THE HIGH TYPE QUADRATIC SIEGEL DISKS ARE JORDAN DOMAINS

MITSUHIRO SHISHIKURA AND FEI YANG

Abstract

Let α be an irrational number of sufficiently high type and suppose $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$ has a Siegel disk Δ_{α} centered at the origin. We prove that the boundary of Δ_{α} is a Jordan curve, and that it contains the critical point $-e^{2 \pi \mathrm{i} \alpha} / 2$ if and only if α is a Herman number.

Contents

1. Introduction 1
2. Near-parabolic renormalization scheme 6
3. The suitable heights 21
4. The sequence of the curves is convergent 25
5. A Jordan arc and a new class of irrationals 35
6. Optimality of Herman condition 41
Appendix A. Some calculations in Fatou coordinate planes 45
References 48

1. Introduction

Let f be a non-linear holomorphic function with $f(0)=0$ and $f^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha}$, where $0<\alpha<1$ is an irrational number. We say that f is locally linearizable at the fixed point 0 if there exists a holomorphic function defined near 0 which conjugates f to the rigid rotation $R_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z$. The maximal region in which f is conjugate to R_{α} is a simply connected domain called the Siegel disk of f centered at 0 .

The existence of the Siegel disk of f is dependent on the arithmetic condition of $\alpha \in(0,1) \backslash \mathbb{Q}$. Let

$$
\left[0 ; a_{1}, a_{2}, \cdots\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

be the continued fraction expansion of α. The rational numbers $p_{n} / q_{n}:=\left[0 ; a_{1}\right.$, $\left.\cdots, a_{n}\right], n \geqslant 1$, are the convergents of α, where p_{n} and q_{n} are coprime positive integers. If α belongs to the Brjuno class

$$
\mathcal{B}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \mid \Sigma_{n=1}^{\infty} q_{n}^{-1} \log q_{n+1}<+\infty\right\},
$$

then any holomorphic germ f with $f(0)=0$ and $f^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha}$ is locally linearizable at 0 and hence f has a Siegel disk centered at the origin Sie42, Brj71. Yoccoz

[^0]proved that the Brjuno condition is also necessary for the local linearization of the quadratic polynomial
$$
P_{\alpha}(z):=e^{2 \pi \mathrm{i} \alpha} z+z^{2}: \mathbb{C} \rightarrow \mathbb{C}
$$
at the origin Yoc95.
1.1. Topology and obstructions of Siegel disk boundaries. The dynamics in the Siegel disks is simple and one mainly concerns the properties on the boundaries. In the 1980s, Douady and Sullivan asked the following question (see Dou83, Rog92a):

Question. Is the boundary of a Siegel disk a Jordan curve?
This question is still open, even for quadratic polynomials. However, much progress has been made on this problem for various families of functions under preconditions. An irrational number $\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right]$ is called bounded type if $\sup _{n \geqslant 1}\left\{a_{n}\right\}<+\infty$. Douady-Herman, Zakeri, Yampolsky-Zakeri, Shishikura and Zhang, respectively, proved that the boundaries of bounded type Siegel disks of quadratic polynomials, cubic polynomials, some quadratic rational maps, all polynomials and all rational maps with degree at least two are quasi-circles (hence are Jordan curves) (see [Dou87, Her87, Zak99, [YZ01], Shi01], Zha11). This is also true for some transcendental entire functions (see Gey01, Zha05, Ché06, KZ09, Zak10, Yan13, CE18, ZFS20).

An important breakthrough was made by Petersen and Zakeri in 2004. They proved that for almost all irrational number α, the boundary of the Siegel disk of the quadratic polynomial P_{α} is a Jordan curve [PZ04]. We refer these irrational numbers the $P Z$ type, i.e., $\log a_{n}=\mathcal{O}(\sqrt{n})$ as $n \rightarrow \infty$, where a_{n} is the n-th digit of the continued fraction expansion of α. Recently, Zhang generalized this result to all polynomials Zha14 and obtained the same result for the sine family Zha16.

Suppose the closure of the Siegel disk of f is compactly contained in the domain of definition of f. One may wonder what phenomena near the boundary of a Siegel disk prevents f from having a larger linearization domain. Obviously, the presence of periodic cycles near the boundary is one of the reasons since any Siegel disk cannot contain periodic points except the center itself. It was proved by Avila and Cheraghi that under some condition on α every neighborhood of the Siegel disk of P_{α} contains infinitely many cycles AC18, which is similar to the small cycle property that prevents linearization (see Yoc88 and [Pér92]).

On the other hand, note that any Siegel disk cannot contain a critical point. Hence the second question on the Siegel disk boundary is: Does the boundary of a Siegel disk always contain a critical point? The answer is no. Ghys and Herman gave the first examples of polynomials having a Siegel disk whose boundary does not contain a critical point (see Ghy84, Her86 and Dou87).

In relation to the results on the regularity ${ }^{11}$ of the boundaries of the Siegel disks mentioned above (for the bounded type or PZ type rotation numbers), they also include the statement that the boundaries of those Siegel disks pass through at least one critical point. In particular, for the bounded type rotation numbers, Graczyk and Świa̧tek proved a very general result: if an analytic function has a Siegel disk properly contained in the domain of holomorphy and the rotation number is of bounded type, then the boundary of the corresponding Siegel disk contains a critical point GŚ03.

Herman was one of the pioneers who studied the analytic diffeomorphisms on the circles Her79. He introduced the following subset of irrational numbers.

[^1]Definition (Herman numbers). Let \mathcal{H} be the set of irrational numbers α such that every orientation-preserving analytic circle diffeomorphism of rotation number α is analytically conjugate to the rigid rotation.

Herman proved that the set \mathcal{H} is non-empty and contains a subset of Diophantine numbers Her79. Yoccoz proved that \mathcal{H} contains all Diophantine numbers (and hence contains all bounded type and PZ type numbers), and also gave an arithmetic characterization of the numbers in \mathcal{H} Yoc02.

Suppose f is an analytic function which has a Siegel disk properly contained in the domain of holomorphy. Ghys proved that if the rotation number belongs to \mathcal{H} and the boundary of the Siegel disk is a Jordan curve, then f has a critical point in the boundary of the Siegel disk Ghy84. Later, Herman generalized this result by dropping the topological condition on the Siegel disk boundary but requiring that the restriction of f on the Siegel disk boundary is injective Her85 (see also Pér97). In particular, he proved that if a unicritical polynomial has a Siegel disk whose rotation number is contained in \mathcal{H}, then the boundary of the Siegel disk contains a critical point. Recently, Chéritat and Roesch, Benini and Fagella, respectively, generalized this result to the polynomials with two critical values [CR16] and to a special class of transcendental entire functions with two singular values [BF18].

For polynomials, Rogers proved that if the Siegel disk Δ is fixed and the rotation number is in \mathcal{H}, then either $\partial \Delta$ contains a critical point or $\partial \Delta$ is an indecomposable continuum Rog98. For the exponential map $E_{\theta}(z)=e^{2 \pi \mathrm{i} \theta}\left(e^{z}-1\right)$, it was proved by Herman that, if E_{θ} has a bounded Siegel disk Δ_{θ}, then E_{θ} is injective on $\partial \Delta_{\theta}$. Hence it follows from Herman's result that Δ_{θ} is unbounded when $\theta \in \mathcal{H}$ since E_{θ} has no critical points Her85]. Conversely, Herman, Baker and Rippon asked a question: if Δ_{θ} is unbounded, is necessarily the singular value $-e^{2 \pi i \theta}$ contained in $\partial \Delta_{\theta}$? Rippon showed that this is true for almost all θ Rip94 and the question was fully answered positively by Rempe [Rem04] and independently by Buff and Fagella (unpublished). Moreover, Rempe also studied the Herman type Siegel disks of some other transcendental entire functions Rem08.
1.2. The statement of the main result. The proofs of the regularity results for the bounded type and PZ type Siegel disks stated previously are all based on surgery: either quasiconformal or trans-quasiconformal. In these proofs, some premodels, and usually, a single or a family of Blaschke products are needed. By surgery, the regularity and the existence of critical points on the boundaries of Siegel disks were proved at the same time.

In this paper, without using surgeries we shall prove that the Siegel disks of some holomorphic maps are Jordan domains and that Herman type rotation number is also necessary for the existence of critical points on the Siegel disk boundaries. To this end, it requires us to restrict the rotation numbers to a special class since we need to use near-parabolic renormalization scheme. In [IS08, a renormalization operator \mathcal{R} and a compact class \mathcal{F} that is invariant under \mathcal{R} were introduced. All the maps in \mathcal{F} have a special covering structure. They have a neutral fixed point at the origin and a unique simple critical point in their domains of definition. The renormalization operator assigns a new map in \mathcal{F} to a given map of \mathcal{F} that is obtained by considering the return map to a sector landing at the origin. As a return map, one iterate of $\mathcal{R} f$ corresponds to many iterates of $f \in \mathcal{F}$. To study very large iterates of f near 0 , one hopes to repeat this process infinitely many times. However, to iterate \mathcal{R} infinitely many times, the scheme requires the rotation number α, where $f^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha}$, to be of high type, that is, α belongs to

$$
\operatorname{HT}_{N}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \mid a_{n} \geqslant N \text { for all } n \geqslant 1\right\}
$$

for some big integer ${ }^{2}$ 訨 N. In this paper we prove the following main result.
Main Theorem. Let α be an irrational number of sufficiently high type and suppose $P_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+z^{2}$ has a Siegel disk Δ_{α} centered at the origin. Then the boundary of Δ_{α} is a Jordan curve. Moreover, it contains the critical point $-e^{2 \pi \mathrm{i} \alpha} / 2$ if and only if α is a Herman number.

Note that HT_{N} has measure zero if $N \geqslant 2$. However, all the usual types of irrational numbers have non-empty intersections with HT_{N} : bounded type, PZ type, Herman type and Brjuno type etc. In particular, HT_{N} contains some irrational numbers such that the Siegel disk boundary of P_{α} has the regularity studied in ABC04, BC07 and the self-similarity studied in McM98. Rogers proved that the boundary of any bounded irreducible Siegel disk Δ is either tame: the conformal map from Δ to the unit disk has a continuous extension to $\partial \Delta$, or wild: $\partial \Delta$ is an indecomposable continuum Rog92b. Recently, Chéritat constructed a holomorphic germ such that the corresponding Siegel disk is compactly contained in the domain of definition but the boundary is not locally connected Ché11. Our main theorem indicates that the boundaries of quadratic Siegel disks should be tame.

As we have seen, in order to guarantee the existence of critical points on the boundaries of Siegel disks, Herman condition (i.e., the rotation number is of Herman type) appears usually as a requirement of sufficiency in most of the literature. As far as we know, the necessity only appears in [BCR09], where it proves that Herman condition is equivalent to the existence of a critical point on the boundary of the Siegel disks of a family of toy models.

In fact, besides the quadratic polynomials, the proof of the Main Theorem in this paper is also valid for all the maps in Inou-Shishikura's invariant class. Hence the Main Theorem is also true for some rational maps and transcendental entire functions. We would like to point out that it was proved in Yam08 and AL22 that the bounded type Siegel disks of the maps in Inou-Shishikura's class are quasi-disks if the rotation number is of sufficiently high type.

By constructing topological models of the post-critical sets of the maps in the Inou-Shishikura's class for all high type numbers, Cheraghi gave an alternative proof of the Main Theorem independently (see Che22a). Our proofs are different: we analyze the dynamics and carry out the computations in the renormalization tower directly.

Recently, Dudko and Lyubich made significant progress on the quadratic Siegel polynomials P_{α} DL22]. They proved that the restriction of P_{α} on the boundary of the Siegel disk Δ_{α} of P_{α} is injective, which implies that $\partial \Delta_{\alpha}$ is not the whole Julia set of P_{α} (actually they proved a more general result for all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$).
1.3. Strategy of the proof. Let f_{0} be the normalized quadratic polynomial or a map in Inou-Shishikura's class (see 2.1) satisfying $f_{0}(0)=0$ and $f_{0}^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha}$, where α is of Brjuno type and of sufficiently high type. For $n \geqslant 0$, let $f_{n+1}=\mathcal{R} f_{n}$ be the sequence of the maps which are generated by the near-parabolic renormalization operator \mathcal{R}. For each $n \geqslant 0$, we use \mathcal{P}_{n} to denote the perturbed petal of f_{n} and Φ_{n} the corresponding perturbed Fatou coordinate (see definitions in $\$ 2.2$.

In order to prove that the boundary of the Siegel disk of f_{0} is a Jordan curve, we construct a sequence of continuous curves $\left(\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ in the perturbed Fatou coordinate plane of f_{0} by using a renormalization tower. Each γ_{0}^{n} is obtained from γ_{n}^{0} (in the perturbed Fatou coordinate plane of f_{n}) by going up through the renormalization tower, i.e., by lifting and then spreading around. In Lemma 3.2 we

[^2]show that the inner radius of the Siegel disk Δ_{n} of f_{n} is estimated by the Brjuno sum up to a multiplicative constant. Then we choose the suitable height of γ_{n}^{0} such that $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is contained in the Siegel disk Δ_{n} of f_{n}. Consequently, $\Phi_{0}^{-1}\left(\gamma_{0}^{n}\right)$ with $n \in \mathbb{N}$ are curves in the Siegel disk of f_{0}.

The key ingredient is Proposition 4.5 the sequence of the continuous curves $\left(\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ converges uniformly to a limit $\gamma^{\infty}:[0,1] \rightarrow \mathbb{C}$, which is also a continuous curve. For the proof, we use a family of "straight" curves η_{n}^{0} to encode the difference between γ_{n}^{0} and γ_{n}^{1} in the Fatou coordinate plane of f_{n}. The diameters of the η_{n}^{0} are discussed in Step 2 of the proof. The diameters of the lifts of η_{n}^{0} are estimated by two kinds of contraction: one is the uniform contraction with respect to the hyperbolic metrics in subdomains of the renormalization tower (see Lemma 4.7) and the other is "Brjuno-type arithmetic" - estimates from \$2.4 (see also Lemma 4.8). In conclusion, the oscillations of the curves $\left(\gamma_{0}^{n}:[0,1] \rightarrow\right.$ $\mathbb{C})_{n \in \mathbb{N}}$ are bounded in terms of the Brjuno sum, i.e., $\left(\gamma_{0}^{n}:[0,1] \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ form an equicontinuous family. Because of the contraction by going up the renormalization tower, the sequence $\Phi_{0}^{-1}\left(\gamma_{0}^{n}\right)$ converges exponentially fast towards the boundary of Δ_{0} (see Proposition 4.9.

For the second part of the Main Theorem which concerns Herman condition, we construct a Jordan arc Γ_{0} in the non-escaping set of f_{0} which connects the unique critical value cv with the origin, where $\gamma_{0}:=\Phi_{0}\left(\Gamma_{0}\right)$ is contained in a half-infinite strip \mho with finite width. The existence of Γ_{0} is proved in Lemma 5.3 and the proof is also based on the contraction via going up the renormalization tower. To apply the contraction property successfully, the shape of $\Phi_{0}^{-1}(\mho)$ needs to be controlled and this is Lemma 5.1 whose proof is given in the Appendix. The construction of Γ_{0} guarantees that $\Gamma_{n}=\mathbb{E x p} \circ \Phi_{n-1}\left(\Gamma_{n-1}\right)$ is also a Jordan arc connecting cv with the origin and $\gamma_{n}=\Phi_{n}\left(\Gamma_{n}\right)$ is contained in \mho for all $n \geqslant 1$.

We study the homeomorphism $s_{\alpha_{n}}:=\Phi_{n} \circ \mathbb{E x p}: \gamma_{n-1} \rightarrow \gamma_{n}$ from the simple curve in one level of the renormalization to another. Lemmas 5.4 and 5.5 estimate the dynamics of the $s_{\alpha_{n}}$ in terms of the Brjuno sum. Based on the sequence $\left(s_{\alpha_{n}}\right)_{n \in \mathbb{N}}$, we define a new class of irrational numbers $\widetilde{\mathcal{H}}_{N}$ which is a subset of Brjuno numbers, where N is a large number. After comparing the properties of $s_{\alpha_{n}}$ and Yoccoz's arithmetic characterization of \mathcal{H}, we prove that $\widetilde{\mathcal{H}}_{N}$ is exactly equal to the set of high type Herman numbers (see Lemmas 6.4 and 6.6). On the other hand, we prove that the boundary of the Siegel disk of f_{0} contains the critical value cv if and only if $\alpha \in \widetilde{\mathcal{H}}_{N}$ (see Proposition 5.7). This implies that the second part of the Main Theorem holds.
1.4. Some observations. There are several applications of Inou-Shishikura's invariant class. The first remarkable application is that Buff and Chéritat used it as one of the main tools to prove the existence of Julia sets of quadratic polynomials with positive area BC12. Recently, Cheraghi and his collaborators have found several other important applications. In Che13 and Che19, Cheraghi developed several elaborate analytic techniques based on Inou-Shishikura's results. The tools in Che13 and Che19 have led to part of the recent major progresses on the dynamics of quadratic polynomials. For examples, the Feigenbaum Julia sets with positive area (which is different from the examples in BC 12) have been found in AL22, the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type has been proved in [C15, the local connectivity of the Mandelbrot set at some infinitely satellite renormalizable points was proved in [CS15], some statistical properties of the quadratic polynomials was depicted in AC18, the topological structure and the Hausdorff dimension of high type irrationally indifferent attractors were characterized in Che22a and CDY20 respectively.

Recently, Chéritat generalized the near-parabolic renormalization theory to the unicritical families of any finite degrees [Ché22b. See also Yan21] for the corresponding theory of local degree three. Hence there is a hope to generalize the Main Theorem in this paper to all unicritical polynomials.

Acknowledgements. We would like to thank Xavier Buff and Arnaud Chéritat for helpful discussions and offering the manuscript BCR09. We are also very grateful to Davoud Cheraghi for pointing out a gap in an earlier version of the paper and providing many invaluable comments and suggestions. The second author was indebted to Institut de Mathématiques de Toulouse for its hospitality during his visit in 2014/2015 where and when partial of this paper was written. He would also like to thank Davoud Cheraghi and Arnaud Chéritat for persistent encouragements. We are very grateful to both referees for their very insightful comments and suggestions. This work was supported by NSFC (grant Nos. 12222107, 12071210), NSF of Jiangsu Province (grant No. BK20191246) and the CSC program (2014/2015).

Notations. We use $\mathbb{N}, \mathbb{N}^{+}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} to denote the set of all natural numbers, positive integers, integers, rational numbers, real numbers and complex numbers, respectively. The Riemann sphere and the unit disk are denoted by $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ respectively. A round disk in \mathbb{C} is denoted by $\mathbb{D}(a, r)=$ $\{z \in \mathbb{C}:|z-a|<r\}$ and $\overline{\mathbb{D}}(a, r)$ is its closure. Let $x \in \mathbb{R}$ be a non-negative number, we use $\lfloor x\rfloor$ to denote the integer part of x.

For a set $X \subset \mathbb{C}$ and a number $\delta>0$, let $B_{\delta}(X):=\bigcup_{z \in X} \mathbb{D}(z, \delta)$ be the δ neighborhood of X. For a number $a \in \mathbb{C}$ and a set $X \subset \mathbb{C}$, we denote $a X:=\{a z$: $z \in X\}$ and $X \pm a:=\{z \pm a: z \in X\}$. Let A, B be two subsets in \mathbb{C}. We say that A is compactly contained in B if the closure of A is compact and contained in the interior $\operatorname{int}(B)$ of B and we denote it by $A \Subset B$. We use $\operatorname{diam}(X)$ to denote the Euclidean diameter of a set $X \subset \mathbb{C}$ and len (γ) the Euclidean length of a rectifiable curve $\gamma \subset \mathbb{C}$.

2. NEAR-PARABOLIC RENORMALIZATION SCHEME

In this section, we summarize some results in [IS08, (BC12], AC18] and Che19 which will be used in this paper. Parts of the theories can be also found in Shi98 and Shi00.
2.1. Inou-Shishikura's class. Let $P(z):=z(1+z)^{2}$ be a cubic polynomial with a parabolic fixed point at 0 with multiplier 1. Then P has a critical point $\mathrm{cp}_{P}:=-1 / 3$ which is mapped to the critical value $\mathrm{cv}_{P}:=-4 / 27$. It has also another critical point -1 which is mapped to 0 . Consider the ellipse

$$
\begin{equation*}
E:=\left\{x+y \mathrm{i} \in \mathbb{C}:\left(\frac{x+0.18}{1.24}\right)^{2}+\left(\frac{y}{1.04}\right)^{2} \leqslant 1\right\} \tag{2.1}
\end{equation*}
$$

and definn

$$
\begin{equation*}
U:=\psi_{1}(\widehat{\mathbb{C}} \backslash E), \text { where } \psi_{1}(z):=-\frac{4 z}{(1+z)^{2}} \tag{2.2}
\end{equation*}
$$

The domain U is symmetric about the real axis, contains the parabolic fixed point 0 and the critical point cp_{P}, but $\bar{U} \cap(-\infty,-1]=\emptyset$ (see [IS08, $\left.\S 5 . \mathrm{A}\right]$ and Figure 1).

[^3]

Figure 1: The domains U (the gray part), U^{\prime} (the white region bounded by the blue curves, see (2.5) for the definition) and their successive zooms near -1 . The outer boundary of U^{\prime} looks like a circle with radius about 35 and the rightmost point of U is about 32.2 . The widths of these pictures are $72,0.6$ and 0.0075 respectively. It can be seen clearly from these pictures that $\bar{U} \cap(-\infty,-1]=\emptyset$ and $U \Subset U^{\prime}$.

For a given function f, we denote its domain of definition by U_{f}. Following [IS08, §4], we define a class of maps $\4

$$
\mathcal{I} \mathcal{S}_{0}:=\left\{\begin{array}{l|l}
f=P \circ \varphi^{-1}: U_{f} \rightarrow \mathbb{C} & \begin{array}{l}
0 \in U_{f} \text { is open in } \mathbb{C}, \varphi: U \rightarrow U_{f} \text { is } \\
\text { conformal, } \varphi(0)=0 \text { and } \varphi^{\prime}(0)=1
\end{array}
\end{array}\right\}
$$

Each map in this class has a parabolic fixed point at 0 , a unique critical point at $\mathrm{cp}_{f}:=\varphi(-1 / 3) \in U_{f}$ and a unique critical value at $\mathrm{cv}:=-4 / 27$ which is independent of f.

For $\alpha \in \mathbb{R}$, we define

$$
\mathcal{I} \mathcal{S}_{\alpha}:=\left\{f(z)=f_{0}\left(e^{2 \pi \mathrm{i} \alpha} z\right): e^{-2 \pi \mathrm{i} \alpha} U_{f_{0}} \rightarrow \mathbb{C} \mid f_{0} \in \mathcal{I} \mathcal{S}_{0}\right\}
$$

For convenience, we normalize the quadratic polynomials to

$$
Q_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z+\frac{27}{16} e^{4 \pi \mathrm{i} \alpha} z^{2}
$$

such that all Q_{α} have the same critical value $-4 / 27$ as the maps in $\mathcal{I} \mathcal{S}_{\alpha}$. In particular, $Q_{\alpha}=Q_{0} \circ R_{\alpha}$, where $R_{\alpha}(z)=e^{2 \pi \mathrm{i} \alpha} z$. We would like to mention that the quadratic polynomial Q_{α} is not in the class $\mathcal{I} \mathcal{S}_{\alpha}$.

Theorem 2.1 (Leau-Fatou Mil06, §10] and Inou-Shishikura IS08). For all $f \in$ $\mathcal{I} \mathcal{S}_{0} \cup\left\{Q_{0}\right\}$, there exist two simply connected domains $\mathcal{P}_{\text {attr }, f}, \mathcal{P}_{\text {rep }, f} \subset U_{f}$ and two univalent maps $\Phi_{\text {attr, } f}: \mathcal{P}_{\text {attr }, f} \rightarrow \mathbb{C}, \Phi_{\text {rep }, f}: \mathcal{P}_{\text {rep }, f} \rightarrow \mathbb{C}$ such that
(a) $\mathcal{P}_{\text {attr,f }}$ and $\mathcal{P}_{\text {rep,f }}$ are bounded by piecewise analytic curves and are compactly contained in $U_{f}, \mathrm{cp}_{f} \in \partial \mathcal{P}_{\text {attr }, f}$ and $\partial \mathcal{P}_{\text {attr, } f} \cap \partial \mathcal{P}_{\text {rep }, f}=\{0\} ;$
(b) The image $\Phi_{\text {attr,f }}\left(\mathcal{P}_{\text {attr,f }}\right)$ is a right half plane and $\Phi_{\text {rep }, f}\left(\mathcal{P}_{\text {rep }, f}\right)$ is a left half plane; and
(c) $\Phi_{\text {attr }, f}(f(z))=\Phi_{\text {attr, } f}(z)+1$ for $z \in \mathcal{P}_{\text {attr,f }}$ and $\Phi_{\text {rep }, f}^{-1}(\zeta)=f\left(\Phi_{\text {rep }, f}^{-1}(\zeta-1)\right)$ for $\zeta \in \Phi_{\text {rep }, f}\left(\mathcal{P}_{\text {rep }, f}\right)$.

[^4]Normalization of $\Phi_{a t t r, f}$ and $\Phi_{r e p, f}$. The univalent map $\Phi_{a t t r, f}\left(\right.$ resp. $\Phi_{r e p, f}$) in Theorem 2.1 is called an attracting (resp. repelling) Fatou coordinate of f and $\mathcal{P}_{\text {attr,f }}$ (resp. $\mathcal{P}_{\text {rep }, f}$) is called an attracting (resp. repelling) petal. The attracting Fatou coordinate $\Phi_{a t t r, f}$ can be naturally extended to the immediate attracting basin $\mathcal{A}_{\text {attr,f }}$ of 0 . Specifically, for $z \in \mathcal{A}_{\text {attr,f }}$ such that $f^{\circ k}(z) \in \mathcal{P}_{\text {attr,f }}$ with $k \geqslant 0$, one can define

$$
\Phi_{a t t r, f}(z):=\Phi_{a t t r, f}\left(f^{\circ k}(z)\right)-k .
$$

Since $\Phi_{a t t r, f}$ is unique up to an additive constant, we normalize it by $\Phi_{\text {attr, } f}\left(\mathrm{cp}_{f}\right)=$ 0 . Therefore, we have $\Phi_{\text {attr,f }}\left(\mathcal{P}_{\text {attr,f }}\right)=\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>0\}$.

Every $f \in \mathcal{I} \mathcal{S}_{0} \cup\left\{Q_{0}\right\}$ can be written as $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\mathcal{O}\left(z^{4}\right)$ in a neighborhood of 0 , where $a_{2} \neq 0$. For z in a component Ω_{f} of $\mathcal{A}_{\text {attr,f }} \cap \mathcal{P}_{\text {rep,f }}$ such that $\operatorname{Im} \Phi_{\text {rep }, f}(z) \rightarrow+\infty$ as $z \rightarrow 0$, we have (see [Shi00, Proposition 2.2.1]):

$$
\begin{aligned}
& \Phi_{a t t r, f}(z)=-\frac{1}{a_{2} z}-\gamma \log \left(-\frac{1}{a_{2} z}\right)+C_{a t t r}+o(1) \\
& \Phi_{r e p, f}(z)=-\frac{1}{a_{2} z}-\gamma \log \left(-\frac{1}{a_{2} z}\right)+C_{r e p}+o(1)
\end{aligned}
$$

where $\gamma=1-a_{3} / a_{2}^{2}$ is the iterative residue of f and $C_{a t t r}, C_{r e p}$ are constants. Since $\Phi_{\text {rep, } f}$ is also unique up to an additive constant, we normalize it by setting $C_{r e p}:=C_{a t t r}$, i.e., $\Phi_{a t t r, f}(z)-\Phi_{r e p, f}(z) \rightarrow 0$ as $z \rightarrow 0$ in Ω_{f}.
2.2. Near-parabolic renormalization. We need to consider the case that a sequence of functions converges to a limiting function and the neighborhoods of a function need to be defined.

Definition (Neighborhoods of a function). Let $f: U_{f} \rightarrow \mathbb{C}$ be a given function. A neighborhood of f is

$$
\mathcal{N}=\mathcal{N}(f ; K, \varepsilon)=\left\{g: U_{g} \rightarrow \widehat{\mathbb{C}} \mid K \subset U_{g} \text { and } \sup _{z \in K} d_{\widehat{\mathbb{C}}}(g(z), f(z))<\varepsilon\right\}
$$

where $d_{\widehat{\mathbb{C}}}$ denotes the spherical distance, K is a compact subset contained in U_{f} and $\varepsilon>0$. A sequence $\left(f_{n}\right)$ is said to converge to f uniformly on compact sets if for any neighborhood \mathcal{N} of f, there exists $n_{0}>0$ such that $f_{n} \in \mathcal{N}$ for all $n \geqslant n_{0}$.

If $f \in \bigcup_{\alpha \in[0,1)} \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$, we denote by $\alpha_{f} \in[0,1)$ the rotation number of f at the origin, i.e., the real number $\alpha_{f} \in[0,1)$ so that $f^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha_{f}}$. If $\alpha_{f}>0$ is small, besides the origin, the map f has another fixed point $\sigma_{f} \neq 0$ near 0 in U_{f}, which depends continuously on f (see [Shi00, §3.2] or [BC12, Lemma 9, p. 707]).

Proposition 2.2 ($\left[\overline{\mathrm{BC} 12}\right.$, Proposition 12, p. 707], see Figure 2). There exist $\boldsymbol{k} \in \mathbb{N}^{+}$ and $\varepsilon_{1}>0$ satisfying $\left\lfloor\frac{1}{\varepsilon_{1}}\right\rfloor-\boldsymbol{k}>1$, such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}\right]$, there exist a Jordan domain $\mathcal{P}_{f} \subset U_{f}$ and a univalent map $\Phi_{f}: \mathcal{P}_{f} \rightarrow \mathbb{C}$, such that
(a) \mathcal{P}_{f} contains cv and it is bounded by two arcs joining 0 and σ_{f};
(b) $\Phi_{f}(\mathrm{cv})=1, \Phi_{f}\left(\mathcal{P}_{f}\right)=\left\{\zeta \in \mathbb{C}: 0<\operatorname{Re} \zeta<\left\lfloor\frac{1}{\alpha_{f}}\right\rfloor-\boldsymbol{k}\right\}$ with $\operatorname{Im} \Phi_{f}(z) \rightarrow+\infty$ as $z \rightarrow 0$ and $\operatorname{Im} \Phi_{f}(z) \rightarrow-\infty$ as $z \rightarrow \sigma_{f}$ in \mathcal{P}_{f};
(c) If $z \in \mathcal{P}_{f}$ and $\operatorname{Re} \Phi_{f}(z)<\left\lfloor\frac{1}{\alpha_{f}}\right\rfloor-\boldsymbol{k}-1$, then $f(z) \in \mathcal{P}_{f}$ and $\Phi_{f}(f(z))=$ $\Phi_{f}(z)+1 ;$ and
(d) If $\left(f_{n}\right)$ is a sequence of maps in $\bigcup_{\alpha \in\left(0, \varepsilon_{1}\right]} \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ converging to a map $f_{0} \in \mathcal{I} \mathcal{S}_{0} \cup\left\{Q_{0}\right\}$, then any compact set $K \subset \mathcal{P}_{\text {attr, } f_{0}}$ is contained in $\mathcal{P}_{f_{n}}$ for n large enough and the sequence $\left(\Phi_{f_{n}}\right)$ converges to $\Phi_{a t t r, f_{0}}$ uniformly on K; Moreover, any compact set $K \subset \mathcal{P}_{\text {rep }, f_{0}}$ is contained in $\mathcal{P}_{f_{n}}$ for n large enough and the sequence $\left(\Phi_{f_{n}}-\frac{1}{\alpha_{f_{n}}}\right)$ converges to $\Phi_{r e p, f_{0}}$ uniformly on K.

Figure 2: The perturbed Fatou coordinate Φ_{f} and its domain of definition \mathcal{P}_{f}. The image of \mathcal{P}_{f} under Φ_{f} has been colored accordingly by the same color on the right. The blue set on the left depicts the forward orbit of the critical point cp_{f}.

Proposition 2.2 was proved in [BC12] only for Inou-Shishikura's class. However, when $f=Q_{\alpha}$ with sufficiently small $\alpha>0$, the existence of the domain \mathcal{P}_{f} and the coordinate $\Phi_{f}: \mathcal{P}_{f} \rightarrow \mathbb{C}$ satisfying the properties in the above proposition is classic (see Shi00). The map Φ_{f} in Proposition 2.2 is called the (perturbed) Fatou coordinate of f and \mathcal{P}_{f} is called a (perturbed) petal.

Definition (see Figure 3). Let $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}\right]$, where $\varepsilon_{1}>0$ is the constant introduced in Proposition 2.2. Define

$$
\begin{align*}
& \mathcal{C}_{f}:=\left\{z \in \mathcal{P}_{f}: 1 / 2 \leqslant \operatorname{Re} \Phi_{f}(z) \leqslant 3 / 2 \text { and }-2<\operatorname{Im} \Phi_{f}(z) \leqslant 2\right\}, \text { and } \\
& \mathcal{C}_{f}^{\sharp}:=\left\{z \in \mathcal{P}_{f}: 1 / 2 \leqslant \operatorname{Re} \Phi_{f}(z) \leqslant 3 / 2 \text { and } \operatorname{Im} \Phi_{f}(z) \geqslant 2\right\} . \tag{2.3}
\end{align*}
$$

Note that $\mathrm{cv}=-4 / 27 \in \operatorname{int} \mathcal{C}_{f}$ and $0 \in \partial \mathcal{C}_{f}^{\sharp}$.
Proposition 2.3 (Che19, Proposition 2.7], see Figure 3). There exist constants $\varepsilon_{1}^{\prime} \in\left(0, \varepsilon_{1}\right]$ and $\boldsymbol{k}_{0} \in \mathbb{N}^{+}$such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]$, there exists a positive integer $k_{f} \in\left[1, \boldsymbol{k}_{0}\right]$ such that
(a) For all $1 \leqslant k \leqslant k_{f}$, the unique connected component $\left(\mathcal{C}_{f}^{\sharp}\right)^{-k}$ of $f^{-k}\left(\mathcal{C}_{f}^{\sharp}\right)$ that contains 0 in its closure is relatively compact in U_{f} and $f^{\circ k}:\left(\mathcal{C}_{f}^{\sharp}\right)^{-k} \rightarrow \mathcal{C}_{f}^{\sharp}$ is an isomorphism, and the unique connected component \mathcal{C}_{f}^{-k} of $f^{-k}\left(\mathcal{C}_{f}\right)$ that intersects $\left(\mathcal{C}_{f}^{\sharp}\right)^{-k}$ is relatively compact in U_{f} and $f^{\circ k}: \mathcal{C}_{f}^{-k} \rightarrow \mathcal{C}_{f}$ is a covering of degree 2 ramified above cv; and
(b) k_{f} is the smallest positive integer such that $\mathcal{C}_{f}^{-k_{f}} \cup\left(\mathcal{C}_{f}^{\sharp}\right)^{-k_{f}} \subset\left\{z \in \mathcal{P}_{f}: 0<\right.$ $\left.\operatorname{Re} \Phi_{f}(z)<\left\lfloor\frac{1}{\alpha_{f}}\right\rfloor-\boldsymbol{k}-\frac{1}{2}\right\}$.
The same statement as Proposition 2.3 without the uniform bound of k_{f} is proved in BC12, Proposition 13, p. 713]. For the corresponding statements of Propositions 2.2 and 2.3 with $\alpha \in \mathbb{C}$ (specifically, when $|\arg \alpha|<\pi / 4$ and $|\alpha|$ is small), we refer to CS15, §2].

Definition (Near-parabolic renormalization, see Figure 3). For $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]$, define

$$
S_{f}:=\mathcal{C}_{f}^{-k_{f}} \cup\left(\mathcal{C}_{f}^{\sharp}\right)^{-k_{f}},
$$

Figure 3: Left: The sets $\mathcal{C}_{f}, \mathcal{C}_{f}^{\sharp}$ and some of their preimages. The blue set depicts the forward orbit of the critical point cp_{f}. Right: The images of $\mathcal{C}_{f} \cup \mathcal{C}_{f}^{\sharp}$ and S_{f} under the perturbed Fatou coordinate Φ_{f} and it shows how the near-parabolic renormalization map is induced.
and consider the map

$$
\Phi_{f} \circ f^{\circ k_{f}} \circ \Phi_{f}^{-1}: \Phi_{f}\left(S_{f}\right) \rightarrow \mathbb{C} .
$$

This map commutes with the translation by one. Hence it projects by the modified exponential mar ${ }^{5}$

$$
\begin{equation*}
\mathbb{E x p}(\zeta):=-\frac{4}{27} s\left(e^{2 \pi \mathrm{i} \zeta}\right) \tag{2.4}
\end{equation*}
$$

to a well-defined map $\mathcal{R} f$ which is defined on a set punctured at zero, where s : $z \mapsto \bar{z}$ is the complex conjugacy. One can check that $\mathcal{R} f$ extends across zero and satisfies $(\mathcal{R} f)(0)=0$ and $(\mathcal{R} f)^{\prime}(0)=e^{2 \pi \mathrm{i} / \alpha_{f}}$. The map $\mathcal{R} f$ is called the nearparabolic renormalization ${ }^{6}$ of f.

Let $P(z)=z(1+z)^{2}$ be the cubic polynomial introduced at the beginning of \$2.1 Define

$$
\begin{equation*}
U^{\prime}:=P^{-1}\left(\mathbb{D}\left(0, \frac{4}{27} e^{4 \pi}\right)\right) \backslash((-\infty,-1] \cup \bar{B}), \tag{2.5}
\end{equation*}
$$

where B is the connected component of $P^{-1}\left(\mathbb{D}\left(0, \frac{4}{27} e^{-4 \pi}\right)\right)$ containing -1 . By an explicit calculation, one can prove that $\bar{U} \subset U^{\prime}$ (see [IS08, Proposition 5.2] and Figure 1).

Theorem 2.4 ([IS08, Main Theorem 3]). For every $f=P \circ \varphi^{-1} \in \mathcal{I} \mathcal{S}_{\alpha}$ or $f=Q_{\alpha}$ with $\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]$, the near-parabolic renormalization $\mathcal{R} f$ is well-defined and the restriction of $\mathcal{R} f$ in a domain containing 0 can be written as $P \circ \psi^{-1} \in \mathcal{I} \mathcal{S}_{1 / \alpha}$. Moreover, ψ extends to a univalent function on $e^{-2 \pi \mathrm{i} / \alpha} U^{\prime}$.

From Theorem 2.4 we know that the near-parabolic renormalization of $\mathcal{R} f$ can be also defined if the fractional part of $1 / \alpha$ is contained in $\left(0, \varepsilon_{1}^{\prime}\right]$. This implies

[^5]that the near-parabolic renormalization operator \mathcal{R} can be applied infinitely many times to f if α is of sufficiently high type.
2.3. Some sets in the Fatou coordinate planes. For a set X in \mathbb{C}, we use $\operatorname{int}(X)$ to denote the interior of X. Let $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]$. We define a set in the Fatou coordinate plane of f :
\[

$$
\begin{equation*}
\widetilde{\mathcal{D}}_{f}:=\operatorname{int}\left(\Phi_{f}\left(\mathcal{P}_{f}\right) \cup \bigcup_{j=0}^{b_{f}}\left(\Phi_{f}\left(S_{f}\right)+j\right)\right) \tag{2.6}
\end{equation*}
$$

\]

where $b_{f}:=k_{f}+\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-2$ is the largest integer ${ }^{7}$] such that one can extend $\Phi_{f}^{-1}: \Phi_{f}\left(\mathcal{P}_{f}\right) \rightarrow \mathcal{P}_{f}$ holomorphically to a domain like \mathcal{D}_{f}. See Figure 4 ,
Lemma 2.5. The map $\Phi_{f}^{-1}: \Phi_{f}\left(\mathcal{P}_{f}\right) \rightarrow \mathcal{P}_{f}$ can be extended to a holomorphic map

$$
\Phi_{f}^{-1}: \widetilde{\mathcal{D}}_{f} \rightarrow \mathcal{P}_{f} \cup \bigcup_{j=0}^{k_{f}} f^{\circ j}\left(S_{f}\right)
$$

such that for all $\zeta \in \mathbb{C}$ with $\zeta, \zeta+1 \in \widetilde{\mathcal{D}}_{f}$, then $\Phi_{f}^{-1}(\zeta+1)=f \circ \Phi_{f}^{-1}(\zeta)$.
This lemma has been proved in AC18, Lemma 1.8]. For completeness and clarifying some ideas we include a sketch of the construction of Φ_{f}^{-1} here.
Proof. By 2.3, the definition of S_{f}, Propositions 2.2(b) and 2.3(a), we have $f^{\circ k_{f}}\left(S_{f}\right)=\mathcal{C}_{f} \cup \mathcal{C}_{f}^{\sharp}$ and $f^{\circ j}\left(S_{f}\right)$ is well-defined for all $0 \leqslant j \leqslant b_{f}$. If $\zeta \in \widetilde{\mathcal{D}}_{f} \backslash \Phi_{f}\left(\mathcal{P}_{f}\right)$, then there exists an integer $j \in\left[1, b_{f}\right]$ so that $\zeta \in \Phi_{f}\left(S_{f}\right)+j$. For such ζ we define

$$
\Phi_{f}^{-1}(\zeta):=f^{\circ j}\left(\Phi_{f}^{-1}(\zeta-j)\right)
$$

Note that there may exist two choices $]^{8}$ of j for some point ζ. Assume that $\zeta \in$ $\Phi_{f}\left(S_{f}\right)+j^{\prime}$ for some $j^{\prime} \in\left[1, b_{f}\right]$ and $j^{\prime} \neq j$. Then $\left|j^{\prime}-j\right|=1$. Without loss of generality, we assume that $j^{\prime}=j+1$. By Proposition $2.2(\mathrm{c})$, we have $\Phi_{f}^{-1}(\zeta+1)=$ $f \circ \Phi_{f}^{-1}(\zeta)$ for all $\zeta \in \mathbb{C}$ with $\zeta, \zeta+1 \in \Phi_{f}\left(\mathcal{P}_{f}\right)$. Thus we have

$$
f^{\circ j^{\prime}}\left(\Phi_{f}^{-1}\left(\zeta-j^{\prime}\right)\right)=f^{\circ\left(j^{\prime}-1\right)}\left(\Phi_{f}^{-1}\left(\zeta-j^{\prime}+1\right)\right)=f^{\circ j}\left(\Phi_{f}^{-1}(\zeta-j)\right)
$$

This implies that Φ_{f}^{-1} is well-defined in $\widetilde{\mathcal{D}}_{f}$ and it is straightforward to check that Φ_{f}^{-1} is holomorphic. Finally a completely similar calculation shows that $\Phi_{f}^{-1}(\zeta+$ $1)=f \circ \Phi_{f}^{-1}(\zeta)$ for all $\zeta \in \mathbb{C}$ with $\zeta, \zeta+1 \in \widetilde{\mathcal{D}}_{f}$.

Note that S_{f} is contained in $\left\{z \in \mathcal{P}_{f}: 0<\operatorname{Re} \Phi_{f}(z)<\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-\frac{1}{2}\right\}$ and $f^{\circ b_{f}}\left(S_{f}\right)=\left\{z \in \mathcal{P}_{f}:\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-\frac{3}{2} \leqslant \operatorname{Re} \Phi_{f}(z) \leqslant\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-\frac{1}{2}\right.$ and $\left.\operatorname{Im} \Phi_{f}(z)>-2\right\}$. According to Proposition 2.3(b), if we consider the local rotation of f near the origin, this implies that

$$
\begin{equation*}
b_{f}=k_{f}+\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-2 \geqslant\left\lfloor\frac{1}{\alpha}\right\rfloor+1, \quad \text { i.e., } \quad k_{f} \geqslant \boldsymbol{k}+3 . \tag{2.7}
\end{equation*}
$$

The modified exponential map $\mathbb{E x p}: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ defined in 2.4 is an antiholomorphic covering map. The $\operatorname{map} \Phi_{f}^{-1}: \widetilde{\mathcal{D}}_{f} \rightarrow \mathbb{C} \backslash\{0\}$ can be lifted to obtain an anti-holomorphic map

$$
\chi_{f}: \widetilde{\mathcal{D}}_{f} \rightarrow \mathbb{C}
$$

such that

$$
\mathbb{E x p} \circ \chi_{f}(\zeta)=\Phi_{f}^{-1}(\zeta), \text { for all } \zeta \in \widetilde{\mathcal{D}}_{f}
$$

[^6]

Figure 4: The inverse Φ_{f}^{-1} of the perturbed Fatou coordinate can be extended holomorphically to $\widetilde{\mathcal{D}}_{f}$ (colored cyan). It can be seen that the image $\Phi_{f}^{-1}\left(\widetilde{\mathcal{D}}_{f}\right)$ wraps around 0 . The holomorphic map Φ_{f}^{-1} has an anti-holomorphic lift χ_{f} such that $\mathbb{E x p} \circ \chi_{f}=\Phi_{f}^{-1}$ (note that $\mathbb{E x p}$ is anti-holomorphic). Some special points are also marked.

See Figure 4. There are infinitely many choices of $\chi_{f}: \widetilde{\mathcal{D}}_{f} \rightarrow \mathbb{C}$. But the following result holds.

Proposition 2.6 (AC18, Proposition 1.9]). There exists $\boldsymbol{k}_{1} \in \mathbb{N}^{+}$such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]$ and any choice of the lift χ_{f}, we have

$$
\sup \left\{\left|\operatorname{Re}\left(\zeta-\zeta^{\prime}\right)\right|: \zeta, \zeta^{\prime} \in \chi_{f}\left(\widetilde{\mathcal{D}}_{f}\right)\right\} \leqslant \boldsymbol{k}_{1}
$$

Proposition 2.6 was proved by applying Proposition 2.3, the pre-compactness of the class $\mathcal{I} \mathcal{S}_{\alpha}$ and a uniform bound on the total spiral of the set \mathcal{P}_{f} about the origin (see [BC12, Proposition 12] or Che19, Proposition 2.4]).

From [IS08, §5.A] or CS15, Propositions 2.6 and 2.7] (the top and bottom nearparabolic renormalizations can be defined for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\left.\alpha \in\left(0, \varepsilon_{1}^{\prime}\right]\right)$, \mathcal{P}_{f} is contained in the image of f. By Lemma 2.5 we have $\Phi_{f}^{-1}\left(\widetilde{\mathcal{D}}_{f}\right) \subset f\left(U_{f}\right)$. Since $f\left(U_{f}\right) \subset P\left(U^{\prime}\right)=\mathbb{D}\left(0, \frac{4}{27} e^{4 \pi}\right)$, we have $\operatorname{Im} \zeta>-2$ for every $\zeta \in \chi_{f}\left(\widetilde{\mathcal{D}}_{f}\right)$, where $P(z)=z(1+z)^{2}$ and U^{\prime} is defined in 2.5. Therefore, by Proposition 2.6, there exists a choice of χ_{f}, denoted by $\chi_{f, 0}$ such that

$$
\begin{equation*}
\chi_{f, 0}\left(\widetilde{\mathcal{D}}_{f}\right) \subset\left\{\zeta \in \mathbb{C}: 1 \leqslant \operatorname{Re} \zeta<\boldsymbol{k}_{1}+2 \text { and } \operatorname{Im} \zeta>-2\right\} . \tag{2.8}
\end{equation*}
$$

We define

$$
\begin{equation*}
\mathcal{D}_{f}:=\operatorname{int}\left(\Phi_{f}\left(\mathcal{P}_{f}\right) \cup \bigcup_{j=0}^{k_{f}+k_{0}+k_{1}+2}\left(\Phi_{f}\left(S_{f}\right)+j\right)\right) \tag{2.9}
\end{equation*}
$$

where $\boldsymbol{k}_{0}, \boldsymbol{k}_{1} \in \mathbb{N}^{+}$are integers introduced in Propositions 2.3 and 2.6 respectively. Let $k \in \mathbb{N}^{+}$be the integer introduced in Proposition 2.2 .
Lemma 2.7. For all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $0<\alpha \leqslant \widetilde{\varepsilon}_{1}:=\min \left\{\varepsilon_{1}^{\prime}, 1 /\left(\boldsymbol{k}+\boldsymbol{k}_{0}+\boldsymbol{k}_{1}+\right.\right.$ 4) \}, we have $\mathcal{D}_{f} \subset \widetilde{\mathcal{D}}_{f}$. Moreover,

$$
\begin{align*}
& \mathcal{D}_{f} \subset \Phi_{f}\left(\mathcal{P}_{f}\right) \cup\left\{\zeta \in \mathbb{C}: 0 \leqslant \operatorname{Re} \zeta-\left(\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right)<2 \boldsymbol{k}_{0}+\boldsymbol{k}_{1}+\frac{3}{2}\right\} \text { and } \tag{2.10}\\
& \mathcal{D}_{f} \supset \Phi_{f}\left(\mathcal{P}_{f}\right) \cup\left\{\zeta \in \mathbb{C}: 0 \leqslant \operatorname{Re} \zeta-\left(\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right) \leqslant \boldsymbol{k}_{0}+\boldsymbol{k}_{1}+3 \text { and } \operatorname{Im} \zeta \geqslant 0\right\} .
\end{align*}
$$

Proof. The condition on α implies that $k_{f}+\boldsymbol{k}_{0}+\boldsymbol{k}_{1}+2 \leqslant k_{f}+\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-2$. Then we have $\mathcal{D}_{f} \subset \widetilde{\mathcal{D}}_{f}$ by definition.

Since $\Phi_{f}\left(S_{f}\right) \subset\left\{\zeta \in \mathbb{C}: 0<\operatorname{Re} \zeta<\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-\frac{1}{2}\right\}$ by Proposition 2.3(b), for $\zeta \in \mathcal{D}_{f}$ we have $\operatorname{Re} \zeta<\left\lfloor\frac{1}{\alpha}\right\rfloor+k_{f}+\boldsymbol{k}_{0}+\boldsymbol{k}_{1}-\boldsymbol{k}+\frac{3}{2} \leqslant\left\lfloor\frac{1}{\alpha}\right\rfloor+2 \boldsymbol{k}_{0}+\boldsymbol{k}_{1}-\boldsymbol{k}+\frac{3}{2}$. Hence 2.10 holds.

By (2.1) and 2.2), we have $U \supset \mathbb{D}\left(0, \frac{8}{9}\right)$ (see also Che19, Lemma 6.1]). For any $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$, by Koebe's $\frac{1}{4}$-theorem we have $U_{f} \supset \mathbb{D}\left(0, \frac{2}{9}\right)$. Since $\mathbb{E x p}\left(\Phi_{f}\left(S_{f}\right)\right) \supset$ $U_{\mathcal{R} f} \backslash\{0\}$ and $\mathcal{R} f \in \mathcal{I} \mathcal{S}_{1 / \alpha}$, we have $\mathbb{D}\left(0, \frac{2}{9}\right) \subset \mathbb{E x p}\left(\Phi_{f}\left(S_{f}\right)\right)$. Since $f^{\circ k_{f}}\left(S_{f}\right)=$ $\mathcal{C}_{f} \cup \mathcal{C}_{f}^{\sharp} \subset \mathcal{P}_{f}$, we have $\operatorname{Re} \zeta>\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}$ for all $\zeta \in \Phi_{f}\left(S_{f}\right)+k_{f}$. This implies that $\left\{\zeta \in \mathbb{C}:-\frac{3}{2} \leqslant \operatorname{Re} \zeta-\left(\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right) \leqslant 1\right.$ and $\left.\operatorname{Im} \zeta>-\frac{1}{2 \pi} \log \frac{3}{2}\right\}$ is contained in the interior of $\bigcup_{j=0}^{k_{f}}\left(\Phi_{f}\left(S_{f}\right)+j\right)$. Therefore, $\mathcal{D}_{f} \backslash \Phi_{f}\left(\mathcal{P}_{f}\right)$ contains $\left\{\zeta \in \mathbb{C}: 0 \leqslant \operatorname{Re} \zeta-\left(\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right) \leqslant \boldsymbol{k}_{0}+\boldsymbol{k}_{1}+3\right.$ and $\left.\operatorname{Im} \zeta \geqslant 0\right\}$.
2.4. Some quantitative estimates. Let $\sigma_{f} \neq 0$ be another fixed point of $f \in$ $\mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ near 0 which is contained in $\partial \mathcal{P}_{f}$ for small $\alpha>0$ (see Figure 2). It depends continuously on f and has asymptotic expansion

$$
\begin{equation*}
\sigma_{f}=-4 \pi \alpha \mathrm{i} / f_{0}^{\prime \prime}(0)+o(\alpha) \tag{2.11}
\end{equation*}
$$

as $f \rightarrow f_{0} \in \mathcal{I} \mathcal{S}_{0} \cup\left\{Q_{0}\right\}$ in a fixed neighborhood of 0 (see [Shi00, §3.2.1]). By [IS08, Main Theorem 1(a)], $\left|f_{0}^{\prime \prime}(0)\right|$ is contained in $[3,7]$ for all $f_{0} \in \mathcal{I} \mathcal{S}_{0}$. By the precompactness of $\mathcal{I} \mathcal{S}_{0}$, there exists a constant $D_{0}^{\prime}>1$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{1}\right]$, one has

$$
\begin{equation*}
\alpha / D_{0}^{\prime} \leqslant\left|\sigma_{f}\right| \leqslant D_{0}^{\prime} \alpha \tag{2.12}
\end{equation*}
$$

For a general statement of 2.12 (i.e., $\alpha \in \mathbb{C}$), see [CS15, Lemma 3.25(1)].
Let

$$
\begin{equation*}
\tau_{f}(w):=\frac{\sigma_{f}}{1-e^{-2 \pi \mathrm{i} \alpha w}} \tag{2.13}
\end{equation*}
$$

be a universal covering from \mathbb{C} to $\widehat{\mathbb{C}} \backslash\left\{0, \sigma_{f}\right\}$ with period $1 / \alpha$. Then $\tau_{f}(w) \rightarrow 0$ as $\operatorname{Im} w \rightarrow+\infty$ and $\tau_{f}(w) \rightarrow \sigma_{f}$ as $\operatorname{Im} w \rightarrow-\infty$. There exists a unique lift F_{f} of f under τ_{f} such that

$$
f \circ \tau_{f}(w)=\tau_{f} \circ F_{f}(w) \quad \text { with } \quad \lim _{\operatorname{Im} w+\infty}\left(F_{f}(w)-w\right)=1
$$

The set $\tau_{f}^{-1}\left(\mathcal{P}_{f}\right)$ consists of countably many simply connected components. Each of them is bounded by piecewise analytic curves going from $-\infty$ i to $+\infty$ i. Let $\widetilde{\mathcal{P}}_{f}$ be the unique component separating 0 from $1 / \alpha$. Define

$$
\begin{equation*}
L_{f}:=\Phi_{f} \circ \tau_{f}: \widetilde{\mathcal{P}}_{f} \rightarrow \mathbb{C} \tag{2.14}
\end{equation*}
$$

Then L_{f} is univalent and it is the Fatou coordinate of F_{f} since $L_{f}\left(F_{f}(w)\right)=$ $L_{f}(w)+1$ if both w and $F_{f}(w)$ are contained in $\widetilde{\mathcal{P}}_{f}$.

For $\alpha \in\left(0, \widetilde{\varepsilon}_{1}\right]$ and $R \in(0,+\infty)$, we define

$$
\Theta_{\alpha}(R):=\mathbb{C} \backslash \bigcup_{n \in \mathbb{Z}} \mathbb{D}(n / \alpha, R)
$$

For $C>0$, we denote $a_{C}:=C e^{5 \pi \mathrm{i} / 12}$ and define a piecewise analytic curve

$$
\begin{aligned}
& \ell_{C}:=\left\{w \in \mathbb{C}: \arg \left(w-a_{C}\right)=\frac{11}{12} \pi\right\} \cup\left\{w \in \mathbb{C}: \arg \left(w-\bar{a}_{C}\right)=-\frac{11}{12} \pi\right\} \\
& \cup\left\{C e^{\mathrm{i} \theta}: \theta \in\left[-\frac{5 \pi}{12}, \frac{5 \pi}{12}\right]\right\} .
\end{aligned}
$$

Then $\ell_{C} \cup\left(-\ell_{C}+1 / \alpha\right)$ divides \mathbb{C} into three connected components. Let $A_{1}(C)$ be the component of $\mathbb{C} \backslash\left(\ell_{C} \cup\left(-\ell_{C}+1 / \alpha\right)\right)$ containing $1 /(2 \alpha)$. The following result is a summary of Lemmas 6.4, 6.7(2), 6.6 and 6.11 in Che19.

Lemma 2.8. There are constants $\varepsilon_{2} \in\left(0, \widetilde{\varepsilon}_{1}\right], C_{0}, C_{0}^{\prime}>0$ and $C_{0}^{\prime \prime} \geqslant 6$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$, we have
(a) F_{f} is defined and univalent in $\Theta_{\alpha}\left(C_{0}^{\prime}\right)$, and for all $r \in(0,1 / 2]$ and all $w \in \Theta_{\alpha}(r / \alpha) \cap \Theta_{\alpha}\left(C_{0}^{\prime}\right)$, then

$$
\left|F_{f}(w)-(w+1)\right|,\left|F_{f}^{\prime}(w)-1\right|<\min \left\{\frac{1}{4}, C_{0} \frac{\alpha}{r} e^{-2 \pi \alpha \operatorname{Im} w}\right\}
$$

(b) For all ${ }^{10} R \in\left[C_{0}^{\prime \prime}, 2 / \alpha\right]$ and all w with $\mathbb{D}(w, R) \subset A_{1}:=A_{1}\left(C_{0}^{\prime}\right)$ and $\operatorname{Im} w \geqslant-1 / \alpha$, then

$$
\frac{1}{\left|L_{f}^{\prime}(w)\right|} \leqslant 1+\frac{C_{0}}{R}
$$

(c) $L_{f}: \widetilde{\mathcal{P}}_{f} \rightarrow \mathbb{C}$ has a unique univalent extension onto $\widetilde{\mathcal{P}}_{f} \cup A_{1}$ such that $L_{f}\left(F_{f}(w)\right)=L_{f}(w)+1$ if both w and $F_{f}(w)$ belong to $\widetilde{\mathcal{P}}_{f} \cup A_{1}$;
(d) For any $r>0$ there is $K_{r} \geqslant 1$ depending only on r such that ${ }^{11}$

$$
K_{r}^{-1} \leqslant\left|\left(L_{f}^{-1}\right)^{\prime}(\zeta)\right| \leqslant K_{r} \text { for all } \zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \backslash \mathbb{D}(0, r)
$$

The following Lemma 2.9 and Proposition 2.10 are useful in the estimates of the locations of the points under Φ_{f}^{-1} and χ_{f}.
Lemma 2.9. There exists a constant $D_{0}>0$ such that for any $D_{1}^{\prime}>0$, there exists $D_{1}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$, we have
(a) $D_{0} \leqslant\left|L_{f}^{-1}(\zeta)\right| \leqslant D_{1}$ for $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \cap \overline{\mathbb{D}}\left(0, D_{1}^{\prime}\right)$; and
(b) $D_{0} \leqslant\left|L_{f}^{-1}(\zeta)-1 / \alpha\right| \leqslant D_{1}$ for $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \cap \overline{\mathbb{D}}\left(1 / \alpha, D_{1}^{\prime}\right)$.

Proof. By the continuous dependence of the Fatou coordinates of the maps in $\mathcal{I} \mathcal{S}_{0}$, the pre-compactness of $\mathcal{I} \mathcal{S}_{0}$ and note that \mathcal{P}_{f} is compactly contained in the domain of definition of f, there exists a constant $R_{1}>0$ such that

$$
\mathcal{P}_{f} \subset \mathbb{D}\left(0, R_{1}\right) \text { for all } f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\} \text { with } \alpha \in\left(0, \varepsilon_{2}\right]
$$

By (2.12) and the formula of τ_{f} in 2.13), a direct calculation shows that there exists a constant $D_{0}>0$ such that the Euclidean distance satisfies $\operatorname{dist}\left(L_{f}^{-1}(\zeta), \mathbb{Z} / \alpha\right) \geqslant D_{0}$ for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$ and all $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right)$.

By Lemma 2.8 (d), there exists a constant $K_{1}>1$ such that

$$
\begin{equation*}
K_{1}^{-1} \leqslant\left|\left(L_{f}^{-1}\right)^{\prime}(\zeta)\right| \leqslant K_{1} \tag{2.15}
\end{equation*}
$$

for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$ and all $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \backslash \mathbb{D}$. From Che19, Proposition 6.17], there exists a constant $C_{1}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right.$] we have

$$
\begin{equation*}
\left|L_{f}^{-1}\left(\frac{3}{2}\right)\right|<C_{1} . \tag{2.16}
\end{equation*}
$$

[^7]Without loss of generality we assume that $D_{1}^{\prime}>1$. Combining 2.15 and (2.16), there exists a constant $C_{2}>0$ depending only on K_{1}, C_{1} and D_{1}^{\prime} such that $\left|L_{f}^{-1}(\zeta)\right|<C_{2}$ for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$ and all $\zeta \in\left(\Phi_{f}\left(\mathcal{P}_{f}\right) \cap\right.$ $\left.\overline{\mathbb{D}}\left(0, D_{1}^{\prime}\right)\right) \backslash \mathbb{D}$. On the other hand, by Lemma 2.8 (a) and applying

$$
L_{f}^{-1}(\zeta)=F_{f}^{-1} \circ L_{f}^{-1}(\zeta+1)
$$

there exists a constant $C_{3}>0$ such that $\left|L_{f}^{-1}(\zeta)\right|<C_{3}$ for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$ and all $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \cap \mathbb{D}$.

By Lemma 2.8(d) and Che19, Proposition 6.16], there exists a constant $C_{4}>0$ depending on D_{1}^{\prime} such that $\left|L_{f}^{-1}(\zeta)-1 / \alpha\right| \leqslant C_{4}$ for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}\right]$ and all $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \cap \overline{\mathbb{D}}\left(1 / \alpha, D_{1}^{\prime}\right)$. Then the proof is complete if we set $D_{1}:=\max \left\{C_{2}, C_{3}, C_{4}\right\}$.
Proposition 2.10 (Che19, Propositions 6.19 and 6.17$]$). There are constants $\varepsilon_{2}^{\prime} \in$ $\left(0, \varepsilon_{2}\right]$ and $D_{2}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{2}^{\prime}\right]$, we have
(a) If $\zeta \in\left[0,\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]+\mathrm{i}[-3,+\infty)$, then

$$
\left|L_{f}^{-1}(\zeta)-\zeta\right| \leqslant D_{2} \log (1+1 / \alpha)
$$

(b) If $\zeta \in\left[0,\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]+\mathrm{i}[-3,1 / \alpha]$, then

$$
\left|L_{f}^{-1}(\zeta)-\zeta\right| \leqslant D_{2} \min \{\log (2+|\zeta|), \log (2+|\zeta-1 / \alpha|)\}
$$

Proposition 2.10 (a) was proved in Che19, Proposition 6.19] (see also [Che19, Proposition 6.15]). The statement (b) was proved in Che19, Proposition 6.17] for $\zeta \in\left[0,\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]$ (i.e., $\zeta \in \mathbb{R}$). However, the arguments there can be applied to $\zeta \in\left[0,\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]+\mathrm{i}[-3,1 / \alpha]$ completely similarly by using Che19, Lemma 6.7] and Lemma 2.9. For more details on the study of L_{f} and L_{f}^{-1}, see Che19, §§6.3-6.6] and CS15, §3.5].

Let $X \geqslant 0$ and $Y \geqslant 0$ be two numbers. We use $X \asymp Y$ to denote that X and Y are in the same order, i.e., there exist two universal positive constants C_{1} and C_{2} such that $C_{1} Y \leqslant X \leqslant C_{2} Y$. Let \mathcal{D}_{f} be the set defined in 2.9.

Lemma 2.11. There exist constants $\varepsilon_{3} \in\left(0, \varepsilon_{2}^{\prime}\right]$ and $D_{3}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{3}\right]$, we have
(a) If $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Im} \zeta \geqslant 1 / \alpha$, then

$$
\left|\Phi_{f}^{-1}(\zeta)\right| \asymp \frac{\alpha}{e^{2 \pi \alpha \operatorname{Im} \zeta}} \quad \text { and } \quad\left|\operatorname{Im} \chi_{f}(\zeta)-\left(\alpha \operatorname{Im} \zeta+\frac{1}{2 \pi} \log \frac{1}{\alpha}\right)\right| \leqslant D_{3}
$$

(b) If $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Im} \zeta \in[-3,1 / \alpha]$, then

$$
\begin{gathered}
\left|\Phi_{f}^{-1}(\zeta)\right| \asymp \max \left\{\frac{1}{1+|\zeta|}, \frac{1}{1+|\zeta-1 / \alpha|}\right\} \quad \text { and } \\
\left|\operatorname{Im} \chi_{f}(\zeta)-\frac{1}{2 \pi} \min \{\log (1+|\zeta|), \log (1+|\zeta-1 / \alpha|)\}\right| \leqslant D_{3}
\end{gathered}
$$

Proof. By the definition of Φ_{f}^{-1} in Lemma 2.5, if $\zeta \in \mathcal{D}_{f} \backslash \Phi_{f}\left(\mathcal{P}_{f}\right)$, then there exists a positive integer $j \in\left[1, k_{f}+k_{0}+k_{1}+2\right]$ such that $\zeta-j \in \Phi_{f}\left(\mathcal{P}_{f}\right)$ and $\Phi_{f}^{-1}(\zeta)=f^{\circ j}\left(\Phi_{f}^{-1}(\zeta-j)\right)$. By the pre-compactness of $\mathcal{I} \mathcal{S}_{\alpha}$, it is sufficient to prove the statements in this lemma for $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right)$.
(a) By Proposition 2.10(a), we have

$$
\operatorname{Im} \zeta-D_{2} \log (1+1 / \alpha) \leqslant \operatorname{Im} L_{f}^{-1}(\zeta) \leqslant \operatorname{Im} \zeta+D_{2} \log (1+1 / \alpha)
$$

If α is small, then $\alpha \log (1+1 / \alpha)$ is also. Suppose $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Im} \zeta \geqslant 1 / \alpha$. Decreasing α if necessary, we assume that $\operatorname{Im} \zeta-D_{2} \log (1+1 / \alpha)>1 /(2 \alpha)$. Denote
$w:=L_{f}^{-1}(\zeta)$. Then $\left|e^{-2 \pi \mathrm{i} \alpha w}\right|=\left|e^{2 \pi \alpha \operatorname{Im} w} \cdot e^{-2 \pi \mathrm{i} \alpha \operatorname{Re} w}\right|>e^{\pi}$. Note that $\alpha \log (1+1 / \alpha)$ is uniformly bounded above. Since $\operatorname{Im} \zeta \geqslant 1 / \alpha$, we have

$$
\left|1-e^{-2 \pi \mathrm{i} \alpha w}\right| \asymp e^{2 \pi \alpha \operatorname{Im} w} \asymp e^{2 \pi \alpha \operatorname{Im} \zeta}
$$

By (2.12), (2.13) and (2.14), we have

$$
\left|\Phi_{f}^{-1}(\zeta)\right|=\left|\tau_{f} \circ L_{f}^{-1}(\zeta)\right|=\left|\frac{\sigma_{f}}{1-e^{-2 \pi \mathrm{i} \alpha w}}\right| \asymp \frac{\alpha}{e^{2 \pi \alpha \operatorname{Im} \zeta}}
$$

Denote $y:=\operatorname{Im} \mathbb{E x p}^{-1} \circ \Phi_{f}^{-1}(\zeta)$. By definition we have $\frac{4}{27} e^{-2 \pi y} \asymp \alpha / e^{2 \pi \alpha \operatorname{Im} \zeta}$. A direct calculation shows that $y=\alpha \operatorname{Im} \zeta+\frac{1}{2 \pi} \log \frac{1}{\alpha}+\mathcal{O}(1)$, where $\mathcal{O}(1)$ is a number whose absolute value is less than a universal constant.
(b) We divide the arguments into two cases. Firstly we assume that $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Re} \zeta \in[0,1 /(2 \alpha)]$. By Proposition 2.10 (b), we have

$$
\begin{equation*}
\left|L_{f}^{-1}(\zeta)-\zeta\right| \leqslant D_{2} \log (2+|\zeta|) \tag{2.17}
\end{equation*}
$$

Let $D_{1}^{\prime}>0$ be the smallest constant depending only on D_{2} such that if $|\zeta| \geqslant D_{1}^{\prime}$, then $|\zeta| \geqslant D_{2} \log (2+|\zeta|)+1$. If $|\zeta| \geqslant D_{1}^{\prime}, \operatorname{Re} \zeta \in[0,1 /(2 \alpha)]$ and $\operatorname{Im} \zeta \in[-3,1 / \alpha]$, by (2.17) we have

$$
\begin{equation*}
\left|L_{f}^{-1}(\zeta)\right| \asymp|\zeta|+1 \tag{2.18}
\end{equation*}
$$

If $|\zeta| \leqslant D_{1}^{\prime}, \operatorname{Re} \zeta \in[0,1 /(2 \alpha)]$ and $\operatorname{Im} \zeta \in[-3,1 / \alpha]$, by Lemma 2.9 (a), there exists a constant $D_{1}>1$ depending only on D_{1}^{\prime} such that $D_{0} \leqslant\left|L_{f}^{-1}(\zeta)\right| \leqslant D_{1}$. Therefore, we still have (2.18).

Next we assume that $\operatorname{Re} \zeta \in\left[1 /(2 \alpha),\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]$. By Proposition 2.10(b), we have

$$
\begin{equation*}
\left|L_{f}^{-1}(\zeta)-\zeta\right| \leqslant D_{2} \log (2+|\zeta-1 / \alpha|) \tag{2.19}
\end{equation*}
$$

If $|\zeta-1 / \alpha| \geqslant D_{1}^{\prime}$, then $|\zeta-1 / \alpha| \geqslant D_{2} \log (2+|\zeta-1 / \alpha|)+1$. If $|\zeta-1 / \alpha| \geqslant D_{1}^{\prime}$, $\operatorname{Re} \zeta \in\left[1 /(2 \alpha),\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]$ and $\operatorname{Im} \zeta \in[-3,1 / \alpha]$, by 2.19 we have

$$
\begin{equation*}
\left|L_{f}^{-1}(\zeta)-1 / \alpha\right|=\left|\left(L_{f}^{-1}(\zeta)-\zeta\right)+(\zeta-1 / \alpha)\right| \asymp|\zeta-1 / \alpha|+1 \tag{2.20}
\end{equation*}
$$

If $|\zeta-1 / \alpha| \leqslant D_{1}^{\prime}, \operatorname{Re} \zeta \in\left[1 /(2 \alpha),\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}\right]$ and $\operatorname{Im} \zeta \in[-3,1 / \alpha]$, by Lemma 2.9 (b), we have $D_{0} \leqslant\left|L_{f}^{-1}(\zeta)-1 / \alpha\right| \leqslant D_{1}$. Therefore, in this case we still have 2.20).

Denote $w:=L_{f}^{-1}(\zeta)$. By 2.17) and 2.19, if α is small enough, then $-\frac{1}{4} \leqslant$ $\operatorname{Re}(\alpha w) \leqslant \frac{5}{4}$ and $|\alpha w| \leqslant \frac{3}{2}$. By $(2.12,, 2.14,, 2.18$ and 2.20 , we have

$$
\begin{aligned}
\left|\Phi_{f}^{-1}(\zeta)\right|=\left|\frac{\sigma_{f}}{1-e^{-2 \pi \mathrm{i} \alpha w}}\right| & \asymp \max \left\{\frac{1}{|w|}, \frac{1}{|w-1 / \alpha|}\right\} \\
& \asymp \max \left\{\frac{1}{1+|\zeta|}, \frac{1}{1+|\zeta-1 / \alpha|}\right\}
\end{aligned}
$$

Then the estimate of $\operatorname{Im} \mathbb{E x p}^{-1} \circ \Phi_{f}^{-1}(\zeta)$ follows by a direct calculation.
Remark. (1) There exist some overlaps between the estimates in Lemma 2.11(a) and (b). Indeed, if $\zeta \in \mathcal{D}_{f}$ and $\operatorname{Im} \zeta \asymp 1 / \alpha$, then

$$
\left|\Phi_{f}^{-1}(\zeta)\right| \asymp \alpha \quad \text { and } \quad \operatorname{Im} \mathbb{E x p}^{-1} \circ \Phi_{f}^{-1}(\zeta)=\frac{1}{2 \pi} \log \frac{1}{\alpha}+\mathcal{O}(1)
$$

(2) Lemma 2.11 illustrates how the renormalization microscopes χ_{f} reshapes the geometry of the Siegel disk at deeper scales. Specifically, Part (a) is for the points deep in the Siegel disk while Part (b) is for the points close to the Siegel boundary.

The following lemma can be seen as an inverse version of Lemma 2.11.
Lemma 2.12. There exist constants $D_{4}, D_{5}>1$ and $\varepsilon_{3}^{\prime} \in\left(0, \varepsilon_{3}\right]$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{3}^{\prime}\right]$, we have
(a) If $\zeta^{\prime} \in \mathbb{C}$ satisfies $\operatorname{Im} \zeta^{\prime} \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{4}, \mathbb{E x p}\left(\zeta^{\prime}\right) \in \mathcal{P}_{f}$ and $\Phi_{f} \circ \mathbb{E x p}\left(\zeta^{\prime}\right) \in$ $(0,2]+\mathrm{i}[-2,+\infty)$, then

$$
\left|\operatorname{Im} \Phi_{f} \circ \mathbb{E x p}\left(\zeta^{\prime}\right)-\frac{1}{\alpha}\left(\operatorname{Im} \zeta^{\prime}-\frac{1}{2 \pi} \log \frac{1}{\alpha}\right)\right| \leqslant \frac{D_{5}}{\alpha}
$$

(b) If $\zeta^{\prime} \in \mathbb{C}$ satisfies $\operatorname{Im} \zeta^{\prime}<\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{4}, \mathbb{E x p}\left(\zeta^{\prime}\right) \in \mathcal{P}_{f}$ and $\Phi_{f} \circ \mathbb{E x p}\left(\zeta^{\prime}\right) \in$ $(0,2]+\mathrm{i}[-2,+\infty)$, then

$$
\left|\log \left(3+\operatorname{Im} \Phi_{f} \circ \mathbb{E x p}\left(\zeta^{\prime}\right)\right)-2 \pi \operatorname{Im} \zeta^{\prime}\right| \leqslant D_{5}
$$

Proof. (a) Denote $\zeta=\Phi_{f} \circ \operatorname{Exp}\left(\zeta^{\prime}\right) \in \Phi_{f}\left(\mathcal{P}_{f}\right)$. By Lemma 2.11(a), if $\operatorname{Im} \zeta \geqslant 1 / \alpha$ we have

$$
\begin{equation*}
\left|\operatorname{Im} \zeta-\frac{1}{\alpha}\left(\operatorname{Im} \zeta^{\prime}-\frac{1}{2 \pi} \log \frac{1}{\alpha}\right)\right| \leqslant \frac{D_{3}}{\alpha} \tag{2.21}
\end{equation*}
$$

Suppose $\operatorname{Re} \zeta \in(0,2]$ and $\operatorname{Im} \zeta \in[-2,1 / \alpha)$. By Lemma 2.11(b), we have

$$
\operatorname{Im} \zeta^{\prime} \leqslant \frac{1}{2 \pi} \log (1+|\zeta|)+D_{3}<\frac{1}{2 \pi} \log \left(\frac{1}{\alpha}+3\right)+D_{3}<\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1
$$

Therefore, if $\operatorname{Im} \zeta^{\prime} \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1$, then $\operatorname{Im} \zeta \geqslant 1 / \alpha$ or $\operatorname{Im} \zeta<-2$. By the assumption in the lemma we have $\operatorname{Im} \zeta \geqslant 1 / \alpha$ and 2.21) holds. Then Part (a) follows if we set $D_{4}:=D_{3}+1$ and $D_{5}:=D_{3}$.
(b) Denote $\zeta=\Phi_{f} \circ \mathbb{E x p}\left(\zeta^{\prime}\right) \in(0,2]+\mathrm{i}[-2,+\infty)$. By 2.21), if $\operatorname{Im} \zeta \in[1 / \alpha,(1+$ $\left.\left.2 D_{3}\right) / \alpha\right]$, we have $\left|\log \frac{1}{\alpha}+2 \pi \alpha \operatorname{Im} \zeta-2 \pi \operatorname{Im} \zeta^{\prime}\right| \leqslant 2 \pi D_{3}$ and hence

$$
\begin{aligned}
\left|\log (3+\operatorname{Im} \zeta)-2 \pi \operatorname{Im} \zeta^{\prime}\right| & \leqslant|\log (3 \alpha+\alpha \operatorname{Im} \zeta)-2 \pi \alpha \operatorname{Im} \zeta|+2 \pi D_{3} \\
& \leqslant \log \left(4+2 D_{3}\right)+6 \pi D_{3}+2 \pi
\end{aligned}
$$

By Lemma 2.11(b), if $\operatorname{Re} \zeta \in(0,2]$ and $\operatorname{Im} \zeta \in(-2,1 / \alpha)$ we have $\mid \log (1+|\zeta|)-$ $2 \pi \operatorname{Im} \zeta^{\prime} \mid \leqslant 2 \pi D_{3}$ and hence

$$
\begin{aligned}
\left|\log (3+\operatorname{Im} \zeta)-2 \pi \operatorname{Im} \zeta^{\prime}\right| & \leqslant|\log (3+\operatorname{Im} \zeta)-\log (1+|\zeta|)|+2 \pi D_{3} \\
& \leqslant \log 5+2 \pi D_{3} .
\end{aligned}
$$

Set $D_{5}=\log \left(4+2 D_{3}\right)+6 \pi D_{3}+2 \pi$. Then if $\operatorname{Im} \zeta<\left(1+2 D_{3}\right) / \alpha$ we have

$$
\begin{equation*}
\left|\log (3+\operatorname{Im} \zeta)-2 \pi \operatorname{Im} \zeta^{\prime}\right| \leqslant D_{5} \tag{2.22}
\end{equation*}
$$

Suppose $\operatorname{Im} \zeta \geqslant\left(1+2 D_{3}\right) / \alpha$. By Lemma 2.11(a), we have

$$
\operatorname{Im} \zeta^{\prime} \geqslant \alpha \operatorname{Im} \zeta+\frac{1}{2 \pi} \log \frac{1}{\alpha}-D_{3} \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1
$$

Therefore, if $\operatorname{Im} \zeta^{\prime}<\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1$, then $\operatorname{Im} \zeta<\left(1+2 D_{3}\right) / \alpha$ and we have (2.22).

Summering the constants in Parts (a) and (b), the lemma follows if we set $D_{4}:=D_{3}+1$ and $D_{5}:=\log \left(4+2 D_{3}\right)+6 \pi D_{3}+2 \pi$.

In the following, we use h^{\prime} to denote $\partial h / \partial z$ if h is holomorphic and denote $\partial \bar{h} / \partial z$ if h is anti-holomorphic. The following result is useful in the estimate of the Euclidean length of curves in Fatou coordinate planes.
Proposition 2.13. There exist positive constants $\varepsilon_{4} \in\left(0, \varepsilon_{3}^{\prime}\right]$ and $D_{2}^{\prime}, D_{6}^{\prime}, D_{6}>1$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in\left(0, \varepsilon_{4}\right]$, we have
(a) If $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Im} \zeta \geqslant 1 /(4 \alpha)$, then

$$
\left|\chi_{f}^{\prime}(\zeta)-\alpha\right| \leqslant D_{6} \alpha e^{-2 \pi \alpha \operatorname{Im} \zeta}
$$

(b) If $\zeta \in \mathcal{D}_{f}$ with $\operatorname{Im} \zeta \in[-2,1 /(4 \alpha)]$ and $r=\min \{|\zeta|,|\zeta-1 / \alpha|\} \geqslant D_{6}^{\prime}$, then

$$
\left|\chi_{f}^{\prime}(\zeta)\right| \leqslant \frac{\alpha}{1-e^{-2 \pi \alpha\left(r-D_{2}^{\prime} \log (2+r)\right)}}\left(1+\frac{D_{6}}{r}\right)
$$

where D_{2}^{\prime} and D_{6}^{\prime} are chosen such that $r-2 D_{2}^{\prime} \log (2+r) \geqslant 4$ if $r \geqslant D_{6}^{\prime}$.

Proof. Part (a) is proved in [Che13, Proposition 3.3]. We only prove Part (b). For the continuous function

$$
\varphi(z):=\left|1-e^{2 \pi \mathrm{i} z}\right|
$$

where $z \in \Xi_{\varrho}:=\left\{\varrho e^{\mathrm{i} \theta}: \theta \in\left[-\frac{\pi}{4}, \frac{5 \pi}{4}\right]\right\}$ with $0<\varrho \leqslant \frac{2}{3}$, by a direct calculatior ${ }^{12}$ we have

$$
\begin{equation*}
\min _{z \in \Xi_{\varrho}} \varphi(z)=\varphi\left(\varrho e^{\mathrm{i} \frac{\pi}{2}}\right)=\varphi(\varrho \mathrm{i})=1-e^{-2 \pi \varrho} \tag{2.23}
\end{equation*}
$$

Case 1. We first consider $\zeta \in \Lambda_{1}:=\mathcal{D}_{f} \cap\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \in(0,1 /(2 \alpha)]$ and $\operatorname{Im} \zeta \in$ $[-2,1 /(4 \alpha)]\}$ and denote $w:=L_{f}^{-1}(\zeta) \in \widetilde{\mathcal{P}}_{f}$. By 2.4, 2.13, (2.14) and a straightforward calculation we have

$$
\begin{align*}
\chi_{f}^{\prime}(\zeta) & =\left(\mathbb{E x p}^{-1} \circ \Phi_{f}^{-1}\right)^{\prime}(\zeta)=\left(\mathbb{E x p}^{-1} \circ \tau_{f} \circ L_{f}^{-1}\right)^{\prime}(\zeta) \\
& =-\frac{\alpha}{1-e^{2 \pi \mathrm{i} \alpha w}} \cdot \frac{1}{L_{f}^{\prime}(w)} \tag{2.24}
\end{align*}
$$

By Proposition 2.10(b), we have

$$
\begin{equation*}
w \in \overline{\mathbb{D}}\left(\zeta, D_{2} \log (2+|\zeta|)\right) \tag{2.25}
\end{equation*}
$$

Let $C_{0}^{\prime \prime} \geqslant 6$ be the constant and $A_{1}=A_{1}\left(C_{0}^{\prime}\right)$ be the domain introduced in Lemma 2.8(b). Let $C_{1} \geqslant 1$ be a constant depending only on $C_{0}^{\prime \prime}$ and D_{2} such that if $|\zeta| \geqslant C_{1}$, then

$$
\begin{equation*}
|\zeta|-2 D_{2} \log (2+|\zeta|) \geqslant 4 \quad \text { and } \quad \overline{\mathbb{D}}\left(w, C_{0}^{\prime \prime}\right) \subset A_{1} \tag{2.26}
\end{equation*}
$$

We assume that $\widehat{\varepsilon}_{1}>0$ is small such that if $\alpha \in\left(0, \widehat{\varepsilon}_{1}\right]$, then $\alpha|\zeta|<\frac{3}{5}$ and $D_{2} \alpha \log (2+|\zeta|)<\frac{1}{15}$ for all $\zeta \in \Lambda_{1}$. Hence

$$
\begin{equation*}
\alpha|\zeta|+D_{2} \alpha \log (2+|\zeta|)<\frac{2}{3} \quad \text { for all } \zeta \in \Lambda_{1} . \tag{2.27}
\end{equation*}
$$

By 2.25, 2.26) and (2.27), for $\zeta \in \Lambda_{1}^{\prime}:=\Lambda_{1} \cap\left\{\zeta \in \mathbb{C}:|\zeta| \geqslant C_{1}\right\}$ we have $\alpha w \in\left\{\varrho e^{\mathrm{i} \theta}: 0<\varrho \leqslant \frac{2}{3}\right.$ and $\left.-\frac{\pi}{4}<\theta<\frac{3 \pi}{4}\right\}$. According to 2.23), we have

$$
\begin{equation*}
\left|1-e^{2 \pi \mathrm{i} \alpha w}\right| \geqslant 1-e^{-2 \pi \alpha\left(|\zeta|-D_{2} \log (2+|\zeta|)\right)} \tag{2.28}
\end{equation*}
$$

On the other hand, by 2.26 , Lemma $2.8(\mathrm{~b})(\mathrm{d})$ and Proposition 2.10 (b), there exists a constant $C_{2} \geqslant 1$ depending only on C_{1} and D_{2} such that if $\zeta \in \Lambda_{1}^{\prime}$ then

$$
\begin{equation*}
\frac{1}{\left|L_{f}^{\prime}(w)\right|} \leqslant 1+\frac{C_{2}}{|\zeta|} \tag{2.29}
\end{equation*}
$$

Combining 2.24, 2.28) and 2.29, if $\zeta \in \Lambda_{1}^{\prime}$ we have

$$
\left|\chi_{f}^{\prime}(\zeta)\right| \leqslant \frac{\alpha}{1-e^{-2 \pi \alpha\left(|\zeta|-D_{2} \log (2+|\zeta|)\right)}}\left(1+\frac{C_{2}}{|\zeta|}\right) .
$$

Case 2. Suppose $\zeta \in \Lambda_{2}:=\mathcal{D}_{f} \cap\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>1 /(2 \alpha)$ and $\operatorname{Im} \zeta \in$ $[-2,1 /(4 \alpha)]\}$. By the definition of \mathcal{D}_{f} in 2.9$)$, there exist an integer $J \geqslant 1$ which is independent of f and an integer $j_{0} \in \mathbb{N}$ with $j_{0} \leqslant J$ such that $\zeta-j_{0} \in \Phi_{f}\left(\mathcal{P}_{f}\right) \cap\{\zeta$: $\operatorname{Re} \zeta>1 /(2 \alpha)\}$. We denote $w:=L_{f}^{-1}\left(\zeta-j_{0}\right) \in \widetilde{\mathcal{P}}_{f}$ and $\widetilde{w}:=F_{f}^{\circ j_{0}}(w)$. Then

$$
\begin{align*}
\chi_{f}^{\prime}(\zeta) & =\left(\mathbb{E x p}^{-1} \circ f^{\circ j_{0}} \circ \Phi_{f}^{-1}\right)^{\prime}\left(\zeta-j_{0}\right) \\
& =\left(\mathbb{E x p}^{-1} \circ \tau_{f} \circ F_{f}^{\circ j_{0}} \circ L_{f}^{-1}\right)^{\prime}\left(\zeta-j_{0}\right)=-\frac{\alpha}{1-e^{2 \pi \mathrm{i} \alpha \widetilde{w}}} \cdot \frac{\left(F_{f}^{\circ j_{0}}\right)^{\prime}(w)}{L_{f}^{\prime}(w)} \tag{2.30}
\end{align*}
$$

[^8]By Proposition 2.10 b), we have

$$
w \in \overline{\mathbb{D}}\left(\zeta-j_{0}, D_{2} \log \left(2+\left|\zeta-j_{0}-\frac{1}{\alpha}\right|\right)\right)
$$

Let $C_{0}^{\prime \prime} \geqslant 6$ and $A_{1}=A_{1}\left(C_{0}^{\prime}\right)$ be introduced as in Lemma2.8(b). By Lemma 2.8(a), there exist two positive constants C_{1}^{\prime} and $C_{1}^{\prime \prime}$ depending only on $C_{0}^{\prime \prime}, D_{2}$ and J such that if $|\zeta-1 / \alpha| \geqslant C_{1}^{\prime}$, then

$$
\begin{equation*}
\overline{\mathbb{D}}\left(w, C_{0}^{\prime \prime}\right) \subset A_{1} \text { and }\left|F_{f}^{\circ j}(w)-1 / \alpha\right| \geqslant C_{1}^{\prime \prime}|\zeta-1 / \alpha| \tag{2.31}
\end{equation*}
$$

for all $j=0,1, \cdots, j_{0}$. Also by Lemma 2.8(a), there exists a constant $D_{2}^{\prime} \geqslant D_{2}$ depending only on $C_{0}^{\prime \prime}, C_{1}^{\prime \prime}, D_{2}$ and J such that

$$
\widetilde{w}=F_{f}^{\circ j_{0}}(w) \in \mathbb{D}\left(\zeta, D_{2}^{\prime} \log (2+|\zeta-1 / \alpha|)\right)
$$

and

$$
\begin{equation*}
\left|\left(F_{f}^{\circ j_{0}}\right)^{\prime}(w)\right| \leqslant 1+\frac{D_{2}^{\prime}}{|\zeta-1 / \alpha|} \tag{2.32}
\end{equation*}
$$

Let $C_{2}^{\prime} \geqslant C_{1}^{\prime}$ be a constant depending only on C_{1}^{\prime} and D_{2}^{\prime} such that if $|\zeta-1 / \alpha| \geqslant$ C_{2}^{\prime}, then

$$
|\zeta-1 / \alpha|-2 D_{2}^{\prime} \log (2+|\zeta-1 / \alpha|) \geqslant 4
$$

Moreover, we assume that $\widehat{\varepsilon}_{2}>0$ is small such that if $\alpha \in\left(0, \widehat{\varepsilon}_{2}\right]$, then

$$
\alpha|\zeta-1 / \alpha|+D_{2}^{\prime} \alpha \log (2+|\zeta-1 / \alpha|)<\frac{2}{3} \quad \text { for all } \zeta \in \Lambda_{2}
$$

For $\zeta \in \Lambda_{2}^{\prime}:=\Lambda_{2} \cap\left\{\zeta \in \mathbb{C}:|\zeta-1 / \alpha| \geqslant C_{2}^{\prime}\right\}$, we have $\alpha \widetilde{w}-1 \in\left\{\varrho e^{\mathrm{i} \theta}: 0<\varrho \leqslant\right.$ $\frac{2}{3}$ and $\left.\frac{\pi}{4}<\theta<\frac{5 \pi}{4}\right\}$. By 2.23) and $\left|1-e^{2 \pi \mathrm{i} z}\right|=\left|1-e^{2 \pi \mathrm{i}(z-1)}\right|$, we have

$$
\begin{equation*}
\left|1-e^{2 \pi \mathrm{i} \alpha \widetilde{w}}\right| \geqslant 1-e^{-2 \pi \alpha\left(|\zeta-1 / \alpha|-D_{2}^{\prime} \log (2+|\zeta-1 / \alpha|)\right)} \tag{2.33}
\end{equation*}
$$

Similarly, by 2.31), Lemma 2.8(b)(d) and Proposition 2.10(b), there exists a constant $C_{3} \geqslant 1$ depending only on $C_{1}^{\prime \prime}, C_{2}^{\prime}$ and D_{2}^{\prime} such that if $\zeta \in \Lambda_{2}^{\prime}$ then

$$
\begin{equation*}
\frac{1}{\left|L_{f}^{\prime}(w)\right|} \leqslant 1+\frac{C_{3}}{|\zeta-1 / \alpha|} \tag{2.34}
\end{equation*}
$$

Combining (2.30), 2.32), 2.33) and (2.34), if $\zeta \in \Lambda_{2}^{\prime}$ we have

$$
\left|\chi_{f}^{\prime}(\zeta)\right| \leqslant \frac{\alpha}{1-e^{-2 \pi \alpha\left(|\zeta-1 / \alpha|-D_{2}^{\prime} \log (2+|\zeta-1 / \alpha|)\right)}}\left(1+\frac{C_{3}^{\prime}}{|\zeta-1 / \alpha|}\right)
$$

for a constant $C_{3}^{\prime}>0$ depending only on C_{3} and D_{2}^{\prime}. The proof is complete if we set $\varepsilon_{4}:=\min \left\{\varepsilon_{3}^{\prime}, \widehat{\varepsilon}_{1}, \widehat{\varepsilon}_{2}\right\}, D_{6}^{\prime}:=\max \left\{C_{1}, C_{2}^{\prime}\right\}$ and $D_{6}:=\max \left\{C_{2}, C_{3}^{\prime}\right\}$.
Remark. Proposition 2.13 will be used in the proof of Lemma 4.8. In Che19, Proposition 6.18], an estimate of $\left|\chi_{f}^{\prime}(\zeta)\right|$ has been obtained for $\zeta \in[1,1 /(2 \alpha)]$ in another form.
2.5. Renormalization tower and orbit relations. In the rest of this paper, we always assume that the integer N is large so that $N \geqslant 1 / \varepsilon_{4}$, where $\varepsilon_{4}>0$ is the constant introduced in Proposition 2.13 . Let $\left[0 ; a_{1}, a_{2}, \cdots\right]$ be the continued fraction expansion of $\alpha \in \mathrm{HT}_{N}$. Define $\alpha_{0}:=\alpha$, and inductively for $n \geqslant 1$, define the sequence of real numbers $\alpha_{n} \in(0,1)$ as

$$
\begin{equation*}
\alpha_{n}=\frac{1}{\alpha_{n-1}}-\left\lfloor\frac{1}{\alpha_{n-1}}\right\rfloor, \text { where } n \geqslant 1 \tag{2.35}
\end{equation*}
$$

Then each α_{n} has the continued fraction expansion [0; $\left.a_{n+1}, a_{n+2}, \cdots\right]$. By definition, we have $\alpha_{n} \in\left(0, \varepsilon_{4}\right]$ for all $n \in \mathbb{N}$.

Let $\alpha \in \operatorname{HT}_{N}$ and $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$. By Theorem 2.4. the following sequence of maps is well-defined for all $n \geqslant 0$:

$$
f_{n+1}:=\mathcal{R} f_{n}: U_{f_{n+1}} \rightarrow \mathbb{C}
$$

Let $U_{n}:=U_{f_{n}}$ be the domain of definition of f_{n} for $n \geqslant 0$. Then for all n, we have

$$
f_{n}: U_{n} \rightarrow \mathbb{C}, f_{n}(0)=0, f_{n}^{\prime}(0)=e^{2 \pi \mathrm{i} \alpha_{n}} \quad \text { and } \quad \mathrm{cv}=\mathrm{cv}_{f_{n}}=-4 / 27
$$

For $n \geqslant 0$, let $\Phi_{n}:=\Phi_{f_{n}}$ be the Fatou coordinate of $f_{n}: U_{n} \rightarrow \mathbb{C}$ defined in the perturbed petal $\mathcal{P}_{n}:=\mathcal{P}_{f_{n}}$ and let $\mathcal{C}_{n}:=\mathcal{C}_{f_{n}}$ and $\mathcal{C}_{n}^{\sharp}:=\mathcal{C}_{f_{n}}^{\sharp}$ be the corresponding sets for f_{n} defined in 2.3. Let $k_{n}:=k_{f_{n}}$ be the positive integer in Proposition 2.3 such that

$$
S_{n}^{0}:=S_{f_{n}}=\mathcal{C}_{n}^{-k_{n}} \cup\left(\mathcal{C}_{n}^{\sharp}\right)^{-k_{n}} \subset\left\{z \in \mathcal{P}_{n}: 0<\operatorname{Re} \Phi_{n}(z)<\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}-\frac{1}{2}\right\} .
$$

For $n \geqslant 0$, let $\widetilde{\mathcal{D}}_{n}:=\widetilde{\mathcal{D}}_{f_{n}}$ and $\mathcal{D}_{n}:=\mathcal{D}_{f_{n}}$ be the sets defined in 2.6) and 2.9) respectively. Note that $\mathcal{D}_{n} \subset \widetilde{\mathcal{D}}_{n}$ by Lemma 2.7. According to Lemma 2.5, we have a holomorphic map

$$
\Phi_{n}^{-1}: \widetilde{\mathcal{D}}_{n} \rightarrow U_{n} \backslash\{0\}
$$

such that $\Phi_{n}^{-1}(\zeta+1)=f_{n} \circ \Phi_{n}^{-1}(\zeta)$ if $\zeta, \zeta+1 \in \widetilde{\mathcal{D}}_{n}$. We denote the lift $\chi_{f_{n}, 0}$ in 2.8) by $\chi_{n, 0}$. Then, for $n \geqslant 1$ we have

$$
\begin{equation*}
\chi_{n, 0}\left(\widetilde{\mathcal{D}}_{n}\right) \subset\left\{\zeta \in \mathbb{C}: 1 \leqslant \operatorname{Re} \zeta<\boldsymbol{k}_{1}+2 \text { and } \operatorname{Im} \zeta>-2\right\} \subset \Phi_{n-1}\left(\mathcal{P}_{n-1}\right) \tag{2.36}
\end{equation*}
$$

Each $\chi_{n, 0}$ is anti-holomorphic. For $j \in \mathbb{Z}$ we define

$$
\begin{equation*}
\chi_{n, j}:=\chi_{n, 0}+j . \tag{2.37}
\end{equation*}
$$

In the following we are mainly interested in $\chi_{n, j}$ with $0 \leqslant j \leqslant a_{n}=\left\lfloor\frac{1}{\alpha_{n-1}}\right\rfloor$.
For $\delta>0$, let $B_{\delta}(X)$ be the δ-neighborhood of a set $X \subset \mathbb{C}$ with respect to the Euclidean metric. The following lemma will be used to prove the uniform contraction with respect to the hyperbolic metrics in the domains of adjacent renormalization levels (see Lemma 4.7).

Lemma 2.14 ($\mathrm{AC} 18, ~ L e m m a 2.1])$. There exists a constant $\delta_{0}>0$ depending only on the class $\mathcal{I} \mathcal{S}_{0}$, such that for all $n \geqslant 1$ and $0 \leqslant j \leqslant a_{n}$, then

$$
B_{\delta_{0}}\left(\chi_{n, j}\left(\mathcal{D}_{n}\right)\right) \subset \mathcal{D}_{n-1}
$$

For $n \geqslant 0$, recall that \mathcal{P}_{n} is the perturbed petal of f_{n}. For $n \geqslant 1$, we define an anti-holomorphic map ψ_{n} by

$$
\begin{equation*}
\psi_{n}:=\Phi_{n-1}^{-1} \circ \chi_{n, 0} \circ \Phi_{n}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-1} \tag{2.38}
\end{equation*}
$$

Hence we have the following diagrams:

$$
\begin{aligned}
& \mathcal{P}_{n-1} \stackrel{\Phi_{n-1}^{-1}}{\leftarrow} \Phi_{n-1}\left(\mathcal{P}_{n-1}\right) \quad U_{n-1} \stackrel{\Phi_{n-1}^{-1}}{\leftrightarrows} \mathcal{D}_{n-1} \\
& \uparrow \psi_{n} \quad \text { and } \chi_{n, 0} \quad \uparrow_{\chi_{n, j}} \\
& \mathcal{P}_{n} \xrightarrow{\Phi_{n}} \Phi_{n}\left(\mathcal{P}_{n}\right) \quad U_{n} \stackrel{\Phi_{n}^{-1}}{\longleftrightarrow} \mathcal{D}_{n} .
\end{aligned}
$$

Each ψ_{n} extends continuously to $0 \in \partial \mathcal{P}_{n}$ by mapping it to 0 . For $n \geqslant 1$, we define the composition

$$
\Psi_{n}:=\psi_{1} \circ \psi_{2} \circ \cdots \circ \psi_{n}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{0} \subset U_{0}
$$

For $n \geqslant 0$ and $i \geqslant 1$, define the sector

$$
S_{n}^{i}:=\psi_{n+1} \circ \cdots \circ \psi_{n+i}\left(S_{n+i}^{0}\right) \subset \mathcal{P}_{n}
$$

In particular, $S_{0}^{n} \subset \mathcal{P}_{0}$ for all $n \geqslant 0$. Define

$$
\mathcal{P}_{n}^{\prime}:=\left\{z \in \mathcal{P}_{n}: 0<\operatorname{Re} \Phi_{n}(z)<\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}-1\right\} .
$$

Let q_{n} be the denominator of the convergents $\left[0 ; a_{1}, \cdots, a_{n}\right.$] of the continued fraction expansion of α. Recall that $k_{n}=k_{f_{n}}$ is the positive integer introduced in Proposition 2.3. The following lemma was proved in [Che19, §3] and parts of the
results can be also found in [BC12, §1.5.5]. The proof is based on the definition of near-parabolic renormalization.

Lemma 2.15 (Che19, Lemmas 3.3 and 3.4]). For every $n \geqslant 1$, we have
(a) For every $z \in \mathcal{P}_{n}^{\prime}, f_{n-1}^{\circ a_{n}} \circ \psi_{n}(z)=\psi_{n} \circ f_{n}(z)$ and $f_{0}^{\circ q_{n}} \circ \Psi_{n}(z)=\Psi_{n} \circ f_{n}(z)$;
(b) For every $z \in S_{n}^{0}, f_{n-1}^{\circ\left(k_{n} a_{n}+1\right)} \circ \psi_{n}(z)=\psi_{n} \circ f_{n}^{\circ k_{n}}(z)$ and $f_{0}^{\circ\left(k_{n} q_{n}+q_{n-1}\right)} \circ$ $\Psi_{n}(z)=\Psi_{n} \circ f_{n}^{\circ k_{n}}(z) ;$ and
(c) For every $m<n, f_{n}: \mathcal{P}_{n}^{\prime} \rightarrow \mathcal{P}_{n}$ and $f_{n}^{\circ k_{n}}: S_{n}^{0} \rightarrow \mathcal{C}_{n} \cup \mathcal{C}_{n}^{\sharp}$ are conjugate to some iterates of f_{m} on the set $\psi_{m+1} \circ \cdots \circ \psi_{n}\left(\mathcal{P}_{n}\right)$.
In particular, the dynamics of f_{n} is conjugate to the dynamics of f_{0}. Specifically, the first k_{n} iterates of f_{n} on S_{n}^{0} corresponds to $k_{n} q_{n}+q_{n-1}$ iterates of f_{0} and the next $\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}-2$ iterates corresponds to $q_{n}\left(\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}-2\right)$ iterates of f_{0}.

For each $n \in \mathbb{N}$, by (2.7) we have

$$
b_{n}:=k_{n}+\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}-2 \geqslant a_{n+1}+1 .
$$

From the definition of $\widetilde{\mathcal{D}}_{n}$ in (2.6) and by Lemma 2.15, the following sets are welldefined for each $n \geqslant 0$:

$$
\Omega_{n}^{0}:=\bigcup_{j=0}^{b_{n}} f_{n}^{\circ j}\left(S_{n}^{0}\right) \cup\{0\} \quad \text { and } \quad \Omega_{0}^{n}:=\bigcup_{j=0}^{b_{n} q_{n}+q_{n-1}} f_{0}^{\circ j}\left(S_{0}^{n}\right) \cup\{0\} .
$$

Definition (High type Brjunos). Let N be the integer fixed before. Define

$$
\mathcal{B}_{N}:=\left\{\alpha=\left[0 ; a_{1}, a_{2}, \cdots\right] \in(0,1) \backslash \mathbb{Q} \left\lvert\, \begin{array}{l}
\alpha \text { is Brjuno and } \tag{2.39}\\
a_{n} \geqslant N, \forall n \geqslant 1
\end{array}\right.\right\} .
$$

Then \mathcal{B}_{N} is strictly contained in HT_{N}.
Proposition 2.16 (Che19, Propositions 3.5 and 5.10(2)]). Let $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathrm{HT}_{N}$. Then for all $n \geqslant 0$, we have
(a) Ω_{0}^{n+1} is compactly contained in the interior of Ω_{0}^{n} and $f_{0}\left(\Omega_{0}^{n+1}\right) \subset \Omega_{0}^{n}$;
(b) If $\alpha \in \mathcal{B}_{N}$, then $\operatorname{int}\left(\bigcap_{n=0}^{\infty} \Omega_{0}^{n}\right)=\Delta_{0}$, where Δ_{0} is the Siegel disk of f_{0}.

In the rest of this paper, unless otherwise stated, for a given map $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup$ $\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathrm{HT}_{N}$, we use f_{n} to denote the map after n-th near-parabolic renormalization. We also use U_{n}, \mathcal{P}_{n} and Φ_{n} etc to denote the domain of definition, the perturbed petal and the Fatou coordinate etc of f_{n} respectively.

3. The suitable heights

3.1. Radii of Siegel disks. The following classical distortion theorem can be found in Pom75, Theorem 1.6, p. 21].
Theorem 3.1 (Koebe's distortion theorem). Suppose $f: \mathbb{D} \rightarrow \mathbb{C}$ is a univalent map with $f(0)=0$ and $f^{\prime}(0)=1$. Then for each $z \in \mathbb{D}$ we have
(a) $\frac{1-|z|}{(1+|z|)^{3}} \leqslant\left|f^{\prime}(z)\right| \leqslant \frac{1+|z|}{(1-|z|)^{3}}$;
(b) $\frac{|z|}{(1+|z|)^{2}} \leqslant|f(z)| \leqslant \frac{|z|}{(1-|z|)^{2}} ;$ and
(c) $\left|\arg f^{\prime}(z)\right| \leqslant 2 \log \frac{1+|z|}{1-|z|}$.

Let $\alpha_{0}:=\alpha \in \mathcal{B}_{N}$ and $\alpha_{n} \in(0,1)$ be the number defined inductively as in 2.35 for $n \geqslant 1$. Denote $\beta_{-1}=1$ and $\beta_{n}:=\prod_{i=0}^{n} \alpha_{i}$ for $n \geqslant 0$. The Brjuno sum $\mathcal{B}(\alpha)$ of α in the sense of Yoccoz is defined as

$$
\begin{equation*}
\mathcal{B}(\alpha):=\sum_{n=0}^{+\infty} \beta_{n-1} \log \frac{1}{\alpha_{n}}=\log \frac{1}{\alpha_{0}}+\alpha_{0} \log \frac{1}{\alpha_{1}}+\alpha_{0} \alpha_{1} \log \frac{1}{\alpha_{2}}+\cdots \tag{3.1}
\end{equation*}
$$

It is proved in Yoc95, §1.5] that $\left|\mathcal{B}(\alpha)-\sum_{n=0}^{\infty} q_{n}^{-1} \log q_{n+1}\right| \leqslant C^{\prime}$ for a universal constant $C^{\prime}>0$.

Suppose a holomorphic map f has a Siegel disk Δ_{f} centered at the origin which is compactly contained in the domain of definition of f. The inner radius of Δ_{f} is the radius of the largest open disk centered at the origin that is contained in Δ_{f}.

Lemma 3.2. There exists a universal constant $D_{7}>1$ such that for all $f_{0} \in$ $\mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathcal{B}_{N}$, the inner radius of the Siegel disk of f_{n} is $c_{n} e^{-\mathcal{B}\left(\alpha_{n}\right)}$ with $1 / D_{7} \leqslant c_{n} \leqslant D_{7}$ for every $n \in \mathbb{N}$.
Proof. By the definition of near-parabolic renormalization, it follows that $f_{n} \in$ $\mathcal{I} \mathcal{S}_{\alpha_{n}}$ with $\alpha_{n} \in \mathcal{B}_{N}$ for all $n \geqslant 1$. Then according to Brj71, each f_{n} with $n \geqslant 0$ has a Siegel disk centered at the origin. By the definition of Inou-Shishikura's class and Koebe's distortion theorem (Theorem 3.1(b)), f_{n} is univalent in $\mathbb{D}(0, \widetilde{c})$ for a universal constant $\tilde{c}>0$. According to Yoccoz Yoc95, p. 21], the Siegel disk of f_{n} contains a round disk $\mathbb{D}\left(0, C_{1} e^{-\mathcal{B}\left(\alpha_{n}\right)}\right)$ for a universal constant $C_{1}>0$, where

$$
\begin{equation*}
\mathcal{B}\left(\alpha_{n}\right):=\log \frac{1}{\alpha_{n}}+\sum_{k=1}^{+\infty} \alpha_{n} \cdots \alpha_{n+k-1} \log \frac{1}{\alpha_{n+k}} \tag{3.2}
\end{equation*}
$$

is the Brjuno sum of α_{n} defined in 3.1). On the other hand, by Che19, Theorem G], there is a universal constant $C_{2}>1$ such that the inner radius of the Siegel disk of f_{n} is bounded above by $C_{2} e^{-\mathcal{B}\left(\alpha_{n}\right)}$ for all $n \in \mathbb{N}$. The lemma follows if we set $D_{7}:=\max \left\{C_{2}, 1 / C_{1}\right\}$.
3.2. Definition of the heights. In the following, we use Δ_{n} to denote the Siegel disk of f_{n} for all $n \geqslant 0$, where $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathcal{B}_{N}$ and f_{n} is obtained by applying the near-parabolic renormalization operator.

Definition (The heights). Let $M \geqslant 1$. For $n \geqslant 0$, we define

$$
\begin{equation*}
h_{n}:=\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}+\frac{M}{\alpha_{n}} . \tag{3.3}
\end{equation*}
$$

There are many choices of the height h_{n}. One of the candidates is $\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}+M$. In order to apply Lemma 2.11 (a) directly, we choose h_{n} above so that $h_{n}>1 / \alpha_{n}$. Similar to 2.3) (see Figure 3), we define

$$
\widetilde{\mathcal{C}_{n}^{\sharp}}:=\left\{z \in \mathcal{P}_{n}: 1 / 2 \leqslant \operatorname{Re} \Phi_{n}(z) \leqslant 3 / 2 \text { and } \operatorname{Im} \Phi_{n}(z) \geqslant h_{n}\right\} .
$$

Let $\left(\widetilde{\mathcal{C}_{n}^{\sharp}}\right)^{-k_{n}}$ be the component of $f_{n}^{-k_{n}}(\widetilde{\mathcal{C}} \# n)$ contained in $\left(\mathcal{C}_{n}^{\sharp}\right)^{-k_{n}}$. Recall that ψ_{n} is defined in (2.38). For $n \geqslant 0$ and $i \geqslant 1$, we denote

$$
V_{n}^{0}:=\left(\widetilde{\mathcal{C}}_{n}^{\sharp}\right)^{-k_{n}} \subset S_{n}^{0} \quad \text { and } \quad V_{n}^{i}:=\psi_{n+1} \circ \cdots \circ \psi_{n+i}\left(V_{n+i}^{0}\right) \subset S_{n}^{i} .
$$

Lemma 3.3. There exists a universal constant $M_{1} \geqslant 1$ such that if $M \geqslant M_{1}$, then for all $n \geqslant 0$ and $i \geqslant 0, V_{n}^{i}$ is compactly contained in Δ_{n}.

Proof. We first prove that V_{n}^{0} is compactly contained in Δ_{n} for all $n \geqslant 0$ if $M \geqslant 1$ is large enough. By a straightforward calculation, the image of $\Phi_{n}\left(\widetilde{\mathcal{C}}{ }_{n}^{\sharp}\right)$ under $\mathbb{E x p}$ is a punctured rounded disk centered at the origin with radius

$$
\iota_{n}:=\frac{4}{27} e^{-2 \pi h_{n}}=\frac{4}{27} e^{-\frac{2 \pi M}{\alpha_{n}}} \cdot e^{-\mathcal{B}\left(\alpha_{n+1}\right)}<\frac{1}{D_{7}} e^{-\mathcal{B}\left(\alpha_{n+1}\right)}
$$

if $M \geqslant M_{1}:=\frac{1}{2 \pi} \log D_{7}+1$, where $D_{7}>1$ is the universal constant introduced in Lemma 3.2. This implies that $\mathbb{E x p} \circ \Phi_{n}\left(\widetilde{\mathcal{C}}_{n}^{\sharp}\right)$ is compactly contained in the Siegel disk of f_{n+1} if $M \geqslant M_{1}$. Hence there exists a small open neighborhood D of $\widetilde{\mathcal{C}}{ }_{n}^{\sharp}$ in \mathcal{P}_{n} such that $\mathbb{E x p} \circ \Phi_{n}(D)$ is compactly contained in the Siegel disk Δ_{n+1}. By Lemma 2.15 (c), it follows that f_{n} can be iterated infinitely many times in D and
the orbit is compactly contained in the domain of definition of f_{n}. Note that 0 is contained in \bar{D}. Therefore, D is contained in the Siegel disk of f_{n} and $\widetilde{\mathcal{C}}_{n}^{\sharp} \Subset \Delta_{n}$. Since $f_{n}^{\circ k_{n}}\left(V_{n}^{0}\right)=\widetilde{\mathcal{C}} \sharp{ }_{n}^{\sharp}$ and $0 \in \partial V_{n}^{0}$, we have $V_{n}^{0} \Subset \Delta_{n}$.

For each $z \in V_{n}^{0}$, there exists a small open neighborhood of z on which f_{n} can be iterated infinitely many times. By Lemma 2.15 (b), there exists a small open neighborhood of $\Psi_{n}(z) \in V_{0}^{n}$ on which f_{0} can be also iterated infinitely many times. Since each $z \in V_{n}^{0}$ satisfies this property and $0 \in \partial V_{0}^{n}$, it follows that $V_{0}^{n} \Subset \Delta_{0}$. By a completely similar argument, we have $V_{n}^{i} \Subset \Delta_{n}$ for any $i>0$ and $n>0$.

Note that the forward orbit of V_{n}^{i} is compactly contained in Δ_{n} for any $n \geqslant 0$ and $i \geqslant 0$. Moreover, the backward orbit of V_{n}^{i} is also compactly contained in Δ_{n} if the preimage under f_{n} is chosen in Δ_{n}. In the following, we always assume that $M \geqslant M_{1}$ unless otherwise stated.
3.3. The location of the neighborhoods. For $n \geqslant 0$, each $V_{n}^{0} \cup\{0\}$ is a closed topological triangle ${ }^{13}$ whose boundary consists of three analytic curves. We use $\partial^{l} V_{n}^{0}, \partial^{r} V_{n}^{0}$ and $\partial^{b} V_{n}^{0}$ to denote the three smooth edges of V_{n}^{0}, where $f_{n}\left(\partial^{l} V_{n}^{0}\right)=$ $\partial^{r} V_{n}^{0}$ and $\partial^{l} V_{n}^{0} \cap \partial^{r} V_{n}^{0}=\{0\}$. The superscripts ' l ', ' r ' and ' b ' denote 'left', 'right' and 'bottom', respectively. See Figure 5.

Figure 5: In the dynamical plane of f_{n}, the sets $\partial^{l} V_{n}^{0}, \partial^{r} V_{n}^{0}$ and I_{n}^{0} are colored cyan, purple and red respectively. The blue set depicts the (partial) forward orbit of the critical point $\mathrm{cp}_{f_{n}}$. The sets V_{n}^{0} and $\widetilde{\mathcal{C}_{n}^{\sharp}}=f_{n}^{\circ k_{n}}\left(V_{n}^{0}\right)$ are colored gray.

Similar naming convention is adopted to V_{n}^{i} and their forward images for all $n \geqslant 0$ and $i \geqslant 0$. For example, $\partial^{l} V_{n}^{i}:=\psi_{n+1} \circ \cdots \circ \psi_{n+i}\left(\partial^{l} V_{n+i}^{0}\right)$ if i is even while $\partial^{l} V_{n}^{i}:=\psi_{n+1} \circ \cdots \circ \psi_{n+i}\left(\partial^{r} V_{n+i}^{0}\right)$ if i is odd (note that each ψ_{j} is anti-holomorphic). For simplicity, we denote the segment

$$
I_{n}^{0}:=\partial^{b} V_{n}^{0} \subset \Delta_{n}
$$

The 'left' and the 'right' end points of I_{n}^{0} are denoted by $\partial^{l} I_{n}^{0}$ and $\partial^{r} I_{n}^{0}$ respectively so that $f_{n}\left(\partial^{l} I_{n}^{0}\right)=\partial^{r} I_{n}^{0}$. Similar naming convention is adopted to I_{n}^{i} and their forward images for all $n \geqslant 0$ and $i \geqslant 0$. In particular, by Lemma 2.15(a) we have $f_{0}^{\circ q_{n}}\left(\partial^{l} I_{0}^{n}\right)=\partial^{r} I_{0}^{n}$ if n is even and $f_{0}^{\circ q_{n}}\left(\partial^{r} I_{0}^{n}\right)=\partial^{l} I_{0}^{n}$ if n is odd. Moreover, let $\partial^{l} S_{n}^{i}$ and $\partial^{r} S_{n}^{i}$ be the smooth edges of S_{n}^{i} containing $\partial^{l} V_{n}^{i}$ and $\partial^{r} V_{n}^{i}$ respectively.

Let $k_{n}=k_{f_{n}} \geqslant 1$ be the integer introduced in Proposition 2.3, $D_{3}>0$ be a constant introduced in Lemma 2.11 and $\mathcal{D}_{n}=\mathcal{D}_{f_{n}}$ be the set defined in 2.9.

[^9]Lemma 3.4 (see Figure 6). There exists a constant $M_{2} \geqslant 1$ such that if $M \geqslant M_{2}$, then for all $n \in \mathbb{N}$, we have
(a) $\operatorname{diam}\left(\Phi_{n}\left(I_{n}^{0}\right)\right) \leqslant 2$ and $\left|\operatorname{Im} \zeta-h_{n}\right| \leqslant 1$ for all $\zeta \in \Phi_{n}\left(I_{n}^{0}\right)$;
(b) For all $y \geqslant h_{n}-1, u_{n}(y):=\{\zeta \in \mathbb{C}: \operatorname{Im} \zeta=y\} \cap \Phi_{n}\left(\partial^{l} S_{n}^{0}\right)$ is a singleton;
(c) $\operatorname{diam}\left(\beta_{n}^{\prime}\right) \leqslant 1$, where β_{n}^{\prime} is the arc in $\Phi_{n}\left(\partial^{l} S_{n}^{0}\right)$ connecting $u_{n}\left(h_{n}\right)$ with $\Phi_{n}\left(\partial^{l} I_{n}^{0}\right)$.

Proof. The proof is mainly based on applying Koebe's distortion theorem and the definition of near-parabolic renormalization.
(a) By the definition of near-parabolic renormalization, we have

$$
f_{n+1}\left(\mathbb{E x p} \circ \Phi_{n}\left(V_{n}^{0}\right)\right)=\mathbb{E x p} \circ \Phi_{n}\left(\widetilde{\mathcal{C}}_{n}^{\sharp}\right) .
$$

Note that $\operatorname{Exp} \circ \Phi_{n}\left(\widetilde{\mathcal{C}} \widetilde{n}^{\sharp}\right) \cup\{0\}$ is a closed round disk with radius

$$
\iota_{n}=\frac{4}{27} e^{-\frac{2 \pi M}{\alpha_{n}}} \cdot e^{-\mathcal{B}\left(\alpha_{n+1}\right)} .
$$

By Lemma 3.2, Δ_{n+1} contains the disk $\mathbb{D}\left(0, \varsigma_{n}\right)$, where

$$
\varsigma_{n}:=D_{7}^{-1} e^{-\mathcal{B}\left(\alpha_{n+1}\right)} .
$$

Therefore,

$$
\begin{equation*}
g:=f_{n+1}^{-1}: \mathbb{D}\left(0, \varsigma_{n}\right) \rightarrow \Delta_{n+1} \tag{3.4}
\end{equation*}
$$

is a well-defined univalent map with $\left|g^{\prime}(0)\right|=1$. If M is large enough such that ι_{n} is much smaller than ς_{n}, then by Theorem 3.1 the distortion of the circle $g\left(\partial \mathbb{D}\left(0, \iota_{n}\right)\right)$ relative to $\partial \mathbb{D}\left(0, \iota_{n}\right)$ can be arbitrarily small. Part (a) is proved if we notice that $\Phi_{n}\left(I_{n}^{0}\right)$ is the closure of a connected component of $\mathbb{E x p}^{-1} \circ g\left(\partial \mathbb{D}\left(0, \iota_{n}\right) \backslash\left\{\iota_{n}\right\}\right)$.
(b) Still by the definition of near-parabolic renormalization, we have

$$
f_{n+1}\left(\mathbb{E x p} \circ \Phi_{n}\left(\partial^{l} S_{n}^{0}\right)\right)=\left(0, \frac{4}{27} e^{4 \pi}\right]
$$

Since $\mathbb{D}\left(0, \varsigma_{n}\right) \subset \Delta_{n+1}$, we have $f_{n+1}^{-1}\left(\left[0, \frac{4}{27} e^{4 \pi}\right]\right) \cap g\left(\mathbb{D}\left(0, \varsigma_{n}\right)\right)=g\left(\left[0, \varsigma_{n}\right)\right)$, where g is defined in (3.4). On the other hand, by (3.4) and Theorem 3.1 b), we assume that M is large such that ι_{n} is small and $g\left(\mathbb{D}\left(0, \varsigma_{n}\right)\right) \supset \overline{\mathbb{D}}\left(0, e^{2 \pi} \iota_{n}\right)$. According to Theorem 3.1(c), we assume further that M is large such that $g\left(\left[0, \varsigma_{n}\right)\right) \cap \partial \mathbb{D}(0, r)$ is a singleton for any $0<r \leqslant e^{2 \pi} \iota_{n}$. Therefore,

$$
\mathbb{E x p} \circ \Phi_{n}\left(\partial^{l} S_{n}^{0}\right) \cap\{z \in \mathbb{C}:|z|=r\}
$$

is a singleton, where $0<r \leqslant e^{2 \pi} \iota_{n}=\frac{4}{27} e^{-2 \pi\left(h_{n}-1\right)}$. This proves Part (b).
(c) By the definition of near-parabolic renormalization, we have

$$
\mathbb{E x p}\left(u_{n}\left(h_{n}\right)\right)=g\left(\left[0, \varsigma_{n}\right)\right) \cap \partial \mathbb{D}\left(0, \iota_{n}\right) \quad \text { and } \quad \mathbb{E x p} \circ \Phi_{n}\left(\partial^{l} I_{n}^{0}\right)=g\left(\iota_{n}\right) .
$$

Moreover, by the definition of β_{n}^{\prime} we have $\operatorname{Exp}\left(\beta_{n}^{\prime}\right) \subset g\left(\left[0, \varsigma_{n}\right)\right)$. By Theorem 3.1, the Euclidean length of the arc $\mathbb{E x p}\left(\beta_{n}^{\prime}\right)$ with end points $g\left(\left[0, \varsigma_{n}\right)\right) \cap \partial \mathbb{D}\left(0, \iota_{n}\right)$ and $g\left(\iota_{n}\right)$ can be arbitrarily small if M is large enough. This proves Part (c).

Let $D_{3}>0$ be introduced in Lemma 2.11. In the following we always assume that $M \geqslant \max \left\{M_{2}, D_{3}+\frac{1}{2 \pi} \log \frac{4 D_{7}}{27}+2\right\}$ unless otherwise stated. Then

$$
\begin{equation*}
y_{n}:=\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}+M-D_{3}-\frac{3}{2}>\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}-\frac{1}{2 \pi} \log \frac{27 c_{n+1}}{4} \tag{3.5}
\end{equation*}
$$

This implies that if $\operatorname{Im} \zeta \geqslant y_{n}$, then $\zeta \in \operatorname{Exp}^{-1}\left(\Delta_{n+1}\right)$.

4. The sequence of the curves is convergent

In this section, we define a sequence of continuous curves $\left(\gamma_{n}^{i}\right)_{n \in \mathbb{N}}$ in the Fatou coordinate planes with $i \in \mathbb{N}$. The image of each γ_{n}^{i} under Φ_{n}^{-1} is a continuous closed curve contained in the Siegel disk Δ_{n} of f_{n}. We shall prove that $\left(\gamma_{0}^{n}\right)_{n \in \mathbb{N}}$ convergents uniformly to the boundary of Δ_{0}.
4.1. Definition of the curves and its parametrization. For each $n \in \mathbb{N}$, note that $a_{n+1}=\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor$. Recall that

$$
u_{n}:=u_{n}\left(h_{n}\right)=\left\{\zeta \in \mathbb{C}: \operatorname{Im} \zeta=h_{n}\right\} \cap \Phi_{n}\left(\partial^{l} S_{n}^{0}\right)
$$

is introduced in Lemma 3.4 (b). Since $f_{n}^{\circ k_{n}}\left(S_{n}^{0}\right)=\mathcal{C}_{n} \cup \mathcal{C}_{n}^{\sharp}$, we have $\operatorname{Re} \zeta>a_{n+1}-\boldsymbol{k}$ for all $\zeta \in \Phi_{n}\left(S_{n}^{0}\right)+k_{n}$. Therefore, we have

$$
\begin{equation*}
a_{n+1}-\boldsymbol{k}-k_{n}<\operatorname{Re} u_{n}<a_{n+1}-\boldsymbol{k}-\frac{3}{2} \tag{4.1}
\end{equation*}
$$

We denote

$$
u_{n}^{\prime}:=a_{n+1}-\boldsymbol{k}-k_{n}-\frac{1}{2}+h_{n} \mathrm{i}
$$

According to 4.1, we have $\operatorname{Re} u_{n}^{\prime}<\operatorname{Re} u_{n}$. Denote

$$
u_{n}^{\prime \prime}:=\Phi_{n}\left(\partial^{l} I_{n}^{0}\right)
$$

Let β_{n}^{\prime} be the arc in $\Phi_{n}\left(\partial^{l} S_{n}^{0}\right)$ connecting u_{n} with $u_{n}^{\prime \prime}$. See Figure 6. We first give the definitions of two curves $\gamma_{n}^{0}(t)$ and $\gamma_{n}^{1}(t)$, where $t \in[0,1]$, and then define the curves $\left(\gamma_{n}^{i}(t)\right)_{n \in \mathbb{N}}$ inductively.

Definition of γ_{n}^{0} : The curve $\gamma_{n}^{0}(t):[0,1] \rightarrow \mathbb{C}$ is defined piecewise as following:
(a_{0}) For $t \in\left[0,1-\frac{k+k_{n}+1}{a_{n+1}}\right]$, define $\gamma_{n}^{0}(t):=a_{n+1} t+\frac{1}{2}+h_{n} \mathrm{i}$;
$\left(\mathrm{b}_{0}\right)$ Let $\gamma_{n}^{0}(t):\left[1-\frac{k+k_{n}+1}{a_{n+1}}, 1-\frac{k_{n}}{a_{n+1}}\right] \rightarrow\left[u_{n}^{\prime}, u_{n}\right] \cup \beta_{n}^{\prime}$ be a homeomorphism such that

$$
\gamma_{n}^{0}\left(1-\frac{k+k_{n}+1}{a_{n+1}}\right)=u_{n}^{\prime} \text { and } \gamma_{n}^{0}\left(1-\frac{k_{n}}{a_{n+1}}\right)=u_{n}^{\prime \prime}
$$

$\left(\mathrm{c}_{0}\right)$ Let $\gamma_{n}^{0}(t):\left[1-\frac{k_{n}}{a_{n+1}}, 1-\frac{k_{n}-1}{a_{n+1}}\right] \rightarrow \Phi_{n}\left(I_{n}^{0}\right)$ be a homeomorphism such that

$$
\gamma_{n}^{0}\left(1-\frac{k_{n}}{a_{n+1}}\right)=u_{n}^{\prime \prime} \text { and } \gamma_{n}^{0}\left(1-\frac{k_{n}-1}{a_{n+1}}\right)=u_{n}^{\prime \prime}+1
$$

$\left(\mathrm{d}_{0}\right)$ For $t \in\left[1-\frac{k_{n}-j}{a_{n+1}}, 1-\frac{k_{n}-j-1}{a_{n+1}}\right]$ with $1 \leqslant j \leqslant k_{n}-1$, define $\gamma_{n}^{0}(t):=$ $\gamma_{n}^{0}\left(t-\frac{j}{a_{n+1}}\right)+j$.

Lemma 4.1 (See Figure 6). The map $\gamma_{n}^{0}(t):[0,1] \rightarrow \mathbb{C}$ has the following properties:
(a) γ_{n}^{0} and $\gamma_{n}^{0}+1$ are simple arcs in \mathcal{D}_{n};
(b) $\gamma_{n}^{0}(0)=\frac{1}{2}+h_{n} \mathrm{i}$ and $\gamma_{n}^{0}(1)=u_{n}^{\prime \prime}+k_{n}$;
(c) $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a continuous closed curve in Δ_{n}; and
(d) $\left|\operatorname{Im} \gamma_{n}^{0}(t)-h_{n}\right| \leqslant 1$ for all $t \in[0,1]$.

Proof. Parts (a) and (b) follow from the definition of γ_{n}^{0}. For Part (c), since $f_{n}^{\circ k_{n}}\left(\Phi_{n}^{-1}\left(u_{n}^{\prime \prime}\right)\right)=\Phi_{n}^{-1}\left(\frac{1}{2}+h_{n} \mathrm{i}\right)$, we have $\Phi_{n}^{-1}\left(\frac{1}{2}+h_{n} \mathrm{i}\right)=\Phi_{n}^{-1}\left(u_{n}^{\prime \prime}+k_{n}\right)$ by Lemma 2.5. This implies that $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a continuous closed curve in Δ_{n}. Part (d) is an immediate consequence of Lemma 3.4 (a)(c).

Before introducing γ_{n}^{1}, we define a thickened curve $\widetilde{\gamma}_{n}^{0}(t):[0,1] \rightarrow \mathbb{C}$ of γ_{n}^{0} :

$$
\widetilde{\gamma}_{n}^{0}(t):= \begin{cases}\gamma_{n}^{0}\left(\frac{a_{n+1}}{a_{n+1}-1} t\right) & \text { if } t \in\left[0,1-\frac{1}{a_{n+1}}\right] \\ \gamma_{n}^{0}(t)+1 & \text { if } t \in\left(1-\frac{1}{a_{n+1}}, 1\right]\end{cases}
$$

One can see that $\widetilde{\gamma}_{n}^{0}=\gamma_{n}^{0} \cup\left(\gamma_{n}^{0}\left(\left[1-\frac{1}{a_{n+1}}, 1\right]\right)+1\right)=\gamma_{n}^{0} \cup\left(\Phi_{n}\left(I_{n}^{0}\right)+k_{n}\right)$ and $\widetilde{\gamma}_{n}^{0}(t):[0,1] \rightarrow \mathbb{C}$ is a continuous curve in \mathcal{D}_{n}. Let $\chi_{n, 0}:=\chi_{f_{n}, 0}$ be the antiholomorphic map defined in 2.8.

Figure 6: The sketch of the construction of the continuous curve γ_{n}^{0} (in blue) in the Fatou coordinate plane of f_{n}. The two red dots denote the initial and terminal points of γ_{n}^{0} and they have the same image under the map Φ_{n}^{-1}. In particular, $\Phi_{n}^{-1}\left(\gamma_{n}^{0}\right)$ is a continuous closed curve in the Siegel disk of f_{n}.

Definition of γ_{n}^{1} : The curve $\gamma_{n}^{1}(t):[0,1] \rightarrow \mathbb{C}$ is defined piecewise as following:
(a_{1}) For $t \in\left[0, \frac{1}{a_{n+1}}\right]$, define $\gamma_{n}^{1}(t):=\chi_{n+1,0} \circ \widetilde{\gamma}_{n+1}^{0}\left(1-a_{n+1} t\right)$;
$\left(\mathrm{b}_{1}\right)$ For $t \in\left(\frac{j}{a_{n+1}}, \frac{j+1}{a_{n+1}}\right]$, where $1 \leqslant j \leqslant a_{n+1}-1$, define

$$
\gamma_{n}^{1}(t):=\chi_{n+1, j} \circ \gamma_{n+1}^{0}\left(j+1-a_{n+1} t\right)
$$

where $\chi_{n+1, j}=\chi_{n+1,0}+j$ is defined in 2.37).
Let $D_{3}>0$ be the constant introduced in Lemma 2.11.
Lemma 4.2. The map $\gamma_{n}^{1}(t):[0,1] \rightarrow \mathbb{C}$ has the following properties:
(a) γ_{n}^{1} and $\gamma_{n}^{1}+1$ are continuous curves in \mathcal{D}_{n};
(b) $\gamma_{n}^{1}(0)=\chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)+1\right)$ and $\gamma_{n}^{1}(1)=\chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)\right)+a_{n+1}$;
(c) $\Phi_{n}^{-1}\left(\gamma_{n}^{1}(0)\right)=\Phi_{n}^{-1}\left(\gamma_{n}^{1}(1)\right)$ and $\Phi_{n}^{-1}\left(\gamma_{n}^{1}\right)$ is a continuous closed curve in Δ_{n}; and
(d) There exists a constant $D_{8}>0$ which is independent of n such that for all $t \in[0,1],\left|\operatorname{Re} \gamma_{n}^{0}(t)-\operatorname{Re} \gamma_{n}^{1}(t)\right| \leqslant D_{8}$ and $\left|\operatorname{Im} \gamma_{n}^{1}(t)-\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}-M\right| \leqslant D_{3}+\frac{1}{2}$.
Proof. (a) Since $\chi_{n+1, j}$ is anti-holomorphic for all $j \in \mathbb{Z}$, we have

$$
\chi_{n+1, j}\left(\gamma_{n+1}^{0}(0)\right)=\chi_{n+1, j}\left(\gamma_{n+1}^{0}(1)\right)+1=\chi_{n+1, j+1}\left(\gamma_{n+1}^{0}(1)\right),
$$

where $0 \leqslant j \leqslant a_{n+1}-2$. Therefore, $\gamma_{n}^{1}(t):[0,1] \rightarrow \mathbb{C}$ is a continuous curve. By Lemma 2.14 γ_{n}^{1} and $\gamma_{n}^{1}+1$ are continuous curves in \mathcal{D}_{n}.
(b) By the definition of γ_{n}^{1}, we have

$$
\gamma_{n}^{1}(0)=\chi_{n+1,0} \circ \widetilde{\gamma}_{n+1}^{0}(1)=\chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)+1\right)
$$

and

$$
\begin{aligned}
\gamma_{n}^{1}(1) & =\chi_{n+1, a_{n+1}-1}\left(\gamma_{n+1}^{0}(0)\right) \\
& =\chi_{n+1, a_{n+1}-1}\left(\gamma_{n+1}^{0}(1)\right)+1=\chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)\right)+a_{n+1}
\end{aligned}
$$

(c) By Lemma 2.15 (a), we have

$$
\Phi_{n}^{-1} \circ \chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)+1\right)=f_{n}^{\circ a_{n+1}}\left(\Phi_{n}^{-1} \circ \chi_{n+1,0}\left(\gamma_{n+1}^{0}(1)\right)\right) .
$$

This implies that $\Phi_{n}^{-1}\left(\gamma_{n}^{1}(0)\right)=\Phi_{n}^{-1}\left(\gamma_{n}^{1}(1)\right)$ by Part (b). Therefore, $\Phi_{n}^{-1}\left(\gamma_{n}^{1}\right)$ is a continuous closed curve in Δ_{n}.
(d) By 2.36 we have

$$
\begin{equation*}
\operatorname{Re} \chi_{n+1, j}\left(\widetilde{\gamma}_{n+1}^{0}\right) \subset\left[1+j, \boldsymbol{k}_{1}+2+j\right], \text { where } j \in \mathbb{Z} \tag{4.2}
\end{equation*}
$$

Hence for $t \in\left[0,1-\frac{k+k_{n}+1}{a_{n+1}}\right]$, we have

$$
\left|\operatorname{Re} \gamma_{n}^{0}(t)-\operatorname{Re} \gamma_{n}^{1}(t)\right| \leqslant \boldsymbol{k}_{1}+\frac{3}{2}
$$

For $t \in\left[1-\frac{k+k_{n}+1}{a_{n+1}}, 1-\frac{k_{n}}{a_{n+1}}\right]$, by 4.1) and Lemma 3.4(c) we have

$$
\operatorname{Re} \gamma_{n}^{0}(t) \in\left[\operatorname{Re} u_{n}^{\prime}-\frac{1}{2}, \operatorname{Re} u_{n}+1\right] \subset\left[a_{n+1}-\boldsymbol{k}-k_{n}-1, a_{n+1}-\boldsymbol{k}-\frac{1}{2}\right]
$$

If $t \in\left[1-\frac{k+k_{n}+1}{a_{n+1}}, 1-\frac{k_{n}}{a_{n+1}}\right]$, then $\gamma_{n}^{1}(t) \in \bigcup_{i=0}^{k} \chi_{n+1, a_{n+1}-k-k_{n}-1+i}\left(\gamma_{n+1}^{0}\right)$. By (4.2) we have

$$
\operatorname{Re} \gamma_{n}^{1}(t) \in\left[a_{n+1}-k_{n}-\boldsymbol{k}, a_{n+1}-k_{n}+\boldsymbol{k}_{1}+1\right] .
$$

Therefore, for $t \in\left[1-\frac{k+k_{n}+1}{a_{n+1}}, 1-\frac{k_{n}}{a_{n+1}}\right]$ we have

$$
\left|\operatorname{Re} \gamma_{n}^{0}(t)-\operatorname{Re} \gamma_{n}^{1}(t)\right| \leqslant \max \left\{k_{n}-\frac{1}{2}, \boldsymbol{k}+\boldsymbol{k}_{1}+2\right\}
$$

By Lemma 3.4(a)(c), we have

$$
\begin{equation*}
u_{n}^{\prime \prime} \in \overline{\mathbb{D}}\left(u_{n}, 1\right) \text { and } \Phi_{n}\left(I_{n}^{0}\right) \subset \overline{\mathbb{D}}\left(u_{n}^{\prime \prime}, 2\right) . \tag{4.3}
\end{equation*}
$$

For $t \in\left[1-\frac{k_{n}}{a_{n+1}}, 1-\frac{k_{n}-1}{a_{n+1}}\right]$, by 4.1) and 4.3) we have

$$
\operatorname{Re} \gamma_{n}^{0}(t) \in\left[a_{n+1}-\boldsymbol{k}-k_{n}-3, a_{n+1}-\boldsymbol{k}+\frac{3}{2}\right] .
$$

On the other hand, we have

$$
\operatorname{Re} \gamma_{n}^{1}(t) \in\left[a_{n+1}-k_{n}+1, a_{n+1}-k_{n}+k_{1}+2\right]
$$

Since $\gamma_{n}^{i}\left(t+\frac{1}{a_{n+1}}\right)=\gamma_{n}^{i}(t)+1$ for $t \in\left[1-\frac{k_{n}}{a_{n+1}}, 1-\frac{1}{a_{n+1}}\right]$, where $i=0,1$, it implies that for all $t \in\left[1-\frac{k_{n}}{a_{n+1}}, 1\right]$, we have

$$
\left|\operatorname{Re} \gamma_{n}^{0}(t)-\operatorname{Re} \gamma_{n}^{1}(t)\right| \leqslant \max \left\{k_{n}-\boldsymbol{k}+\frac{1}{2}, \boldsymbol{k}+\boldsymbol{k}_{1}+5\right\} .
$$

Since $k_{n} \leqslant \boldsymbol{k}_{0}$ by Proposition 2.3 , it implies that $\left|\operatorname{Re} \gamma_{n}^{0}(t)-\operatorname{Re} \gamma_{n}^{1}(t)\right| \leqslant D_{8}:=$ $\max \left\{\boldsymbol{k}_{0}-\frac{1}{2}, \boldsymbol{k}+\boldsymbol{k}_{1}+5\right\}$ for all $t \in[0,1]$. Finally, the statement on $\operatorname{Im} \gamma_{n}^{1}(t)$ follows immediately from Lemma 2.11 (a) and Lemma 4.1 (d).

By (3.5) and Lemma 4.2(d), for any $t \in[0,1]$ and $\zeta \in \operatorname{Exp}^{-1}\left(\partial \Delta_{n+1}\right)$, we have

$$
\begin{equation*}
\operatorname{Im} \gamma_{n}^{1}(t) \geqslant \frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}+M-D_{3}-\frac{1}{2}>1+\operatorname{Im} \zeta \tag{4.4}
\end{equation*}
$$

For $\ell=1$, we define a thickened curve $\widetilde{\gamma}_{n}^{\ell}(t):[0,1] \rightarrow \mathbb{C}$ of γ_{n}^{ℓ} :

$$
\widetilde{\gamma}_{n}^{\ell}(t):= \begin{cases}\gamma_{n}^{\ell}\left(\frac{a_{n+1}}{a_{n+1}-1} t\right) & \text { if } t \in\left[0,1-\frac{1}{a_{n+1}}\right] \tag{4.5}\\ \gamma_{n}^{\ell}(t)+1 & \text { if } t \in\left(1-\frac{1}{a_{n+1}}, 1\right]\end{cases}
$$

One can see that $\widetilde{\gamma}_{n}^{\ell}=\gamma_{n}^{\ell} \cup\left(\gamma_{n}^{\ell}\left(\left[1-\frac{1}{a_{n+1}}, 1\right]\right)+1\right)=\gamma_{n}^{\ell} \cup \chi_{n+1, a_{n+1}}\left(\gamma_{n+1}^{\ell-1}\right)$, and $\widetilde{\gamma}_{n}^{\ell}(t):[0,1] \rightarrow \mathbb{C}$ is a continuous curve in \mathcal{D}_{n}.

Define γ_{n}^{i} inductively: For all $n \in \mathbb{N}$ and $1 \leqslant \ell \leqslant i$ with $i \geqslant 1$, we assume that the curves $\gamma_{n}^{\ell}(t):[0,1] \rightarrow \mathbb{C}$ and $\widetilde{\gamma}_{n}^{\ell}(t):[0,1] \rightarrow \mathbb{C}$ are defined and satisfy
(a_{ℓ}) $\widetilde{\gamma}_{n}^{\ell}$ is defined as in 4.5);
(b_{ℓ}) $\gamma_{n}^{\ell}(t):=\chi_{n+1,0} \circ \widetilde{\gamma}_{n+1}^{\ell-1}\left(1-a_{n+1} t\right)$ for $t \in\left[0, \frac{1}{a_{n+1}}\right)$, and $\gamma_{n}^{\ell}(t):=\chi_{n+1, j} \circ$ $\gamma_{n+1}^{\ell-1}\left(j+1-a_{n+1} t\right)$ for $t \in\left(\frac{j}{a_{n+1}}, \frac{j+1}{a_{n+1}}\right]$ with $1 \leqslant j \leqslant a_{n+1}-1$;
(c $\left.c_{\ell}\right) \gamma_{n}^{\ell}$ and $\gamma_{n}^{\ell}+1$ are continuous curves in \mathcal{D}_{n};
$\left(\mathrm{d}_{\ell}\right) \gamma_{n}^{\ell}(0)=\chi_{n+1,0}\left(\gamma_{n+1}^{\ell-1}(1)+1\right)$ and $\gamma_{n}^{\ell}(1)=\chi_{n+1,0}\left(\gamma_{n+1}^{\ell-1}(1)\right)+a_{n+1}$; and
$\left(\mathrm{e}_{\ell}\right) \Phi_{n}^{-1}\left(\gamma_{n}^{\ell}(0)\right)=\Phi_{n}^{-1}\left(\gamma_{n}^{\ell}(1)\right)$ and $\Phi_{n}^{-1}\left(\gamma_{n}^{\ell}\right)$ is a continuous closed curve in Δ_{n}.
Similar to the construction of γ_{n}^{i}, the curve $\gamma_{n}^{i+1}(t):[0,1] \rightarrow \mathbb{C}$ is defined as:
$\left(\mathrm{a}_{i+1}\right)$ For $t \in\left[0, \frac{1}{a_{n+1}}\right]$, define $\gamma_{n}^{i+1}(t):=\chi_{n+1,0} \circ \widetilde{\gamma}_{n+1}^{i}\left(1-a_{n+1} t\right)$;
$\left(\mathrm{b}_{i+1}\right)$ For $t \in\left(\frac{j}{a_{n+1}}, \frac{j+1}{a_{n+1}}\right]$, where $1 \leqslant j \leqslant a_{n+1}-1$, define

$$
\gamma_{n}^{i+1}(t):=\chi_{n+1, j} \circ \gamma_{n+1}^{i}\left(j+1-a_{n+1} t\right)
$$

Lemma 4.3. The map $\gamma_{n}^{i+1}(t):[0,1] \rightarrow \mathbb{C}$ has the following properties:
(a) γ_{n}^{i+1} and $\gamma_{n}^{i+1}+1$ are continuous curves in \mathcal{D}_{n};
(b) $\gamma_{n}^{i+1}(0)=\chi_{n+1,0}\left(\gamma_{n+1}^{i}(1)+1\right)$ and $\gamma_{n}^{i+1}(1)=\chi_{n+1,0}\left(\gamma_{n+1}^{i}(1)\right)+a_{n+1}$;
(c) $\Phi_{n}^{-1}\left(\gamma_{n}^{i+1}(0)\right)=\Phi_{n}^{-1}\left(\gamma_{n}^{i+1}(1)\right)$ and $\Phi_{n}^{-1}\left(\gamma_{n}^{i+1}\right)$ is a continuous closed curve in Δ_{n}.

The proof of Lemma 4.3 is completely similar to that of Lemma 4.2. Moreover, one can define the thickened curve $\widetilde{\gamma}_{n}^{\ell}$ of γ_{n}^{ℓ} with $\ell=i+1$ as in 4.5) similarly.

By the definition of $\widetilde{\gamma}_{n}^{i}$, we have
Lemma 4.4. For each $t_{0} \in[0,1]$, there exist two sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ with $t_{n} \in[0,1]$ and $\left(j_{n}\right)_{n \geqslant 1}$ with $0 \leqslant j_{n} \leqslant a_{n}$, such that for all $n \geqslant 1$ and all $i \in \mathbb{N}$,

$$
\widetilde{\gamma}_{n-1}^{i+1}\left(t_{n-1}\right)=\chi_{n, j_{n}}\left(\widetilde{\gamma}_{n}^{i}\left(t_{n}\right)\right)
$$

4.2. The curves are convergent. Our main goal in this subsection is to prove:

Proposition 4.5. There exists a constant $K>0$ such that for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\sum_{i=0}^{n} \sup _{t \in[0,1]}\left|\gamma_{0}^{i}(t)-\gamma_{0}^{i+1}(t)\right| \leqslant K \tag{4.6}
\end{equation*}
$$

In particular, the sequence of the continuous curves $\left(\gamma_{0}^{n}(t):[0,1] \rightarrow \mathbb{C}\right)_{n \in \mathbb{N}}$ converges uniformly as $n \rightarrow \infty$.

In order to estimate the distance between $\gamma_{0}^{i}(t)$ and $\gamma_{0}^{i+1}(t)$ with $t \in[0,1]$, we will combine the uniform contraction with respect to the hyperbolic metrics and some quantitative estimates (with respect to the Euclidean metric) obtained in $\$ 2.4$. For any hyperbolic domain $X \subset \mathbb{C}$, we use $\rho_{X}(z)|\mathrm{d} z|$ to denote the hyperbolic metric of X. The following lemma appears in Che19, Lemma 5.5] in another form. For completeness we include a proof here.

Lemma 4.6. Let X, Y be two hyperbolic domains in \mathbb{C} satisfying $\operatorname{diam}(\operatorname{Re}(X)) \leqslant$ A^{\prime} and $B_{\delta}(X) \subset Y$, where A^{\prime} and δ are positive constants. Then there exists a number $0<\lambda<1$ depending only on A^{\prime} and δ such that for any $z \in X$,

$$
\rho_{Y}(z) \leqslant \lambda \rho_{X}(z)
$$

Proof. For any fixed $z_{0} \in X$, we consider the holomorphic function

$$
F(z):=z+\frac{\delta\left(z-z_{0}\right)}{z-z_{0}+2 A^{\prime}+\delta}: X \rightarrow \mathbb{C} .
$$

Since $\operatorname{diam}(\operatorname{Re}(X)) \leqslant A^{\prime}$, it follows that $\left|z-z_{0}\right|<\left|z-z_{0}+2 A^{\prime}+\delta\right|$ if $z \in X$. Thus we have $|F(z)-z|<\delta$ and $F(X) \subset Y$ by the assumption. Applying Schwarz-Pick's lemma to $F: X \rightarrow Y$ at $F\left(z_{0}\right)=z_{0}$, we have

$$
\rho_{Y}\left(F\left(z_{0}\right)\right)\left|F^{\prime}\left(z_{0}\right)\right|=\rho_{Y}\left(z_{0}\right)\left(1+\frac{\delta}{2 A^{\prime}+\delta}\right) \leqslant \rho_{X}\left(z_{0}\right)
$$

The proof is finished if we set $\lambda:=\left(2 A^{\prime}+\delta\right) /\left(2 A^{\prime}+2 \delta\right)$.

Let X be a set in \mathbb{C} and $z_{0} \in X$. We use $\operatorname{Comp}_{z_{0}} X$ to denote the connected component of X containing z_{0}. Let \mathcal{D}_{n} be the set defined in (2.9). For $n \in \mathbb{N}$, we define

$$
\mathcal{D}_{n}^{\prime}:=\operatorname{Comp}_{1}\left(\mathcal{D}_{n} \cap\left\{\zeta \in \mathbb{C}:-3<\operatorname{Im} \zeta<h_{n}+2\right\}\right),
$$

where h_{n} is the height defined in (3.3). Note that each \mathcal{D}_{n}^{\prime} is a hyperbolic domain. Let $\rho_{n}(z)|\mathrm{d} z|$ be the hyperbolic metric of \mathcal{D}_{n}^{\prime}. We use len (\cdot) and $\operatorname{len}_{\rho_{n}}(\cdot)$ to denote the length of curves with respect to the Euclidean and the hyperbolic metric $\rho_{n}(z)|\mathrm{d} z|$ respectively.

Lemma 4.7. Let $A^{\prime}>0$ and $\delta>0$ be two constants. Then there exist $A>0$ and $0<\nu<1$ depending only on A^{\prime} and δ such that for any piecewise continuous curve ϑ_{n} in \mathcal{D}_{n}^{\prime} with $\operatorname{len}\left(\vartheta_{n}\right) \leqslant A^{\prime}$ and $B_{\delta}\left(\vartheta_{n}\right) \subset \mathcal{D}_{n}^{\prime}$, we have

$$
\operatorname{len}\left(\chi_{1, j_{1}} \circ \cdots \circ \chi_{n, j_{n}}\left(\vartheta_{n}\right)\right) \leqslant A \cdot \nu^{n}
$$

where $0 \leqslant j_{i} \leqslant a_{i}$ and $1 \leqslant i \leqslant n$.
Proof. Let $1 \leqslant i \leqslant n$ and $0 \leqslant j_{i} \leqslant a_{i}$. Note that we have assumed that $M>D_{3}$ in (3.5). By Lemma 2.11, for $\zeta \in \mathcal{D}_{i}^{\prime}$, we have

$$
\begin{equation*}
\operatorname{Im} \chi_{i, j_{i}}(\zeta) \leqslant \frac{\mathcal{B}\left(\alpha_{i}\right)}{2 \pi}+M+D_{3}+1<\frac{\mathcal{B}\left(\alpha_{i}\right)}{2 \pi}+\frac{M}{\alpha_{i-1}}+1=h_{i-1}+1 . \tag{4.7}
\end{equation*}
$$

Since $\Phi_{i}^{-1}\left(\mathcal{D}_{i}\right)$ is contained in the image of f_{i}, by the definition of near-parabolic renormalization (see also 2.8), we have

$$
\begin{equation*}
\operatorname{Im} \chi_{i, j_{i}}(\zeta)>-2, \text { for all } \zeta \in \mathcal{D}_{i} \tag{4.8}
\end{equation*}
$$

By Lemma 2.14 we have $B_{\delta_{0}}\left(\chi_{i, j_{i}}\left(\mathcal{D}_{i}\right)\right) \subset \mathcal{D}_{i-1}$ for a constant δ_{0} depending only on the class $\mathcal{I S}_{0}$. Without loss of generality, we assume that $\delta_{0}<1$. Combining (4.7) and 4.8, we have

$$
\begin{equation*}
B_{\delta_{0}}\left(\chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right)\right) \subset \mathcal{D}_{i-1}^{\prime} \tag{4.9}
\end{equation*}
$$

Note that $\chi_{i, j_{i}}:\left(\mathcal{D}_{i}^{\prime}, \rho_{i}\right) \rightarrow\left(\mathcal{D}_{i-1}^{\prime}, \rho_{i-1}\right)$ can be decomposed as:

$$
\left(\mathcal{D}_{i}^{\prime}, \rho_{i}\right) \xrightarrow{\chi_{i, j_{i}}}\left(\chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right), \tilde{\rho}_{i}\right) \xrightarrow{\text { inc. }}\left(\mathcal{D}_{i-1}^{\prime}, \rho_{i-1}\right),
$$

where $\tilde{\rho}_{i}(z)|d z|$ is the hyperbolic metric of $\chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right)$. According to Proposition 2.6 , we have $\operatorname{diam}\left(\operatorname{Re} \chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right)\right) \leqslant \boldsymbol{k}_{1}$. By Lemma 4.6. the inclusion map

$$
\left(\chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right), \tilde{\rho}_{i}\right) \stackrel{i n c .}{\longrightarrow}\left(\mathcal{D}_{i-1}^{\prime}, \rho_{i-1}\right)
$$

is uniformly contracting with respect to the hyperbolic metrics (and the contracting factor depends only on \boldsymbol{k}_{1} and $\left.\delta_{0}\right)$. Since $\chi_{i, j_{i}}: \mathcal{D}_{i}^{\prime} \rightarrow \chi_{i, j_{i}}\left(\mathcal{D}_{i}^{\prime}\right)$ do not expand the hyperbolic metric, it follows that $\chi_{i, j_{i}}:\left(\mathcal{D}_{i}^{\prime}, \rho_{i}\right) \rightarrow\left(\mathcal{D}_{i-1}^{\prime}, \rho_{i-1}\right)$ is also uniformly contracting.

Since ϑ_{n} is a piecewise continuous curve satisfying len $\left(\vartheta_{n}\right) \leqslant A^{\prime}$ and $B_{\delta}\left(\vartheta_{n}\right) \subset$ \mathcal{D}_{n}^{\prime}, it follows that there exists a constant $A^{\prime \prime}>0$ depending only on A^{\prime} and δ (not on n) such that $\operatorname{len}_{\rho_{n}}\left(\vartheta_{n}\right) \leqslant A^{\prime \prime}$. Define

$$
G_{n}:=\chi_{1, j_{1}} \circ \cdots \circ \chi_{n, j_{n}}: \mathcal{D}_{n}^{\prime} \rightarrow \mathcal{D}_{0}^{\prime}
$$

By the uniform contraction of $\chi_{i, j_{i}}$ for $1 \leqslant i \leqslant n$ with respect to the hyperbolic metrics, there exists a constant $0<\nu<1$ depending only on \boldsymbol{k}_{1} and δ_{0} such that

$$
\operatorname{len}_{\rho_{0}}\left(G_{n}\left(\vartheta_{n}\right)\right) \leqslant A^{\prime \prime} \cdot \nu^{n}
$$

Since $B_{\delta_{0}}\left(G_{n}\left(\mathcal{D}_{n}^{\prime}\right)\right) \subset \mathcal{D}_{0}^{\prime}$, the Euclidean metric and the hyperbolic metric ρ_{0} of \mathcal{D}_{0}^{\prime} are comparable in $G_{n}\left(\mathcal{D}_{n}^{\prime}\right)$. Since $G_{n}\left(\vartheta_{n}\right) \subset G_{n}\left(\mathcal{D}_{n}^{\prime}\right) \subset \mathcal{D}_{0}^{\prime}$, there exists a constant $A>0$ depending only on A^{\prime} and δ such that $\operatorname{len}\left(G_{n}\left(\vartheta_{n}\right)\right) \leqslant A \cdot \nu^{n}$.

Let $D_{6}^{\prime}>1$ be the constant introduced in Proposition 2.13 .

Lemma 4.8. There exists $K_{1}>0$ such that for any $n \geqslant 1$ and any continuous curve $\eta_{n}:[0,1] \rightarrow \mathcal{D}_{n}$ with $\eta_{n}(0) \in \widetilde{\gamma}_{n}^{0}$ and $\operatorname{len}\left(\eta_{n}\right) \leqslant h_{n}-D_{6}^{\prime}-1$, then

$$
\operatorname{len}\left(\chi_{n, 0}\left(\eta_{n}\right)\right) \leqslant \frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n}\right)+K_{1}
$$

Proof. By Proposition 2.13, we define

$$
\begin{array}{ll}
\phi_{1}(r):=\left(1+D_{6} e^{-2 \pi \alpha_{n} r}\right) \alpha_{n} & \text { if } r \in\left[\frac{1}{4 \alpha_{n}},+\infty\right) \\
\phi_{2}(r):=\frac{\alpha_{n}}{1-e^{-2 \pi \alpha_{n}\left(r-D_{2}^{\prime} \log (2+r)\right)}}\left(1+\frac{D_{6}}{r}\right) & \text { if } r \in\left[D_{6}^{\prime}, \frac{1}{4 \alpha_{n}}\right] .
\end{array}
$$

A direct calculation shows that

$$
\begin{equation*}
J^{\prime}:=\int_{1 /\left(4 \alpha_{n}\right)}^{h_{n}-1} \phi_{1}(r) \mathrm{d} r<\frac{1}{2 \pi} \alpha_{n} \mathcal{B}\left(\alpha_{n+1}\right)+M+D_{6} . \tag{4.10}
\end{equation*}
$$

We claim that there exists $K_{1}^{\prime}>0$ which is independent of α_{n} such that

$$
\begin{equation*}
J^{\prime \prime}:=\int_{D_{6}^{\prime}}^{1 /\left(4 \alpha_{n}\right)} \phi_{2}(r) \mathrm{d} r<\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+K_{1}^{\prime} \tag{4.11}
\end{equation*}
$$

In fact, a direct calculation shows that $J^{\prime \prime}=J_{1}+D_{2}^{\prime} J_{2}+D_{6} J_{3}$, where

$$
\begin{aligned}
& J_{1}=\frac{1}{2 \pi} \int_{D_{6}^{\prime}}^{\frac{1}{4 \alpha_{n}}} \frac{2 \pi \alpha_{n} e^{2 \pi \alpha_{n} r}-2 \pi \alpha_{n} D_{2}^{\prime}(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}-1}}{e^{2 \pi \alpha_{n} r}-(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}}} \mathrm{d} r \\
& J_{2}=\int_{D_{6}^{\prime}}^{\frac{1}{4 \alpha_{n}}} \frac{\alpha_{n}(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}-1}}{e^{2 \pi \alpha_{n} r}-(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}}} \mathrm{d} r, \quad \text { and } \\
& J_{3}=\int_{D_{6}^{\prime}}^{\frac{1}{4 \alpha_{n}}} \frac{\alpha_{n} e^{2 \pi \alpha_{n} r}}{e^{2 \pi \alpha_{n} r}-(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}}} \cdot \frac{1}{r} \mathrm{~d} r .
\end{aligned}
$$

We assume that α_{n} is small such that $2 \pi \alpha_{n} D_{2}^{\prime} \leqslant 1 / 2$ and $2 \pi \alpha_{n} D_{2}^{\prime} \log \left(2+\frac{1}{4 \alpha_{n}}\right) \leqslant$ $1 / 2$. Since $1+t \leqslant e^{t} \leqslant 1+2 t$ for $t \in[0,1]$, if $D_{6}^{\prime} \leqslant r \leqslant \frac{1}{4 \alpha_{n}}$, we have

$$
\begin{align*}
e^{2 \pi \alpha_{n} r}-(r+2)^{2 \pi \alpha_{n} D_{2}^{\prime}} & \geqslant 1+2 \pi \alpha_{n} r-\left(1+4 \pi \alpha_{n} D_{2}^{\prime} \log (r+2)\right) \tag{4.12}\\
& =2 \pi \alpha_{n}\left(r-2 D_{2}^{\prime} \log (r+2)\right),
\end{align*}
$$

where $r-2 D_{2}^{\prime} \log (2+r) \geqslant 4$ if $r \geqslant D_{6}^{\prime}$ (see Proposition 2.13(b)).
By 4.12), there exist $C_{1}, C_{1}^{\prime}>0$ which are independent of α_{n} such that

$$
J_{1} \leqslant C_{1}-\frac{1}{2 \pi} \log \left(e^{2 \pi \alpha_{n} D_{6}^{\prime}}-\left(D_{6}^{\prime}+2\right)^{2 \pi \alpha_{n} D_{2}^{\prime}}\right) \leqslant \frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+C_{1}^{\prime}
$$

For J_{2}, since the integral

$$
\int_{D_{6}^{\prime}}^{+\infty} \frac{1}{r-2 D_{2}^{\prime} \log (2+r)} \cdot \frac{1}{(r+2)^{1 / 2}} \mathrm{~d} r
$$

is convergent, it follows that there exists a constant $C_{2}>0$ which is independent of α_{n} so that $J_{2} \leqslant C_{2}$. Similarly, there exists a constant $C_{3}>1$ which is independent of α_{n} so that $J_{3} \leqslant C_{3}$. Hence 4.11) follows if we set $K_{1}^{\prime}:=C_{1}^{\prime}+C_{2} D_{2}^{\prime}+C_{3} D_{6}$.

Without loss of generality we assume that $r \mapsto r-D_{2}^{\prime} \log (2+r)$ is monotonously increasing on $\left[D_{6}^{\prime},+\infty\right)$. Therefore, $\phi_{1}(r)$ and $\phi_{2}(r)$ are monotonously decreasing on $\left[\frac{1}{4 \alpha_{n}},+\infty\right)$ and $\left[D_{6}^{\prime}, \frac{1}{4 \alpha_{n}}\right]$ respectively. Denote

$$
\phi(r):= \begin{cases}\phi_{1}(r) & \text { if } r \in\left[\frac{1}{4 \alpha_{n}},+\infty\right) \tag{4.13}\\ \max \left\{\phi_{2}(r), \phi_{1}\left(\frac{1}{4 \alpha_{n}}\right)\right\} & \text { if } r \in\left[D_{6}^{\prime}, \frac{1}{4 \alpha_{n}}\right)\end{cases}
$$

Then $\phi(r)$ is monotonously (may not strictly) decreasing on $\left[D_{6}^{\prime},+\infty\right)$. By Lemma 4.1(d), we have $\left|\operatorname{Im} \eta_{n}(0)-h_{n}\right| \leqslant 1$. Since len $\left(\eta_{n}\right) \leqslant h_{n}-D_{6}^{\prime}-1$, we have $\eta_{n} \cap\left(\mathbb{D}\left(0, D_{6}^{\prime}\right) \cup \mathbb{D}\left(1 / \alpha_{n}, D_{6}^{\prime}\right)\right)=\emptyset$. By 4.10 and 4.11 we have

$$
\begin{align*}
\operatorname{len}\left(\chi_{n, 0}\left(\eta_{n}\right)\right) & \leq \int_{D_{6}^{\prime}}^{h_{n}-1} \phi(r) \mathrm{d} r \leqslant J^{\prime}+\left(J^{\prime \prime}+\left(\frac{1}{4 \alpha_{n}}-D_{6}^{\prime}\right) \phi_{1}\left(\frac{1}{4 \alpha_{n}}\right)\right) \tag{4.14}\\
& <J^{\prime}+J^{\prime \prime}+\frac{1}{4}\left(D_{6}+1\right)<\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n}\right)+K_{1}
\end{align*}
$$

where $K_{1}:=M+\frac{3}{2} D_{6}+K_{1}^{\prime}$. The proof is complete.
Proof of Proposition 4.5. Note that $\gamma_{0}^{n}(t)=\widetilde{\gamma}_{0}^{n}\left(\frac{a_{1}-1}{a_{1}} t\right)$ for all $t \in[0,1]$ and all $n \in \mathbb{N}$. In order to prove (4.6), it suffices to prove that there exist $K>0$ and a sequence of non-negative numbers $\left(y_{i}\right)_{i \geqslant 0}$ such that for any $n \in \mathbb{N}$, any $0 \leqslant i \leqslant n$ and any $t_{0} \in[0,1]$, we have

$$
\begin{equation*}
\left|\widetilde{\gamma}_{0}^{i}\left(t_{0}\right)-\widetilde{\gamma}_{0}^{i+1}\left(t_{0}\right)\right| \leqslant y_{i} \quad \text { and } \quad \sum_{i=0}^{n} y_{i} \leqslant K \tag{4.15}
\end{equation*}
$$

We divide the argument into several steps.
Step 1. Basic settings. For any $t_{0} \in[0,1]$, by Lemma 4.4 , there exist two sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ with $t_{n} \in[0,1]$ and $\left(j_{n}\right)_{n \geqslant 1}$ with $0 \leqslant j_{n} \leqslant a_{n}$ such that for all $n \geqslant 1$ and all $i \in \mathbb{N}$,

$$
\begin{equation*}
\widetilde{\gamma}_{n-1}^{i+1}\left(t_{n-1}\right)=\chi_{n, j_{n}}\left(\widetilde{\gamma}_{n}^{i}\left(t_{n}\right)\right) \tag{4.16}
\end{equation*}
$$

For $n \in \mathbb{N}$, let

$$
\xi_{n}^{0}:[0,1] \rightarrow\left[\widetilde{\gamma}_{n}^{0}\left(t_{n}\right), \widetilde{\gamma}_{n}^{1}\left(t_{n}\right)\right]
$$

be the segment with $\xi_{n}^{0}(0)=\widetilde{\gamma}_{n}^{0}\left(t_{n}\right)$ and $\xi_{n}^{0}(1)=\widetilde{\gamma}_{n}^{1}\left(t_{n}\right)$ (we assume that the parametrization of ξ_{n}^{0} on $[0,1]$ is linear).

By the definition of \mathcal{D}_{n}^{\prime} and Lemma 2.7. the set \mathcal{D}_{n}^{\prime} contains

$$
\left\{\zeta \in \mathbb{C}: 0<\operatorname{Re} \zeta \leqslant\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}+\overline{\boldsymbol{k}_{0}}+\boldsymbol{k}_{1}+3 \text { and } 0 \leqslant \operatorname{Im} \zeta<h_{n}+2\right\} .
$$

By Lemma 3.4 (a)(c), 4.1) and Lemma 4.1(d), we have

$$
\widetilde{\gamma}_{n}^{0} \subset\left\{\zeta \in \mathbb{C}: \frac{1}{2} \leqslant \operatorname{Re} \zeta \leqslant\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k +} k_{n}+\frac{3}{2} \text { and }-1 \leqslant \operatorname{Im} \zeta-h_{n} \leqslant 1\right\} .
$$

In (3.5) we assume that $M>D_{3}+\frac{1}{2 \pi} \log \frac{4 D_{7}}{27}+2>D_{3}+\frac{3}{2}$ (since $D_{7}>1$). Hence by (4.2) and Lemma 4.2 (d), we have

$$
\begin{equation*}
\widetilde{\gamma}_{n}^{1} \subset\left\{\zeta \in \mathbb{C}: 1 \leqslant \operatorname{Re} \zeta \leqslant\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor+\boldsymbol{k}_{1}+3 \text { and } 1 \leqslant \operatorname{Im} \zeta \leqslant h_{n}+1\right\} . \tag{4.17}
\end{equation*}
$$

Note that $k_{n} \leqslant \boldsymbol{k}_{0}$ (see Proposition 2.3). Hence we have $B_{1 / 2}\left(\xi_{n}^{0}\right) \subset \mathcal{D}_{n}^{\prime}$ for all $n \in \mathbb{N}$. For $\ell \geqslant 1$, we define the Jordan $\operatorname{arc} \xi_{n}^{\ell}:[0,1] \rightarrow \mathbb{C}$ as

$$
\begin{equation*}
\xi_{n}^{\ell}(s):=\chi_{n+1, j_{n+1}} \circ \cdots \circ \chi_{n+\ell, j_{n+\ell}}\left(\xi_{n+\ell}^{0}(s)\right), \text { where } s \in[0,1] . \tag{4.18}
\end{equation*}
$$

By 4.16) and 4.18, the following curve is continuous:

$$
\begin{aligned}
\eta_{n}^{\ell}:=\xi_{n}^{0} \cup \xi_{n}^{1} \cup \cdots \cup \xi_{n}^{\ell} & =\xi_{n}^{0} \cup \chi_{n+1, j_{n+1}}\left(\eta_{n+1}^{\ell-1}\right) \\
& =\xi_{n}^{0} \cup \chi_{n+1, j_{n+1}}\left(\xi_{n+1}^{0} \cup \cdots \cup \xi_{n+1}^{\ell-1}\right)
\end{aligned}
$$

Denote $\eta_{n}^{0}:=\xi_{n}^{0}$. According to 4.9), for any $n \geqslant 0$ and $\ell \geq 0$ we have

$$
B_{\delta}\left(\eta_{n}^{\ell}\right) \subset \mathcal{D}_{n}^{\prime}, \quad \text { where } \quad \delta:=\min \left\{\delta_{0}, 1 / 4\right\}
$$

We give a parametrization of the continuous curve $\eta_{n}^{\ell}:[0,1] \rightarrow \mathbb{C}$ by

$$
\eta_{n}^{\ell}(s):=\xi_{n}^{j}((\ell+1) s-j)
$$

where $s \in\left[\frac{j}{\ell+1}, \frac{j+1}{\ell+1}\right]$ and $0 \leqslant j \leqslant \ell$ (note that $\xi_{n}^{j}(1)=\xi_{n}^{j+1}(0)$ for every $0 \leqslant j \leqslant$ $\ell-1)$. By definition, we have $\left|\widetilde{\gamma}_{0}^{i}\left(t_{0}\right)-\widetilde{\gamma}_{0}^{i+1}\left(t_{0}\right)\right| \leqslant \operatorname{len}\left(\xi_{0}^{i}\right)$ for all $i \in \mathbb{N}$. Therefore, in
order to obtain 4.15, it suffices to prove that there exist $K>0$ and non-negative numbers $\left(y_{i}\right)_{i \geqslant 0}$ such that for any $n \in \mathbb{N}$ and any $0 \leqslant i \leqslant n$, we have

$$
\begin{equation*}
\operatorname{len}\left(\xi_{0}^{i}\right) \leqslant y_{i} \quad \text { and } \quad \sum_{i=0}^{n} y_{i} \leqslant K \tag{4.19}
\end{equation*}
$$

Step 2. Decompositions of the curves. Note that we have assumed that $M>D_{3}+\frac{3}{2}$ (see (3.5)). By 4.5), it follows that Lemma 4.2 (d) holds also for $\widetilde{\gamma}_{n}^{0}$ and $\widetilde{\gamma}_{n}^{1}$. By Lemma 4.1 (d) and a direct calculation, we have

$$
\begin{align*}
& \operatorname{len}\left(\eta_{n}^{0}\right)=\operatorname{len}\left(\xi_{n}^{0}\right)=\left|\widetilde{\gamma}_{n}^{0}\left(t_{n}\right)-\widetilde{\gamma}_{n}^{1}\left(t_{n}\right)\right| \\
\leqslant & h_{n}+1-\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}-M+D_{3}+\frac{1}{2}+D_{8}<h_{n}-\frac{\mathcal{B}\left(\alpha_{n+1}\right)}{2 \pi}+D_{8} . \tag{4.20}
\end{align*}
$$

Hence $\eta_{n}^{0}=\xi_{n}^{0}:[0,1] \rightarrow \mathbb{C}$ can be written as the union of two continuous curves $\eta_{n,(0)}^{0}:=\eta_{n}^{0}\left(\left[0, s_{n}\right]\right)$ and $\eta_{n,(1)}^{0}:=\eta_{n}^{0}\left(\left[s_{n}, 1\right]\right)$ for some $s_{n} \in(0,1)$ (the choice of s_{n} is not unique), such that

$$
\begin{equation*}
\operatorname{len}\left(\eta_{n,(0)}^{0}\right) \leqslant h_{n}-D_{6}^{\prime}-1 \quad \text { and } \quad \operatorname{len}\left(\eta_{n,(1)}^{0}\right) \leqslant D_{6}^{\prime}+D_{8}+1 \tag{4.21}
\end{equation*}
$$

Since $B_{\delta}\left(\eta_{n}^{0}\right) \subset \mathcal{D}_{n}^{\prime}$, there exists a constant $K_{2}^{\prime}>0$ depending only on δ and $D_{6}^{\prime}+D_{8}+1$ such that

$$
\begin{equation*}
\operatorname{len}_{\rho_{n}}\left(\eta_{n,(1)}^{0}\right) \leqslant K_{2}^{\prime} \tag{4.22}
\end{equation*}
$$

where $\rho_{n}(z)|d z|$ is the hyperbolic metric of \mathcal{D}_{n}^{\prime}.
Let $K_{1}>0$ be the constant introduced in Lemma 4.8. There exists a constant $K_{2}>K_{2}^{\prime}$ depending only on $A^{\prime}:=K_{1}+D_{6}^{\prime}+D_{8}+1$ and δ, such that for any $n \in \mathbb{N}$ and any piecewise continuous curve ξ^{\prime} in \mathcal{D}_{n}^{\prime} with $B_{\delta}\left(\xi^{\prime}\right) \subset \mathcal{D}_{n}^{\prime}$ and len $\left(\xi^{\prime}\right) \leqslant$ $K_{1}+D_{6}^{\prime}+D_{8}+1$, one has

$$
\begin{equation*}
\operatorname{len}_{\rho_{n}}\left(\xi^{\prime}\right) \leqslant K_{2} \tag{4.23}
\end{equation*}
$$

Let $\nu \in(0,1)$ be the number in Lemma 4.7 depending only on A^{\prime} and δ.
Suppose $n \geqslant 1$. By Lemma 4.8 and (4.21), Lemma 4.7 and 4.22), ξ_{n-1}^{1} is the union of two continuous curves $\chi_{n, j_{n}}\left(\eta_{n,(0)}^{0}\right)$ and $\chi_{n, j_{n}}\left(\eta_{n,(1)}^{0}\right)$, where

$$
\begin{align*}
\operatorname{len}\left(\chi_{n, j_{n}}\left(\eta_{n,(0)}^{0}\right)\right) & \leqslant \frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n}\right)+K_{1} \quad \text { and } \\
\operatorname{len}_{\rho_{n-1}}\left(\chi_{n, j_{n}}\left(\eta_{n,(1)}^{0}\right)\right) & \leqslant K_{2}^{\prime} \nu<K_{2} \nu . \tag{4.24}
\end{align*}
$$

Therefore, by 4.20 we have

$$
\begin{align*}
& \operatorname{len}\left(\xi_{n-1}^{0} \cup \chi_{n, j_{n}}\left(\eta_{n,(0)}^{0}\right)\right) \\
\leqslant & \left(h_{n-1}-\frac{\mathcal{B}\left(\alpha_{n}\right)}{2 \pi}+D_{8}\right)+\left(\frac{\mathcal{B}\left(\alpha_{n}\right)}{2 \pi}+K_{1}\right)=h_{n-1}+D_{8}+K_{1} . \tag{4.25}
\end{align*}
$$

This implies that $\xi_{n-1}^{0} \cup \chi_{n, j_{n}}\left(\eta_{n,(0)}^{0}\right)=\xi_{n-1}^{0} \cup \xi_{n-1}^{1}\left(\left[0, s_{n}\right]\right)=\eta_{n-1}^{1}\left(\left[0, \frac{1+s_{n}}{2}\right]\right)$ can be written as the union of two continuous curves $\eta_{n-1,(0)}^{1}:=\eta_{n-1}^{1}\left(\left[0, s_{n-1}\right]\right)$ and $\eta_{n-1,(1)}^{1}:=\eta_{n-1}^{1}\left(\left[s_{n-1}, \frac{1+s_{n}}{2}\right]\right)$ for some $s_{n-1} \in\left(0, \frac{1+s_{n}}{2}\right)$, where

$$
\begin{align*}
& \operatorname{len}\left(\eta_{n-1,(0)}^{1}\right) \leqslant h_{n-1}-D_{6}^{\prime}-1 \quad \text { and } \\
& \operatorname{len}\left(\eta_{n-1,(1)}^{1}\right) \leqslant A^{\prime}=K_{1}+D_{6}^{\prime}+D_{8}+1 \tag{4.26}
\end{align*}
$$

Since $B_{\delta}\left(\eta_{n-1}^{1}\right) \subset \mathcal{D}_{n-1}^{\prime}$, by 4.23 we have $\operatorname{len}_{\rho_{n-1}}\left(\eta_{n-1,(1)}^{1}\right) \leqslant K_{2}$.
Denote $\eta_{n-1,(2)}^{1}:=\eta_{n-1}^{1}\left(\left[\frac{1+s_{n}}{2}, 1\right]\right)=\chi_{n, j_{n}}\left(\eta_{n,(1)}^{0}\right), s_{n-1}^{(1)}:=s_{n-1}$ and $s_{n-1}^{(2)}:=$ $\frac{1+s_{n}}{2}$. Then the continuous curve

$$
\eta_{n-1}^{1}=\xi_{n-1}^{0} \cup \xi_{n-1}^{1}=\eta_{n-1,(0)}^{1} \cup \eta_{n-1,(1)}^{1} \cup \eta_{n-1,(2)}^{1}
$$

satisfies:

- $\eta_{n-1,(0)}^{1}=\eta_{n-1}^{1}\left(\left[0, s_{n-1}^{(1)}\right]\right), \eta_{n-1,(1)}^{1}=\eta_{n-1}^{1}\left(\left[s_{n-1}^{(1)}, s_{n-1}^{(2)}\right]\right)$ and $\eta_{n-1,(2)}^{1}=$ $\eta_{n-1}^{1}\left(\left[s_{n-1}^{(2)}, 1\right]\right) ;$ and
- $\operatorname{len}\left(\eta_{n-1,(0)}^{1}\right) \leqslant h_{n-1}-D_{6}^{\prime}-1, \operatorname{len}_{\rho_{n-1}}\left(\eta_{n-1,(1)}^{1}\right) \leqslant K_{2}$ and $\operatorname{len}_{\rho_{n-1}}\left(\eta_{n-1,(2)}^{1}\right) \leqslant$ $K_{2} \nu$.
Step 3. Inductive procedure. Suppose there exists $1 \leqslant i \leqslant n-1$ such that $\eta_{n-i}^{i}=\bigcup_{\ell=0}^{i} \xi_{n-i}^{\ell}=\bigcup_{k=0}^{i+1} \eta_{n-i,(k)}^{i}$ with $B_{\delta}\left(\eta_{n-i}^{i}\right) \subset \mathcal{D}_{n-i}^{\prime}$ has the following properties:
- $\eta_{n-i,(k)}^{i}=\eta_{n-i}^{i}\left(\left[s_{n-i}^{(k)}, s_{n-i}^{(k+1)}\right]\right)$ for some $0=s_{n-i}^{(0)}<s_{n-i}^{(1)}<\cdots<s_{n-i}^{(i+1)}<$ $s_{n-i}^{(i+2)}=1$, where $0 \leqslant k \leqslant i+1$; and
- len $\left(\eta_{n-i,(0)}^{i}\right) \leqslant h_{n-i}-D_{6}^{\prime}-1$ and $\operatorname{len}_{\rho_{n-i}}\left(\eta_{n-i,(k)}^{i}\right) \leqslant K_{2} \nu^{k-1}$ for every $1 \leqslant k \leqslant i+1$.
By a similar argument to (4.24, 4.25) and 4.26, there exist $0=s_{n-i-1}^{(0)}<$ $s_{n-i-1}^{(1)}<\cdots<s_{n-i-1}^{(i+2)}<s_{n-i-1}^{(i+3)}=1$ such that the continuous curve $\eta_{n-i-1}^{i+1}=$ $\bigcup_{\ell=0}^{i+1} \xi_{n-i-1}^{\ell}=\bigcup_{k=0}^{i+2} \eta_{n-i-1,(k)}^{i+1}$ with $B_{\delta}\left(\eta_{n-i-1}^{i+1}\right) \subset \mathcal{D}_{n-i-1}^{\prime}$ has the following properties:
- $\eta_{n-i-1,(k)}^{i+1}=\eta_{n-i-1}^{i+1}\left(\left[s_{n-i-1}^{(k)}, s_{n-i-1}^{(k+1)}\right]\right)$, where $0 \leqslant k \leqslant i+2$; and
- len $\left(\eta_{n-i-1,(0)}^{i+1}\right) \leqslant h_{n-i-1}-D_{6}^{\prime}-1$ and $\operatorname{len}_{\rho_{n-i-1}}\left(\eta_{n-i-1,(k)}^{i+1}\right) \leqslant K_{2} \nu^{k-1}$ for every $1 \leqslant k \leqslant i+2$.
Inductively (as i increases), there exist $0=s_{0}^{(0)}<s_{0}^{(1)}<\cdots<s_{0}^{(n+1)}<s_{0}^{(n+2)}=$ 1 such that the continuous curve $\eta_{0}^{n}=\bigcup_{\ell=0}^{n} \xi_{0}^{\ell}=\bigcup_{k=0}^{n+1} \eta_{0,(k)}^{n}$ with $B_{\delta}\left(\eta_{0}^{n}\right) \subset \mathcal{D}_{0}^{\prime}$ has the following properties:
- $\eta_{0,(k)}^{n}=\eta_{0}^{n}\left(\left[s_{0}^{(k)}, s_{0}^{(k+1)}\right]\right)$, where $0 \leqslant k \leqslant n+1$; and
- len $\left(\eta_{0,(0)}^{n}\right) \leqslant h_{0}-D_{6}^{\prime}-1$ and $\operatorname{len}_{\rho_{0}}\left(\eta_{0,(k)}^{n}\right) \leqslant K_{2} \nu^{k-1}$ for every $1 \leqslant k \leqslant n+1$.

Step 4. The conclusion. Since $B_{\delta}\left(\eta_{0}^{n}\right) \subset \mathcal{D}_{0}^{\prime}$, the Euclidean metric and the hyperbolic metric ρ_{0} of \mathcal{D}_{0}^{\prime} are comparable in a small neighborhood of η_{0}^{n}. Hence there exists a constant $C>0$ depending only on δ such that

$$
\sum_{k=1}^{n+1} \operatorname{len}\left(\eta_{0,(k)}^{n}\right) \leqslant C \sum_{k=1}^{n+1} \operatorname{len}_{\rho_{0}}\left(\eta_{0,(k)}^{n}\right) \leqslant \frac{C K_{2}}{1-\nu}
$$

Therefore, for all $n \geqslant 0$ we have

$$
\operatorname{len}\left(\eta_{0}^{n}\right)=\sum_{i=0}^{n} \operatorname{len}\left(\xi_{0}^{i}\right)=\sum_{k=0}^{n+1} \operatorname{len}\left(\eta_{0,(k)}^{n}\right) \leqslant K:=h_{0}-D_{6}^{\prime}-1+\frac{C K_{2}}{1-\nu}
$$

By (4.13), 4.14 and the similar estimates to (4.24) and 4.25 in the above inductive procedure, it follows that for any $n \geqslant 0$, there exists a sequence of nonnegative numbers $\left\{y_{i}^{(n)}: 0 \leqslant i \leqslant n\right\}$ which is independent of the sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ such that for any $0 \leqslant i \leqslant n$, we have

$$
\operatorname{len}\left(\xi_{0}^{i}\right) \leqslant y_{i}^{(n)} \quad \text { and } \quad \sum_{i=0}^{n} y_{i}^{(n)} \leqslant K
$$

Then 4.19) holds if we set $y_{i}:=\inf _{n \in \mathbb{N}}\left\{y_{i}^{(n)}\right\}$.
The estimate 4.6 implies that the sequence of continuous curves $\left(\widetilde{\gamma}_{n}(t)\right)_{n \in \mathbb{N}}$ converges uniformly on $[0,1]$. Since $\gamma_{0}^{n}(t)=\widetilde{\gamma}_{0}^{n}\left(\frac{a_{1}-1}{a_{1}} t\right)$ for all $t \in[0,1]$ and $n \in \mathbb{N}$, it implies that $\left(\gamma_{0}^{n}(t)\right)_{n \in \mathbb{N}}$ converges uniformly on $[0,1]$.

Remark. If α is of bounded type, or if there exists a universal constant $C>0$ such that $\mathcal{B}\left(\alpha_{n+1}\right) \geqslant C / \alpha_{n}$ for all $n \in \mathbb{N}$, then the sequence $\left(\gamma_{0}^{n}(t)\right)_{n \in \mathbb{N}}$ converges exponentially fast as $n \rightarrow \infty$.
4.3. The Siegel disks are Jordan domains. By Proposition 4.5, the sequence of the continuous curves $\left(\gamma_{0}^{n}(t)\right)_{n \geqslant 0}$ has a limit:

$$
\gamma_{0}^{\infty}(t):=\lim _{n \rightarrow \infty} \gamma_{0}^{n}(t), \quad \text { where } t \in[0,1] .
$$

Proposition 4.9. The limit $\Phi_{0}^{-1}\left(\gamma_{0}^{\infty}\right)$ is the boundary of the Siegel disk of f_{0}.
Proof. For $\zeta_{0} \in \gamma_{0}^{n+1}$, there exists $\zeta_{n} \in \widetilde{\gamma}_{n}^{1} \subset \bigcup_{j_{n+1}=0}^{a_{n+1}} \chi_{n+1, j_{n+1}}\left(\widetilde{\gamma}_{n+1}^{0}\right)$ such that

$$
\zeta_{0}=\chi_{1, j_{1}} \circ \cdots \circ \chi_{n, j_{n}}\left(\zeta_{n}\right)
$$

for some sequence $\left(j_{1}, \cdots, j_{n}\right)$, where $0 \leqslant j_{i} \leqslant a_{i}$ and $1 \leqslant i \leqslant n$. By Lemma 4.2 (d) and 2.8), we have

$$
\begin{equation*}
\left|\operatorname{Im} \zeta_{n}-\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n+1}\right)-M\right| \leqslant D_{3}+\frac{1}{2} \quad \text { and } \quad 1 \leqslant \operatorname{Re} \zeta_{n} \leqslant a_{n+1}+\boldsymbol{k}_{1}+2 \tag{4.27}
\end{equation*}
$$

By Proposition 2.16(b), each Siegel disk Δ_{n} is compactly contained in the domain of definition of f_{n}. For each $n \in \mathbb{N}, \Phi_{n}^{-1}$ is defined in \mathcal{D}_{n} (see Lemma 2.5). We denote

$$
\Delta_{n}^{\prime}:=\left\{\zeta \in \mathcal{D}_{n}: \Phi_{n}^{-1}(\zeta) \in \Delta_{n}\right\}
$$

By the definition of \mathcal{D}_{n}, we have $\Phi_{n}^{-1}\left(\Delta_{n}^{\prime}\right)=\Delta_{n}$ and $\operatorname{Exp}\left(\Delta_{n}^{\prime}\right)=\Delta_{n+1}$. By Lemma 3.2 the inner radius of the Siegel disk of f_{n+1} is $c_{n+1} e^{-\mathcal{B}\left(\alpha_{n+1}\right)}$, where $c_{n+1} \in\left[D_{7}^{-1}, D_{7}\right]$ and $D_{7}>1$ is a universal constant. According to the definition of near-parabolic renormalization $f_{n+1}=\mathcal{R} f_{n}$, there exists a point $\zeta_{n}^{\prime} \in \partial \Delta_{n}^{\prime} \cap$ $\operatorname{Exp}^{-1}\left(\partial \Delta_{n+1}\right)$ such that

$$
\begin{equation*}
\left|\operatorname{Re}\left(\zeta_{n}-\zeta_{n}^{\prime}\right)\right| \leqslant \frac{1}{2} \quad \text { and } \quad \operatorname{Im} \zeta_{n}^{\prime}=\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n+1}\right)-\frac{1}{2 \pi} \log \frac{27 c_{n+1}}{4} \tag{4.28}
\end{equation*}
$$

Let $\left[\zeta_{n}, \zeta_{n}^{\prime}\right]$ be the closed segment connecting ζ_{n} with ζ_{n}^{\prime}. By (4.4), we have $\left[\zeta_{n}, \zeta_{n}^{\prime}\right) \subset \Delta_{n}^{\prime}$. By Lemma 2.7, Lemma 2.14 and (4.17), we have $B_{\delta}\left(\left[\zeta_{n}, \zeta_{n}^{\prime}\right]\right) \subset \mathcal{D}_{n}^{\prime}$ for $\delta=\min \left\{\delta_{0}, 1 / 4\right\}$. Combining 4.27$)$ and 4.28 , there exists a constant $A^{\prime}>0$ which is independent of n so that $\left|\zeta_{n}^{\prime}-\zeta_{n}\right| \leqslant A^{\prime}$. According to Lemma 4.7, there exist two constants $A>0$ and $0<\nu<1$ which are independent of n such that

$$
\operatorname{len}\left(\chi_{1, j_{1}} \circ \cdots \circ \chi_{n, j_{n}}\left(\left[\zeta_{n}, \zeta_{n}^{\prime}\right]\right)\right) \leqslant A \cdot \nu^{n}
$$

where $0 \leqslant j_{i} \leqslant a_{i}$ and $1 \leqslant i \leqslant n$. Denote $\zeta_{0}^{\prime}:=\chi_{1, j_{1}} \circ \cdots \circ \chi_{n, j_{n}}\left(\zeta_{n}^{\prime}\right)$. Then $\left|\zeta_{0}-\zeta_{0}^{\prime}\right| \leqslant A \cdot \nu^{n}$. Since $\zeta_{0}^{\prime} \in \partial \Delta_{0}^{\prime}$, it implies that

$$
\begin{equation*}
\operatorname{dist}\left(\zeta_{0}, \partial \Delta_{0}^{\prime}\right) \leqslant A \cdot \nu^{n} \tag{4.29}
\end{equation*}
$$

For any $t_{0} \in[0,1]$ and $n \geqslant 1$, we choose $\zeta_{0}=\zeta_{0}^{(n)}:=\gamma_{0}^{n+1}\left(t_{0}\right)$. By (4.29) we have $\gamma_{0}^{\infty}\left(t_{0}\right) \in \partial \Delta_{0}^{\prime}$. By the arbitrariness of $t_{0} \in[0,1]$, it follows that $\gamma_{0}^{\infty} \subset \partial \Delta_{0}^{\prime}$. Therefore we have $\Phi_{0}^{-1}\left(\gamma_{0}^{\infty}\right) \subset \partial \Delta_{0}$.

By Lemma 4.3(c), $\Phi_{0}^{-1}\left(\gamma_{0}^{n}\right)$ is a continuous closed curve for all $n \geqslant 0$. Since $\gamma_{0}^{n}(t)$ converges uniformly to the limit $\gamma_{0}^{\infty}(t)$ on $[0,1]$ as $n \rightarrow \infty$, it follows that $\Phi_{0}^{-1}\left(\gamma_{0}^{\infty}\right)$ is a continuous closed curve which separates Δ_{0} from each component of $U_{0} \backslash \bar{\Delta}_{0}$, where U_{0} is the domain of definition of f_{0}. In particular, we have $\Phi_{0}^{-1}\left(\gamma_{0}^{\infty}\right)=\partial \Delta_{0}$.

Proof of the the first part of the Main Theorem. Suppose $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$, where $\alpha \in \mathcal{B}_{N}$ with N sufficiently large. By Proposition 4.9, the boundary of the Siegel disk $\partial \Delta_{0}=\Phi_{0}^{-1}\left(\gamma_{0}^{\infty}\right)$ of f_{0} is connected and locally connected. On the other hand, the Siegel disk Δ_{0} is compactly contained in the domain of definition of f_{0} by Proposition 2.16(b). By the definition of Δ_{0}, there exists a conformal map
$\phi: \mathbb{D} \rightarrow \Delta_{0}$ so that $f_{0} \circ \phi(w)=\phi\left(e^{2 \pi \mathrm{i} \alpha} w\right)$. According to Carathéodory, the map ϕ can be extended continuously to $\phi: \overline{\mathbb{D}} \rightarrow \bar{\Delta}_{0}$.

For each $\theta \in[0,2 \pi)$, let $\gamma_{\theta}:=\left\{\phi\left(r e^{\mathrm{i} \theta}\right): 0 \leqslant r \leqslant 1\right\}$ be the internal ray of Δ_{0}. Suppose there are two different rays $\gamma_{\theta_{1}}$ and $\gamma_{\theta_{2}}$ landing at a common point on $\partial \Delta_{0}$, i.e., $\phi\left(e^{\mathrm{i} \theta_{1}}\right)=\phi\left(e^{\mathrm{i} \theta_{2}}\right)$. Then $\gamma_{\theta_{1}} \cup \gamma_{\theta_{2}}$ is a Jordan curve contained in $\bar{\Delta}_{0}$. By the maximum modulus principle, $\left\{f_{0}^{\circ n}\right\}_{n \in \mathbb{N}}$ forms a normal family in the bounded domain $D_{\theta_{1}, \theta_{2}}$ which is bounded by $\gamma_{\theta_{1}} \cup \gamma_{\theta_{2}}$. This implies that $D_{\theta_{1}, \theta_{2}}$ is contained in the Fatou set and hence contained in Δ_{0}. However, by Riesz brothers' theorem, ϕ must be a constant. This is a contradiction and each point in $\partial \Delta_{0}$ is the landing point of exactly one internal ray. Hence $\partial \Delta_{0}$ is a Jordan curve.

5. A Jordan arc and a new class of irrationals

In this section, we first define a Jordan arc Γ connecting the origin with the critical value cv $=-4 / 27$ in the domain of definition of $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathrm{HT}_{N}$. In particular, this arc is contained in \mathcal{P}_{f}. Then we define a new class of irrational numbers based on the mapping relations between the different levels of the renormalization.
5.1. A Jordan arc corresponding to $\alpha \in \mathbf{H T}_{N}$. Let $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \mathrm{HT}_{N}$, where $N \geqslant 1 / \varepsilon_{4}$ is assumed in 2.5 . We define a half-infinite strip

$$
\begin{equation*}
\mathcal{\mho}:=\{\zeta \in \mathbb{C}: 1 / 4<\operatorname{Re} \zeta<7 / 4 \text { and } \operatorname{Im} \zeta>-2\} \tag{5.1}
\end{equation*}
$$

and a topological triangle

$$
\mathcal{Q}_{f}:=\left\{z \in \mathcal{P}_{f}: \Phi_{f}(z) \in \mho\right\}
$$

Lemma 5.1. There exists $\varepsilon_{4}^{\prime} \in\left(0, \varepsilon_{4}\right]$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha}$ with $\alpha \in\left(0, \varepsilon_{4}^{\prime}\right]$,

$$
\begin{equation*}
\overline{\mathcal{Q}}_{f} \backslash\{0\} \subset \mathbb{D}\left(0, \frac{4}{27} e^{3 \pi}\right) \backslash\left[0, \frac{4}{27} e^{3 \pi}\right) \tag{5.2}
\end{equation*}
$$

We postpone the proof of Lemma 5.1 to Appendix A. The inclusion relation 5.2. is proved for the maps in $\mathcal{I} \mathcal{S}_{0}$ first and then a continuity argument is used.

For $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ with $\alpha \in \operatorname{HT}_{N}$, let $f_{n}:=\mathcal{R} f_{n-1}$ be the maps defined by the renormalization operator inductively, where $n \geqslant 1$. In the following, we always assume that $N \geqslant 1 / \varepsilon_{4}^{\prime}$ and denote $\mathcal{Q}_{n}:=\mathcal{Q}_{f_{n}}$. For $X \subset \mathbb{C}$ and $\delta>0$, we denote $B_{\delta}(X):=\bigcup_{z \in X} \mathbb{D}(z, \delta)$.
Corollary 5.2. For each $n \geqslant 1$, there exists a unique anti-holomorphic inverse branch of the modified exponential map $\mathbb{E x p}$:

$$
\mathbb{L o g}: \mathcal{Q}_{n} \rightarrow \Phi_{n-1}\left(\mathcal{Q}_{n-1}\right)=\mathcal{V}
$$

such that $\mathbb{L o g}\left(-\frac{4}{27}\right)=1$. Moreover, $B_{1 / 4}\left(\mathbb{L o g}\left(\overline{\mathcal{Q}}_{n} \backslash\{0\}\right)\right) \subset \mho$ and $\Phi_{n-1}^{-1} \circ \mathbb{L o g}$: $\overline{\mathcal{Q}}_{n} \backslash\{0\} \rightarrow \mathcal{Q}_{n-1}$ is well defined.
Proof. Since $\mathbb{E x p}$ takes the value $-4 / 27$ at each integer, it follows that $\mathbb{E x p}$ has an inverse branch $\mathbb{L o g}$ defined on $\overline{\mathcal{Q}}_{n} \backslash\{0\}$ such that $\mathbb{L o g}(-4 / 27)=1$ since $\overline{\mathcal{Q}}_{n} \backslash\{0\}$ is simply connected and avoids the origin. By Lemma 5.1, we have $\operatorname{Re} \log \left(\overline{\mathcal{Q}}_{n} \backslash\right.$ $\{0\}) \subset(1 / 2,3 / 2)$ and $\operatorname{Im} \mathbb{L} o g\left(\overline{\mathcal{Q}}_{n} \backslash\{0\}\right)>-3 / 2$. Therefore, $B_{1 / 4}\left(\mathbb{L o g}\left(\overline{\mathcal{Q}}_{n} \backslash\{0\}\right)\right)$ is contained in \mho and $\Phi_{n-1}^{-1} \circ \mathbb{L o g}: \overline{\mathcal{Q}}_{n} \backslash\{0\} \rightarrow \mathcal{Q}_{n-1}$ is well defined.

Define a half-infinite strip

$$
\begin{equation*}
\mho^{\prime}:=\{\zeta \in \mathbb{C}: 1 / 2<\operatorname{Re} \zeta<3 / 2 \text { and } \operatorname{Im} \zeta>-7 / 4\} \subset \mho \tag{5.3}
\end{equation*}
$$

and a topological triangle for every $n \geqslant 0$:

$$
\mathcal{Q}_{n}^{\prime}:=\left\{z \in \mathcal{P}_{n}: \Phi_{n}(z) \in \mho^{\prime}\right\}
$$

Definition (see Figure 7). Let $K_{0}:=\mathcal{Q}_{0}^{\prime}$. For each $n \geqslant 1$, define

$$
K_{n}:=\Phi_{0}^{-1} \circ \mathbb{L} \circ \mathrm{~g} \circ \cdots \circ \Phi_{n-1}^{-1} \circ \mathbb{L} \circ \mathrm{~g}\left(\mathcal{Q}_{n}^{\prime}\right)
$$

By Corollary 5.2, $K_{n+1} \subset K_{n}$ for all $n \geqslant 0$, the critical value $\mathrm{cv}=-4 / 27$ is contained in the interior of K_{n} and $0 \in \partial K_{n}$. Define

$$
\begin{equation*}
\Gamma:=\bigcap_{n \geqslant 0} K_{n} . \tag{5.4}
\end{equation*}
$$

Figure 7: A sketch of the renormalization microscope between levels 0 and 1. The sets $\Gamma, \mho^{\prime}, \mathcal{Q}_{n}^{\prime}, K_{n}$ with $n=0,1$ and some special points are marked.

Lemma 5.3. The set $\Gamma \cup\{0\}$ is a Jordan arc connecting $\mathrm{cv}=-4 / 27$ with 0 .
Proof. The general idea of the proof is to use the uniform contraction with respect to the hyperbolic metrics to prove that $\Gamma \cup\{0\}$ is locally connected and then prove that it must be a Jordan arc. Let us prove it in details.

Step 1: We first define two continuous curves $\gamma_{0, \pm}^{0}:[0,+\infty) \rightarrow \mho$ as

$$
\gamma_{0, \pm}^{0}(t):= \begin{cases}1 \pm \frac{1}{2}+\left(t-\frac{11}{4}\right) \mathrm{i} & \text { if } t \in[1,+\infty) \\ 1 \pm \frac{t}{2}-\frac{7}{4} \mathrm{i} & \text { if } t \in[0,1)\end{cases}
$$

Then $\gamma_{0,+}^{0}$ and $\gamma_{0,-}^{0}$ have the same initial point $\gamma_{0, \pm}^{0}(0)=1-\frac{7}{4} \mathrm{i}$ and $\gamma_{0,+}^{0} \cup \gamma_{0,-}^{0}=$ $\partial \mho^{\prime}$, where \mho^{\prime} is defined in 5.3). For $\alpha \in(0,1)$, we define

$$
\varphi_{\alpha}(t):= \begin{cases}\frac{1}{\alpha}\left(t-\frac{1}{2 \pi} \log \frac{1}{\alpha}+1\right) & \text { if } t \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha} \tag{5.5}\\ e^{2 \pi t} & \text { if } t<\frac{1}{2 \pi} \log \frac{1}{\alpha}\end{cases}
$$

It is easy to see that φ_{α} is continuous on \mathbb{R} and strictly increasing. For $n \geqslant 1$, we define $\varphi_{n}:=\varphi_{\alpha_{n}}$. Then $\varphi_{n} \circ \cdots \circ \varphi_{1}(t) \rightarrow+\infty$ as $n \rightarrow \infty$ for all $t \in \mathbb{R}$.

In the following, we define two sequences of continuous curves $\left(\gamma_{n, \pm}^{0}\right)_{n \geqslant 0}$ inductively. For $n \geqslant 1$, suppose $\gamma_{n-1, \pm}^{0}:[0,+\infty) \rightarrow \partial \mho^{\prime}$ has been defined. We define $\gamma_{n, \pm}^{0}:[0,+\infty) \rightarrow \partial \mho^{\prime}$ as

$$
\gamma_{n, \pm}^{0}(t):= \begin{cases}1 \pm \frac{1}{2}+\left(\varphi_{n}\left(\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)\right)-e^{-7 \pi / 2}-\frac{7}{4}\right) \mathrm{i} & \text { if } t \in[1,+\infty) \tag{5.6}\\ 1 \pm \frac{t}{2}-\frac{7}{4} \mathrm{i} & \text { if } t \in[0,1)\end{cases}
$$

Note that $\gamma_{n,+}^{0}(1)=\frac{3}{2}-\frac{7}{4} \mathrm{i}$ and $\gamma_{n,-}^{0}(1)=\frac{1}{2}-\frac{7}{4} \mathrm{i}$. Then both $\gamma_{n,+}^{0}:[0,+\infty) \rightarrow \partial \mho^{\prime}$ and $\gamma_{n,-}^{0}:[0,+\infty) \rightarrow \partial \mho^{\prime}$ are continuous injections and they have the same initial point $\gamma_{n, \pm}^{0}(0)=1-\frac{7}{4} \mathrm{i}$. Moreover, $\gamma_{n,+}^{0} \cup \gamma_{n,-}^{0}=\partial \mho^{\prime}$.

For $t \in[0,+\infty)$, all $n \geqslant 1$ and $1 \leqslant i \leqslant n$, by Corollary 5.2 the following curves are well-defined:

$$
\gamma_{n-i, \pm}^{i}(t):= \begin{cases}\mathbb{L o g} \circ \Phi_{n-i+1}^{-1} \circ \cdots \circ \mathbb{L o g} \circ \Phi_{n}^{-1}\left(\gamma_{n, \pm}^{0}(t)\right) & \text { if } i \text { is even } \\ \mathbb{L o g} \circ \Phi_{n-i+1}^{-1} \circ \cdots \circ \mathbb{L o g} \circ \Phi_{n}^{-1}\left(\gamma_{n, \mp}^{0}(t)\right) & \text { if } i \text { is odd }\end{cases}
$$

In particular, $\gamma_{n-i, \pm}^{i} \subset \overline{\mho^{\prime}}$ for every $0 \leqslant i \leqslant n$. Define

$$
\Gamma_{n-i, \pm}^{i}(t):=\Phi_{n-i}^{-1}\left(\gamma_{n-i, \pm}^{i}(t)\right), \text { where } t \in[0,+\infty)
$$

Then $\Gamma_{n-i,+}^{i} \cup\{0\}$ and $\Gamma_{n-i,-}^{i} \cup\{0\}$ are Jordan arcs, and $\Gamma_{n-i,+}^{i} \cup \Gamma_{n-i,-}^{i} \cup\{0\}$ is a Jordan curve ${ }^{14}$. In particular, we have $\Gamma_{0,+}^{n} \cup \Gamma_{0,-}^{n} \cup\{0\}=\partial K_{n}$ and two sequences of continuous curves $\gamma_{0, \pm}^{n}:[0,+\infty) \rightarrow \overline{\mho^{\prime}}$, where $n \in \mathbb{N}$. In the following we prove that $\gamma_{0, \pm}^{n}(t)$ and $\Gamma_{0, \pm}^{n}(t)$ converge uniformly on $[0,+\infty)$ as $n \rightarrow \infty$.

Step 2: We first estimate the distance between $\gamma_{n-1, \pm}^{0}(t)$ and $\gamma_{n-1, \pm}^{1}(t)$ for all $n \geqslant 1$ and $t \in[0,+\infty)$. Let $t_{n} \in(1,+\infty)$ be the unique parameter such that

$$
\operatorname{Im} \gamma_{n, \pm}^{0}\left(t_{n}\right)=\varphi_{n}\left(\operatorname{Im} \gamma_{n-1, \pm}^{0}\left(t_{n}\right)\right)-e^{-7 \pi / 2}-\frac{7}{4}=\frac{1}{\alpha_{n}}
$$

Then we have $\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}<\operatorname{Im} \gamma_{n-1, \pm}^{0}\left(t_{n}\right)<\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+2 \alpha_{n}$. By definition, we have

$$
\begin{aligned}
\left|\gamma_{n-1, \pm}^{0}(t)-\gamma_{n-1, \pm}^{1}(t)\right| & =\left|\gamma_{n-1, \pm}^{0}(t)-\mathbb{L o g} \circ \Phi_{n}^{-1}\left(\gamma_{n, \mp}^{0}(t)\right)\right| \\
& \leqslant 1+\left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\operatorname{Im} \mathbb{L o g} \circ \Phi_{n}^{-1}\left(\gamma_{n, \mp}^{0}(t)\right)\right|
\end{aligned}
$$

If $t \geqslant t_{n}$, then $\operatorname{Im} \gamma_{n, \pm}^{0}(t) \geqslant \frac{1}{\alpha_{n}}$. By (5.5), 5.6) and Lemma 2.11(a), we have

$$
\begin{aligned}
& \left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\operatorname{Im} \mathbb{L o g} \circ \Phi_{n}^{-1}\left(\gamma_{n, \mp}^{0}(t)\right)\right| \\
\leqslant & D_{3}+\left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\alpha_{n} \operatorname{Im} \gamma_{n, \mp}^{0}(t)-\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}\right| \\
\leqslant & D_{3}+1+\alpha_{n}\left(e^{-7 \pi / 2}+\frac{7}{4}\right)<D_{3}+2
\end{aligned}
$$

If $t<t_{n}$, then $\operatorname{Im} \gamma_{n, \pm}^{0}(t)<\frac{1}{\alpha_{n}}$. By (5.5), (5.6) and Lemma 2.11(b), there exist two universal constants $C_{1}, C_{2} \geqslant 1$ such that

$$
\begin{aligned}
& \left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\operatorname{Im} \log \circ \Phi_{n}^{-1}\left(\gamma_{n, \mp}^{0}(t)\right)\right| \\
\leqslant & D_{3}+\left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\frac{1}{2 \pi} \log \left(1+\left|\gamma_{n, \mp}^{0}(t)\right|\right)\right| \\
\leqslant & D_{3}+C_{1}+\left|\operatorname{Im} \gamma_{n-1, \pm}^{0}(t)-\frac{1}{2 \pi} \log \left(1+\left|\operatorname{Im} \gamma_{n, \mp}^{0}(t)\right|\right)\right| \leqslant D_{3}+C_{1}+C_{2}
\end{aligned}
$$

Therefore, for all $n \geqslant 1$ and $t \in[0,+\infty)$, we have

$$
\begin{equation*}
\left|\gamma_{n-1, \pm}^{0}(t)-\gamma_{n-1, \pm}^{1}(t)\right| \leqslant D_{3}+C_{1}+C_{2}+1 \tag{5.7}
\end{equation*}
$$

Step 3: Let $\rho_{\mho}(\zeta)|\mathrm{d} \zeta|$ and $\rho_{n}(z)|\mathrm{d} z|$ be the hyperbolic metrics of \mho and \mathcal{Q}_{n} respectively. Note that $\gamma_{n-1, \pm}^{0}, \gamma_{n-1, \pm}^{1} \subset \overline{\mho^{\prime}}$ and $B_{1 / 4}\left(\overline{\mho^{\prime}}\right) \subset \mho$. By 5.7, there exists $C_{3}>0$ such that the hyperbolic distance between $\gamma_{n-1, \pm}^{0}$ and $\gamma_{n-1, \pm}^{1}$ satisfies

$$
\operatorname{dist}_{\rho_{\mho}}\left(\gamma_{n-1, \pm}^{0}(t), \gamma_{n-1, \pm}^{1}(t)\right) \leqslant C_{3} \quad \text { for any } n \geqslant 1 \text { and } t \in[0,+\infty)
$$

[^10]According to Corollary 5.2 , for $1 \leqslant i \leqslant n$, each map $\mathbb{L} o g \circ \Phi_{i}^{-1}:\left(\mho, \rho_{\mho}\right) \rightarrow\left(\mho, \rho_{\mho}\right)$ can be decomposed as:

$$
\begin{aligned}
\mathbb{L o g} \circ \Phi_{i}^{-1}:\left(\mho, \rho_{\mho}\right) & \xrightarrow{\Phi_{i}^{-1}}\left(\mathcal{Q}_{i}, \rho_{i}\right) \xrightarrow{\mathbb{L o g}}\left(\mathbb{L o g}\left(\mathcal{Q}_{i}\right), \tilde{\rho}_{i}\right) \\
& \xrightarrow{\text { inc. }}\left(B_{1 / 4}\left(\mathbb{L o g}\left(\mathcal{Q}_{i}\right)\right), \hat{\rho}_{i}\right) \xrightarrow{\text { inc. }}\left(\mho, \rho_{\mho}\right),
\end{aligned}
$$

where $\tilde{\rho}_{i}$ and $\hat{\rho}_{i}$ are hyperbolic metrics of $\log \left(\mathcal{Q}_{i}\right)$ and $B_{1 / 4}\left(\mathbb{L o g}\left(\mathcal{Q}_{i}\right)\right)$ respectively. Since $\operatorname{diam}\left(\operatorname{Re}\left(\log \left(\mathcal{Q}_{i}\right)\right)\right) \leqslant 1$, by Lemma 4.6 , the inclusion map

$$
\left(\mathbb{L o g}\left(\mathcal{Q}_{i}\right), \tilde{\rho}_{i}\right) \stackrel{\text { inc. }}{\hookrightarrow}\left(B_{1 / 4}\left(\mathbb{L o g}\left(\mathcal{Q}_{i}\right)\right), \hat{\rho}_{i}\right)
$$

is uniformly contracting with respect to their hyperbolic metrics. Since Φ_{i}^{-1}, \log and the second inclusion map do not expand the hyperbolic metrics, it follows that $\mathbb{L o g} \circ \Phi_{i}^{-1}:\left(\mho, \rho_{\mho}\right) \rightarrow\left(\mho, \rho_{\mho}\right)$ is uniformly contracting.

By the definition of $\gamma_{0, \pm}^{n}$, there exists a constant $0<\nu<1$ such that

$$
\operatorname{dist}_{\rho_{\mho}}\left(\gamma_{0, \pm}^{n-1}(t), \gamma_{0, \pm}^{n}(t)\right) \leqslant C_{3} \cdot \nu^{n-1}, \text { where } n \geqslant 1 \text { and } t \in[0,+\infty)
$$

This implies that the hyperbolic distance between $\Gamma_{0, \pm}^{n-1}(t)$ and $\Gamma_{0, \pm}^{n}(t)$ in $\mathcal{Q}_{0}=$ $\Phi_{0}^{-1}(\mho)$ satisfies

$$
\operatorname{dist}_{\rho_{0}}\left(\Gamma_{0, \pm}^{n-1}(t), \Gamma_{0, \pm}^{n}(t)\right) \leqslant C_{3} \cdot \nu^{n-1}, \text { where } n \geqslant 1 \text { and } t \in[0,+\infty)
$$

Let $\check{\mathcal{Q}}_{0}:=B_{1}\left(\mathcal{Q}_{0}\right)$ and $\check{\rho}_{0}(z)|\mathrm{d} z|$ be the hyperbolic metric of $\check{\mathcal{Q}}_{0}$. Then the Euclidean and hyperbolic metrics (with respect to $\check{\rho}_{0}$) are comparable on \mathcal{Q}_{0}. According to Schwarz-Pick's lemma, we have $\check{\rho}_{0}(z)<\rho_{0}(z)$ for all $z \in \mathcal{Q}_{0}$. Therefore, there exists a constant $C_{4}>0$ such that the distance in the Euclidean metric satisfies

$$
\left|\Gamma_{0, \pm}^{n-1}(t)-\Gamma_{0, \pm}^{n}(t)\right| \leqslant C_{4} \cdot \nu^{n-1}, \text { where } n \geqslant 1 \text { and } t \in[0,+\infty)
$$

Therefore, the following convergence is uniform for $t \in[0,+\infty)$:

$$
\Gamma_{0, \pm}^{\infty}(t):=\lim _{n \rightarrow \infty} \Gamma_{0, \pm}^{n}(t)
$$

Note that $1 \in \mho$ and $\mathbb{L o g} \circ \Phi_{n}^{-1}(1)=1$. By the uniformly contracting of $\mathbb{L} \circ g \circ \Phi_{i}^{-1}$: $\left(\mho, \rho_{\mho}\right) \rightarrow\left(\mho, \rho_{\mho}\right)$ for all $1 \leqslant i \leqslant n$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Gamma_{0, \pm}^{n}(0) & =\lim _{n \rightarrow \infty} \Phi_{0}^{-1} \circ \mathbb{L} \mathrm{~L} \circ \Phi_{1}^{-1} \circ \cdots \circ \mathbb{L} \circ \mathrm{~g} \circ \Phi_{n}^{-1}\left(1-\frac{7}{4} \mathrm{i}\right) \\
& =\Phi_{0}^{-1}(1)=-\frac{4}{27}
\end{aligned}
$$

Since $\gamma_{n-1, \pm}^{0} \subset \overline{\mho^{\prime}}$ and $B_{1 / 4}\left(\overline{\mho^{\prime}}\right) \subset \mho$, there exists a constant $C_{3}^{\prime}>0$ such that

$$
\operatorname{dist}_{\rho_{\mho}}\left(\gamma_{n-1,+}^{0}(t), \gamma_{n-1,-}^{0}(t)\right) \leqslant C_{3}^{\prime} \quad \text { for any } n \geqslant 1 \text { and } t \in[0,+\infty)
$$

By a similar argument as above, we have

$$
\Gamma_{0,+}^{\infty}(t)=\Gamma_{0,-}^{\infty}(t), \quad \text { where } t \in[0,+\infty)
$$

Note that Γ is the intersection of the nested sequence $\left(K_{n}\right)_{n \geqslant 0}$, where K_{n} is the bounded component of $\mathbb{C} \backslash\left(\Gamma_{0,+}^{n} \cup \Gamma_{0,-}^{n} \cup\{0\}\right)$ for all $n \geqslant 0$. Therefore, $\Gamma=\Gamma_{0,+}^{\infty}=$ $\Gamma_{0,-}^{\infty}$ and $\Gamma \cup\{0\}$ is a Jordan arc connecting $-4 / 27$ with 0 .
5.2. Dynamical behavior of the points on the arcs. Let $\phi_{0}:=\mathrm{id}$. For each $n \geqslant 1$, we denote

$$
\phi_{n}:=\mathbb{E x p} \circ \Phi_{n-1} \circ \cdots \circ \mathbb{E x p} \circ \Phi_{0} .
$$

Let Γ be the Jordan arc defined in (5.4). By the proof of Lemma 5.3, ϕ_{n} can be defined on $\Gamma_{0}:=\Gamma$ since

$$
\Gamma_{n}:=\phi_{n}\left(\Gamma_{0}\right) \subset \mathcal{Q}_{n}^{\prime}=\Phi_{n}^{-1}\left(\mho^{\prime}\right), \text { where } n \geqslant 1
$$

Note that the restriction of $\mathbb{E x p} \circ \Phi_{n-1}$ on Γ_{n-1} is a homeomorphism. Hence each $\Gamma_{n} \cup\{0\}$ is also a Jordan arc connecting $-\frac{4}{27}$ with 0 in the dynamical plane of f_{n}. For each $n \geqslant 1$, the map $\phi_{n}: \Gamma_{0} \rightarrow \Gamma_{n}$ can be extended homeomorphically to $\phi_{n}: \Gamma_{0} \cup\{0\} \rightarrow \Gamma_{n} \cup\{0\}$ such that $\phi_{n}\left(-\frac{4}{27}\right)=-\frac{4}{27}$ and $\phi_{n}(0)=0$. Moreover,

$$
\begin{equation*}
\gamma_{n}:=\Phi_{n}\left(\Gamma_{n}\right) \tag{5.8}
\end{equation*}
$$

is an unbounded arc in \mho^{\prime} with the initial point 1.
Definition. For $n \geqslant 1$, we define

$$
\begin{equation*}
s_{\alpha_{n}}:=\Phi_{n} \circ \mathbb{E x p}: \gamma_{n-1} \rightarrow \gamma_{n} \tag{5.9}
\end{equation*}
$$

Then $s_{\alpha_{n}}$ is a homeomorphism with $s_{\alpha_{n}}(1)=1$.
In the following, we assume that $\alpha=\alpha_{0} \in \mathcal{B}_{N}$, where \mathcal{B}_{N} is the set of high type Brjuno numbers defined in 2.39). Let $\mathcal{B}\left(\alpha_{n}\right)$ be the Brjuno sum defined in (3.2).

Definition. For $n \geqslant 0$, we define

$$
\widetilde{\mathcal{B}}\left(\alpha_{n}\right):=\frac{\mathcal{B}\left(\alpha_{n}\right)}{2 \pi}+M
$$

where $M \geqslant 1$ is a constant which will be determined in a moment.
Lemma 5.4. There exists a constant $M_{0}>1$ such that if $M \geqslant M_{0}$, for $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n}\right)$, then $\operatorname{Im} s_{\alpha_{n}}(\zeta) \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)$, where $n \geqslant 1$.

Proof. Let $D_{4}>0$ be the constant introduced in Lemma 2.12. If $M \geqslant D_{4}$, then

$$
\widetilde{\mathcal{B}}\left(\alpha_{n}\right)=\frac{\mathcal{B}\left(\alpha_{n}\right)}{2 \pi}+M>\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}+D_{4} .
$$

By Lemma 2.12 (a), if $M \geqslant 2 D_{5}$ and $\operatorname{Im} \zeta \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n}\right)$, then

$$
\begin{aligned}
\operatorname{Im} s_{\alpha_{n}}(\zeta) & \geqslant \frac{1}{\alpha_{n}}\left(\operatorname{Im} \zeta-\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}-D_{5}\right) \geqslant \frac{1}{\alpha_{n}}\left(\widetilde{\mathcal{B}}\left(\alpha_{n}\right)-\frac{1}{2 \pi} \log \frac{1}{\alpha_{n}}-D_{5}\right) \\
& =\widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)+\frac{1}{\alpha_{n}}\left(\left(1-\alpha_{n}\right) M-D_{5}\right) \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right) .
\end{aligned}
$$

Then the lemma follows by setting $M_{0}:=\max \left\{D_{4}, 2 D_{5}\right\}$.
Since $\alpha \in \mathcal{B}_{N}$, every $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ has a Siegel disk Δ_{0} centered at the origin. Let $D_{7}>1$ be the universal constant in Lemma 3.2. In the following we fix

$$
\begin{equation*}
M \geqslant \max \left\{M_{0}, \frac{1}{2 \pi} \log \frac{27 D_{7}}{4}\right\} \tag{5.10}
\end{equation*}
$$

Let $\Gamma_{0} \cup\{0\}$ be the Jordan arc connecting the critical value cv $=-\frac{4}{27}$ with 0 corresponding to f_{0} (see Lemma 5.3). For a given point $z_{0} \in \Gamma_{0}$, let $\left(\zeta_{n}\right)_{n \geqslant 0}$ be the sequence defined by

$$
\zeta_{0}:=\Phi_{0}\left(z_{0}\right) \in \gamma_{0} \quad \text { and } \quad \zeta_{n}:=s_{\alpha_{n}}\left(\zeta_{n-1}\right) \in \gamma_{n} \quad \text { for } n \geqslant 1
$$

Lemma 5.5. If $z_{0} \in \Gamma_{0} \cap \Delta_{0}$, then there exists $n_{0} \geqslant 0$ such that $\operatorname{Im} \zeta_{n} \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)$ for all $n \geqslant n_{0}$.

Proof. Let $z_{0} \in \Gamma_{0} \cap \Delta_{0}$. By Lemma 3.2, for every $n \in \mathbb{N}$, the inner radius of the Siegel disk of f_{n} is $c_{n} e^{-\mathcal{B}\left(\alpha_{n}\right)}$, where $c_{n} \in\left[1 / D_{7}, D_{7}\right]$. Let \mathcal{Z} be the half-infinite strip defined in (5.1). By the definition of near-parabolic renormalization $f_{n+1}=\mathcal{R} f_{n}$, there exists $\widetilde{\zeta}_{n} \in \overline{\mho^{\prime}}$ such that $\operatorname{Exp}\left(\widetilde{\zeta}_{n}\right) \in \partial \Delta_{n+1}$ and (see 4.28)

$$
\begin{equation*}
\operatorname{Im} \widetilde{\zeta}_{n}=\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n+1}\right)-\frac{1}{2 \pi} \log \frac{27 c_{n+1}}{4} \tag{5.11}
\end{equation*}
$$

Assume there exists a subsequence $\left(n_{j}\right)_{j \geqslant 1}$ such that $\operatorname{Im} \zeta_{n_{j}}<\widetilde{\mathcal{B}}\left(\alpha_{n_{j}+1}\right)=$ $\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n_{j}+1}\right)+M$. If $\operatorname{Im} \zeta_{n_{j}} \leqslant \operatorname{Im} \widetilde{\zeta}_{n_{j}}$, there exists $\zeta_{n_{j}}^{\prime} \in \Phi_{n_{j}}\left(\partial \Delta_{n_{j}} \cap \mathcal{P}_{n_{j}}\right) \cap \overline{\mho^{\prime}}$ with $\operatorname{Im} \zeta_{n_{j}}^{\prime}=\operatorname{Im} \zeta_{n_{j}}$ such that

$$
\begin{equation*}
\left|\zeta_{n_{j}}-\zeta_{n_{j}}^{\prime}\right| \leqslant 1 \tag{5.12}
\end{equation*}
$$

If $\operatorname{Im} \zeta_{n_{j}}>\operatorname{Im} \widetilde{\zeta}_{n_{j}}$, we have

$$
\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n_{j}+1}\right)-\frac{1}{2 \pi} \log \frac{27 c_{n_{j}+1}}{4}<\operatorname{Im} \zeta_{n_{j}}<\frac{1}{2 \pi} \mathcal{B}\left(\alpha_{n_{j}+1}\right)+M
$$

and hence

$$
\begin{equation*}
\left|\zeta_{n_{j}}-\widetilde{\zeta}_{n_{j}}\right|^{2} \leqslant 1+\left(M+\frac{1}{2 \pi} \log \frac{27 D_{7}}{4}\right)^{2} \tag{5.13}
\end{equation*}
$$

By 5.12) and 5.13), for each $\zeta_{n_{j}}$ with $j \geqslant 1$, one can find a point ($\zeta_{n_{j}}^{\prime}$ or $\left.\widetilde{\zeta}_{n_{j}}\right)$ in $\Phi_{n_{j}}\left(\partial \Delta_{n_{j}} \cap \mathcal{P}_{n_{j}}\right) \cap \overline{\mho^{\prime}}$ such that the hyperbolic distance with respect to ρ_{\mho} between them are uniformly bounded above. By a similar argument to Proposition 4.9 based on Lemma 4.6, we conclude that $\zeta_{0} \in \Phi_{0}\left(\partial \Delta_{0} \cap \mathcal{P}_{0}\right) \cap \overline{\mho^{\prime}}$ and $z_{0} \in \partial \Delta_{0}$, which violates our assumption that $z_{0} \in \Delta_{0}$. Therefore, there exists $n_{0} \geqslant 0$ such that $\operatorname{Im} \zeta_{n} \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)$ for all $n \geqslant n_{0}$.

Lemma 5.6. $\Gamma_{0} \cap \partial \Delta_{0}$ is a singleton. In particular, $\Gamma_{0} \backslash\{\mathrm{cv}\} \subset \Delta_{0}$ if and only if $\mathrm{cv} \in \partial \Delta_{0}$.

Proof. Since $\Gamma_{0} \cup\{0\}$ is a Jodan arc connecting cv $=-\frac{4}{27}$ with 0 , there exists a homeomorphism $\beta:[0,1] \rightarrow \Gamma_{0} \cup\{0\}$ such that $\beta(0)=\mathrm{cv}$ and $\beta(1)=0$. Assume that $\Gamma_{0} \cap \partial \Delta_{0}$ is not a singleton. Then there exist $0 \leqslant t_{1}<t_{2}<1$ such that

- $\beta\left(t_{i}\right) \in \partial \Delta_{0}$ for $i=1,2$; and
- $\beta\left(\left[0, t_{1}\right]\right) \cap \Delta_{0}=\emptyset$ and $\beta\left(\left(t_{2}, 1\right]\right) \subset \Delta_{0}$.

Let $\Gamma_{0}^{\prime}:=\beta\left(\left[t_{1}, t_{2}\right]\right)$ be a subarc of Γ_{0}. Then we have the following two cases.
(1) Assume $\Gamma_{0}^{\prime} \subset \partial \Delta_{0}$. There exists $z_{0} \in \Gamma_{0}^{\prime}$ such that $f_{0}^{\circ q_{n}}\left(z_{0}\right) \in \Gamma_{0}^{\prime}$ for some big integer n since the restriction of f_{0} on $\partial \Delta_{0}$ is conjugate to the rigid rotation. Denote $\Gamma_{n}^{\prime}:=\mathbb{E x p} \circ \Phi_{n-1} \circ \cdots \circ \mathbb{E x p} \circ \Phi_{0}\left(\Gamma_{0}^{\prime}\right)$. Then Γ_{n}^{\prime} is a Jordan arc contained in $\Gamma_{n} \subset \mathcal{Q}_{n}^{\prime}$. By Lemma 2.15 (a), Γ_{n}^{\prime} and hence Γ_{n} contains a point z_{n} and $f_{n}\left(z_{n}\right)$, which is impossible.
(2) Assume $\Gamma_{0}^{\prime} \not \subset \partial \Delta_{0}$. Since $\Phi_{n}\left(\Gamma_{n}\right) \subset \mho^{\prime}$, it follows that $f_{n}\left(\Gamma_{n}\right)$ is welldefined and contained in \mathcal{P}_{n}. Thus by Lemma 2.15, Γ_{0} (and hence Γ_{0}^{\prime}) can be iterated infinitely many times by f_{0}. Let $W \neq \Delta_{0}$ be any bounded component of $\mathbb{C} \backslash\left(\partial \Delta_{0} \cup \Gamma_{0}^{\prime}\right)$. Since $\partial \Delta_{0} \cup \Gamma_{0}^{\prime}$ and W can be iterated infinitely many times by f_{0}, it follows from the maximum modulus principle that W is contained in the Fatou set of f_{0}. Since $\partial W \cap \partial \Delta_{0}$ contains a subarc of $\partial \Delta_{0}$, it follows that W is contained in Δ_{0}, which is a contradiction. This finishes the proof that $\Gamma_{0} \cap \partial \Delta_{0}$ is a singleton.

From $\Gamma_{0} \backslash\{\mathrm{cv}\} \subset \Delta_{0}$ we obtain $\mathrm{cv} \in \partial \Delta_{0}$ immediately. If $\mathrm{cv} \in \partial \Delta_{0}$, since Γ_{0} is a Jordan arc and $\Gamma_{0} \cap \partial \Delta_{0}$ is a singleton, we conclude that $\Gamma_{0} \backslash\{\mathrm{cv}\} \subset \Delta_{0}$.
5.3. A new class of irrational numbers. For $n \geqslant 1$, let $s_{\alpha_{n}}: \gamma_{n-1} \rightarrow \gamma_{n}$ be the homeomorphism defined in 5.9). In the following, we use Γ_{α} (resp. γ_{α}) to denote Γ_{0} (resp. $\left.\gamma_{0}=\Phi_{0}\left(\Gamma_{0}\right)\right)$ when we want to emphasize the dependence on $\alpha=\alpha_{0} \in \mathrm{HT}_{N}$.
Definition. Let $\widetilde{\mathcal{H}}_{N}$ be a subset of \mathcal{B}_{N} defined as

$$
\widetilde{\mathcal{H}}_{N}:=\left\{\begin{array}{l|l}
\alpha \in \mathcal{B}_{N} & \begin{array}{l}
\forall \zeta \in \gamma_{\alpha} \backslash\{1\}, \exists n \geqslant 1 \text { such that } \\
\operatorname{Im} s_{\alpha_{n}} \circ \cdots \circ s_{\alpha_{1}}(\zeta) \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)
\end{array}
\end{array}\right\}
$$

In the next section we show that $\widetilde{\mathcal{H}}_{N}$ is independent of the choice of $f_{0} \in \mathcal{I} \mathcal{S}_{\alpha} \cup$ $\left\{Q_{\alpha}\right\}$ by proving that $\widetilde{\mathcal{H}}_{N}$ coincides with the set of high type Herman numbers.
Proposition 5.7. The critical value $\mathrm{cv}=-\frac{4}{27}$ is contained in $\partial \Delta_{0}$ if and only if $\alpha \in \widetilde{\mathcal{H}}_{N}$.

Proof. For each $\zeta \in \gamma_{\alpha} \backslash\{1\}$ and $n \geqslant 1$, we denote

$$
\zeta_{n}:=s_{\alpha_{n}} \circ \cdots \circ s_{\alpha_{1}}(\zeta)
$$

Suppose $\alpha \in \widetilde{\mathcal{H}}_{N}$. Then there exists $n \geqslant 1$ such that $\operatorname{Im} \zeta_{n} \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)$. By 5.11) and the choice of M in 5.10), we have $\Phi_{n}^{-1}\left(\zeta_{n}\right) \in \Delta_{n}$ and hence $\Phi_{0}^{-1}(\zeta) \in \Delta_{0}$. Therefore, $\Gamma_{\alpha} \backslash\{\mathrm{cv}\}=\Phi_{0}^{-1}\left(\gamma_{\alpha} \backslash\{1\}\right)$ is contained in Δ_{0} and $\mathrm{cv} \in \partial \Delta_{0}$.

Suppose $\alpha \in \mathcal{B}_{N}$ and $\mathrm{cv} \in \partial \Delta_{0}$. By Lemma 5.6. we have $\Phi_{0}^{-1}(\zeta) \in \Delta_{0} \cap \Gamma_{\alpha}$. According to Lemma 5.5. there exists an integer $n \geqslant 1$ so that $\operatorname{Im} \zeta_{n} \geqslant \widetilde{\mathcal{B}}\left(\alpha_{n+1}\right)$. This implies that $\alpha \in \mathcal{H}_{N}$.

6. Optimality of Herman condition

Herman condition is not easy to verify in general. Yoccoz gave this condition an arithmetic characterization so that one can check easily whether an irrational number is of Herman type. In this section, we first recall Yoccoz's characterization and then prove that under the high type condition, an irrational number is of Herman type if and only if it belongs to the set $\widetilde{\mathcal{H}}_{N}$ defined in $\$ 5.3$.
6.1. Yoccoz's characterization on \mathcal{H}. For $\alpha \in(0,1)$ and $x \in \mathbb{R}$, define

$$
r_{\alpha}(x):= \begin{cases}\frac{1}{\alpha}\left(x-\log \frac{1}{\alpha}+1\right) & \text { if } \quad x \geqslant \log \frac{1}{\alpha} \\ e^{x} & \text { if } \quad x<\log \frac{1}{\alpha}\end{cases}
$$

The map r_{α} is of class C^{1} on \mathbb{R}, satisfying $r_{\alpha}\left(\log \frac{1}{\alpha}\right)=r_{\alpha}^{\prime}\left(\log \frac{1}{\alpha}\right)=\frac{1}{\alpha}, x+1 \leqslant$ $r_{\alpha}(x) \leqslant e^{x}$ for all $x \in \mathbb{R}$, and $r_{\alpha}^{\prime}(x) \geqslant 1$ for all $x \geqslant 0$.

For an irrational number $\alpha \in(0,1)$, we use $\left(\alpha_{n}\right)_{n \geqslant 0}$ to denote the sequence of irrationals defined as in 2.35). Let $\mathcal{B}(\alpha)$ be the Brjuno sum of α (see (3.1). A Brjuno number α is a Herman number (or belongs to Herman type) if every orientation-preserving analytic circle diffeomorphism of rotation number α is analytically conjugate to a rigid rotation. Let \mathcal{H} be the set of all Herman numbers.

Theorem 6.1 (【Yoc02, §2.5]). Herman condition has the following arithmetic characterization:

$$
\mathcal{H}=\left\{\alpha \in \mathcal{B}: \forall m \geqslant 0, \exists n>m \text { such that } r_{\alpha_{n-1}} \circ \cdots \circ r_{\alpha_{m}}(0) \geqslant \mathcal{B}\left(\alpha_{n}\right)\right\}
$$

6.2. Two conditions are equivalent. In this subsection, we prove that the set of Herman numbers is equal to $\widetilde{\mathcal{H}}_{N}$ defined in $\$ 5.3$ under the high type condition.
Lemma 6.2 ([Yoc02, Lemma 4.9]). Let α be irrational and $x \geqslant 0$. Then $\alpha \notin \mathcal{H}$ if and only if there exist m and an infinite set $I=I(m, x, \alpha) \subset \mathbb{N}$ such that, for all $k \in I$, we have

$$
r_{\alpha_{m+k-1}} \circ \cdots \circ r_{\alpha_{m}}(x)<\log \frac{1}{\alpha_{m+k}}
$$

Let D_{4} and $D_{5}>1$ be the constants introduced in Lemma 2.12.
Definition. For $\alpha \in(0,1)$ and $y \in \mathbb{R}$, we define

$$
\bar{s}_{\alpha}(y):= \begin{cases}\frac{1}{\alpha}\left(y-\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{5}\right) & \text { if } \quad y \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{4} \tag{6.1}\\ e^{D_{5}} e^{2 \pi y} & \text { if } y<\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{4}\end{cases}
$$

Let $\gamma_{\alpha}=\gamma_{\alpha_{0}}$ be the unbounded arc defined in (5.8) and $s_{\alpha_{n}}:=\Phi_{n} \circ \mathbb{E x p}$: $\gamma_{n-1} \rightarrow \gamma_{n}$ the map defined in 5.9. By Lemma 2.12 and the definition of \bar{s}_{α}, we have the following immediate result.

Lemma 6.3. For each $\alpha \in \mathcal{B}_{N}$ and $\zeta \in \gamma_{\alpha}$, we have

$$
\operatorname{Im} s_{\alpha}(\zeta) \leqslant \bar{s}_{\alpha}(\operatorname{Im} \zeta)
$$

Define $\mathcal{H}_{N}:=\mathcal{H} \cap \mathcal{B}_{N}$.
Lemma 6.4. We have $\widetilde{\mathcal{H}}_{N} \subset \mathcal{H}_{N}$.
Proof. Assume by contradiction that $\alpha \in \widetilde{\mathcal{H}}_{N} \backslash \mathcal{H}_{N}$. Define

$$
\begin{equation*}
C_{0}:=8 \pi e^{D_{5}+2 \pi D_{4}} \tag{6.2}
\end{equation*}
$$

By Lemma 6.2, for the number $2 C_{0}$, there exist $m \geqslant 1$ and an infinite subset $I=I\left(m, 2 C_{0}, \alpha\right)$ of \mathbb{N} such that for all $k \in I$, we have

$$
\begin{equation*}
r_{\alpha_{m+k-1}} \circ \cdots \circ r_{\alpha_{m}}\left(2 C_{0}\right)<\log \frac{1}{\alpha_{m+k}} \tag{6.3}
\end{equation*}
$$

Denote $x_{m-1}:=2 C_{0}$ and $y_{m-1}:=1$. For $k \geqslant 1$, we define

$$
x_{m+k-1}:=r_{\alpha_{m+k-1}} \circ \cdots \circ r_{\alpha_{m}}\left(2 C_{0}\right) \quad \text { and } \quad y_{m+k-1}:=\bar{s}_{\alpha_{m+k-1}} \circ \cdots \circ \bar{s}_{\alpha_{m}}(1),
$$

where $\bar{s}_{\alpha_{n}}$ is the map defined in (6.1). We claim that

$$
\begin{equation*}
x_{m+k-1} \geqslant 2 \pi y_{m+k-1}+C_{0} \quad \text { for all } k \geqslant 0 \tag{6.4}
\end{equation*}
$$

Assume that (6.4) holds temporarily. Since γ_{α} is an arc starting at the point 1 and finally going up to the infinity, there exists $\zeta \in \gamma_{\alpha_{m-1}}$ so that $\operatorname{Im} \zeta=1$. For $k \geqslant 1$, we denote

$$
\zeta_{m+k-1}:=s_{\alpha_{m+k-1}} \circ \cdots \circ s_{\alpha_{m}}(\zeta)
$$

where each $s_{\alpha_{n}}$ is defined in 5.9. By Lemma 6.3, we have $y_{m+k-1} \geqslant \operatorname{Im} \zeta_{m+k-1}$ for all $k \geqslant 1$.

Since $\alpha \in \widetilde{\mathcal{H}}_{N}$, by the definition of $\widetilde{\mathcal{H}}_{N}$ and Lemma 5.4 there exists an integer $k_{0} \geqslant 1$ such that for all $k \geqslant k_{0}$, one has

$$
y_{m+k-1} \geqslant \operatorname{Im} \zeta_{m+k-1} \geqslant \widetilde{\mathcal{B}}\left(\alpha_{m+k}\right)=\frac{\mathcal{B}\left(\alpha_{m+k}\right)}{2 \pi}+M>\frac{1}{2 \pi} \log \frac{1}{\alpha_{m+k}}+M
$$

On the other hand, since $\alpha \notin \mathcal{H}_{N}$, by (6.3) there exists $k \in I$ with $k \geqslant k_{0}$ such that $x_{m+k-1}<\log \frac{1}{\alpha_{m+k}}$. This is a contradiction since by (6.4) we have $x_{m+k-1} \geqslant$ $2 \pi y_{m+k-1}+C_{0}>\log \frac{1}{\alpha_{m+k}}$. Hence it suffices to prove the claim (6.4).

Obviously, (6.4) is true when $k=0$ since $C_{0} \geqslant 2 \pi$. Suppose $x_{m+k-1} \geqslant$ $2 \pi y_{m+k-1}+C_{0}$ for some $k \geqslant 0$. It suffices to obtain $x_{m+k} \geqslant 2 \pi y_{m+k}+C_{0}$. The arguments are divided into following three cases.

Case I: Suppose $x_{m+k-1}<\log \frac{1}{\alpha_{m+k}}$ and $y_{m+k-1}<\frac{1}{2 \pi} \log \frac{1}{\alpha_{m+k}}+D_{4}$. By 6.2), we have $C_{0}>2\left(D_{5}+\log (2 \pi)\right)$ and hence $e^{y+C_{0}}>e^{y+D_{5}+\log (2 \pi)}+C_{0}$ for any $y \geqslant 1$. Therefore,

$$
\begin{aligned}
x_{m+k} & =e^{x_{m+k-1}} \geqslant e^{2 \pi y_{m+k-1}+C_{0}}>e^{2 \pi y_{m+k-1}+D_{5}+\log (2 \pi)}+C_{0} \\
& =2 \pi \bar{s}_{\alpha_{m+k}}\left(y_{m+k-1}\right)+C_{0}=2 \pi y_{m+k}+C_{0}
\end{aligned}
$$

Case II: Suppose $x_{m+k-1} \geqslant \log \frac{1}{\alpha_{m+k}}$ and $y_{m+k-1} \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha_{m+k}}+D_{4}$. Then

$$
\begin{aligned}
x_{m+k} & =\frac{1}{\alpha_{m+k}}\left(x_{m+k-1}-\log \frac{1}{\alpha_{m+k}}+1\right) \\
& \geqslant \frac{2 \pi}{\alpha_{m+k}}\left(y_{m+k-1}-\frac{1}{2 \pi} \log \frac{1}{\alpha_{m+k}}+D_{5}\right)+\frac{1}{\alpha_{m+k}}\left(C_{0}+1-2 \pi D_{5}\right) \\
& \geqslant 2 \pi y_{m+k}+2\left(C_{0}+1-2 \pi D_{5}\right)>2 \pi y_{m+k}+C_{0}
\end{aligned}
$$

Case III: Suppose $x_{m+k-1} \geqslant \log \frac{1}{\alpha_{m+k}}$ and $y_{m+k-1}<\frac{1}{2 \pi} \log \frac{1}{\alpha_{m+k}}+D_{4}$. We consider the following two subcases:

Subcase (i): Suppose $2 \pi y_{m+k-1}<\log \frac{1}{\alpha_{m+k}}-\frac{C_{0}}{4}$. Note that

$$
x_{m+k}=\frac{1}{\alpha_{m+k}}\left(x_{m+k-1}-\log \frac{1}{\alpha_{m+k}}+1\right) \geqslant \frac{1}{\alpha_{m+k}} .
$$

Since $x_{m-1}=2 C_{0}$, we have $x_{m+k} \geqslant \max \left\{2 C_{0}, \frac{1}{\alpha_{m+k}}\right\}$. By 6.2 , we have $C_{0}>$ $4 D_{5}+4 \log (4 \pi)$ and hence $2 \pi e^{D_{5}-C_{0} / 4}<1 / 2$. Then

$$
\begin{aligned}
x_{m+k} \geqslant \max \left\{2 C_{0}, \frac{1}{\alpha_{m+k}}\right\} & \geqslant \frac{2 \pi e^{D_{5}-C_{0} / 4}}{\alpha_{m+k}}+C_{0} \\
& \geqslant 2 \pi e^{D_{5}} e^{2 \pi y_{m+k-1}}+C_{0}=2 \pi y_{m+k}+C_{0}
\end{aligned}
$$

Subcase (ii): Suppose $\log \frac{1}{\alpha_{m+k}}-\frac{C_{0}}{4} \leqslant 2 \pi y_{m+k-1}<\log \frac{1}{\alpha_{m+k}}+2 \pi D_{4}$. Then

$$
\begin{align*}
& \alpha_{m+k}\left(x_{m+k}-\left(2 \pi y_{m+k}+C_{0}\right)\right) \\
= & x_{m+k-1}-\log \frac{1}{\alpha_{m+k}}+1-\alpha_{m+k}\left(2 \pi e^{D_{5}} e^{2 \pi y_{m+k-1}}+C_{0}\right) \tag{6.5}\\
\geqslant & 2 \pi y_{m+k-1}+C_{0}+1-\log \frac{1}{\alpha_{m+k}}-2 \pi \alpha_{m+k} e^{D_{5}} e^{2 \pi y_{m+k-1}}-C_{0} \alpha_{m+k} .
\end{align*}
$$

For $\alpha \in(0,1 / 2]$, we consider the following continuous function:

$$
h(t):=t+C_{0}+1-\log \frac{1}{\alpha}-2 \pi \alpha e^{D_{5}} e^{t}-C_{0} \alpha, \quad \text { where } t \in \mathbb{R}
$$

Then $h^{\prime}(t)=1-2 \pi \alpha e^{D_{5}} e^{t}$. Hence h is increasing on $\left(-\infty, \log \frac{1}{\alpha}-D_{5}-\log (2 \pi)\right]$ and decreasing on $\left[\log \frac{1}{\alpha}-D_{5}-\log (2 \pi),+\infty\right)$. By 6.2] and a direct calculation, we have

$$
\begin{align*}
h\left(\log \frac{1}{\alpha}-\frac{C_{0}}{4}\right) & =\left(\frac{3}{4}-\alpha\right) C_{0}+1-2 \pi e^{D_{5}-C_{0} / 4}>0, \text { and } \\
h\left(\log \frac{1}{\alpha}+2 \pi D_{4}\right) & =(1-\alpha) C_{0}+2 \pi D_{4}+1-2 \pi e^{D_{5}+2 \pi D_{4}}>0 . \tag{6.6}
\end{align*}
$$

By (6.5) and (6.6), we have $x_{m+k}>2 \pi y_{m+k}+C_{0}$. This finishes the proof of the claim (6.4) and the lemma holds.

Let $D_{3}>0$ be the constant introduced in Lemma 2.11.
Definition. For $\alpha \in(0,1)$ and $y \in \mathbb{R}$, we define

$$
\underline{s}_{\alpha}(y):= \begin{cases}\frac{1}{\alpha}\left(y-\frac{1}{2 \pi} \log \frac{1}{\alpha}-D_{3}\right) & \text { if } \quad y \geqslant \frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1 \tag{6.7}\\ e^{-D_{5}} e^{2 \pi y}-3 & \text { if } \quad y<\frac{1}{2 \pi} \log \frac{1}{\alpha}+D_{3}+1\end{cases}
$$

Lemma 6.5. For each $\alpha \in \mathcal{B}_{N}$ and $\zeta \in \gamma_{\alpha}$, we have

$$
\underline{s}_{\alpha}(\operatorname{Im} \zeta) \leqslant \operatorname{Im} s_{\alpha}(\zeta)
$$

Proof. It follows from the proof of Lemma 2.12 that $D_{4}=D_{3}+1$. Moreover, we choose $D_{5}=D_{3}$ in the proof of Lemma 2.12(a). Then this lemma follows immediately from Lemma 2.12 and the definition of \underline{s}_{α}.

Lemma 6.6. We have $\mathcal{H}_{N} \subset \widetilde{\mathcal{H}}_{N}$.
Proof. The proof is similar to that of Lemma 6.4 Suppose $\alpha \in \mathcal{H}_{N} \backslash \widetilde{\mathcal{H}}_{N}$ by contradiction. Since $\alpha \notin \widetilde{\mathcal{H}}_{N}$, by the definition of $\widetilde{\mathcal{H}}_{N}$, there exist a point $\zeta \in$ $\gamma_{\alpha} \backslash\{1\}$ and an infinite sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\begin{equation*}
\operatorname{Im} \zeta_{n_{k}}<\widetilde{\mathcal{B}}\left(\alpha_{n_{k}+1}\right) \tag{6.8}
\end{equation*}
$$

where

$$
\zeta_{n}:=s_{\alpha_{n}} \circ \cdots \circ s_{\alpha_{1}}(\zeta) \quad \text { for all } n \in \mathbb{N}
$$

By the uniform contraction with respect to the hyperbolic metric as in the proof of Proposition 4.9 and Lemma 5.3, there exists an integer $m \geqslant 1$ such that

$$
\zeta_{m-1} \in \gamma_{m-1} \quad \text { and } \quad \operatorname{Im} \zeta_{m-1} \geqslant 2 C_{0}
$$

where $C_{0}>2 M$ is a large number and $M \geqslant 1$ is introduced in the definition of $\widetilde{\mathcal{B}}\left(\alpha_{n}\right)$. Then by (6.8) there exists an infinite subset $I^{\prime}=I^{\prime}(m, \zeta, \alpha)$ of \mathbb{N} such that for all $k \in I^{\prime}$, we have

$$
\begin{equation*}
\operatorname{Im} \zeta_{m+k-1}<\widetilde{\mathcal{B}}\left(\alpha_{m+k}\right) \tag{6.9}
\end{equation*}
$$

Since $\alpha \in \mathcal{H}_{N}$, by Theorem 6.1, there exists $k_{0}=k_{0}(m) \geqslant 1$ such that $r_{\alpha_{m+k_{0}-1} \circ}$ $\cdots \circ r_{\alpha_{m}}(0) \geqslant \mathcal{B}\left(\alpha_{m+k_{0}}\right)$. A direct calculation shows that for all $k \geqslant k_{0}$, one has

$$
\begin{equation*}
r_{\alpha_{m+k-1}} \circ \cdots \circ r_{\alpha_{m}}(0) \geqslant \mathcal{B}\left(\alpha_{m+k}\right) \tag{6.10}
\end{equation*}
$$

Denote $x_{m-1}:=0$ and $y_{m-1}:=2 C_{0}$. For $k \geqslant 1$, we define

$$
x_{m+k-1}:=r_{\alpha_{m+k-1}} \circ \cdots \circ r_{\alpha_{m}}(0) \quad \text { and } \quad y_{m+k-1}:=\underline{s}_{\alpha_{m+k-1}} \circ \cdots \circ \underline{s}_{\alpha_{m}}\left(2 C_{0}\right)
$$

where $\underline{s}_{\alpha_{n}}$ is the map defined in 6.7. We claim that if C_{0} is large enough, then

$$
\begin{equation*}
2 \pi y_{m+k-1} \geqslant x_{m+k-1}+C_{0} \quad \text { for all } k \geqslant 0 \tag{6.11}
\end{equation*}
$$

Assume that 6.11 holds temporarily. By Lemma 6.5 we have $y_{m+k-1} \leqslant$ $\operatorname{Im} \zeta_{m+k-1}$ for all $k \geqslant 1$. By 6.9, there exists an integer $k \in I^{\prime}$ with $k \geqslant k_{0}$ such that

$$
y_{m+k-1} \leqslant \operatorname{Im} \zeta_{m+k-1}<\widetilde{\mathcal{B}}\left(\alpha_{m+k}\right)=\frac{\mathcal{B}\left(\alpha_{m+k}\right)}{2 \pi}+M
$$

On the other hand, by 6.10), we have $x_{m+k-1} \geqslant \mathcal{B}\left(\alpha_{m+k}\right)$. However, by 6.11) we have $x_{m+k-1} \leq 2 \pi y_{m+k-1}-C_{0}<\mathcal{B}\left(\alpha_{m+k}\right)$, which is a contradiction. Hence it suffices to prove the claim (6.11).

Obviously, 6.11) is true when $k=0$. Suppose $2 \pi y_{m+k-1} \geqslant x_{m+k-1}+C_{0}$ for some $k \geqslant 0$. Then one can divide the arguments into three cases as in Lemma 6.4 to obtain $2 \pi y_{m+k} \geqslant x_{m+k}+C_{0}$. We omit the details since the rest proof is completely the same.

Remark. In fact, if $\alpha \in \mathcal{H}_{N}$, then according to Ghy84 and Her85, the boundary of the Siegel disk of each $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ contains the unique critical value $-\frac{4}{27}$. This implies that $\alpha \in \widetilde{\mathcal{H}}_{N}$ by Proposition 5.7. Therefore in this way we also obtain $\mathcal{H}_{N} \subset \widetilde{\mathcal{H}}_{N}$.

Proof of the second part of the Main Theorem. Let $\alpha \in \mathrm{HT}_{N}$ be an irrational number of sufficiently high type. By Lemmas 6.4 and $6.6, \alpha \in \mathcal{H}_{N}$ if and only if $\alpha \in \widetilde{\mathcal{H}}_{N}$. By Proposition 5.7, $\alpha \in \widetilde{\mathcal{H}}_{N}$ if and only if $\mathrm{cv}=f\left(\mathrm{cp}_{f}\right) \in \partial \Delta_{f}$, where Δ_{f} is the Siegel disk of $f \in \mathcal{I} \mathcal{S}_{\alpha} \cup\left\{Q_{\alpha}\right\}$ and cp_{f} is the unique critical point of f. Therefore, $\alpha \in \mathcal{H}_{N}$ if and only if $\mathrm{cp}_{f} \in \partial \Delta_{f}$.

Appendix A. Some calculations in Fatou coordinate planes

In this appendix we give the proof of Lemma 5.1 based on some estimates in IS08. Let $0<\alpha<1 / 2$. Define

$$
Y:=\left\{w=x+y \mathrm{i} \in \mathbb{C}:-\frac{1}{2 \pi \alpha}\left(\arccos \frac{\sqrt{3}}{2 e^{2 \pi \alpha y}}-\frac{\pi}{6}\right)<x<\frac{2}{3 \alpha} \text { and } y>1\right\}
$$

and $R:=\frac{4}{27} e^{3 \pi}$ (see Figure 8 .

Figure 8: The domain Y and its image under $w \mapsto e^{-2 \pi \mathrm{i} \alpha w}$.

Lemma A.1. There exists $\varepsilon^{\prime}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha}$ with $\alpha \in\left(0, \varepsilon^{\prime}\right]$,

$$
\tau_{f}(Y) \subset \mathbb{D}(0, R) \backslash[0, R)
$$

where $\tau_{f}: \mathbb{C} \rightarrow \widehat{\mathbb{C}} \backslash\left\{0, \sigma_{f}\right\}$ is the universal covering defined in 2.13).
Proof. By a direct calculation, we have

$$
\begin{aligned}
\left\{e^{-2 \pi \mathrm{i} \alpha w}: w \in Y\right\} & =\left\{\xi \in \mathbb{C}:|\xi|>e^{2 \pi \alpha} \text { and }-\frac{4 \pi}{3}<\arg \xi<\arccos \frac{\sqrt{3}}{2|\xi|}-\frac{\pi}{6}\right\} \\
& =\mathbb{C} \backslash\left(\overline{\mathbb{D}}\left(0, e^{2 \pi \alpha}\right) \cup\left\{\xi \in \mathbb{C}: \frac{\pi}{3} \leqslant \arg \left(\xi-\frac{1-\sqrt{3} \mathrm{i}}{2}\right) \leqslant \frac{2 \pi}{3}\right\}\right)
\end{aligned}
$$

Since $4 \pi \alpha /(3 R)<e^{2 \pi \alpha}-1$, we have (see Figure 8)

$$
e^{-2 \pi \mathrm{i} \alpha w} \in \mathbb{C} \backslash\left(\overline{\mathbb{D}}\left(1, \frac{4 \pi \alpha}{3 R}\right) \cup\left\{\xi \in \mathbb{C}: \frac{\pi}{3} \leqslant \arg (\xi-1) \leqslant \frac{2 \pi}{3}\right\}\right)
$$

This implies that

$$
\begin{equation*}
\frac{1}{1-e^{-2 \pi \mathrm{i} \alpha w}} \in \mathbb{D}\left(0, \frac{3 R}{4 \pi \alpha}\right) \backslash\left\{\xi \in \mathbb{C}: \frac{\pi}{3} \leqslant \arg \xi \leqslant \frac{2 \pi}{3}\right\} . \tag{A.1}
\end{equation*}
$$

Note that $\arcsin x \leqslant \frac{\pi}{3} x$ for $0 \leqslant x \leqslant 1 / 2$. By [IS08, Main Theorem 1(a)], $\left|f_{0}^{\prime \prime}(0)-4.91\right| \leqslant 1.14$ for all $f_{0} \in \mathcal{I} \mathcal{S}_{0}$. Hence $\left|\arg f_{0}^{\prime \prime}(0)\right|<\arcsin \frac{1}{3} \leqslant \frac{\pi}{9}$ and

$$
-\frac{4 \pi \mathrm{i} \alpha}{f_{0}^{\prime \prime}(0)} \in\left\{z \in \mathbb{C}: \frac{4 \pi \alpha}{7}<|z|<\frac{8 \pi \alpha}{7} \text { and } \frac{25 \pi}{18}<\arg z<\frac{29 \pi}{18}\right\} .
$$

By 2.11) and the pre-compactness of $\mathcal{I} \mathcal{S}_{\alpha}$, there exists a small $\varepsilon^{\prime}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha}$ with $\alpha \in\left(0, \varepsilon^{\prime}\right]$, then

$$
\begin{equation*}
\sigma_{f} \in\left\{z \in \mathbb{C}: \frac{\pi \alpha}{2}<|z|<\frac{4 \pi \alpha}{3} \text { and } \frac{4 \pi}{3}<\arg z<\frac{5 \pi}{3}\right\} \tag{A.2}
\end{equation*}
$$

By (A.1) and A.2 we have

$$
\tau_{f}(w)=\frac{\sigma_{f}}{1-e^{-2 \pi \mathrm{i} \alpha w}} \in \mathbb{D}(0, R) \backslash[0, R)
$$

The proof is complete.
For each $C \geqslant 1$, we define a subset of \mho (see 5.1) :

$$
\begin{equation*}
\mho_{1}(C):=\{\zeta \in \mathbb{C}: 1 / 4<\operatorname{Re} \zeta<7 / 4 \text { and } \operatorname{Im} \zeta \geqslant C\} \tag{A.3}
\end{equation*}
$$

Lemma A.2. There exist $C>1$ and $\varepsilon^{\prime \prime}>0$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha}$ with $\alpha \in\left(0, \varepsilon^{\prime \prime}\right]$, we have

$$
L_{f}^{-1}\left(\overline{\mho_{1}(C)}\right) \subset Y
$$

where $L_{f}: \widetilde{\mathcal{P}}_{f} \rightarrow \mathbb{C}$ is the univalent map defined in 2.14.
Proof. Let $D_{2}>0$ be introduced in Proposition 2.10. For $y>0$, we define

$$
\varphi_{1}(y):=\log \left(2+\sqrt{y^{2}+(7 / 4)^{2}}\right)
$$

There exists a constant $C>0$ depending only on D_{2} such that if $y \geqslant C$, then

$$
\begin{equation*}
y-2 D_{2} \varphi_{1}(y)>1 \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{y}{2 \pi}\left(\arccos \frac{\sqrt{3}}{2 e^{2 \pi}}-\frac{\pi}{6}\right)-D_{2} \varphi_{1}(y)>0 \tag{A.5}
\end{equation*}
$$

Let $0<\alpha \leqslant 1 / C$. By Proposition 2.10 , we have $L_{f}^{-1}\left(\overline{\mho_{1}(C)}\right) \subset X_{1} \cup X_{2} \cup X_{3}$, where

$$
\begin{aligned}
X_{1} & =\left\{x+y \mathrm{i}:-D_{2} \log \left(1+\frac{1}{\alpha}\right) \leqslant x \leqslant D_{2} \log \left(1+\frac{1}{\alpha}\right)+\frac{7}{4} \text { and } y \geqslant \frac{1}{\alpha}\right\}, \\
X_{2} & =\left\{x+y \mathrm{i}:-D_{2} \varphi_{1}(y) \leqslant x \leqslant D_{2} \varphi_{1}(y)+\frac{7}{4} \text { and } y \in\left[C, \frac{1}{\alpha}\right]\right\}
\end{aligned}
$$

and

$$
X_{3}=\left\{x+y \mathrm{i}:-D_{2} \varphi_{1}(C) \leqslant x \leqslant D_{2} \varphi_{1}(C)+\frac{7}{4} \text { and } y \in\left[C-D_{2} \varphi_{1}(C), C\right]\right\}
$$

For $y>0$, we define a continuous function

$$
\phi(y):=\frac{1}{2 \pi \alpha}\left(\arccos \frac{\sqrt{3}}{2 e^{2 \pi \alpha y}}-\frac{\pi}{6}\right) .
$$

Note that $\alpha \log (1+1 / \alpha)$ is uniformly bounded above for $0<\alpha<1$. There exists a constant $\kappa_{1}>0$ depending only on D_{2} such that if $\alpha \in\left(0, \kappa_{1}\right]$, then for $y \geqslant 1 / \alpha$,

$$
\phi(y)-D_{2} \log \left(1+\frac{1}{\alpha}\right) \geqslant \frac{1}{2 \pi \alpha}\left(\arccos \frac{\sqrt{3}}{2 e^{2 \pi}}-\frac{\pi}{6}\right)-D_{2} \log \left(1+\frac{1}{\alpha}\right)>0 .
$$

For $y \in[C, 1 / \alpha]$, we denote $t=2 \pi \alpha y \in[2 \pi \alpha C, 2 \pi]$. Then

$$
\phi(y)-D_{2} \varphi_{1}(y)=y \psi(t)-D_{2} \varphi_{1}(y)
$$

where

$$
\begin{equation*}
\psi(t):=\frac{1}{t}\left(\arccos \frac{\sqrt{3}}{2 e^{t}}-\frac{\pi}{6}\right) \tag{A.6}
\end{equation*}
$$

A direct calculation ${ }^{15}$ shows that $\psi(t)$ is decreasing on $(0,2 \pi]$. By A.5 we have

$$
\phi(y)-D_{2} \varphi_{1}(y) \geqslant \frac{y}{2 \pi}\left(\arccos \frac{\sqrt{3}}{2 e^{2 \pi}}-\frac{\pi}{6}\right)-D_{2} \varphi_{1}(y)>0
$$

Finally, let $y \in\left[C-D_{2} \varphi_{1}(C), C\right]$ and we still denote $t=2 \pi \alpha y$. A direct calculation shows that $\lim _{t \rightarrow 0^{+}} \psi(t)=\sqrt{3}$, where ψ is defined in A.6. By A.4, there exists a constant $\kappa_{2}>0$ depending only on D_{2} such that if $\alpha \in\left(0, \kappa_{2}\right]$, then for $y \in$ $\left[C-D_{2} \varphi_{1}(C), C\right]$ we have

$$
\phi(y)-D_{2} \varphi_{1}(C) \geqslant y-D_{2} \varphi_{1}(C) \geqslant\left(C-D_{2} \varphi_{1}(C)\right)-D_{2} \varphi_{1}(C)>1
$$

Let $\kappa_{3}>0$ be a constant depending only on D_{2} such that $D_{2} \varphi_{1}\left(\frac{1}{\alpha}\right)+\frac{7}{4}<\frac{2}{3 \alpha}$ for all $\alpha \in\left(0, \kappa_{3}\right]$. The proof is finished if we set $\varepsilon^{\prime \prime}:=\min \left\{1 / C, \kappa_{1}, \kappa_{2}, \kappa_{3}\right\}$.
Proof of Lemma 5.1. For $f_{0} \in \mathcal{I} \mathcal{S}_{0}$, one can define $\mathcal{C}_{f_{0}}$ and $\mathcal{C}_{f_{0}}^{\sharp}$ as in 2.3) similarly (Replacing \mathcal{P}_{f} and Φ_{f} there by $\mathcal{P}_{\text {attr, } f_{0}}$ and $\Phi_{a t t r, f_{0}}$). We first show that (5.2) holds for $f_{0} \in \mathcal{I} \mathcal{S}_{0}$ and then use an argument of continuity.

The Main Theorem 1 in IS08 was proved by transferring the parabolic fixed point 0 of $f_{0} \in \mathcal{I} \mathcal{S}_{0}$ to ∞ and a class corresponding to $\mathcal{I} \mathcal{S}_{0}$ was defined (see IS08, §5.A]):

$$
\mathcal{I S}_{0}^{Q}:=\left\{\begin{array}{l|l}
F=Q \circ \varphi^{-1} & \begin{array}{l}
\varphi: \widehat{\mathbb{C}} \backslash E \rightarrow \widehat{\mathbb{C}} \backslash\{0\} \text { is univalent } \\
\varphi(\infty)=\infty \text { and } \varphi^{\prime}(\infty)=1
\end{array}
\end{array}\right\}
$$

where E is the ellipse defined in (2.1) and $Q(z)=z\left(1+\frac{1}{z}\right)^{6} /\left(1-\frac{1}{z}\right)^{4}$ is a parabolic map. Each map in this class has a parabolic fixed point at ∞, a critical point at $\mathrm{cp}_{F}:=\varphi(5+2 \sqrt{6})$ and a critical value at $\mathrm{cv}_{Q}=27$ which is independent of F.

By [IS08, Lemma 5.14(a)], P and Q are related by $Q=\psi_{0}^{-1} \circ P \circ \psi_{1}$, where $\psi_{1}(z)=-4 z /(1+z)^{2}$ is defined in 2.2) and $\psi_{0}(z)=-4 / z$. By IS08, Proposition $5.3(\mathrm{c})$], there exists a one-to-one correspondence between $\mathcal{I} \mathcal{S}_{0}$ and $\mathcal{I} \mathcal{S}_{0}^{Q}$. For $F \in$ $\mathcal{I} \mathcal{S}_{0}^{Q}$, one has natural definitions of the attracting petal $\mathcal{P}_{\text {attr, } F}$, repelling petal $\mathcal{P}_{\text {rep }, F}$, attracting Fatou coordinate $\Phi_{a t t r, F}$ and repelling Fatou coordinate $\Phi_{\text {rep }, F}$ etc based on the definitions relating to $f_{0} \in \mathcal{I} \mathcal{S}_{0}$ in $\$ 2.1$. For example, the attracting Fatou coordinate of F is defined as $\Phi_{\text {attr, } F}(z)=\Phi_{\text {attr, } f_{0}} \circ \psi_{0}(z)$.

For $f_{0} \in \mathcal{I} \mathcal{S}_{0}$, we define a topological triangle

$$
\mathcal{Q}_{f_{0}}:=\left\{z \in \mathcal{P}_{a t t r, f_{0}}: \Phi_{a t t r, f_{0}}(z) \in \mho\right\}
$$

In order to prove 5.2 , it is convenient to work in the corresponding dynamical plane of $F=\psi_{0}^{-1} \circ f_{0} \circ \psi_{0} \in \mathcal{I} \mathcal{S}_{0}^{Q}$. Define

$$
D_{0, F}:=\left\{z \in \mathcal{P}_{a t t r, F}: 0<\operatorname{Re} \Phi_{a t t r, F}(z)<1 \text { and } \operatorname{Im} \Phi_{a t t r, F}(z)>-2\right\}
$$

and $D_{1, F}:=F\left(D_{0, F}\right)$. By [IS08, Proposition 5.7(e)], for $z \in \bar{D}_{0, F}$ we have

$$
|z| \geqslant 0.05>27 e^{-3 \pi} \quad \text { and } \quad z \notin \mathbb{R}_{-} .
$$

By [IS08, Proposition 5.6(b)], for $z \in \bar{D}_{1, F}$ we have

$$
|z| \geqslant \frac{25}{\sqrt{3}} \sin \frac{\pi}{3}=\frac{25}{2}>27 e^{-3 \pi} \quad \text { and } \quad z \notin \mathbb{R}_{-}
$$

Let $R=\frac{4}{27} e^{3 \pi}$. We have

$$
\begin{equation*}
\bar{D}_{0, F} \cup \bar{D}_{1, F} \subset \psi_{0}^{-1}(\mathbb{D}(0, R) \backslash[0, R))=\mathbb{C} \backslash\left(\overline{\mathbb{D}}\left(0,27 e^{-3 \pi}\right) \cup \mathbb{R}^{-}\right) \tag{A.7}
\end{equation*}
$$

By the definition of $\mathcal{Q}_{f_{0}}$, we have

$$
\psi_{0}^{-1}\left(\mathcal{Q}_{f_{0}}\right)=\left\{z \in \mathcal{P}_{a t t r, F}: 1 / 4<\operatorname{Re} \Phi_{a t t r, F}(z)<7 / 4 \text { and } \operatorname{Im} \Phi_{a t t r, F}(z)>-2\right\}
$$

[^11]Therefore, by A.7 we have $\psi_{0}^{-1}\left(\overline{\mathcal{Q}}_{f_{0}} \backslash\{0\}\right) \subset \bar{D}_{0, F} \cup \bar{D}_{1, F}$. This implies that

$$
\begin{equation*}
\overline{\mathcal{Q}}_{f_{0}} \backslash\{0\} \subset \mathbb{D}(0, R) \backslash[0, R) \quad \text { for all } f_{0} \in \mathcal{I} \mathcal{S}_{0} \tag{A.8}
\end{equation*}
$$

Let $C>1$ be the constant introduced in Lemma A. 2 and $\mho_{1}=\mho_{1}(C)$ be defined in A.3. By Lemmas A. 1 and A.2. for every $f \in \overline{\mathcal{I} \mathcal{S}_{\alpha}}$ with $0<\alpha \leqslant \min \left\{\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right\}$, we have

$$
\Phi_{f}^{-1}\left(\bar{\mho}_{1}\right)=\tau_{f} \circ L_{f}^{-1}\left(\bar{\mho}_{1}\right) \subset \mathbb{D}(0, R) \backslash[0, R)
$$

Define

$$
\mho_{2}:=\overline{\mho \backslash \mho_{1}}=\{\zeta \in \mathbb{C}: 1 / 4 \leqslant \operatorname{Re} \zeta \leqslant 7 / 4 \text { and }-2 \leqslant \operatorname{Im} \zeta \leqslant C\} .
$$

By A.8, the continuity of the Fatou coordinates in Proposition 2.2. d) (see also Shi00, Proposition 3.2.2]) and the pre-compactness of $\mathcal{I} \mathcal{S}_{0}$, there exists a constant $0<\varepsilon_{4}^{\prime} \leqslant \min \left\{\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right\}$ such that for all $f \in \mathcal{I} \mathcal{S}_{\alpha}$ with $\alpha \in\left(0, \varepsilon_{4}^{\prime}\right]$, we have $\Phi_{f}^{-1}\left(\mho_{2}\right) \subset$ $\mathbb{D}(0, R) \backslash[0, R)$ and hence $\overline{\mathcal{Q}}_{f} \backslash\{0\}=\Phi_{f}^{-1}(\bar{\mho}) \subset \mathbb{D}(0, R) \backslash[0, R)$.

References

[ABC04] A. Avila, X. Buff, and A. Chéritat, Siegel disks with smooth boundaries, Acta Math. 193 (2004), no. 1, 1-30.
[AC18] A. Avila and D. Cheraghi, Statistical properties of quadratic polynomials with a neutral fixed point, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 8, 2005-2062.
[AL22] A. Avila and M. Lyubich, Lebesgue measure of Feigenbaum Julia sets, Ann. of Math. (2) 195 (2022), no. 1, 1-88.
[BC07] X. Buff and A. Chéritat, How regular can the boundary of a quadratic Siegel disk be?, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1073-1080.
[BC12] , Quadratic Julia sets with positive area, Ann. of Math. (2) $\mathbf{1 7 6}$ (2012), no. 2, 673-746.
[BCR09] X. Buff, A. Chéritat, and L. Rempe, Arithmetical hedgehogs, manuscript, 2009.
[BF18] A. M. Benini and N. Fagella, Singular values and bounded Siegel disks, Math. Proc. Cambridge Philos. Soc. 165 (2018), no. 2, 249-265.
[Brj71] A. D. Brjuno, Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč. 25 (1971), 119-262; ibid. 26 (1972), 199-239.
[CC15] D. Cheraghi and A. Chéritat, A proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type, Invent. Math. 202 (2015), no. 2, 677-742.
[CDY20] D. Cheraghi, A. DeZotti, and F. Yang, Dimension paradox of irrationally indifferent attractors, arXiv: 2003.12340, 2020.
[CE18] A. Chéritat and A. L. Epstein, Bounded type Siegel disks of finite type maps with few singular values, Sci. China Math. 61 (2018), no. 12, 2139-2156.
[Ché06] A. Chéritat, Ghys-like models for Lavaurs and simple entire maps, Conform. Geom. Dyn. 10 (2006), 227-256.
[Ché11] , Relatively compact Siegel disks with non-locally connected boundaries, Math. Ann. 349 (2011), no. 3, 529-542.
[Che13] D. Cheraghi, Typical orbits of quadratic polynomials with a neutral fixed point: Brjuno type, Comm. Math. Phys. 322 (2013), no. 3, 999-1035.
[Che19] , Typical orbits of quadratic polynomials with a neutral fixed point: non-Brjuno type, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 1, 59-138.
[Che22a] , Topology of irrationally indifferent attractors, arXiv: 1706.02678v3, 2022.
[Ché22b] A. Chéritat, Near parabolic renormalization for unicritical holomorphic maps, Arnold Math. J. 8 (2022), no. 2, 169-270.
[CR16] A. Chéritat and P. Roesch, Herman's condition and Siegel disks of bi-critical polynomials, Comm. Math. Phys. 344 (2016), no. 2, 397-426.
[CS15] D. Cheraghi and M. Shishikura, Satellite renormalization of quadratic polynomials, arXiv: 1509.07843, 2015.
[DL22] D. Dudko and M. Lyubich, Uniform a priori bounds for neutral renormalization, arXiv: 2210.09280, 2022.
[Dou83] A. Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 39-63.
[Dou87] , Disques de Siegel et anneaux de Herman, Bourbaki seminar, Vol. 1986/87, Astérisque, no. 152-153, Soc. Math. France, Paris, 1987, pp. 151-172.
[Gey01] L. Geyer, Siegel discs, Herman rings and the Arnold family, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3661-3683.
[Ghy84] É. Ghys, Transformations holomorphes au voisinage d'une courbe de Jordan, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 16, 385-388.
[GŚ03] J. Graczyk and G. Świa̧tek, Siegel disks with critical points in their boundaries, Duke Math. J. 119 (2003), no. 1, 189-196.
[Her79] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. (1979), no. 49, 5-233.
[Her85] , Are there critical points on the boundaries of singular domains?, Comm. Math. Phys. 99 (1985), no. 4, 593-612.
[Her86] , Conjugaison quasi-symmétrique des difféomorphismes du cercle à des rotations et applications aux disques singuliers de Siegel, manuscript, 1986.
[Her87] , Conjugaison quasi-symmétrique des homéomorphismes analytiques du cercle à des rotations, preliminary manuscript, 1987.
[IS08] H. Inou and M. Shishikura, The renormalization for parabolic fixed points and their perturbation, https://www.math.kyoto-u.ac.jp/~mitsu/pararenorm/, preprint, 2008.
[KZ09] L. Keen and G. Zhang, Bounded-type Siegel disks of a one-dimensional family of entire functions, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 137-164.
[McM98] C. T. McMullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, Acta Math. 180 (1998), no. 2, 247-292.
[Mil06] J. Milnor, Dynamics in one complex variable, third ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006.
[Pér92] R. Pérez-Marco, Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), Astérisque (1992), no. 206, 273-310.
[Pér97] \qquad , Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243-294.
[Pom75] C. Pommerenke, Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[PZ04] C. L. Petersen and S. Zakeri, On the Julia set of a typical quadratic polynomial with a Siegel disk, Ann. of Math. (2) 159 (2004), no. 1, 1-52.
[Rem04] L. Rempe, On a question of Herman, Baker and Rippon concerning Siegel disks, Bull. London Math. Soc. 36 (2004), no. 4, 516-518.
[Rem08] , Siegel disks and periodic rays of entire functions, J. Reine Angew. Math. 624 (2008), 81-102.
[Rip94] P. J. Rippon, On the boundaries of certain Siegel discs, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 821-826.
[Rog92a] J. T. Rogers, Is the boundary of a Siegel disk a Jordan curve?, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 284-287.
[Rog92b] , Singularities in the boundaries of local Siegel disks, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 803-821.
[Rog98] , Diophantine conditions imply critical points on the boundaries of Siegel disks of polynomials, Comm. Math. Phys. 195 (1998), no. 1, 175-193.
[Shi98] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147 (1998), no. 2, 225-267.
[Shi00] , Bifurcation of parabolic fixed points, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 325-363.
[Shi01] , Herman's theorem on quasisymmetric linearization of analytic circle homemorphisms, manuscript, 2001.
[Sie42] C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612.
[Yam08] M. Yampolsky, Siegel disks and renormalization fixed points, Holomorphic dynamics and renormalization, Fields Inst. Commun., vol. 53, Amer. Math. Soc., Providence, RI, 2008, pp. 377-393.
[Yan13] F. Yang, On the dynamics of a family of entire functions, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 11, 2047-2072.
[Yan21] , Parabolic and near-parabolic renormalizations for local degree three, arXiv: $1510.00043 \mathrm{v} 4,2021$.
[Yoc88] J.-C. Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de (C, 0), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 55-58.
[Yoc95] , Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque (1995), no. 231, 3-88.
[Yoc02] , Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998), Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, pp. 125-173.
[YZ01] M. Yampolsky and S. Zakeri, Mating Siegel quadratic polynomials, J. Amer. Math. Soc. 14 (2001), no. 1, 25-78.
[Zak99] S. Zakeri, Dynamics of cubic Siegel polynomials, Comm. Math. Phys. 206 (1999), no. 1, 185-233.
[Zak10] , On Siegel disks of a class of entire maps, Duke Math. J. 152 (2010), no. 3, 481-532.
[ZFS20] S. Zhang, J. Fu, and X. Shi, Bounded type Siegel disks of a family of sine families, J. Math. Anal. Appl. 488 (2020), no. 1, 124041, 12 pp.
[Zha05] G. Zhang, On the dynamics of $e^{2 \pi i \theta} \sin (z)$, Illinois J. Math. 49 (2005), no. 4, 1171-1179.
[Zha11] , All bounded type Siegel disks of rational maps are quasi-disks, Invent. Math. 185 (2011), no. 2, 421-466.
[Zha14] , Polynomial Siegel disks are typically Jordan domains, arXiv: 1208.1881v3, 2014.
[Zha16] , On PZ type Siegel disks of the sine family, Ergodic Theory Dynam. Systems 36 (2016), no. 3, 973-1006.

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
E-mail address: mitsu@math.kyoto-u.ac.jp
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
E-mail address: yangfei@nju.edu.cn

[^0]: Date: April 20, 2024.
 2020 Mathematics Subject Classification. Primary 37F10; Secondary 37F50, 37F25.
 Key words and phrases. Siegel disks; Jordan domains; Herman condition; high type; nearparabolic renormalization.

[^1]: ${ }^{1}$ The word "regularity" here means the topological and geometric properties of the boundaries of the Siegel disks. See BC07.

[^2]: ${ }^{2}$ The precise value of N is not known. But the value of N is likely to be not less than 20 . It is conjectured that a variation of the invariant class and renormalization may be defined for $N=1$.

[^3]: ${ }^{3}$ The domain U is denoted by V in IS08.

[^4]: ${ }^{4}$ The definition of $\mathcal{I} \mathcal{S}_{0}$ is based on the class \mathcal{F}_{1} in IS08. There the conformal map φ in the definition of $\mathcal{I} \mathcal{S}_{0}$ is required to have a quasiconformal extension to \mathbb{C}. This condition is used by Inou and Shishikura to prove the uniform contraction of the near-parabolic renormalization operator under the Teichmüller metric. We modify the definition here since we will not use this property in this paper.

[^5]: ${ }^{5}$ Note that $\operatorname{Exp}(0)=-4 / 27$ is a critical value of $\mathcal{R} f$ and $\mathbb{E x p}(+\infty \mathrm{i})=0$. In some literature, the modified exponential map is defined as $\zeta \mapsto-\frac{4}{27} e^{2 \pi \mathrm{i} \zeta}$ so that $(\mathcal{R} f)^{\prime}(0)=e^{-2 \pi \mathrm{i} / \alpha_{f}}$. In order to apply the classical continued fraction expansion conveniently, in this paper we put a complex conjugacy s in the definition of $\mathbb{E x p}$.
 ${ }^{6}$ This is the top near-parabolic renormalization and the bottom near-parabolic renormalization around the fixed point σ_{f} can be defined similarly. See [IS08 §3].

[^6]: ${ }^{7}$ In particular, from the proof one can see that Lemma 2.5 will not be true if b_{f} is chosen as $k_{f}+\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}-1$.
 ${ }^{8}$ For example, this happens when ζ lies on $\left(\Phi_{f}\left(S_{f}\right)+j\right) \cap\left(\Phi_{f}\left(S_{f}\right)+j+1\right)$ for $1 \leqslant j \leqslant b_{f}-1$.

[^7]: ${ }^{9}$ We always assume that α is small such that $\Theta_{\alpha}(C)$ is connected and hence $1 /(2 \alpha) \in \Theta_{\alpha}(C)$.
 ${ }^{10}$ In Che19 Lemma $\left.6.7(2)\right], R$ is contained in $[3.25,1 /(2 \alpha)]$. In fact the estimate of $\left|L_{f}^{\prime}(w)\right|$ there still holds if $R \in[3.25, C / \alpha]$ for every $C \geqslant 1 / 2$ (the only difference is that the constants in the estimate need to be modified).
 ${ }^{11}$ By Lemma 2.8. c), the number x_{f} defined in Che19, Equation (50)] satisfies $x_{f} \geqslant\left\lfloor\frac{1}{\alpha}\right\rfloor-\boldsymbol{k}$. Hence by Che19, Lemma 6.11] this part holds for all $\zeta \in \Phi_{f}\left(\mathcal{P}_{f}\right) \backslash \mathbb{D}(0, r)$.

[^8]: ${ }^{12}$ By setting $r:=2 \pi \varrho, \beta:=\theta-\frac{\pi}{2}$ and considering the derivative of $\beta \mapsto\left(\varphi\left(\frac{r}{2 \pi} e^{\mathrm{i}\left(\beta+\frac{\pi}{2}\right)}\right)\right)^{2}$, it suffices to verify that $e^{-r \cos \beta} \sin \beta-\sin (\beta-r \sin \beta)>0$ for any $r \in\left(0, \frac{4 \pi}{3}\right]$ and $\beta \in\left(0, \frac{3 \pi}{4}\right]$. This can be done by considering three cases: (1) $\beta-r \sin \beta \in[-\pi, 0]$; (2) $\beta-r \sin \beta \in\left(0, \frac{\pi}{2}\right]$ and $\beta \in\left(0, \frac{\pi}{2}\right]$; and (3) $\beta-r \sin \beta \in\left(0, \frac{3 \pi}{4}\right]$ and $\beta \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right]$.

[^9]: ${ }^{13}$ Here we use the fact that for any $x \in\left(0,\left\lfloor\frac{1}{\alpha_{n}}\right\rfloor-\boldsymbol{k}\right), \lim _{y \rightarrow+\infty} \Phi_{n}^{-1}(x+y \mathrm{i})=0$. See CS15, Proposition 2.4(a)] or Che19 Lemma 6.9].

[^10]: ${ }^{14}$ As before we use the fact that $\lim _{\operatorname{Im} \zeta \rightarrow+\infty} \Phi_{n-i}^{-1}(\zeta)=0$, where $\zeta \in \Phi_{n-i}\left(\mathcal{P}_{n-i}\right)$.

[^11]: ${ }^{15}$ Note that $\psi(t)=\frac{1}{t} \int_{0}^{t}\left(\frac{4}{3} e^{2 s}-1\right)^{-1 / 2} \mathrm{~d} s$ can be seen as the average of the integral of $\widetilde{\psi}(s)=$ $\left(\frac{4}{3} e^{2 s}-1\right)^{-1 / 2}$ in the interval $(0, t)$. Since $s \mapsto \widetilde{\psi}(s)$ is strictly decreasing in $(0,+\infty)$, we conclude that $t \mapsto \psi(t)$ is also.

