \log \cdots \log n,$$

$$k \text{ times}$$

by L. Shen (2018) [She18], based on studying degenerated Beltrami equations due to Astala-Iwaniec-Martin.

Theorem 2.10 (Avila-Buff-Chéritat, Acta Math. 2004 [ABC04]). $\exists \alpha \in \mathcal{B} \setminus PZ$, s.t. $\partial \Delta_{\alpha}$ of P_{α} is C^{∞} -smooth.

- Buff-Chéritat (2007) [BC07]: $\exists \alpha$, s.t. $\partial \Delta_{\alpha}$ is C^{γ} but not $C^{\gamma+1}$.

Question 4. Does there exist $\alpha \in \mathcal{B}$, s.t. $\operatorname{H-dim}(\partial \Delta_f) = 2$?

High type irrational numbers:

$$\mathrm{HT}_N := \{ \alpha = [a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N, \forall n \ge 1 \}.$$

Theorem 2.11 (Shishikura-Y., Cheraghi; arXiv, 2021 [SY21], [Che22]). For any sufficiently high type α , if $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ has a Siegel disk Δ_{α} , then

- $\partial \Delta_{\alpha}$ is a Jordan curve; and
- $\partial \Delta_{\alpha}$ contains a critical point if and only if α is of Herman type.

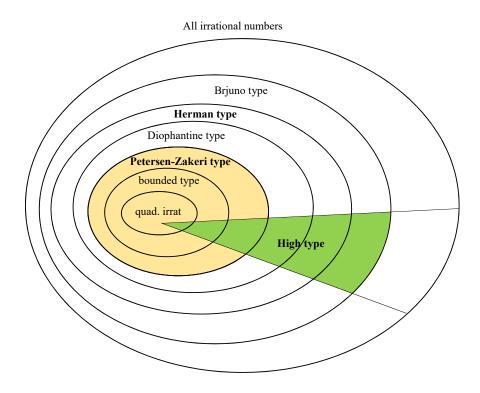
The proof: Constructing continuous curves converging to the boundary, by parabolic renormalization (Inou-Shishikura [IS08]).

High type numbers has non-empty intersection with usual types of irrationals.

Theorem 2.12 (Chéritat, Math. Ann., 2011 [Ché11]). $\exists f(z) = e^{2\pi i \alpha} z + \mathcal{O}(z^2)$ whose Siegel disk Δ_f is compactly contained in Dom(f) but $\partial \Delta_f$ is a pseudo-circle, which is not locally connected.

The proof: Range's approximate theorem.

FEI YANG



3. LOCAL CONNECTIVITY OF JULIA SETS WITH SIEGEL DISKS

Motivation:

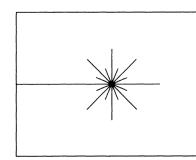
LC of J(f) implies:

- well understanding of global dynamics (dynamics from F(f) to J(f) continuously);
- combinatoric model for J(f) of polynomials.

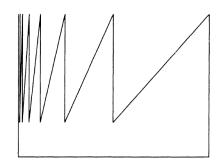
Two ways to prove local connectivity: The first is proving the local connectivity point by point. The second is:

Theorem 3.1 (Whyburn, 1942). A compact subset X in $\widehat{\mathbb{C}}$ is locally connected if and only if the following two conditions hold:

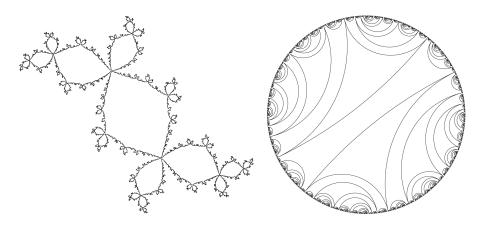
- (a) The boundary of every component of $\widehat{\mathbb{C}} \setminus X$ is locally connected; and
- (b) $\forall \varepsilon > 0$, there are only finitely many components of $\widehat{\mathbb{C}} \setminus X$ whose spherical diameters $> \varepsilon$.



Locally connected



not locally connected

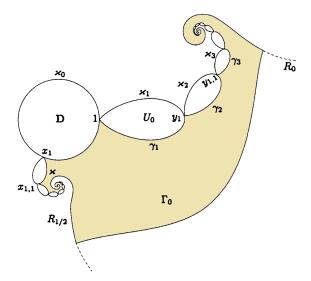


 ${\rm Hyperbolic} \rightsquigarrow {\rm subhyperbolic} \rightsquigarrow {\rm geometrically finite} \rightsquigarrow$

Tools in the proof:

- (1) Expanding metrics;
- (2) Puzzles developed by Yoccoz [Hub93], Branner-Hubbard [BH92], Lyubich [Lyu97], Kozlovski-Shen-van Strien [KSS07], Roesch [Roe08],
- (3) Grötzsch modulus inequality, Kahn-Lyubich covering lemma [KL09].

Theorem 3.2 (Petersen, Acta Math. 1996 [Pet96]). For any bounded type α , the Julia set of $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$ is locally connected.



The proof: Cubic Blaschke model

$$g_{\alpha}(z) = e^{2\pi i \tau(\alpha)} z^2 \frac{z-3}{1-3z}$$

and Petersen's puzzle. The principle:

$$\operatorname{diam}(\Gamma_n) \leqslant C \cdot \operatorname{length}(I_n)$$

and length $(I_n) \to 0$ as $n \to \infty$, where C > 1 is a constant.

Remark. Petersen-Zakeri (2004) [PZ04] has generalized the result to almost all α .

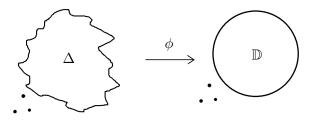
FEI YANG

Theorem 3.3 (Wang-Y.-Zhang-Zhang, arXiv, 2022 [WYZZ22]). Suppose f is a rational map with Siegel disks such that the Julia set J(f) is connected, and moreover, the forward orbit of every critical point of f satisfies one of the following:

- (a) It is finite; or
- (b) It lies in an attracting basin; or
- (c) It intersects the closure of a bounded type Siegel disk.

Then J(f) is locally connected.

Difficulties: no expanding metric, no puzzles, nor analytic Blaschke models. *Idea of the proof*: Constructing *quasi-Blaschke* models.

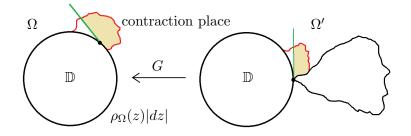


 $\phi: \widehat{\mathbb{C}} \setminus \overline{\Delta} \to \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}$ conformal, and $\phi: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ quasiconformal. Denote $z^* = 1/\overline{z}$. Define

$$G(z) := \begin{cases} \phi \circ f \circ \phi^{-1}(z) & \text{if } z \in \widehat{\mathbb{C}} \setminus \mathbb{D}, \\ \left(\phi \circ f \circ \phi^{-1}(z^*) \right)^* & \text{if } z \in \mathbb{D}. \end{cases}$$

Let $\mathcal{P}(G) = \phi(\mathcal{P}(f) \setminus \Delta)$.

Main Lemma. $\forall \varepsilon > 0, \forall Jordan \ disk \ V_0 \subset \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}} \ with \ \emptyset \neq \overline{V}_0 \cap \mathcal{P}(G) \subset \mathbb{T}, \ \exists N \ge 1,$ s.t. $\forall n \ge N, \ \text{diam}_{\widehat{\mathbb{C}}}(V_n) < \varepsilon, \ where \ \{V_n\}_{n \ge 0} \ is \ any \ pullback \ sequence \ of \ V_0 \ in \ \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}.$



Main Lemma \Rightarrow control the size of Fatou components.

Main Lemma + argument of homotopy class of the curves in immediate attracting basins \Rightarrow boundaries of attracting basins are locally connected.

Combining Zhang's result on Siegel disks [Zha11] \Rightarrow above theorem (WYZZ).

Developments: Parabolic basins are allowed (Fu-Y., arxiv, 2023 [FY23]).

References

- [ABC04] A. Avila, X. Buff, and A. Chéritat, Siegel disks with smooth boundaries, Acta Math. 193 (2004), no. 1, 1–30.
- [BC07] X. Buff and A. Chéritat, How regular can the boundary of a quadratic Siegel disk be?, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1073–1080.
- [BH92] B. Branner and J. H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), no. 3-4, 229–325.

12

- [Brj65] A. D. Brjuno, Convergence of transformations of differential equations to normal forms, Dokl. Akad. Nauk USSR 165 (1965), 987–989.
- [Brj71] _____, Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč. 25 (1971), 119–262; ibid. 26 (1972), 199–239.
- [CE18] A. Chéritat and A. L. Epstein, Bounded type Siegel disks of finite type maps with few singular values, Sci. China Math. 61 (2018), no. 12, 2139–2156.
- [Ché11] A. Chéritat, Relatively compact Siegel disks with non-locally connected boundaries, Math. Ann. 349 (2011), no. 3, 529–542.
- [Che22] D. Cheraghi, Topology of irrationally indifferent attractors, arXiv: 1706.02678v3, 2022.
- [Cre28] H. Cremer, Zum Zentrumproblem, Math. Ann. 98 (1928), no. 1, 151–163.
- [Dav88] G. David, Solutions de l'équation de Beltrami avec $\|\mu\|_{\infty} = 1$, Ann. Acad. Sci. Fenn. Ser. A I Math. **13** (1988), no. 1, 25–70.
- [Dou87] A. Douady, Disques de Siegel et anneaux de Herman, Bourbaki seminar, Vol. 1986/87, Astérisque, no. 152-153, Soc. Math. France, Paris, 1987, pp. 151–172.
- [Fat19] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271;
 48 (1920), 33–94, 208–314.
- [FY23] Y. Fu and F. Yang, Mating Siegel and parabolic quadratic polynomials, arXiv: 2305.15180, 2023.
- [Gey01] L. Geyer, Siegel discs, Herman rings and the Arnold family, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3661–3683.
- [Gey19] _____, Linearizability of saturated polynomials, Indiana Univ. Math. J. **68** (2019), no. 5, 1551–1578.
- [Her86] M. R. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle à des rotations et applications aux disques singuliers de Siegel, manuscript, 1986.
- [Hub93] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 467–511.
- [IS08] H. Inou and M. Shishikura, The renormalization for parabolic fixed points and their perturbation, https://www.math.kyoto-u.ac.jp/~mitsu/pararenorm/, preprint, 2008.
- [KL09] J. Kahn and M. Lyubich, The quasi-additivity law in conformal geometry, Ann. of Math.
 (2) 169 (2009), no. 2, 561–593.
- [Koe84] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 1 (1884), 3–41.
- [KSS07] O. Kozlovski, W. Shen, and S. van Strien, *Rigidity for real polynomials*, Ann. of Math. (2) **165** (2007), no. 3, 749–841.
- [KZ09] L. Keen and G. Zhang, Bounded-type Siegel disks of a one-dimensional family of entire functions, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 137–164.
- [Lea97] L. Leau, Étude sur les équations fonctionnelles à une ou à plusieurs variables, Ann. Fac. Sci. Toulouse Math. (1) 11 (1897), no. 2-3, E1–E110.
- [Lyu97] M. Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297.
- [McM88] C. T. McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60.
- [Oku01] Y. Okuyama, Non-linearizability of n-subhyperbolic polynomials at irrationally indifferent fixed points, J. Math. Soc. Japan 53 (2001), no. 4, 847–874.
- [Oku05] _____, Linearization problem on structurally finite entire functions, Kodai Math. J. 28 (2005), no. 2, 347–358.
- [Pér90] R. Pérez-Marco, Sur la dynamique des germes de difféomorphismes holomorphes de (C, 0) et des difféomorphismes analytiques du cercle, Thesis (Ph.D.)–Université de Paris-Sud, Orsay, 1990.
- [Pér93] _____, Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold, Ann. Sci. École Norm. Sup. (4) **26** (1993), no. 5, 565–644.
- [Pet96] C. L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177 (1996), no. 2, 163–224.
- [Pet04] _____, On holomorphic critical quasi-circle maps, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1739–1751.

14	FEI YANG
[PZ04]	C. L. Petersen and S. Zakeri, On the Julia set of a typical quadratic polynomial with a Siegel disk, Ann. of Math. (2) 159 (2004), no. 1, 1–52.
[Roe08]	P. Roesch, On local connectivity for the Julia set of rational maps: Newton's famous example, Ann. of Math. (2) 168 (2008), no. 1, 127–174.
[Rüs67]	H. Rüssmann, Über die Iteration analytischer Funktionen, J. Math. Mech. 17 (1967), 523–532.
[RY08]	P. Roesch and Y. Yin, <i>The boundary of bounded polynomial Fatou components</i> , C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16, 877–880.
[RY22]	, Bounded critical Fatou components are Jordan domains for polynomials, Sci. China Math. 65 (2022), no. 2, 331–358.
[She18]	L. Shen, An application of the degenerate Beltrami equation: quadratic polynomials with a Siegel disk, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 267–277.
[Shi87]	M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29.
[Shi01]	, Herman's theorem on quasisymmetric linearization of analytic circle homemorphisms, manuscript, 2001.
[Sie42] [Sul85]	 C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607–612. D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou- Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418.
[Świ88]	G. Świątek, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), no. 1, 109–128.
[SY21]	M. Shishikura and F. Yang, <i>The high type quadratic Siegel disks are Jordan domains</i> , arXiv: 1608.04106v4, 2021.
[WYZZ22]	S. Wang, F. Yang, G. Zhang, and Y. Zhang, <i>Local connectivity for the Julia sets of rational maps with Siegel disks</i> , arXiv: 2106.07450v4, 2022.
[Yoc88]	JC. Yoccoz, <i>Linéarisation des germes de difféomorphismes holomorphes de</i> (C,0), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 55–58.
[Yoc95]	, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque (1995), no. 231, 3–88.
[Zak99]	S. Zakeri, <i>Dynamics of cubic Siegel polynomials</i> , Comm. Math. Phys. 206 (1999), no. 1, 185–233.
[Zak10]	$\underline{\qquad}$, On Siegel disks of a class of entire maps, Duke Math. J. 152 (2010), no. 3, 481–532.
[Zha05] [Zha11]	G. Zhang, On the dynamics of $e^{2\pi i\theta} \sin(z)$, Illinois J. Math. 49 (2005), no. 4, 1171–1179. ——, All bounded type Siegel disks of rational maps are quasi-disks, Invent. Math. 185 (2011), no. 2, 421–466.
[Zha14] [Zha16]	 , Polynomial Siegel disks are typically Jordan domains, arXiv: 1208.1881v3, 2014. , On PZ type Siegel disks of the sine family, Ergodic Theory Dynam. Systems 36 (2016), no. 3, 973–1006.

Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China *E-mail address:* yangfei@nju.edu.cn