THE HIGH TYPE QUADRATIC SIEGEL DISKS ARE JORDAN
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ABSTRACT. Let a be an irrational number of sufficiently high type and suppose
Po(z) = e2may 4 22 has a Siegel disk A, centered at the origin. We prove
that the boundary of A, is a Jordan curve, and that it contains the critical
point —e2™i® /2 if and only if o is a Herman number.
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1. INTRODUCTION

Let f be a non-linear holomorphic function with f(0) = 0 and f/(0) = e*"'@,
where 0 < a < 1 is an irrational number. We say that f is locally linearizable at the
fixed point 0 if there exists a holomorphic function defined near 0 which conjugates
f to the rigid rotation R, (z) = €2>™*2z. The maximal region in which f is conjugate
to R, is a simply connected domain called the Siegel disk of f centered at 0.

The existence of the Siegel disk of f is dependent on the arithmetic condition of
a€(0,1)\ Q. Let

1

[0;a1,az,---] = — 1
a1 + 1
as + —
be the continued fraction expansion of «. The rational numbers p,/q, := [0; a1,

-+, ap], n = 1, are the convergents of a, where p,, and ¢, are coprime positive
integers. If « belongs to the Brjuno class

B:={a=[0;a1,a2,---] € (0,1)\ Q| 7L, qgllog%ﬂ < 400},

then any holomorphic germ f with f(0) = 0 and f/(0) = ?™¢ is locally linearizable
at 0 and hence f has a Siegel disk centered at the origin [Sied2] Brj71]. Yoccoz
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proved that the Brjuno condition is also necessary for the local linearization of the
quadratic polynomial .

P.(2) =™z 4+ 2*:C— C
at the origin [Yoc95].

1.1. Topology and obstructions of Siegel disk boundaries. The dynamics
in the Siegel disks is simple and one mainly concerns the properties on the bound-
aries. In the 1980s, Douady and Sullivan asked the following question (see [Dou83],
[Rog92al):

Question. Is the boundary of a Siegel disk a Jordan curve?

This question is still open, even for quadratic polynomials. However, much
progress has been made on this problem for various families of functions under
preconditions. An irrational number o = [0;a1,as,---] is called bounded type if
supn>1{an} < +00. Douady-Herman, Zakeri, Yampolsky-Zakeri, Shishikura and
Zhang, respectively, proved that the boundaries of bounded type Siegel disks of
quadratic polynomials, cubic polynomials, some quadratic rational maps, all poly-
nomials and all rational maps with degree at least two are quasi-circles (hence are
Jordan curves) (see [Dou87|, [Her87|, [Zak99], [YZ01], [Shi01], [Zhalll]). This is
also true for some transcendental entire functions (see [GeyO1], [Zha05], [Ché06],
[KZ09], [Zak10], [Yan13], [CE1S], [ZES20]).

An important breakthrough was made by Petersen and Zakeri in 2004. They
proved that for almost all irrational number «a, the boundary of the Siegel disk of
the quadratic polynomial P, is a Jordan curve [PZ04]. We refer these irrational
numbers the PZ type, i.e., loga, = O(y/n) as n — oo, where a,, is the n-th digit of
the continued fraction expansion of a. Recently, Zhang generalized this result to
all polynomials [Zhal4] and obtained the same result for the sine family [Zhal6].

Suppose the closure of the Siegel disk of f is compactly contained in the domain
of definition of f. One may wonder what phenomena near the boundary of a Siegel
disk prevents f from having a larger linearization domain. Obviously, the presence
of periodic cycles near the boundary is one of the reasons since any Siegel disk
cannot contain periodic points except the center itself. It was proved by Avila and
Cheraghi that under some condition on « every neighborhood of the Siegel disk
of P, contains infinitely many cycles [AC18|, which is similar to the small cycle
property that prevents linearization (see [Yoc88| and [Pér92]).

On the other hand, note that any Siegel disk cannot contain a critical point.
Hence the second question on the Siegel disk boundary is: Does the boundary of
a Siegel disk always contain a critical point? The answer is no. Ghys and Herman
gave the first examples of polynomials having a Siegel disk whose boundary does
not contain a critical point (see [Ghy84], [Her86] and [Dou87]).

In relation to the results on the regularityﬂ of the boundaries of the Siegel disks
mentioned above (for the bounded type or PZ type rotation numbers), they also
include the statement that the boundaries of those Siegel disks pass through at least
one critical point. In particular, for the bounded type rotation numbers, Graczyk
and Swi@tek proved a very general result: if an analytic function has a Siegel
disk properly contained in the domain of holomorphy and the rotation number is
of bounded type, then the boundary of the corresponding Siegel disk contains a
critical point [GS03].

Herman was one of the pioneers who studied the analytic diffeomorphisms on
the circles [Her79]. He introduced the following subset of irrational numbers.

LThe word “regularity” here means the topological and geometric properties of the boundaries
of the Siegel disks. See [BCOT].
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Definition (Herman numbers). Let H be the set of irrational numbers « such that
every orientation-preserving analytic circle diffeomorphism of rotation number « is
analytically conjugate to the rigid rotation.

Herman proved that the set H is non-empty and contains a subset of Diophantine
numbers [Her79]. Yoccoz proved that H contains all Diophantine numbers (and
hence contains all bounded type and PZ type numbers), and also gave an arithmetic
characterization of the numbers in H [Yoc02].

Suppose f is an analytic function which has a Siegel disk properly contained in
the domain of holomorphy. Ghys proved that if the rotation number belongs to H
and the boundary of the Siegel disk is a Jordan curve, then f has a critical point in
the boundary of the Siegel disk [Ghy84]. Later, Herman generalized this result by
dropping the topological condition on the Siegel disk boundary but requiring that
the restriction of f on the Siegel disk boundary is injective [Her85| (see also [Pér97]).
In particular, he proved that if a unicritical polynomial has a Siegel disk whose
rotation number is contained in #H, then the boundary of the Siegel disk contains
a critical point. Recently, Chéritat and Roesch, Benini and Fagella, respectively,
generalized this result to the polynomials with two critical values [CR16] and to a
special class of transcendental entire functions with two singular values [BFIS)].

For polynomials, Rogers proved that if the Siegel disk A is fixed and the rotation
number is in H, then either A contains a critical point or A is an indecomposable
continuum [Rog98]. For the exponential map Ey(z) = e?™?(e* — 1), it was proved
by Herman that, if Fy has a bounded Siegel disk Ay, then Ejy is injective on 0Ay.
Hence it follows from Herman’s result that Ay is unbounded when 6 € H since
Ep has no critical points [Her85]. Conversely, Herman, Baker and Rippon asked
a question: if Ay is unbounded, is necessarily the singular value —e?™? contained
in 0Ay? Rippon showed that this is true for almost all § [Rip94] and the question
was fully answered positively by Rempe [Rem04] and independently by Buff and
Fagella (unpublished). Moreover, Rempe also studied the Herman type Siegel disks
of some other transcendental entire functions [Rem08].

1.2. The statement of the main result. The proofs of the regularity results
for the bounded type and PZ type Siegel disks stated previously are all based on
surgery: either quasiconformal or trans-quasiconformal. In these proofs, some pre-
models, and usually, a single or a family of Blaschke products are needed. By
surgery, the regularity and the existence of critical points on the boundaries of
Siegel disks were proved at the same time.

In this paper, without using surgeries we shall prove that the Siegel disks of some
holomorphic maps are Jordan domains and that Herman type rotation number is
also necessary for the existence of critical points on the Siegel disk boundaries. To
this end, it requires us to restrict the rotation numbers to a special class since we
need to use near-parabolic renormalization scheme. In [IS08|, a renormalization
operator R and a compact class F that is invariant under R were introduced.
All the maps in F have a special covering structure. They have a neutral fixed
point at the origin and a unique simple critical point in their domains of definition.
The renormalization operator assigns a new map in F to a given map of F that
is obtained by considering the return map to a sector landing at the origin. As
a return map, one iterate of Rf corresponds to many iterates of f € F. To
study very large iterates of f near 0, one hopes to repeat this process infinitely
many times. However, to iterate R infinitely many times, the scheme requires the
rotation number a, where f/(0) = €27, to be of high type, that is, a belongs to

HTy :={a=[0;a1,a2,---]1 € (0,1)\Q | a, > N for all n > 1}
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for some big integerﬂ N € N. In this paper we prove the following main result.

Main Theorem. Let o be an irrational number of sufficiently high type and sup-
pose Po(z) = €™z + 22 has a Siegel disk A, centered at the origin. Then the
boundary of A, is a Jordan curve. Moreover, it contains the critical point —e?™% /2
if and only if « is a Herman number.

Note that HT 5 has measure zero if N > 2. However, all the usual types of irra-
tional numbers have non-empty intersections with HT 5: bounded type, PZ type,
Herman type and Brjuno type etc. In particular, HT 5y contains some irrational
numbers such that the Siegel disk boundary of P, has the regularity studied in
[ABC04], [BCO7] and the self-similarity studied in [McM98]. Rogers proved that
the boundary of any bounded irreducible Siegel disk A is either tame: the confor-
mal map from A to the unit disk has a continuous extension to 0A, or wild: A
is an indecomposable continuum [Rog92b]. Recently, Chéritat constructed a holo-
morphic germ such that the corresponding Siegel disk is compactly contained in the
domain of definition but the boundary is not locally connected [Chéll]. Our main
theorem indicates that the boundaries of quadratic Siegel disks should be tame.

As we have seen, in order to guarantee the existence of critical points on the
boundaries of Siegel disks, Herman condition (i.e., the rotation number is of Herman
type) appears usually as a requirement of sufficiency in most of the literature. As
far as we know, the necessity only appears in [BCRQ9], where it proves that Herman
condition is equivalent to the existence of a critical point on the boundary of the
Siegel disks of a family of toy models.

In fact, besides the quadratic polynomials, the proof of the Main Theorem in
this paper is also valid for all the maps in Inou-Shishikura’s invariant class. Hence
the Main Theorem is also true for some rational maps and transcendental entire
functions. We would like to point out that it was proved in [Yam08] and [AL22] that
the bounded type Siegel disks of the maps in Inou-Shishikura’s class are quasi-disks
if the rotation number is of sufficiently high type.

By constructing topological models of the post-critical sets of the maps in the
Inou-Shishikura’s class for all high type numbers, Cheraghi gave an alternative
proof of the Main Theorem independently (see [Che22a]). Our proofs are different:
we analyze the dynamics and carry out the computations in the renormalization
tower directly.

Recently, Dudko and Lyubich made significant progress on the quadratic Siegel
polynomials P, [DL22]. They proved that the restriction of P, on the boundary of
the Siegel disk A, of P, is injective, which implies that A, is not the whole Julia
set of P, (actually they proved a more general result for all @ € R\ Q).

1.3. Strategy of the proof. Let f; be the normalized quadratic polynomial or
a map in Inou-Shishikura’s class (see satisfying fo(0) = 0 and f}(0) = 2™,
where « is of Brjuno type and of sufficiently high type. Forn > 0, let f,+1 = R f. be
the sequence of the maps which are generated by the near-parabolic renormalization
operator R. For each n > 0, we use P, to denote the perturbed petal of f,, and @,
the corresponding perturbed Fatou coordinate (see definitions in .

In order to prove that the boundary of the Siegel disk of fj is a Jordan curve,
we construct a sequence of continuous curves (7§ : [0,1] = C)pen in the perturbed
Fatou coordinate plane of f by using a renormalization tower. Each 7 is obtained
from ~9 (in the perturbed Fatou coordinate plane of f,,) by going up through the
renormalization tower, i.e., by lifting and then spreading around. In Lemma[3.2] we

2The precise value of N is not known. But the value of N is likely to be not less than 20. It is
conjectured that a variation of the invariant class and renormalization may be defined for N = 1.
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show that the inner radius of the Siegel disk A,, of f, is estimated by the Brjuno
sum up to a multiplicative constant. Then we choose the suitable height of 79 such
that ®1(72) is contained in the Siegel disk A,, of f,,. Consequently, &5 (v§) with
n € N are curves in the Siegel disk of f.

The key ingredient is Proposition the sequence of the continuous curves
(v : [0,1] = C)pen converges uniformly to a limit v : [0,1] — C, which is
also a continuous curve. For the proof, we use a family of “straight” curves n° to
encode the difference between 7Y and 7} in the Fatou coordinate plane of f,,. The
diameters of the n0 are discussed in Step 2 of the proof. The diameters of the lifts
of n% are estimated by two kinds of contraction: one is the uniform contraction
with respect to the hyperbolic metrics in subdomains of the renormalization tower
(see Lemma and the other is “Brjuno-type arithmetic” — estimates from §2.4
(see also Lemma [1.8). In conclusion, the oscillations of the curves (7§ : [0,1] —
C)nen are bounded in terms of the Brjuno sum, i.e., (7§ : [0,1] = C)pen form an
equicontinuous family. Because of the contraction by going up the renormalization
tower, the sequence @, 1(’)/61) converges exponentially fast towards the boundary of

Ay (see Proposition .

For the second part of the Main Theorem which concerns Herman condition, we
construct a Jordan arc I'g in the non-escaping set of f which connects the unique
critical value cv with the origin, where g := ®¢(I'o) is contained in a half-infinite
strip U with finite width. The existence of I'y is proved in Lemma 5.3 and the proof
is also based on the contraction via going up the renormalization tower. To apply
the contraction property successfully, the shape of ®; 1(U) needs to be controlled
and this is Lemma [5.1] whose proof is given in the Appendix. The construction of
Iy guarantees that I';, = Expo ®,,_1([',,_1) is also a Jordan arc connecting cv with
the origin and v, = ®,,(T,,) is contained in U for all n > 1.

We study the homeomorphism s,, := @, o Exp : v,-1 — 7, from the simple
curve in one level of the renormalization to another. Lemmas [5.4] and [£.5] estimate
the dynamics of the s,, in terms of the Brjuno sum. Based on the sequence
(Sa,, Jnen, we define a new class of irrational numbers Hy which is a subset of
Brjuno numbers, where N is a large number. After comparing the properties of
Sa,, and Yoccoz’s arithmetic characterization of H, we prove that ﬁN is exactly
equal to the set of high type Herman numbers (see Lemmas and . On the
other hand, we prove that the boundary of the Siegel disk of fo contains the critical
value cv if and only if a« € Hy (see Proposition . This implies that the second
part of the Main Theorem holds.

1.4. Some observations. There are several applications of Inou-Shishikura’s in-
variant class. The first remarkable application is that Buff and Chéritat used it as
one of the main tools to prove the existence of Julia sets of quadratic polynomials
with positive area [BCI2]. Recently, Cheraghi and his collaborators have found
several other important applications. In [Chel3|] and [Chel9], Cheraghi developed
several elaborate analytic techniques based on Inou-Shishikura’s results. The tools
in [Chel3] and [Chel9] have led to part of the recent major progresses on the dy-
namics of quadratic polynomials. For examples, the Feigenbaum Julia sets with
positive area (which is different from the examples in [BC12]) have been found in
[AL22], the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type has
been proved in [CCIH], the local connectivity of the Mandelbrot set at some infinite-
ly satellite renormalizable points was proved in [CS15], some statistical properties
of the quadratic polynomials was depicted in [AC18], the topological structure and
the Hausdorff dimension of high type irrationally indifferent attractors were char-
acterized in [Che22a] and [CDY20] respectively.
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Recently, Chéritat generalized the near-parabolic renormalization theory to the
unicritical families of any finite degrees [Ché22bh]. See also [Yan21] for the corre-
sponding theory of local degree three. Hence there is a hope to generalize the Main
Theorem in this paper to all unicritical polynomials.
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Notations. We use N, N*, Z, @, R and C to denote the set of all natural numbers,
positive integers, integers, rational numbers, real numbers and complex numbers,
respectively. The Riemann sphere and the unit disk are denoted by C = C U {cc0}
and D = {z € C: |z| < 1} respectively. A round disk in C is denoted by D(a,r) =
{z€C:|z—al <r}and D(a,r) is its closure. Let x € R be a non-negative number,
we use |z| to denote the integer part of x.

For a set X C C and a number 6 > 0, let Bs(X) := (J,cx D(z,0) be the -
neighborhood of X. For a number a € C and a set X C C, we denote aX := {az :
z€X}and X £a:={zxa:z€ X}. Let A, B be two subsets in C. We say that
A is compactly contained in B if the closure of A is compact and contained in the
interior int(B) of B and we denote it by A € B. We use diam(X) to denote the
Euclidean diameter of a set X C C and len(y) the Euclidean length of a rectifiable
curve v C C.

2. NEAR-PARABOLIC RENORMALIZATION SCHEME

In this section, we summarize some results in [IS08], [BC12], [ACI§| and [Chel9]
which will be used in this paper. Parts of the theories can be also found in [Shi9g§]
and [Shi00].

2.1. Inou-Shishikura’s class. Let P(z) := z(1+2)? be a cubic polynomial with a

parabolic fixed point at 0 with multiplier 1. Then P has a critical point cpp := —1/3
which is mapped to the critical value cvp := —4/27. It has also another critical
point —1 which is mapped to 0. Consider the ellipse
2
. x4+ 0.18 Y \2
= | — —— ) < .
E {x+ylec ( 1.24 ) +(1.04) 1} (2.1)
and defind’
-~ 4z
U .= 1/)1(((: \ E), where wl(z) = 7@ (22)

The domain U is symmetric about the real axis, contains the parabolic fixed point
0 and the critical point cpp, but U N (—oc, —1] = @ (see [[SO8, §5.A] and Figure [1)).

3The domain U is denoted by V in [IS08].
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Figure 1: The domains U (the gray part), U’ (the white region bounded by the blue
curves, see for the definition) and their successive zooms near —1. The outer
boundary of U’ looks like a circle with radius about 35 and the rightmost point of
U is about 32.2. The widths of these pictures are 72, 0.6 and 0.0075 respectively.
It can be seen clearly from these pictures that U N (—oo, —1] =0 and U € U’.

For a given function f, we denote its domain of definition by Us. Following
[[SO8, §4], we define a class of mapg]
_ 0 € Uy isopenin C U —- Uy is
— _ 1. f 1% y P f
180 := {f =Pop:Us=C conformal, ¢(0) =0 and ¢'(0) =1 } )
Each map in this class has a parabolic fixed point at 0, a unique critical point
at cpy == ¢(—1/3) € Uy and a unique critical value at cv := —4/27 which is
independent of f.
For a € R, we define
TS, = {f(2) = fo(e¥™z) : g~ 2™ Up, > C| fo € ZSo}.
For convenience, we normalize the quadratic polynomials to
. 27 .
Qa(z) — eZ‘n’luz + T6€4W1a22
such that all @), have the same critical value —4/27 as the maps in ZS,. In
particular, Q, = Qo © Ry, where R, (2) = €™z, We would like to mention that
the quadratic polynomial @, is not in the class ZS,,.

Theorem 2.1 (Leau-Fatou [Mil06l §10] and Inou-Shishikura [ISO8]). For all f €
IS0 U{Qo}, there exist two simply connected domains Patir, f, Prep,f C Uy and two
univalent maps Paiir r : Pater,f — C, Prep,f @ Prep,y — C such that

(a) Pattr,f and Prep s are bounded by piecewise analytic curves and are com-
pactly contained in Uy, cpy € OPuttr,f and OPattr,f N OPrep,f = {0};

(b) The image Poiir,f(Partr.f) is a right half plane and Ppep f(Prep,f) is o left
half plane; and

(C) (I)attr,f(f(z)) - q)attr,f(z)+1 fO’f’Z S Pattr,f and (I);elp,f(c) = f((b;eio,f(c_l))
Jor € € ®rep, s (Prep,s)-

4The definition of ZSy is based on the class F; in [[S08]. There the conformal map ¢ in the
definition of ZSy is required to have a quasiconformal extension to C. This condition is used
by Inou and Shishikura to prove the uniform contraction of the near-parabolic renormalization
operator under the Teichmiiller metric. We modify the definition here since we will not use this
property in this paper.



8 MITSUHIRO SHISHIKURA AND FEI YANG

Normalization of ®,, s and ®,., ;. The univalent map Pussr r (resp. Prep f)
in Theorem is called an attracting (resp. repelling) Fatou coordinate of f and
Pattr,f (resp. Prep.r) is called an attracting (resp. repelling) petal. The attracting
Fatou coordinate @44, s can be naturally extended to the immediate attracting
basin A s of 0. Specifically, for z € Agr s such that fo%(2) € Py with
k > 0, one can define

q)attr,f(z) = (pattr,f(fOk(z)) —k.

Since ®q4r, 5 is unique up to an additive constant, we normalize it by @attryf(cpf) =
0. Therefore, we have ®utr, f (Paser,r) = {¢ € C: Re( > 0}.

Every f € Z8o U {Qo} can be written as f(2) = 2 + a2z + a3z + O(z*) in a
neighborhood of 0, where as # 0. For z in a component Q¢ of Agttr, f N Prep, r such
that Im @, r(2) — 400 as z — 0, we have (see [Shi00, Proposition 2.2.1]):

1 1

(I)attT,f(Z) = _(1272’ - ’leg ( - @) + Cattr + 0(1)7
1 1

CI)TCP,f(Z) = _a27 - ’leg ( - @) + Crep + 0(1)a

where v = 1 — a3 /a3 is the iterative residue of f and Coy, Crep are constants.
Since @, ¢ is also unique up to an additive constant, we normalize it by setting
Crep = Cattr, 1.€., Patir, f(2) — Prep,(2) = 0 as z — 0 in Q.

2.2. Near-parabolic renormalization. We need to consider the case that a se-
quence of functions converges to a limiting function and the neighborhoods of a
function need to be defined.

Definition (Neighborhoods of a function). Let f : Uy — C be a given function. A
neighborhood of f is

N=N(f;K,e) = {g:Ug SC|KcC Uy and sup da(g(2), f(2)) <5},
zeK

where dz denotes the spherical distance, K is a compact subset contained in Uy
and € > 0. A sequence (f,,) is said to converge to f uniformly on compact sets if
for any neighborhood N of f, there exists ng > 0 such that f,, € A for all n > ng.

If f e Uae[o,l)ISa U{Q.}, we denote by ay € [0,1) the rotation number of f
at the origin, i.e., the real number ay € [0,1) so that f/(0) = ™. If oy > 0 is
small, besides the origin, the map f has another fixed point o¢ # 0 near 0 in Uy,
which depends continuously on f (see [Shi00, §3.2] or [BCI2| Lemma 9, p. 707]).

Proposition 2.2 ([BC12, Proposition 12, p. 707], see Figure. There exist k € Nt
and €1 > 0 satisfying Léj —k > 1, such that for all f € IS, U{Qq4} with o € (0,&1],
there exist a Jordan domain Py C Uy and a univalent map ®; : Py — C, such that

(a) Py contains cv and it is bounded by two arcs joining 0 and of;

(b) ®f(cv)=1,P¢(Ps)={C€C:0<Re(< LQ%J —k} with Im ®¢(2) — +o00
as z— 0 and Im®;(z) = —o0 as z = o5 in Py;

(c) If z € Py and Re®(2) < L(TlfJ —k—1, then f(z) € Py and ®;(f(2)) =
Qs(2)+1; and

(d) If (fn) is a sequence of maps in UaE(O,El] IS8, U{Qu} converging to a map
fo € ZSoU{Qo}, then any compact set K C Paur 5, is contained in Py, for
n large enough and the sequence (®y, ) converges to Paser 5, uniformly on
K ; Moreover, any compact set K C Pyep 5, 5 contained in Py, for n large
enough and the sequence (®y, — L) converges to D,ep, f, uniformly on K.

Qfp
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Us
2
—
012 34 L] -k
Py
7
SN

of

Figure 2: The perturbed Fatou coordinate ®y and its domain of definition P;. The
image of Py under ®; has been colored accordingly by the same color on the right.
The blue set on the left depicts the forward orbit of the critical point cpy.

Proposition was proved in [BC12] only for Inou-Shishikura’s class. However,
when f = @, with sufficiently small a > 0, the existence of the domain Py and
the coordinate ®; : Py — C satisfying the properties in the above proposition is
classic (see [Shi00]). The map @ in Proposition 2.2]is called the (perturbed) Fatou
coordinate of f and Py is called a (perturbed) petal.

Definition (see Figure[3). Let f € ZS, U {Qq} with a € (0,1], where &1 > 0 is
the constant introduced in Proposition 2.2} Define

Cr={2€P;:1/2<RePy(z) <3/2and —2 <Im®P,(z) < 2}, and

2.3
Ch:={z € P;:1/2<Re®y(z) < 3/2 and Im ®(2) > 2}. 2:3)

Note that cv = —4/27 € int C; and 0 € 86’&.

Proposition 2.3 ([Chel9l Proposition 2.7], see Figure |3). There exist constants
el € (0,e1] and kg € Nt such that for all f € IS, U {Qn} with a € (0,€}], there
exists a positive integer k¢ € [1, kg] such that
(a) Foralll < k < ky, the unique connected component (Cﬁ)”€ of f’k(Cfc) that
contains 0 in its closure is relatively compact in Uy and for - (Cft)_k — Cfc
is an isomorphism, and the unique connected component C;k of f*k(Cf)
that intersects (C;)_k is relatively compact in Uy and f°F Cf_k —Cy is a
covering of degree 2 ramified above cv; and
(b) Ky is the smallest positive integer such that C;k‘f U (Cfc)_kf C{zePs:0<
Re®s(2) < |-L]—k— 1}

arf

The same statement as Propositionwithout the uniform bound of %k is proved
in [BC12| Proposition 13, p. 713]. For the corresponding statements of Propositions
and [2.3| with o € C (specifically, when |arga| < /4 and |«| is small), we refer
to [CS15, §2].

Definition (Near-parabolic renormalization, see Figure [§). For f € ZS, U {Qq}
with a € (0,¢]], define

Spe=c;Mueh)r,
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linduced map
y
2
21,
o 1 Lk
. ®4(Sy)
Dp(CruUChH

Figure 3: Left: The sets Cy, Cgc and some of their preimages. The blue set depicts

the forward orbit of the critical point cp,. Right: The images of Cy U Cgc and
Sy under the perturbed Fatou coordinate ®; and it shows how the near-parabolic
renormalization map is induced.

and consider the map
DpofHrod !t 0p(Sy) = C.

This map commutes with the translation by one. Hence it projects by the modified
exponential ma}ﬂ

Exp(C) = — o (27) (2.4)

to a well-defined map R f which is defined on a set punctured at zero, where s :
z — Z is the complex conjugacy. One can check that Rf extends across zero and
satisfies (Rf)(0) = 0 and (Rf)'(0) = 2™/, The map Rf is called the near-
parabolic renormalizationﬁ of f.

Let P(z) = z(1 + 2)? be the cubic polynomial introduced at the beginning of
Define
U = P HD(0, £e*™)) \ ((—o0, —1] U B), (2.5)

)27
where B is the connected component of P~1(D(0, %6_4”)) containing —1. By an

explicit calculation, one can prove that U C U’ (see [[SO8, Proposition 5.2] and
Figure .

Theorem 2.4 ([IS08, Main Theorem 3]). For every f = Pop™! € IS, or f = Q.
with a € (0,€}], the near-parabolic renormalization Rf is well-defined and the
restriction of Rf in a domain containing 0 can be written as Po ™! € IS /q-
Moreover, ¥ extends to a univalent function on e~ 2™/ U,

From Theorem [2.:4] we know that the near-parabolic renormalization of R f can
be also defined if the fractional part of 1/« is contained in (0,e}]. This implies

S5Note that Exp(0) = —4/27 is a critical value of Rf and Exp(+oci) = 0. In some literature,
the modified exponential map is defined as ¢ — 7%62ﬂi< so that (Rf)(0) = e~27/%¢_ In order
to apply the classical continued fraction expansion conveniently, in this paper we put a complex
conjugacy s in the definition of Exp.

6This is the top near-parabolic renormalization and the bottom near-parabolic renormalization
around the fixed point oy can be defined similarly. See [ISO8] §3].
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that the near-parabolic renormalization operator R can be applied infinitely many
times to f if « is of sufficiently high type.

2.3. Some sets in the Fatou coordinate planes. For a set X in C, we use
int(X) to denote the interior of X. Let f € ZS, U{Qu} with a € (0,}]. We define
a set in the Fatou coordinate plane of f:

by
Dy :=int (‘I’f(Pf) U J(@s(Sp) +j)), (2.6)
§=0
where by := ky 4+ |1] — k— 2 is the largest integeﬂsuch that one can extend
<I>]71 : ®¢(Py) — P holomorphically to a domain like Dy. See Figure

Lemma 2.5. The map (I>J71 1 ®;(Py) — Py can be extended to a holomorphic map
ky
(I);l :Dy - PrU U fOJ(Sf),
j=0
such that for all ( € C with (,(+1 € 75,:, then q);l(g“ +1)=fo <I>;1(C).

This lemma has been proved in [ACIS, Lemma 1.8]. For completeness and
clarifying some ideas we include a sketch of the construction of @;1 here.

Proof. By (2.3), the definition of Sy, Propositions b) and a), we have
ek (Sy) = C,vUCfc and f°7(Sy) is well-defined for all 0 < j < by. If ¢ € D\ P4 (Py),
then there exists an integer j € [1,b¢] so that ( € ®;(Sy) +j. For such ¢ we define
®7H(Q) = S(RF (¢ — )

Note that there may exist two choicesﬂ of j for some point (. Assume that { €
®(Sf) + 4 for some j' € [1,by] and j" # j. Then |j’ — j| = 1. Without loss of
generality, we assume that j/ = 7+ 1. By Proposition c)7 we have <I)J71(§ +1) =
fo®;1(¢) for all ¢ € C with ¢,(+1 € ®;(Py). Thus we have

PTG = 5) = U@ - 5+ 1) = FU(@F (¢~ ).
This implies that <I>171 is well-defined in Zsf and it is straightforward to check that

<I>J71 is holomorphic. Finally a completely similar calculation shows that @;1@ +
1) = fo®,'(¢) for all ¢ € C with ¢, +1 € Dy. O

Note that Sy is contained in {z € Py : 0 < Re®y(2) < [1] — k— 1} and
fr(Sp)={z€Pr: L] —k—2 <Re®s(z) <|L] —k— 1 and ImPy(2) > —2}.

According to Proposition (b), if we consider the local rotation of f near the
origin, this implies that
by=kr+|2]—k—-2>[1]+1, ie, kf>k+3. (2.7)

The modified exponential map Exp : C — C\ {0} defined in (2.4)) is an anti-
holomorphic covering map. The map <I>]71 : Dy — C\ {0} can be lifted to obtain
an anti-holomorphic map N

Xf: Df —C
such that B
Expo x¢(¢) = @;1(4“), for all ¢ € Dy.

"In particular, from the proof one can see that Lemmawill not be true if by is chosen as
kp+ 1] —k—1.
8For example, this happens when ( lies on (2r(Sp)+4)N(Pp(SF)+j+1) for 1 <j<by—1.
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F=====q-----=-—----

o n YE Tk 42
o L]
’Xf
‘I’f(Sf)l‘f'bf
Dy
1 | SR Y O | D B
Pr(S
L 7(55) N
Qs (CruUCH) e

Figure 4: The inverse <I>J71 of the perturbed Fatou coordinate can be extended
holomorphically to 25f (colored cyan). It can be seen that the image @;l(ﬁf)
wraps around 0. The holomorphic map <I>;1 has an anti-holomorphic lift x; such

that Expo xy = <I>]71 (note that Exp is anti-holomorphic). Some special points are
also marked.

See Figure 4| There are infinitely many choices of xy : 5f — C. But the following
result holds.

Proposition 2.6 ([ACIS, Proposition 1.9]). There exists k; € Nt such that for all
fEeZLS,U{Qun} with a € (0,€]] and any choice of the lift xy, we have

sup{|Re (¢ — )] : ¢, ¢’ € x¢(Dy)} < ki

Proposition [2.6] was proved by applying Proposition the pre-compactness of
the class ZS, and a uniform bound on the total spiral of the set Py about the origin
(see [BC12l Proposition 12] or [Chel9, Proposition 2.4]).

From [IS08| §5.A] or [CST5l Propositions 2.6 and 2.7] (the top and bottom near-
parabolic renormalizations can be defined for all f € ZS, U{Q,} with a € (0,&!]),
Py is contained in the image of f. By Lemma we have @;1(5” c f(Uy).
Since f(Uy) C P(U') = D(0, 5¢'™), we have Im( > —2 for every ¢ € Xf(ﬁf),
where P(z) = z(1 + 2)? and U’ is defined in (2.5). Therefore, by Proposition
there exists a choice of x ¢, denoted by X0 such that

X70(Df) C{¢CeC:1<Re¢ <k +2and Im¢ > —2}. (2.8)
We define
ky+ko+ki+2
Dp=int (0;PHU | (@5(S)+1)), (2.9)

=0
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where kg, k1 € NT are integers introduced in Propositions and respectively.
Let k € Nt be the integer introduced in Proposition

Lemma 2.7. For all f € IS, U{Q.} with 0 < a < &1 := min{e), 1/(k+ ko + k1 +
4)}, we have Dy C Dy. Moreover,

Dy Cp(Pr)U{CEC:0<Re(— (2] — k) <2ko+ ki + 3} and (2.10)
Dy D> ®p(Pr)U{C€C:0<Re( — (1] — k) < ko+ ki +3 and Im¢ > 0}.

Proof. The condition on « implies that ky + ko + ki +2 < ks + | 2] — k—2. Then
we have Dy C Zsf by definition.

Since ®;(Sy) C {¢ € C:0 < Re( < |1] — k— 3} by Proposition (b), for
¢ € Dy we have Re( < [1] +ky+ko+ki —k+2 < |2]+2ko+ ki —k+ 3. Hence

(2.10) holds.
By (2.1) and (2.2), we have U > D(0, 8) (see also [Chel9, Lemma 6.1]). For any

f € Z8.U{Q.}, by Koebe’s 1-theorem we have Uy D (0, 2). Since Exp(®y(Sy)) D
Ury \ {0} and Rf € ZS1/q, we have D(0,2) C Exp(®s(Sy)). Since fo7(Sy) =
Cr U Cfc C Py, we have Re¢ > [L] — Kk for all ¢ € ®4(Sf) + ky. This im-
plies that {¢ € C: -2 < Re( — (|2] — k) < landIm( > —5tlog3} is con-
tained in the interior of Ufio(@f(Sf) + j). Therefore, Dy \ ®;(Py) contains
{¢CeC:0<Re¢— (L] — k) < ko+ ki + 3 and Im¢ > 0}. O

2.4. Some quantitative estimates. Let oy # 0 be another fixed point of f €
ZSo U{Qa} near 0 which is contained in Py for small v > 0 (see Figure [2). It
depends continuously on f and has asymptotic expansion

of = —4mai/ f{(0) 4 o(«) (2.11)

as f = fo € ZSo U {Qo} in a fixed neighborhood of 0 (see [Shi00, §3.2.1]). By
[ISO8, Main Theorem 1(a)], | f5'(0)] is contained in [3, 7] for all fy € ZS,. By the pre-
compactness of ZSy, there exists a constant Dj, > 1 such that for all f € ZS,U{Q.}
with a € (0, 1], one has
a/Dj < |of| < Dya. (2.12)
For a general statement of (i.e., o € C), see [CS15, Lemma 3.25(1)].
Let

g

be a universal covering from C to C \ {0, os} with period 1/a. Then 7/(w) — 0 as
Imw — +o0 and 7¢(w) — o5 as Imw — —oo. There exists a unique lift Fy of f
under 77 such that

fori(w) =770 Fp(w) with lim (Fr(w) —w)=1.

Imw—+oco

The set Ty 1(”Pf) consists of countably many simply connected components. Each

of them is bounded by piecewise analytic curves going from —ooi to 4+oci. Let ’ﬁf
be the unique component separating 0 from 1/«. Define

Lj:=®;o1;:P; — C. (2.14)

Then Ly is univalent and it is the Fatou coordinate of Fy since Ly(Ff(w)) =
Li(w)+ 1 if both w and Fy(w) are contained in Py.

For a € (0,&1] and R € (0, +00), we define
O4(R) :=C\ U D(n/a, R).

ne”Z
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For C' > 0, we denote ac := Ce®™/'2 and define a piecewise analytic curve

lo:={weC:arg(w—ac) =3rtU{we C:arg(w—ac) =—H7}
U {Ceig 10 e [—%T, %]}

Then ¢c U (—f¢c +1/a) divides C into three connected componentsﬂ Let A;(C) be
the component of C\ ({c U (—fc + 1/«)) containing 1/(2«). The following result
is a summary of Lemmas 6.4, 6.7(2), 6.6 and 6.11 in [Chel9].

Lemma 2.8. There are constants o € (0,&1], Co, C) > 0 and C§ > 6 such that
for all f € I8, U{Q4} with o € (0,e2], we have
(a) Fy is defined and univalent in ©,(C}), and for all r € (0,1/2] and all
w € Ou(r/a) NO,(CY), then

1
|Fr(w) — (w+1)], \F}(w) — 1| < min {1700%6—27ra1mw};

(b) For allm R € [Cf,2/a] and all w with D(w,R) C Ay := A1(C}) and
Imw > —1/a, then .
LI}
) SR
(¢) Ly : ﬁf — C has a unique univalent extension onto ﬁf U Ay such that
Li(Ff(w)) = Ly(w) + 1 if both w and F¢(w) belong to 75f UA;g;
(d) For any r > 0 there is K, > 1 depending only on r such thatE|

K7H <L (O] < Ky for all ¢ € ®5(Py) \D(0, 7).

T

The following Lemma [2.9] and Proposition [2.10] are useful in the estimates of the
locations of the points under @;1 and x;.

Lemma 2.9. There exists a constant Dy > 0 such that for any D} > 0, there exists
Dy > 0 such that for all f € IS, U{Q.} with o € (0, 2], we have

(a) Do < \L;1(4)| < Dy for ¢ € @4(Py) ﬂﬁ(O,D'L); and

(b) Do <|L;'(¢) —1/al < Dy for ¢ € ®(Py) ND(1/a, Df).

Proof. By the continuous dependence of the Fatou coordinates of the maps in ZS,
the pre-compactness of ZS( and note that Py is compactly contained in the domain
of definition of f, there exists a constant R; > 0 such that

P; CD(0, Ry) for all f € IS, U{Qq} with a € (0, ).

By (2.12)) and the formula of 77 in (2.13]), a direct calculation shows that there exists
a constant Dy > 0 such that the Euclidean distance satisfies dist(L;1 (€),Z/a) = Dy
for all f € ZS, U{Qq} with a € (0,e2] and all ¢ € ®£(Py).

By Lemma d)7 there exists a constant K7 > 1 such that

K< (L7 QI < Ky (2.15)

for all f € ZS, U {Qo} with o € (0,e2] and all ¢ € ®;(Py) \ D. From [Chel9,
Proposition 6.17], there exists a constant C; > 0 such that for all f € ZS, U{Q.}
with o € (0, e2] we have

IL7'(3) < Cu. (2.16)

9We always assume that o is small such that ©,(C) is connected and hence 1/(2a) € ©4(C).

101y [Chel9, Lemma 6.7(2)], R is contained in [3.25,1/(2c)]. In fact the estimate of |L/f(w)\
there still holds if R € [3.25,C/q] for every C > 1/2 (the only difference is that the constants in
the estimate need to be modified).

1By Lemma c), the number x; defined in [Chel9, Equation (50)] satisfies x > Léj — k.
Hence by [Chel9, Lemma 6.11] this part holds for all ¢ € ®¢(Py) \ D(0,7).
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Without loss of generality we assume that D] > 1. Combining and
, there exists a constant Co > 0 depending only on K;, C; and Dj such
that [L;1(¢)] < Cy for all f € IS, U{Qq} with a € (0,&5] and all ¢ € (®;(Py) N
D(0, D})) \ D. On the other hand, by Lemma a) and applying

L) =F o L7 (¢ +1),

there exists a constant C3 > 0 such that |L]71(C)| < Csforall feZS,U{Q,} with
a € (0,e2] and all ¢ € ®¢(Py) ND.

By Lemma [2.8(d) and [Chel9, Proposition 6.16], there exists a constant Cy > 0
depending on Dj such that |L;1(C) —1/a| < Cy for all f € TS, U {Q.} with
a € (0,e2] and all ¢ € ®¢(Pf) ND(1/a, D}). Then the proof is complete if we set
D1 = maX{Cg,037C4}. U
Proposition 2.10 ([Chel9, Propositions 6.19 and 6.17]). There are constants € €
(0,e2] and Do > 0 such that for all f € TS, U{Qq4} with o € (0,¢5], we have

(a) IfC€0,| L] — k] +i[-3,400), then

1L (¢) = ¢| < Daylog(1 + 1/a).
(b) If¢ €0, [ 1] — k] +1[-3,1/a], then
IL71(¢) = ¢| < Damin{log(2 + [¢]), log(2+ ¢ — 1/al)}.

Proposition a) was proved in [Chel9, Proposition 6.19] (see also [Chel9,
Proposition 6.15]). The statement (b) was proved in [Chel9l Proposition 6.17] for
¢ €[0,[2] — k] (e, ¢ € R). However, the arguments there can be applied to
Ce0,|2]—k]+i[-3,1/a] completely similarly by using [Chel9, Lemma 6.7] and
Lemma For more details on the study of Ly and L;l, see [Chel9l §§6.3-6.6]
and [CS15) §3.5].

Let X > 0 and Y > 0 be two numbers. We use X <Y to denote that X and Y
are in the same order, i.e., there exist two universal positive constants C; and Cy
such that C1Y < X < CoY. Let Dy be the set defined in (2.9)).

Lemma 2.11. There exist constants €3 € (0,e5] and D3 > 0 such that for all
f €TS8, U{Qs} with a € (0,e3], we have

(a) If ¢ € Dy withIm({ > 1/, then

1 - (0% 1 1
|(I)f (C)' -~ e2malm ¢ and ‘Ime(C) - (OJIIHC—F %log a)‘ < D3.

(b) If ¢ € Dy with Im ¢ € [—3,1/al, then

1 1
)| = max{ , } and
257! TR T -1/
[T x £ (¢) — 5 min { log(1 +[¢]), log(1 + |¢ = 1/a])}[ < Ds.

Proof. By the definition of <I>J71 in Lemma if ( € Dy \ ®4(Py), then there
exists a positive integer j € [1,k; + ko + ki + 2] such that { —j € ®,(P;) and
@;1(() = foj(CI)JTI(C —7)). By the pre-compactness of ZS,,, it is sufficient to prove
the statements in this lemma for { € ®(Py).

(a) By Proposition a), we have
Im ¢ — Dylog(1+1/a) <Tm L7 (¢) < Im¢ + Dalog(1 + 1/a).

If a is small, then alog(l 4+ 1/«) is also. Suppose ¢ € Dy with Im¢{ > 1/a.
Decreasing « if necessary, we assume that Im ¢ — Dy log(141/a) > 1/(2). Denote
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w = L;I(C). Then |e~2maw| = |g2ralmw g=2miaRew| » o™ Note that a log(1+1/a)
is uniformly bounded above. Since Im{ > 1/, we have

2malm ¢

e

|1 _ e—27rio¢w| - eQﬂ'aImw

By (212), (2.13) and (Z14), we have
of

71O =70 L7 ()] = \1 | < e

- e2malm ¢ :

Denote y := ImExp~! o ®;'(¢). By definition we have gze 2™ < a/e?meImc. A
direct calculation shows that y = aIm { + 5= log 2 +O(1), where O(1) is a number
whose absolute value is less than a universal constant.

(b) We divide the arguments into two cases. Firstly we assume that ( € Dy with
Re(¢ € [0,1/(2a)]. By Proposition b), we have
IL71(¢) = ¢| < D2log(2 + [¢]). (2.17)
Let D} > 0 be the smallest constant depending only on Ds such that if |(| > Dj,
then |¢| > Dolog(2 + [C]) + 1. If |[¢| = D}, Re¢ € [0,1/(2a)] and Im ¢ € [-3,1/a],
by (2.17)) we have
1L Ol =[¢l+1. (2.18)

If |{| < D], Re¢ € [0,1/(2c0)] and Im ¢ € [—3,1/a], by Lemma[2.9(a), there exists a
constant D7 > 1 depending only on D] such that Dy < \L;l(g)| < D;. Therefore,

we still have (2.18]).
Next we assume that Re ¢ € [1/(2a), | 1| — k]. By Proposition m(b), we have

IL71(¢) = ¢ < D2log(2 + ¢ — 1/al). (2.19)

If |( —1/a| = D}, then | — 1/a| = Dylog(2+ | —1/al) + 1. If | — 1/a| > Di,
Re( € [1/(20), |1] — k] and Im( € [-3,1/a], by ([2.19) we have

L0 = 1/al = (L7 = Q)+ (¢ —1/a)| < [ = 1/a] + 1. (2.20)

If | —1/a| < D}, Re¢ € [1/(2a), | 2| — k] and Im¢ € [-3,1/a], by Lemma[2.9(b),
we have Dy < |L;1(C) — 1/a| € D;. Therefore, in this case we still have (2.20]).

Denote w := L;l(C). By (2.17) and (2.19), if o is small enough, then —% <
Re (aw) < 2 and |aw| < 2. By ([2.12), (2.14), (2-18) and (2:20)), we have

e { 1 1 }
Xq
lw| " |w—1/a

1 1
= max{1+\C|’l+|C71/a|}'

_ g
970 = | = P

X

Then the estimate of Im Exp~' o <I>)71(C ) follows by a direct calculation. O

Remark. (1) There exist some overlaps between the estimates in Lemma a)
and (b). Indeed, if ¢ € Dy and Im{ < 1/«, then

\<I>)71(§) =a and ImExp l'o <I>]71(Q = %104@;% +O(1).

(2) Lemma illustrates how the renormalization microscopes ¢ reshapes the
geometry of the Siegel disk at deeper scales. Specifically, Part (a) is for the points
deep in the Siegel disk while Part (b) is for the points close to the Siegel boundary.

The following lemma can be seen as an inverse version of Lemma [2.11

Lemma 2.12. There exist constants Dy, Ds > 1 and % € (0,e3] such that for all
fEeZLS,U{Qn} with a € (0,e5], we have
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(a) If ¢’ € C satisfies Im(’ > 5-1log = + Dy, Exp(¢’) € Py and @5 o Exp((’) €
(0,2] +1[-2, +00), then

1 1 1 D
’Im‘l)f o Exp(¢’) — E(Im(' — %log a) < f.

(b) If ¢’ € C satisfies Im(’ < 5=log L + Dy, Exp((’) € Py and 5 o Exp({’) €
(0,2] +1[-2,4+00), then

|log (3 + Im @ 0 Exp({’)) — 2nIm {’| < Ds.

Proof. (a) Denote ¢ = ®; o Exp(¢’) € ®¢(Ps). By Lemma a), if Im¢ > 1/«
we have ) ) . D
‘Im(— —(Im(’ ~ Zlog 7)( =3
o 2m o o
Suppose Re¢ € (0,2] and Im¢ € [-2,1/a). By Lemma[2.11|b), we have

(2.21)

1 1 1 1 1
Imc/g%log(1+|f|)+D3<%log<a+3>+D3<%loga+D3+l.

Therefore, if Im ¢’ > ilog% + D3+ 1, then Im¢ > 1/a or Im{ < —2. By the

assumption in the lemma we have Im¢ > 1/a and (2.21) holds. Then Part (a)
follows if we set Dy := D3 + 1 and D5 := Ds.

(b) Denote ¢ = ®;oExp(¢’) € (0,2] +i[—2,+00). By (2.21), if Im¢ € [1/e, (1 +
2D3)/al, we have |log L + 2ralm ¢ — 27rIm (’| < 27Dz and hence

|log(3 + Im¢) — 2nIm ¢’| < |log(3a + alm () — 2ralm (| + 27 D3
< 10g(4 + 2D3) + 67TD3 + 2.

By Lemma 2.11|b), if Re¢ € (0,2] and Im (¢ € (—2,1/a) we have |log(1 + [¢|) —
2rIm ¢’| < 2w D3 and hence
|log(3 4+ Im(¢) — 2rIm (| < |log(3 4+ Im¢) — log(1 + [¢|)| + 27 D3
< logh + 27 Ds.
Set D5 = log(4 + 2D3) + 6m D3 + 27. Then if Im¢ < (1 + 2D3)/a we have
|log(3 4+ Im¢) — 2nIm ¢'| < Ds. (2.22)

Suppose Im¢ > (1 + 2D3)/a. By Lemma a), we have
1 1 1 1

Im¢ > alm{+ —log— — D3 > —log — + D3 + 1.
2 «a 2 «a

Therefore, if Im¢’ < ilogé + D3 + 1, then Im¢ < (1 + 2D3)/a and we have
@2-29).

Summering the constants in Parts (a) and (b), the lemma follows if we set
D4 = D3 —+ ]. and D5 = 10g(4 —+ 2D3) + 67TD3 —+ 27T. D

_In the following, we use h’ to denote Oh/Jz if h is holomorphic and denote
Oh/0z if h is anti-holomorphic. The following result is useful in the estimate of the
FEuclidean length of curves in Fatou coordinate planes.

Proposition 2.13. There exist positive constants g4 € (0,¢4] and Db, Df, Dg > 1
such that for all f € IS, U {Qu} with o € (0,e4], we have

(a) If ¢ € Dy withIm(¢ > 1/(4a), then
|X/f(C) _ a| < D6a6727ralmc'
(b) If ¢ € Dy with Im( € [-2,1/(4a)] and r = min{|(|, | — 1/a|} > Dy, then
(0% D6
X5 (O] < 1 — e—2ma(r—Djlog(2+1)) (1 + r) ’

where DYy and Dj are chosen such that r — 2D} log(2 4+ r) > 4 if r > Dj.
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Proof. Part (a) is proved in [Chel3, Proposition 3.3]. We only prove Part (b). For
the continuous function
p(2) =1 =™,
where z € £, := {0€! : 0 € [-%,2F]} with 0 < o < 2, by a direct calculatiorm we
have
min p(z2) = p(0e'%) = (i) =1 — 7. (2.23)

z€E,

Case 1. We first consider ( € A1 :=D;N{¢ € C:Re( € (0,1/(2a)] and Im( €
[-2,1/(4a)]} and denote w := LJTI(C) € Py. By (2.4), (2.13), (2.14) and a straight-
forward calculation we have

X5(¢) = (Bxp™" 0 ®31)'(¢) = (Bxp~" o7y 0 L31)'(()
 a 1 (2.24)
1—e?miow " [ (w)’

By Proposition [2.10(b), we have
w € B¢, Dalog(2 + [C]). (225)

Let C{/ > 6 be the constant and A; = A;(C{)) be the domain introduced in Lemma
2:8(b). Let C; > 1 be a constant depending only on C§ and Ds such that if
I¢] > C1, then

I¢| —2D2log(2+[¢]) >4 and D(w,C{) C A;. (2.26)
We assume that £ > 0 is small such that if o € (0,&1], then a|¢| < 2 and

Dsalog(2+[¢]) < = for all ¢ € Ay. Hence
a|¢| + Daalog(2+[¢]) < 2 for all ¢ € Ay. (2.27)

By (2.25)), (2.26) and (2.27), for ¢ € A} == Ay N{¢ € C: [{] = C1} we have
aw € {oe? :0<p< %and —F <60 <2} According to (2:23)), we have
|1 _ eQﬂ'iaw| 2 1 _ e—ZTrO((Kl—DQ 10g(2+|<|)). (228)
On the other hand, by (2.26), Lemma [2.8(b)(d) and Proposition 2.10[b), there
exists a constant Cy > 1 depending only on Cy and D such that if ¢ € A} then
1 C

7 S 1+

L (w)] 1q
Combining (2.24), (2.28) and (2.29), if ¢ € A} we have

’ (0% Cy
XA Ol S T —zrataDs i (1 * |g> '

Case 2. Suppose ( € Ay := DyN{¢ € C: Re¢ > 1/(2a) and Im( €
[—2,1/(4a)]}. By the definition of Dy in (2.9)), there exist an integer J > 1 which is
independent of f and an integer jo € N with jo < J such that {—jo € ®¢(Pr)N{¢:
Re( > 1/(2a)}. We denote w := L;l(C —Jjo) € ’ﬁf and w 1= F]fjo(w). Then

X4(¢) = (Bxp~' o f7° 0 ®71)'(¢ — jo)

(2.29)

o (F) (w)  (2.30)

= (Bxp~'orpo F{ o L) (¢ = jo) = — e D)
12By setting 7 := 2mp, B := 0 — 3 and considering the derivative of 8 — (Lp(iei(ﬂ"'%)))z,
it suffices to verify that e=" <58 sin 8 — sin(8 — rsin 8) > 0 for any r € (0, 4?"] and 8 € (0, 3{]
This can be done by considering three cases: (1) 8 —rsin € [-m,0]; (2) 8 —rsing € (0, 5] and
B€(0,Z];and (3) B—rsinB € (0,27] and B € (3, 37].
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By Proposition b), we have
w € D(¢ = jo, D2log(2 + [¢ — jo — 1)).

Let Cf > 6 and A; = A;(C}) be introduced as in Lemma[2.§(b). By Lemma[2.8(a),
there exist two positive constants C} and Cy' depending only on C{/, Dy and J such
that if |¢ — 1/a| > C, then

D(w,C{) C Ay and |F{’ (w) = 1/al > CY|¢ - 1/a] (2.31)
for all j = 0,1,---,7p. Also by Lemma (a), there exists a constant D) > Do
depending only on C{/, C{, Dy and J such that

& = F9" () € D(¢, D} log(2 + ¢ — 1/al)

and

[(F{7) (w)| < 1+ |g—D1é/a' (2.32)

Let C4 > C] be a constant depending only on C and D} such that if |(—1/a| >
C}, then
¢ = 1/a] = 2D5log(2 + |¢ — 1/al) > 4.
Moreover, we assume that £; > 0 is small such that if a € (0, &3], then
a|¢ —1/a| + Dyalog(2+ ¢ —1/al) < 3 for all ¢ € As.
For ¢ € A :=Aan{C€C:|¢C—1/al > Ch}, we have aw — 1 € {0el? : 0 < o <
2and T <60 <27} By (223) and [1 — *™*| = |1 — 2™ (=1 we have
|1 _ eQﬂ'ia@| >1— e—2ﬂ'0¢(|§—1/a|—D; 10g(2+|(—1/o¢|)). (233)
Similarly, by (2.31)), Lemma 2.8(b)(d) and Proposition b), there exists a con-
stant C5 > 1 depending only on C7, C4 and D} such that if ¢ € Af then
1 o
<1+ :
|L (w))] ¢ —1/q]
Combining (2.30), (2.32), (2.33) and (2.34)), if ¢ € A}, we have

(2.34)

(0] < a 1 G
X Ol S T zmateam B meere=7am \1 + T 1/a]

for a constant C% > 0 depending only on C5 and D). The proof is complete if we
set g4 := min{e}, €1, &2}, D := max{Cy,C4} and Dg := max{Cs, C%}. O

Remark. Proposition will be used in the proof of Lemma In [Chel9l
Proposition 6.18], an estimate of |x;(¢)| has been obtained for ¢ € [1,1/(2a)] in
another form.

2.5. Renormalization tower and orbit relations. In the rest of this paper,
we always assume that the integer N is large so that N > 1/e4, where €4 > 0 is
the constant introduced in Proposition Let [0;a1,as,---] be the continued
fraction expansion of @ € HT . Define o := «, and inductively for n > 1, define
the sequence of real numbers «,, € (0,1) as

1 1
oy = - L J, where n > 1. (2.35)
Ap—1 An—1
Then each ay, has the continued fraction expansion [0; Gpy1, @ny2,- - ]. By defini-

tion, we have a,, € (0,e4] for all n € N.
Let « € HTy and fy € ZS, U{Q4}. By Theorem the following sequence of
maps is well-defined for all n > 0:

fot1:=Rfn: Uy, —C.
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Let U,, := Uy, be the domain of definition of f,, for n > 0. Then for all n, we have
fo:Un = C, £2(0) =0, f1(0) =e*™ and cv=cvy, = —4/2T.

For n > 0, let <I>n := @ be the Fatou coordinate of f,, : U,, — C defined in the
perturbed petal P, := Pf" and let C,, := Cy, and Ch = Cu be the corresponding
sets for f,, defined in . Let k,, := kfn be the positive mteger in Proposmon
such that

So =87, =CrmU(Ch) ™ C{z€Pu:0<Re®p(z) < | &) —k—3}.
For n > 0, let 15 = 'Df and D,, := Dy, be the sets defined in G.j and (| .
respectlvely Note that D, C D, by Lemman According to Lemma we have
a holomorphic map N
o 1D, - U, \ {0}
such that - 1(¢ +1) = fn o® () if ¢, (+1¢€ D,. We denote the lift Xf,,0 i
. 2.8) by Xn,0. Then, for n > 1 we have
Xno(Dp) C{¢€C:1<ReC < ky+2and Im¢ > —2} C &, (Pp_1).  (2.36)
Each xy,0 is anti-holomorphic. For j € Z we define
Xn,j = XTL,O + ] (237)

In the following we are mainly interested in X, ; with 0 < j < a, = |2

el

For § > 0, let Bs(X) be the d-neighborhood of a set X C C with respect
to the Euclidean metric. The following lemma will be used to prove the unifor-
m contraction with respect to the hyperbolic metrics in the domains of adjacent
renormalization levels (see Lemma .

Lemma 2.14 ([ACI8, Lemma 2.1]). There exists a constant 69 > 0 depending only
on the class ISy, such that for allm > 1 and 0 < j < an, then

Bég (Xn,j (Dn)) C Dn—l-
For n > 0, recall that P, is the perturbed petal of f,,. For n > 1, we define an
anti-holomorphic map ,, by
Yn =D 0Xn00 Pyt Py — Py (2.38)

Hence we have the following diagrams:

o1 -1

Pn 1 <— q)n 1(Pn—1) Unfl (n——l anl
T’Lﬁn TXH,U a'nd TXn,j
on ot
Pn ——  D,(P,) U, < D,.

Each 1), extends continuously to 0 € 9P,, by mapping it to 0. For n > 1, we define
the composition
v, ':¢10¢20"'0¢n173n—>770 C Up.

For n > 0 and ¢ > 1, define the sector
S = 1bpg1 0 0hnyi(SY ) C P
In particular, S§ C Po for all n > 0. Define
P, ={2€P,:0<Re®pn(2) < [5-] —k—1}.
Let ¢, be the denominator of the convergents [0;a1,--- ,a,] of the continued

fraction expansion of a.. Recall that k, = ky, is the positive integer introduced in
Proposition The following lemma was proved in [Chel9, §3] and parts of the
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results can be also found in [BC12| §1.5.5]. The proof is based on the definition of
near-parabolic renormalization.

Lemma 2.15 ([Chel9l Lemmas 3.3 and 3.4]). For every n > 1, we have
(a) For every z € Py, fo®1 o¥n(2) = thno fu(2) and fg*" o ¥y (2) = Uy o fr(2);
(b) For every z € S, f k antl) 0P, (2) = o fFn(2) and fg(k"q’L+q7l’1) o
U,.(2) =19, Ofﬁk (2); cmd
(c) For everym < mn, fn:PlL — Pn and f*» : SO — C,, UCE are conjugate to
some iterates of fn, on the set Yymq1 00, (Py).

In particular, the dynamics of f,, is conjugate to the dynamics of fo. Specifically,
the first k,, iterates of f, on SO corresponds to knqn + qn_1 iterates of fo and the
next |- | — k— 2 iterates corresponds to q, (| -] — k— 2) iterates of fo.

For each n € N, by (2.7) we have
by, ::kn+LainJ—k—22an+1—|—l.

From the definition of D,, in (2.6) and by Lemma , the following sets are well-
defined for each n > 0 :

bn . bnqntqn-1 )
=UJmsnuior and Q5= (J  f57(Sg)u{o}.
j=0 J=0

Definition (High type Brjunos). Let N be the integer fixed before. Define

« is Brjuno and }

N Vn>1 (2.39)

By = {Oz: [0;a1,a2,---] € (0,1)\ Q

Then By is strictly contained in HT .
Proposition 2.16 ([Chel9, Propositions 3.5 and 5.10(2)]). Let fo € ZSs U {Qau}
with o € HT . Then for all n > 0, we have

(a) Q0! is compactly contained in the interior of QO and fo(Q0T) C QF;

(b) If a € By, then int (", —, Q) = Ao, where Ag is the Siegel disk of fo.

In the rest of this paper, unless otherwise stated, for a given map fy € ZS, U
{Qq} with @ € HTy, we use f, to denote the map after n-th near-parabolic

renormalization. We also use U,,, P,, and ®,, etc to denote the domain of definition,
the perturbed petal and the Fatou coordinate etc of f,, respectively.

3. THE SUITABLE HEIGHTS

3.1. Radii of Siegel disks. The following classical distortion theorem can be
found in [Pom75, Theorem 1.6, p. 21].

Theorem 3.1 (Koebe’s distortion theorem). Suppose f : D — C is a univalent
map with f(0) =0 and f'(0) = 1. Then for each z € D we have

(a) 11+“ |‘)s < ‘f( )| (11+| ||)s;'

() ity <G < it and

(c) Jarg f'(2)] < 2log 7.

Let ag := o € By and a, € (0,1) be the number defined inductively as in (2.35)

for n > 1. Denote By =1 and B, :=[];_,a; for n > 0. The Brjuno sum B(a) of
« in the sense of Yoccoz is defined as

1 1 1 1
) :Zﬁn_llog—zlog——&—aolog——i—aoallog——f—---. (3.1)
Qp & aq Q2
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It is proved in [Yoc95, §1.5] that |B(a) — >0, qn loggnr1]| < C” for a universal
constant C’ > 0.

Suppose a holomorphic map f has a Siegel disk A centered at the origin which
is compactly contained in the domain of definition of f. The inner radius of Ay is
the radius of the largest open disk centered at the origin that is contained in Ay.

Lemma 3.2. There exists a universal constant Dy > 1 such that for all fy €
IS, U{Qu} with o € By, the inner radius of the Siegel disk of f, is c,eB(@n)
with 1/D7 < ¢, < D7 for every n € N.

Proof. By the definition of near-parabolic renormalization, it follows that f, €
ZS,, with «,, € By for all n > 1. Then according to [Brj71], each f, with n >0
has a Siegel disk centered at the origin. By the definition of Inou-Shishikura’s class
and Koebe’s distortion theorem (Theorem [3.1[b)), f, is univalent in D(0,¢) for a
universal constant ¢ > 0. According to Yoccoz [Yoc95l p. 21], the Siegel disk of f,
contains a round disk D(0, C;e~B(@n)) for a universal constant C; > 0, where

+oo
1
B(ay,) == log - + Z QU+ At k—1 lOG (3.2)
k=1

n Ayt k
is the Brjuno sum of «,, defined in . On the other hand, by [Chel9, Theorem
G], there is a universal constant Cy > 1 such that the inner radius of the Siegel
disk of f, is bounded above by Coe~B(@n) for all n € N. The lemma follows if we
set D7 := max{Cs,1/C4}. O

3.2. Definition of the heights. In the following, we use A,, to denote the Siegel
disk of f,, for all n > 0, where fo € ZS, U {Q,} with a € By and f,, is obtained
by applying the near-parabolic renormalization operator.

Definition (The heights). Let M > 1. For n > 0, we define

Blay, M

Blany) | M (3.3)

2w Qay,

h,, =

There are many choices of the height h,,. One of the candidates is 6(0;77:1) + M.
In order to apply Lemma [2.11|(a) directly, we choose h,, above so that h,, > 1/a,,.
Similar to (2.3)) (see Figure [3), we define

Cli:={z€Pn:1/2<Re®,(z) <3/2 and Im P, (2) > h,}.
Let (C%)~* be the component of f;#(C!) contained in (C%)~*». Recall that v,
is defined in (2.38)). For n > 0 and ¢ > 1, we denote
V0= (CH™ c 8% and V=10 -0tpi(VO,,) C S
Lemma 3.3. There exists a universal constant My > 1 such that if M > My, then

for allm >0 and i > 0, V,' is compactly contained in A,,.

Proof. We first prove that V,? is compactly contained in A,, for all n > 0 if M > 1
is large enough. By a straightforward calculation, the image of ®,, (551) under Exp
is a punctured rounded disk centered at the origin with radius

4 —27hy, _ 4 _2mm

1
J— an . —B(O{n+1) _ _B(an+1)
27 97° ¢ <D,

if M > M, := i log D7 + 1, where D7 > 1 is the universal constant introduced in

by =

Lemma This implies that Exp o &, (531) is compactly contained in the Siegel
disk of f,,4+1 if M > M;. Hence there exists a small open neighborhood D of C~£L
in P,, such that Exp o ®,,(D) is compactly contained in the Siegel disk A,,+1. By
Lemma c), it follows that f,, can be iterated infinitely many times in D and
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the orbit is compactly contained in the domain of definition of f,. Note that 0 is
contained in D. Therefore, D is contained in the Siegel disk of f,, and CEL € A,.
Since f2F»(V9) = Ct and 0 € OV, we have V) € A,,.

For each z € V), there exists a small open neighborhood of z on which f,
can be iterated infinitely many times. By Lemma b)7 there exists a small open
neighborhood of ¥,,(z) € Vi* on which fy can be also iterated infinitely many times.
Since each z € V0 satisfies this property and 0 € 9V, it follows that Vi* € A,.
By a completely similar argument, we have V! € A,, for any i >0 and n > 0. O

Note that the forward orbit of V! is compactly contained in A,, for any n > 0
and i > 0. Moreover, the backward orbit of V! is also compactly contained in A,
if the preimage under f,, is chosen in A,,. In the following, we always assume that
M > M; unless otherwise stated.

3.3. The location of the neighborhoods. For n > 0, each V. U {0} is a closed
topological trianglﬂ whose boundary consists of three analytic curves. We use
o'VO 97V0 and 9°V0 to denote the three smooth edges of V.2, where f,,(9'V,?) =
o"V2 and 0'V0 N 9"V,? = {0}. The superscripts ‘I’, ‘r’ and ‘b’ denote ‘left’, ‘right’
and ‘bottom’, respectively. See Figure

Figure 5: In the dynamical plane of f,, the sets 9'V,), 9"V.0 and I? are colored
cyan, purple and red respectively. The blue set depicts the (partial) forward orbit
of the critical point cp; . The sets V0 and Ch = fokn (V,0) are colored gray.

Similar naming convention is adopted to Vi and their forward images for all
n >0 and i > 0. For example, 9"V, := tp, 11 0 -+ 0 90,1 (0'V,0,,) if i is even while
OV = py100-0th, 1 (97V,2, ;) if i is 0odd (note that each v, is anti-holomorphic).
For simplicity, we denote the segment

I0:=0VP c A,.

The ‘left’ and the ‘right” end points of I? are denoted by 9'I0 and 9" I? respectively
so that f,(0'I2) = 9"I°. Similar naming convention is adopted to I and their
forward images for all n > 0 and ¢ > 0. In particular, by Lemma a) we have
fo?(OF) = Or Iy if nis even and f3 7 (9"I}) = O'IF if n is odd. Moreover, let
0'S¢ and 9" S be the smooth edges of S containing 9'V,! and 9"V,! respectively.

Let k, = kg, > 1 be the integer introduced in Proposition D3 > 0 be a
constant introduced in Lemma and D,, = Dy, be the set defined in (2.9).

13Here we use the fact that for any = € (0, LO%J — k), limy_s 4 0o Py, ' (z + yi) = 0. See [CST5,
Proposition 2.4(a)] or [Chel9, Lemma 6.9].



24 MITSUHIRO SHISHIKURA AND FEI YANG

Lemma 3.4 (see Figure @ There exists a constant My > 1 such that if M > Ma,
then for all n € N, we have
(a) diam(®,,(12)) <2 and |[Im¢ — h,| < 1 for all ¢ € ®,,(10);
(b) Forally > hy, — 1, up(y) == {C € C: Im( =y} N ®,(0'SY) is a singleton;
(c) diam(p,) < 1, where B3, is the arc in ®,(0'S9) connecting u,(hy,) with
®,,(0'19).

Proof. The proof is mainly based on applying Koebe’s distortion theorem and the
definition of near-parabolic renormalization.

(a) By the definition of near-parabolic renormalization, we have
fni1(Expo @, (V?)) =Expo @n(aﬁ)

Note that Exp o ®,,(C4) U {0} is a closed round disk with radius

4 vl e~ Blant1)

lp = ﬁe
By Lemma A, 41 contains the disk (0, g, ), where

Sp 1= D;le*B(a"“).

Therefore,
g = fn_-&l : D(Oygn) — An+1 (34)

is a well-defined univalent map with |¢’(0)| = 1. If M is large enough such that ¢,, is
much smaller than ¢,, then by Theorem [3.1| the distortion of the circle g(dD(0, ¢y,))
relative to dD(0, ¢y,) can be arbitrarily small. Part (a) is proved if we notice that
®,,(I0) is the closure of a connected component of Exp~! o g(dD(0,¢y,) \ {tn})-

(b) Still by the definition of near-parabolic renormalization, we have
frt1(Exp o ©,(9'S9)) = (0, £e*7].

Since D(0,5,) C Apy1, we have f,}1 ([0, &e*™]) N g(D(0,5,)) = g([0,5,)), Where g
is defined in . On the other hand, by and Theorem b), we assume
that M is large such that ¢, is small and g(D(0,5,)) D D(0,e?"t,). According to
Theorem [3.1](c), we assume further that M is large such that g([0,<,)) N dD(0,r)

is a singleton for any 0 < r < €274,,. Therefore,
Expo ®,(0'S)Nn{zcC:|z|=r}

is a singleton, where 0 < r < €®™1,, = ote~2"("»=1_ This proves Part (b).

(c) By the definition of near-parabolic renormalization, we have
Exp(tn(hn)) = g([0,6,)) NOD(0,1,) and Expo ®,(0'I°) = g(t,).

Moreover, by the definition of g/, we have Exp(5,) C ¢([0,¢,)). By Theorem (3.1
the Euclidean length of the arc Exp(f],) with end points ¢([0,<,)) N dD(0, ¢,,) and
g(tn) can be arbitrarily small if M is large enough. This proves Part (c). O

Let D3 > 0 be introduced in Lemma In the following we always assume
that M > max{Ms, D3 + % log % + 2} unless otherwise stated. Then

B(an+1) 3 B(Otn+1) 1 27Cn+1
o= 2\t )y py 2 Plnd) 2, 2O
Y or 3757 o o7 8T 4

This implies that if Im ¢ > y,,, then ¢ € Exp~}(A,41).

(3.5)
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4. THE SEQUENCE OF THE CURVES IS CONVERGENT

In this section, we define a sequence of continuous curves (7% ),ey in the Fatou
coordinate planes with i € N. The image of each ~ under ®,! is a continuous
closed curve contained in the Siegel disk A, of f,. We shall prove that (7 )nen
convergents uniformly to the boundary of Ay.

4.1. Definition of the curves and its parametrization. For each n € N, note
that 41 = [Z—]. Recall that
tn =t (hy) = {C € C: Im( = by} N D,(9'S7)

is introduced in Lemma|3.4{b). Since f2#»(S9) = C, UCE, we have Re( > a,+1 — k
for all ¢ € ®,,(S2) + k,,. Therefore, we have

an+1—k—kn<Reun<an+1—k—%. (4.1)
We denote

u’n =ap+1 — k—k, — % + h,i.
According to (4.1)), we have Reu], < Reu,. Denote
ull = 0, (9'1°).

Let 3/, be the arc in ®,(9'S%) connecting u,, with u!/. See Figure@ We first give
the definitions of two curves 72 (¢) and ~;:(¢), where ¢ € [0,1], and then define the
curves (V. (t))nen inductively.

Definition of 42: The curve 72 (¢) : [0,1] — C is defined piecewise as following:
(ag) Fort € 0,1 — k”“ H] define Y0(t) == anq1t + 3 + hni;

(bg) Let A2(t): [1— kzk+j1 1— ﬁ] — [ul,, uy)UBL be a homeomorphism such
that
k+k, — — .
Tn(l— %jl) uy, and (1 — ﬁ) = Up;
(co) Let 0(t) : [1 — aiﬁv 11— ]Zn:l] — ®,,(I2) be a homeomorphism such that
0 kn // kn—1\ _ I .
Tl = 727) = u, and (1l = ) =+ 1
(do) For t € [1 — ]Z";j,l - kz:izl] with 1 < j < k, — 1, define 72(t) =

Tt = 32) +J.

Lemma 4.1 (See Figure@. The map Y2(t) : [0,1] — C has the following properties:
(a) ’yn and ’yg + 1 are simple arcs in Dy;
(b) ~ ( ) =5 +hyi and v (1) = ufl + ky;
(c) ®,1(72) is a continuous closed curve in A,,; and
(d) [TmA~2(t) — hp| < 1 for all t € [0,1].

Proof. Parts (a) and (b) follow from the definition of 72. For Part (c), since
fFn (@ (ul))) = @, (3 + hai), we have @, 1(3 + hyi) = . (ul, + k,) by Lemma
This implies that ®,,1(72) is a continuous closed curve in A,,. Part (d) is an
immediate consequence of Lemma a)(c). O

Before introducing ., we define a thickened curve 32 (¢) : [0,1] — C of 72:

yg(%t) iftef0,1— 1

0= " |
Tn(t) +1 ifte (-1

One can see that 75 = 75 U (/5([1 — = 1+1 AD + 1) = 42 U (9,(10) + k) and

39(t) : [0,1] — C is a continuous curve in D,. Let xno0 := Xf,,0 be the anti-

holomorphic map defined in ([2.8)).
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Figure 6: The sketch of the construction of the continuous curve 72 (in blue) in
the Fatou coordinate plane of f,,. The two red dots denote the initial and terminal
points of 40 and they have the same image under the map ®'. In particular,
@ 1(+9) is a continuous closed curve in the Siegel disk of f,,.

Definition of }: The curve 7. () : [0,1] — C is defined piecewise as following:
(a1) For t € [0, ﬁ], define v} (t) := Xn4+1,0 © Vo1 (1 — ang1t);
(by) Fort € (# ﬂ}, where 1 < j < an1 — 1, define

Ant1’ Gnt1
Yo (t) = Xn+1,j © Ymy1(J + 1 — ans1t),
where Xp41,j = Xn+1,0 + J is defined in .
Let D3 > 0 be the constant introduced in Lemma [2.11
Lemma 4.2. The map 7. (t) : [0,1] — C has the following properties:

(a) 7L and v} + 1 are continuous curves in Dy,;

(b) 72(0) = Xn+1.0(7n41 (1) +1) and 15 (1) = Xn+1,0(7041(1)) + an1;

(c) @, (v1(0)) = @, (7L (1)) and @, 1 (y}) is a continuous closed curve in A, ;
and

(d) There exists a constant Dg > 0 which is independent of n such that for all

t €[0,1], [Rerd(t) —Rey}(t)| < Ds and [Im~ (t) — 292 — M| < Ds+1.
Proof. (a) Since xpn+1,; is anti-holomorphic for all j € Z, we have
X1, (Vn41(0)) = Xnt1,5(Vnr1 (1) + 1= Xnt1,541 (741 (1),

where 0 < j < any1 — 2. Therefore, 4L (t) : [0,1] — C is a continuous curve. By
Lemma vt and 4} 4 1 are continuous curves in D,,.

(b) By the definition of v}, we have
Y (0) = Xn+1,0 © Fnp1 (1) = Xnt1,0(vp41 (1) + 1)
and
(1) = Xnt 10041 -1(741(0))
= Xn+tanti—1(ma1(1) + 1= Xns1,0(0m41(1) + Gnsa.

(¢) By Lemma [2.15(a), we have
Ot o xnt1,0(Tm41 (1) +1) = R (@ 0 Xar1,0(nga (1))
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This implies that ®,,(v}(0)) = ®,(}(1)) by Part (b). Therefore, ®,1(7}) is a
continuous closed curve in A,,.

(d) By (2.36]) we have
ReXnt1.j(Fns1) C [1+ 4, k1 +2 + 5], where j € Z. (4.2)
Hence for ¢t € [0,1 — %jjl], we have
[Ren(t) — Rep ()] < b + 5.
Fort e[l — kifijl, 1- aiil]’ by (4.1)) and Lemma c) we have
Revn(t) € [Reul, — L, Rew, + 1] C lant1 — k —kn — 1, any1 —k— 3]

k
Ift e [1 — k+k"+1,1 - aiL]’ then 'Y%(t) € Ui:() Xn+1,an+l7k7kn71+i(72+1)' By

An41

(4.2) we have

R8771L(t) € [ans1 —kn — K, ang1 — kn + k4 1].

Therefore, for t € [1 — ¥Xkatl 1 En ] we have
An 41 Ant1

[Revo(t) — Reyp ()] < max{k, — 1, k+ ki + 2}.
By Lemma a)(c), we have

u!! € D(uy,1) and @,,(1°) c D(u”,2). (4.3)
kn kn—1
Fort e [1— el Sl ], by (4.1) and (4.3) we have

Rep(t) € [ant1 — k—kn — 3, an41 — k+ 3]
On the other hand, we have
Reyi(t) € [ant1 — kn + 1, an1 — Ky + k1 + 2]
Since vi (t+ ——) =i (t) + 1 for t € [1 — Lo 1 — 1] where i = 0,1, it implies

An41 An41 An41

that for all t € [1 — iL , 1], we have

a

[Reyp(t) = Rev, ()] < max{k, — k+ 3, k+ ki +5}.

Since k,, < ky by Proposition it implies that |Re72(t) — Reql(t)] < Ds =
max{ko — 1,k+ ki + 5} for all ¢ € [0,1]. Finally, the statement on Im~}(¢) follows

immediately from Lemma a) and Lemma [£.1](d). O
By (3.5) and Lemma [4.2(d), for any ¢ € [0,1] and ¢ € Exp~'(0A,+1), we have
1
Imyfl(t)>M+M—D3—§>l+ImC. (4.4)
™

For ¢ = 1, we define a thickened curve 7% (t) : [0,1] — C of ~¢:

yfl( “”tlt) ifte0,1— 1]
V4
n

it (4.5)
ye () + 1 ifte(1—--—-2- 1.

An 41

(1) =

1
an+1’

1]) + 1) = '72 U Xn+1,an41 ('Vft:tll)v and
L (t) : [0,1] = C is a continuous curve in D,,.

One can see that 72 = 75 U (v5([1 —

Define 7}1 inductively: For all n € N and 1 < ¢ < i with ¢ > 1, we assume
that the curves 7% (¢) : [0,1] — C and 7% () : [0,1] — C are defined and satisfy
(ag) 7Y is defined as in ;
(be) 7 (t) = Xn+1,0 © Ty 51 (1 = anaat) for ¢ € [0, o-1=), and 7;(1) = Xn415 0
Yoo ( + 1= angat) for t € (L, L] with 1 < j < angr — 15
(ce) 7% and ~% + 1 are continuous curves in D,,;
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(de) 74(0) = Xn+1,0(751 (1) +1) and 75 (1) = xnr1,0(7 51 (1) + @ngr; and
(er) ®;1(7£(0) = @, 5(~5(1)) and @, (1) is a continuous closed curve in A,,.

Similar to the constructlon of 4%, the curve v4F1(¢) : [0,1] — C is defined as:
(a;+1) Fort e [0 ] define Y5 (t) := Xn41,0 © Voyq (1 — anqat);
(bit1) Fort € (—1— sy ], where 1 < j < ap41 — 1, define

Ant1” Gnt1
7’:1+1(t) = Xn+1,5 © ’Y%_ﬁ_l(j +1-— @7L+1t).
Lemma 4.3. The map v (t) : [0,1] = C has the following properties:

(a) v, and v, 7t 41 are continuous curves in Dy; _

(0) 7(0) = X 00a(1) + 1) and 351 (1) = X100 (D) +

(c) @, (viT1(0)) = @, (viH1(1)) and @, (v5Y) is a continuous closed curve
in A

The proof of Lemma [£:3] is completely similar to that of Lemma [£.:2] Moreover,
one can define the thickened curve 7/, of v/ with £ =4 + 1 as in ([£.5) similarly.

By the definition of 7%, we have

Lemma 4.4. For each ty € [0,1], there exist two sequences (tn)nen with t, € [0, 1]
and (Jn)n>1 with 0 < j, < an, such that for alln > 1 and all i € N,

T (b1)

F)/n 1 = Xnvjn (i?Z’L(tn))'

4.2. The curves are convergent. Our main goal in this subsection is to prove:

Proposition 4.5. There exists a constant K > 0 such that for all n € N, we have

n

Y sup pi(t) =) < K. (4.6)
i—o t€[0,1]
In particular, the sequence of the continuous curves (V§(t) : [0,1] = C)pen con-
verges uniformly as n — oo.

In order to estimate the distance between 7§ (t) and v5 ™ (t) with ¢t € [0, 1], we will
combine the uniform contraction with respect to the hyperbolic metrics and some
quantitative estimates (with respect to the Euclidean metric) obtained in § For
any hyperbolic domain X C C, we use px(z)|dz| to denote the hyperbohc metrlc
of X. The following lemma appears in [Chel9, Lemma 5.5] in another form. For
completeness we include a proof here.

Lemma 4.6. Let X, Y be two hyperbolic domains in C satisfying diam (Re (X)) <
A" and Bs(X) C Y, where A’ and § are positive constants. Then there exists a
number 0 < XA < 1 depending only on A’ and § such that for any z € X,
py (2) < Apx ().
Proof. For any fixed 2y € X, we consider the holomorphic function
0(z — 20)
F(z):= —: X > C.
(2) Z+z—zo—|—2A’+5 -
Since diam (Re (X)) < A’ it follows that |z — zg| < |z —20+2A4" 44| if z € X. Thus
we have |F(z) —z| < § and F(X) C Y by the assumption. Applying Schwarz-Pick’s
lemma to F': X — Y at F(z9) = 2o, we have

o (F(z0)) | (20)] = v (z0) (1 " M‘Lé) < px(z0).

The proof is finished if we set A := (24" 4 6) /(24" + 20). O
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Let X be a set in C and zp € X. We use Comp, X to denote the connected
component of X containing zo. Let D,, be the set defined in (2.9). For n € N, we
define

D!, := Comp,(D,, N{¢ € C: =3 <Im( < hy, +2}),

where h,, is the height defined in . Note that each D), is a hyperbolic domain.
Let p,(z)|dz| be the hyperbolic metric of D;. We use len(-) and len, (-) to de-
note the length of curves with respect to the Euclidean and the hyperbolic metric
pn(2)|dz| respectively.

Lemma 4.7. Let A’ > 0 and 6 > 0 be two constants. Then there exist A > 0 and

0 < v < 1 depending only on A’ and § such that for any piecewise continuous curve
Oy in D), with len(d,,) < A" and Bs(¥,) C D), we have

len(x1,j, 0+ 0 Xn,j, (In)) < A"
where 0 < j; < a; and 1 < i< n.

Proof. Let 1 <i<nandO0 < j; <a;. Note that we have assumed that M > D3 in
(3.5). By Lemmau 2.11} for ¢ € D}, we have

Im i, (Q) < B8 + M+ Dy +1< Bed 4 Moy g—p g 41, (4.7)

Since ®; L(D;) is contained in the image of f;, by the definition of near-parabolic
renormalization (see also (2.8))), we have

Imx; ;,(¢) > =2, for all ( € D;. (4.8)

By Lemma we have Bs,(x:; (Di)) C D;—1 for a constant dy depending only
on the class ZSy. Without loss of generality, we assume that o < 1. Combining

(4.7) and (4.8)), we have

Bs, (Xi.3:(D5)) € Dy (4.9)
Note that x; j, : (D}, pi) = (D;_;, pi—1) can be decomposed as:
Xi,j; inc.

(D3 pi) == (Xiji(Di), i) = (D1, pi-1);

where p;(z)|dz| is the hyperbolic metric of x; ;, (D}). According to Proposition
we have diam (Re x; j, (D})) < k1. By Lemma[£.6] the inclusion map

(XiJi (D ) ﬁl) (D;,l, pifl)
is uniformly contracting with respect to the hyperbolic metrics (and the contracting
factor depends only on k; and dg). Since x; j, : D — Xi,;; (D;) do not expand the
hyperbolic metric, it follows that x; ;, : (D}, pi) = (Di_1,pi—1) is also uniformly
contracting.
Since 1, is a piecewise continuous curve satistying len(¥,) < A" and Bs(9,,) C

D.,, it follows that there exists a constant A” > 0 depending only on A’ and § (not

on n) such that len, (9,) < A”. Define

inc.

Gpni=X14,° " °Xnj, : D = Dj.
By the uniform contraction of x; ;, for 1 < ¢ < n with respect to the hyperbolic
metrics, there exists a constant 0 < v < 1 depending only on k; and dg such that
len,, (G (9,)) < A” - v™.

Since Bs, (Gn(D},)) C D}, the Euclidean metric and the hyperbolic metric pg of Dj)
are comparable in G, (D),). Since G, (9,) C G (D)) C Dy, there exists a constant
A > 0 depending only on A" and § such that len(G,,(9,)) < A - v™. O

Let Dj > 1 be the constant introduced in Proposition
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Lemma 4.8. There exists K1 > 0 such that for any n > 1 and any continuous
curve ny, : [0,1] = D, with n,(0) € 32 and len(nn) < hn — D§ — 1, then
len(xn,0(1n)) < gz B(an) + K.
Proof. By Proposition [2.13] we define
é1(r) := (1 + Dge 2™y, ifre [ﬁn, +00),

L Ap DG . ! 1
¢2(r) T 1 — e—2man(r—Dj log(2+7)) (1 + 7") ifr e [DG’ Hn]

A direct calculation shows that

hn—1
" 1
J = / $1(r)dr < —anB(ant1) + M + De. (4.10)
1/(4as) 2
We claim that there exists K{ > 0 which is independent of a, such that
1/(4ay) 1 1
J" ::/ ¢a(r)dr < —log — + K7. (4.11)

In fact, a direct calculation shows that J” = J; + DjJy + DgJ3, where

1 r_
1 [Ton 2w, €2 " — 21ay, DY (r + 2)27anD2—1

Ji= - dr
2T, T 2wy, D!, ’
s Dy e (r 4 2)2monDs
_1 /
Tan Oén(’l" + 2)27ranD2—1
Jo = 3 s pr dr,  and
Dé e ﬂ'anri(r+2) nl)y
ﬁ a e27ran7' 1
n
J3 = / 2w, T 2ranDl, g dr.
p; €*men’ — (r+2)2menz

We assume that , is small such that 2ma, Dy < 1/2 and 2ma, D) log(2 + 12-) <
1/2. Since 1 +t < et <1+ 2t fort €[0,1],if D <r < ﬁ we have

eXmanT _ (4 2)27”’"13é > 1+ 2ra,r — (1 + 4ma, Dy log(r + 2))
= 2may, (r — 2D5 log(r + 2)),

where r — 2D} log(2 4+ r) > 4 if r > Dy (see Proposition b)).
By (4.12)), there exist C7, C] > 0 which are independent of «,, such that

(4.12)

1 / / 1 1
< R 2manDg D/ 2 2mon Dy < 1 - C/.
J1 <Gy o og(e (Dg +2) ) or %8 o +0

For J,, since the integral

+oo
/ 1 1 q
p. 1T —2D4log(2+ 1) (r+2)1/2 "

6
is convergent, it follows that there exists a constant Cy > 0 which is independent of

oy so that Jo < Co. Similarly, there exists a constant C3 > 1 which is independent
of a, so that J3 < C3. Hence (4.11)) follows if we set K| := Cf + C2D% + C3Ds.

Without loss of generality we assume that 7 — r — D} log(2+r) is monotonously
increasing on [Dg, +0c). Therefore, ¢1(r) and ¢2(r) are monotonously decreasing
on [{1—,+00) and [Df, ;2] respectively. Denote

1(r if r ﬁ, ),
M:{(b() € [ +0)

maX{%(T%%(ﬁ)} ifTE[D&ﬁn). (4.13)
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Then ¢(r) is monotonously (may not strictly) decreasing on [Dj, +00). By Lemma
d), we have [Imn,(0) — h,| < 1. Since len(nn) < hy, — Di — 1, we have
N (D(0, D§) UD(1 /v, D)) = 0. By (4.10) and (4.11)) we have

hp—1

len(xno(m) < [ ¢<r)dr<J’+(J” (72— D)o ()

i
6

(4.14)
1 1
<J +J"+ Z(DG +1) < —%B(an) + K1,

where K; := M + %Dﬁ + K. The proof is complete. O

Proof of Proposition[{.5 Note that ~y(t) = 35 (*4— a=14) for all ¢t € [0,1] and all
n € N. In order to prove (4.6)), it suffices to prove that there exist K > 0 and a
sequence of non-negative numbers (y;);>o such that for any n € N, any 0 <i < n
and any to € [0,1], we have

Fo(to) =76 (to)| < yi and >y < K. (4.15)

We divide the argument into several steps.

Step 1. Basic settings. For any t, € [0,1], by Lemma [£.4] there exist two
sequences (tn)nen with ¢, € [0,1] and (jn)n>1 with 0 < j, < a, such that for all
n>1andall i € N,

T (tn1) = Xngo (T () - (4.16)
For n e N, let
& 1 [0,1] = [ (ta), An(tn)]

be the segment with £2(0) = 3%(t,) and €2(1) = FL(t,) (we assume that the
parametrization of £2 on [0,1] is linear).
By the definition of D/, and Lemma the set D/, contains

{CE(C:O<Re(:<LO%”J—k+ko+k1+3andO<ImC<hn+2}.
By Lemma [3.4(a)(c), (4.1) and Lemma [{.1]d), we have
o c{(eC:3<Re(< | ~] —k+kn +3and —1<Im¢—h, <1}

In (3.5) we assume that M > D3+ 5- log 4D7 +2> Ds —|— (since D7 > 1). Hence
by (4.2) and Lemma |4.2) ud we have
FnC{CeC:1<ReC <[]+ ki +3and 1 <Im( < hy+1}. (4.17)

Note that k, < kg (see Proposition . Hence we have By /5(£)) C D), for all
n € N. For £ > 1, we define the Jordan arc &£ : [0,1] — C as

e (s) == Xn+1,dmst © O Xndlojnye (€2, 4(s)), where s € [0,1]. (4.18)
By and 7 the following curve is continuous:
M= EnUEL U U&= €0 UXnt1 g (T 31)
= 50 U Xnttgnga (Gnpr U UERTT)-
Denote 19 := £2. According to , for any n > 0 and ¢ > 0 we have
Bs(nt) € Dn, where § := min{dg, 1/4}.
We give a parametrization of the continuous curve 7, : [0,1] — C by
1 (s) = &,((0+1)s — j),
where s € [;2,451] and 0 < j < £ (note that &/ (1) = ¢7+1(0) for every 0 < j <

1 1
{—1). By definition, we have [7}(t0) =74 (to)| < len(&}) for all i € N. Therefore, in
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order to obtain (4.15]), it suffices to prove that there exist K > 0 and non-negative
numbers (y;);>o such that for any n € N and any 0 < 7 < n, we have

len(¢)) <wy; and Zyi < K. (4.19)
i=0

Step 2. Decompositions of the curves. Note that we have assumed that

M > D3+ 3 (see (3.5)). By (&F), it follows that Lemma [4.2(d) holds also for 70
and 7. By Lemma [4.1{d) and a direct calculation, we have

len(ng) = len(fg) = ﬁg(tn) - %ll(tn”

(4.20)
<hy+1—8C) Ay Dyt L4 Dy < h, — Bl) | D,

Hence 7% = £2 : [0,1] — C can be written as the union of two continuous curves
M0y 7= 1n([0, 8]) and 7)) ;) == 11 ([sn, 1]) for some s,, € (0,1) (the choice of s,, is
not unique), such that

len(n,) () < hn — Dg—1 and len(r, y) < DG+ Dg + 1. (4.21)

Since Bs(n%) C D), there exists a constant K} > 0 depending only on § and
D} + Dg + 1 such that
len,, (n) (1)) < K, (4.22)

where p,(z)|dz| is the hyperbolic metric of D).

Let K7 > 0 be the constant introduced in Lemma There exists a constant
K5 > K/ depending only on A’ := K; + D{ + Dg + 1 and 4, such that for any
n € N and any piecewise continuous curve ¢’ in D), with Bs(§') C D), and len(¢’) <
K, + D§ + Ds + 1, one has

len,, (¢') < Ks. (4.23)

Let v € (0,1) be the number in Lemma [4.7| depending only on A’ and 4.
Suppose n > 1. By Lemma and (4.21), Lemma and ([4.22)), &L | is the

union of two continuous curves xy, j, (772,(0)) and Xnj, (77’(1)), where

len(xn,j, (7)27(0))) < =B(ay) + K and (4.24)
len,, , (Xn,jn (772,(1))) < Khv < Kav.
Therefore, by (4.20) we have
len(fgfl U Xn.jn (772,(0))) (4.25)

< (hn—1 — Elan) + Dg) + (M + K1) = hp_1 + Ds + Ky

27 27
This implies that £ 1 U xnj, (15 o)) = UEL ([0, sn]) = n_, ([0, 1£22]) can
s implies that £5_; U xn.j, (10, (g)) = £5-1 U &h_1((0, 8n]) = mi_ ([0, H52=]) ca
be written as the union of two continuous curves 1, _; ) = 7;-1([0,s,-1]) and
1+sy,
2

7771171,(1) =L _1([sn-1, ]) for some s,,_; € (0, 422), where

1611(77%_1,(0)) < hpo1—Dg—1 and

" D , (4.26)
len(n,_q 1)) < A"= K1+ Dg+ Dg + 1.
Since 36(7771171) C Dith by " we have lenpn,l(nrll,1 (1)) < K2~
Sn — — 2) .
Denote 7771171,(2) = by ([, 1)) = Xn,j7L(772,(1))7 sill_)l = 8,1 and 32_)1 =

H%. Then the continuous curve

7771L—1 = 52—1 U S}L—l = 77};—1,(0) U 7]};—1,(1) U 77711—1,(2)

satisfies:
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1 2
b 7]711717(0) = 7]711 ([075'2)1]) 7771171,(1) = 77n 1([sn, () S'E’L—)l]) and "771171)(2) =

1 (2)
M1 ([85, 21, 1]);
e len(n, () < h —1-Dg=1,len,, ,(n, (1)) < Kz andlen,, (1, () <
KQZ/.

Step 3. Inductive procedure Suppose there exists 1 < ¢ < n — 1 such
that 7% _; = Uj_o&4_; = Ul () With Bs(nj,_;) C Dj,_; has the following
properties:

(k) (k+1) (0)

1) (i+1)

ol i (k) =i (8,2 8, ")) for some 0 = s,”, < s, 0, <+ < s <
SS+12) =1, where 0 < k <7+ 1; and
e len(n! _, (0)) < hp—i — Dg — 1 and len,, (0’ _, (k)) < Kok~ for every
<k<i+ 1.
By a similar argument to (4.24]), (4.25) and (4.26)), there exist 0 = 8;0) 1 1 <
511)1 1 << SS?)I < Stg)l 1 such that the continuous curve 77n i =

Uibo el = Ui nitt ) (k) With Bs(nitL ) € D!,_,_, has the following prop-
erties:

o 0y g = i (s sy s ), where 0 <k < i+ 2; and

n—i—1’“n—i1—1
o len(y,"_) () < hni-1 — Dg — 1 and lenp"—i—l(nfz—tli—l,(k)) < Kok=1 for
every 1 <k <i+2.

O 0 o

n+1

< STY < glnt)

0 Mo.(k) With Bd(ﬁo) c D}

Inductively (as ¢ increases), there exist 0 = s
1 such that the continuous curve 1% = (J;_, &5 = Up_
has the following properties:

® G, k) = 110 n (155, s8D]), where 0 < k < n+1; and
° len(ng’(o)) < hg—Dg—1 and len,, (n&(k)) < KovF~lforevery 1 <k <n+1.

Step 4. The conclusion. Since Bs(n{) C D, the Euclidean metric and the
hyperbolic metric po of Dj, are comparable in a small neighborhood of 7. Hence
there exists a constant C' > 0 depending only on § such that

n+1 n+1 CK2
> len(ng ) < C Y leny, (15 1) < 11—

v
k=1

Therefore, for all n > 0 we have

S (o , CK,
len(ng) Zlen {0 Zlen(no’(k)) <K:=hy—-Dg—1+ —.

By (4.13), (4.14) and the similar estimates to (4.24) and (4.25)) in the above

inductive procedure, it follows that for any n > 0, there exists a sequence of non-

negative numbers {yfn) : 0 < i < n} which is independent of the sequence (t,)nen
such that for any 0 < ¢ < n, we have

len(&)) <y and Yy <K

Then (4.19) holds if we set y; := inf,,en {yl(n) }

The estimate (4.6) implies that the sequence of continuous curves (¥, (t))nen
converges uniformly on [0, 1]. Since §(t) = %‘(%t) for all t € [0,1] and n € N,
it implies that (7§ (t))nen converges uniformly on [0, 1]. O
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Remark. If « is of bounded type, or if there exists a universal constant C' > 0
such that B(an41) = C/ay, for all n € N, then the sequence (7§ (¢))nen converges
exponentially fast as n — oo.

4.3. The Siegel disks are Jordan domains. By Proposition the sequence
of the continuous curves (¢ (¢))n>0 has a limit:

Yo (t) == lim ~{'(t), wheret € [0,1].
n—00

Proposition 4.9. The limit & (15°) is the boundary of the Siegel disk of fo.
Proof. For {y € 7™, there exists ¢, € 7} C U =0 Xnt 1,1 (Fns1) such that

0 = X1,1 © """ © Xn,j (Cn)
for some sequence (ji,- - ,jn), where 0 < j; < a; and 1 < i < n. By Lemma d)
and (2.8]), we have
1 1
‘Im(n ~ 5= Blani1) - M‘ <D+ and 1<ReGy<anin+hi+2 (427)
™
By Proposition b), each Siegel disk A,, is compactly contained in the domain
of definition of f,. For each n € N, ®,1 is defined in D,, (see Lemma . We
denote
A{n = {C €Dy : (I’;Ll(C) € An}'
By the definition of D,,, we have ®,1(A!) = A, and Exp(A}) = A,11. By
Lemma the inner radius of the Siegel disk of f,, 11 is ane’B(o‘"“), where
Cht1 € [D7 1,D7] and D7 > 1 is a universal constant. According to the definition
of near-parabolic renormalization f,+; = Rf,, there exists a point ¢/, € A N
Exp~(0A,41) such that

1 1 1 2
Re (¢ — (o)l < 5 and Im(;, = 3. Blant1) — o—log 70;“- (4.28)
Let [Cn,C)] be the closed segment connecting ¢, with ¢,. By (4.4), we have
[Cn,¢l) C AL. By Lemma 2.7, Lemma [2.14] and (4.17)), we have B;([(,,¢]) C D,
for 6 = min{dp, 1/4}. Combining (4.27)) and (4.28]), there exists a constant A" > 0
which is independent of n so that |/, — (.| < A’. According to Lemma there

exist two constants A > 0 and 0 < v < 1 which are independent of n such that

len(Xl’jl 00 Xnvjn([(’ﬂv C;D) <A- an

where 0 < j; < a; and 1 < ¢ < n. Denote ¢ := X1,j; ©** © Xn,j,(¢,). Then
|Co — ¢l < A-v™. Since ¢} € A, it implies that

dist(¢p, 0A)) < A - V™. (4.29)

For any ty € [0,1] and n > 1, we choose (, = Cén) = 0 (ty). By we
have v§°(to) € 0A}. By the arbitrariness of ty € [0, 1], it follows that 4§ C JA,.
Therefore we have @5 (v5°) C dA,.

By Lemma c), @51 (7¢) is a continuous closed curve for all n > 0. Since
Y5 (t) converges uniformly to the limit 45°(¢) on [0,1] as n — oo, it follows that
oy 1(78°) is a continuous closed curve which separates A from each component
of Uy \ Ag, where Uy is the domain of definition of fy. In particular, we have
051 (5°) = 9. O

Proof of the the first part of the Main Theorem. Suppose fo € ZS, U {Q,}, where
a € By with N sufficiently large. By Proposition [£.9] the boundary of the Siegel
disk 90A¢g = ®5'(75°) of fo is connected and locally connected. On the other
hand, the Siegel disk Ag is compactly contained in the domain of definition of
fo by Proposition b). By the definition of Ay, there exists a conformal map
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¢ : D — Ag so that fo o ¢(w) = ¢(e?™*w). According to Carathéodory, the map ¢
can be extended continuously to ¢ : D — Ay.

For each 6 € [0,27), let vy := {p(re'?) : 0 < r < 1} be the internal ray of Ay.
Suppose there are two different rays ~s, and vg, landing at a common point on
O, i.e., p(e'1) = ¢(el%). Then 7, Uy, is a Jordan curve contained in Ag. By
the maximum modulus principle, {f§" }nen forms a normal family in the bounded
domain Dy, ¢, which is bounded by 7, U~g,. This implies that Dy, g, is contained
in the Fatou set and hence contained in Ag. However, by Riesz brothers’ theorem,
¢ must be a constant. This is a contradiction and each point in dAq is the landing
point of exactly one internal ray. Hence 04 is a Jordan curve. (]

5. A JORDAN ARC AND A NEW CLASS OF IRRATIONALS

In this section, we first define a Jordan arc I' connecting the origin with the
critical value cv = —4/27 in the domain of definition of f € ZS, U {Q,} with
a € HT y. In particular, this arc is contained in P;. Then we define a new class of
irrational numbers based on the mapping relations between the different levels of
the renormalization.

5.1. A Jordan arc corresponding to o € HT y. Let f € ZS, U {Q.} with
a € HT, where N > 1/g4 is assumed in We define a half-infinite strip

U:={CeC:1/4<Re(<7/4and Im¢ > —2} (5.1)
and a topological triangle
Qf:={z € Ps:Ps(z) € U}.
Lemma 5.1. There exists € € (0,e4] such that for all f € IS, with a € (0,&)],
Q7 \ {0} C D(0, 5£€°™) \ [0, 5-€°7). (5.2)

We postpone the proof of Lemmato Appendix The inclusion relation (5.2))
is proved for the maps in ZSj first and then a continuity argument is used.

For fo € TS, U{Qs} with « € HTy, let f,, := Rf,—1 be the maps defined by
the renormalization operator inductively, where n > 1. In the following, we always
assume that N > 1/ and denote Q,, := Qy,. For X C C and § > 0, we denote

Bs(X) := UzeX D(z, ).
Corollary 5.2. For each n > 1, there exists a unique anti-holomorphic inverse
branch of the modified exponential map Exp:

LOg : Qn — (I)nfl(Qn71> = Ua
such that Log(—5) = 1. Moreover, By4(Log(Q, \ {0})) C U and o' olog :
9, \ {0} = Q1 is well defined.
Proof. Since Exp takes the value —4/27 at each integer, it follows that Exp has an

inverse branch Log defined on Q,, \ {0} such that Log(—4/27) = 1 since 9, \ {0}
is simply connected and avoids the origin. By Lemma we have ReLog(Q,, \

{0}) € (1/2,3/2) and ImLog(Q, \ {0}) > —3/2. Therefore, By ,4(Log(Q, \ {0}))
is contained in U and @', oLLog: O, \ {0} — Q,,_1 is well defined. O
Define a half-infinite strip
U :={CeC:1/2<Re(<3/2and Im( > —-7/4} CU (5.3)
and a topological triangle for every n > 0:

Q, :={2€P,: P,(z) eV'}.
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Definition (see Figure @ Let Ky := Qj. For each n > 1, define
K,:=®;'oLogo---0®, ' olLog(Q,).

By Corollary Kni1 C K, for all n > 0, the critical value cv = —4/27 is
contained in the interior of K,, and 0 € 0K,,. Define

r= K, (5.4)

n=0
0
U/
o,
Ky = Q) 0(3 Ll_l 3
4
4
Aog
0
Q4 (o}
ot
3
. O3 1|3
CVv
7
4

Figure 7: A sketch of the renormalization microscope between levels 0 and 1. The
sets I, U/, Q' , K, with n = 0,1 and some special points are marked.

n

Lemma 5.3. The set T'U{0} is a Jordan arc connecting cv = —4/27 with 0.

Proof. The general idea of the proof is to use the uniform contraction with respect
to the hyperbolic metrics to prove that I'U {0} is locally connected and then prove
that it must be a Jordan arc. Let us prove it in details.

Step 1: We first define two continuous curves 4§ 1 : [0, +00) — U as
o o JlEgHE-)i ifte(l,+oo),
FYO,:E t = 1 :l: t 7 . f
5—11 ltE[O,l)

Then ~J , and 7§ _ have the same initial point 7§ +(0) =1 — Jiand 7], U0 _ =
OU’, where U’ is defined in (5.3). For a € (0,1), we define

1 1 1 . 1 1
—t—2—log7+1 1ft>2—10g7,
o m @ ™ @
Pal(t) = 1 1 (5.5)
27t :
e ift < —1log—.
27 o

It is easy to see that ¢, is continuous on R and strictly increasing. For n > 1, we
define ¢, := ¢q,,. Then @, 0---0¢1(t) = 400 as n — oo for all t € R.
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In the following, we define two sequences of continuous curves (’yg)i)ngo induc-
tively For n > 1, suppose 7 _; 4 : [0,400) — 90’ has been defined. We define
Yo+ [0,400) = 9V’ as

00 = 1+ 3+ (pnmad_y () —e ™2 = D)i ifte[l,+00),

e 1i£ T if ¢t €[0,1).
Note that 73 , (1) = 3 —Jiand 73 (1) = 3 —Zi. Then both 4] , : [0,400) — &V’
and 7y _ : [0,400) — OV are continuous 1nJect10ns and they have the same initial

(5.6)

point 79 4 (0) =1 — Zi. Moreover, 72 LU =0u.

For t € [0,4+0), all n > 1 and 1 < ¢ < n, by Corollary the following curves
are well-defined:

() = { Log o qu o+ oLogo <1>§<v§,i<t>> ifi s even,
Logo®, " ;,y0---ollogo®, (v, (t) ifiisodd.
In particular, sz—i,i C U for every 0 < i < n. Define
nie(t) 1= @01 (5 £ (1)), where t € [0, +00).
Then I', ; , U{0} and I';, ;, U{0} are Jordan arcs, and I, ; , UT},_; U{0}isa
Jordan curvﬁ In particular, we have I'y , UTf _ U{0} = 0K, and two sequences

nz TLZ

of continuous curves 7 ;. : [0, +00) — T, Where n € N. In the following we prove
that g o (t) and I'f (¢ ) converge uniformly on [0,400) as n — oco.

Step 2: We first estimate the distance between v3_; 1 (¢) and v, _; 1 (t) for all
n > 1andt € [0,+00). Let ¢, € (1,400) be the unique parameter such that

Im’Y?L,:I:(tn) = @n(lm'yg—l,:l:(tn)) —e /2 - % = %

Then we have 5= log = < Tm~)_; o (tn) < 55 log ;- +2a,,. By definition, we have

|72—1,i(t) - ’Y}z—l,i(t” = |72—1,i(t) —Logo ¢El(72,¢(t))|
< 1+ [Imyy_y 1(t) — ImLog o @ (v £ (1))]-
If t > ty, then Im~) 4 () > O%" By (5.5), and Lemma (a), we have
[Ty 4 (t) — ImLog o @ (v +(1))]
D3 + ’Im ’ygfl’i(t) — a Im ’y,OL’:F(t) — % log i‘
Ds+1+a(e”™? + 1) < D3 +2.

If t < tp, then Im~) (t) < ;-. By (5.5), (5.6) and Lemma [2.11] -(b there exist
two universal constants C1, Cg 1 such that

[Im~, ;o (t) —ImLogo @, (v, (1))
< Ds+ [Im~)_, L (t) — Llog(l + ()]
< D3 +Cq+ ‘Im’yn 1 i( ) — log(l + |Im’yn:F( )|)| < D3+ Cq + Cs.
Therefore, for all n > 1 and ¢ € [0, +oo) we have
|IYn71,:|:()_’Yn 1+ < D3+ Cr+Ca + 1. (5.7)

Step 3: Let pi5(¢ )|d(| and pn( )|dz| be the hyperbolic metrics of U and Q,,
respectively. Note that 73 _; ., 75 4+ C U and Bl/4(U) C G. By (.7, there
exists C3 > 0 such that the hyperbolic distance between 7,171 4+ and 7n71 . satisfies

<
<

distpes (9 -1+ (), vm—1,+(t)) < C3 for any n > 1 and ¢ € [0, +00).

14 A5 before we use the fact that limpy, ¢ 400 @;il(() =0, where ¢ € ®,,_;(Pn—i).
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According to Corollary for 1 < i < n, each map Logo ®; ' : (G, pi5) — (U, pis)
can be decomposed as:

Log o @71 : (U, pis) — (Qi.pi) ~25 (Log(Q:), 5i)
I8 (B1a(Log(Q0)), pi) <5 (U, pos),

where p; and p; are hyperbolic metrics of Log(Q;) and Bj /4(ILog(Q;)) respectively.
Since diam(Re (Log(Q;))) < 1, by Lemma the inclusion map

(Log(Q:), i) 5 (Bya(Log(Q4)), pi)

is uniformly contracting with respect to their hyperbolic metrics. Since <I>;17 Log
and the second inclusion map do not expand the hyperbolic metrics, it follows that
Logo ®; ' : (U, pis5) — (U, prs) is uniformly contracting.

By the definition of v ., there exists a constant 0 < v < 1 such that
distpu(wall(t),’y&i(t)) < Cs-v" !, wheren > 1 and t € [0, +00).

This implies that the hyperbolic distance between I‘g;l(t) and TG . (t) in Qo =
@51 (U) satisfies

dist,, (1"87;1 (1), T5+(t) < Cs- "', where n > 1 and t € [0, +00).

Let Qp := B1(Qo) and fo(2)|dz| be the hyperbolic metric of Q. Then the Euclidean
and hyperbolic metrics (with respect to pg) are comparable on Qqy. According to
Schwarz-Pick’s lemma, we have pg(z) < po(z) for all z € Q. Therefore, there exists
a constant C4 > 0 such that the distance in the Euclidean metric satisfies

|Fg’_il(t) —T5 ()< Cy- v" 1 where n > 1 and t € [0, +00).
Therefore, the following convergence is uniform for ¢ € [0, +00):

0. (t) == Tim T'g ().

= li
n—o0

Note that 1 € U and Logo ®,,1(1) = 1. By the uniformly contracting of Logo <I>;1 :
(U, ps) — (U, pis) for all 1 < i < n, we have

lim T5 . (0) = lim_ ®;' oLogo @7 o+ oLogo @, (1 — Ti)
=2, (1) = -5
Since 79, 4 C U’ and By 4(U’) C U, there exists a constant Cj > 0 such that
dist s (V01 4 (£),7m_1,_ () < C  for any n > 1 and ¢ € [0, +00).
By a similar argument as above, we have

Loy (t) =T5_(t), wheret € [0,+00).

Note that I' is the intersection of the nested sequence (K, )n>0, where K, is the
bounded component of C\ (T'g , ULy _ U{0}) for all n > 0. Therefore, I' = I'§?, =
I'5e. and I' U {0} is a Jordan arc connecting —4/27 with 0.
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5.2. Dynamical behavior of the points on the arcs. Let ¢y := id. For each
n > 1, we denote
¢p :=Expo®,_10---0ExpoP.

Let T" be the Jordan arc defined in (5.4). By the proof of Lemma ¢, can be
defined on I'y := I since

T, = ¢n(Ty) C @, = @, (V'), where n > 1.

Note that the restriction of Exp o ®,,_1 on Fn 1 is a homeomorphism. Hence each

', U {0} is also a Jordan arc connecting —5- with 0 in the dynamical plane of

fn. For each n > 1, the map ¢,, : I'o — I', can be extended homeomorphically to
¢n : ToU {0} — T, U {0} such that ¢,(—5) = —3- and ¢,(0) = 0. Moreover,

Yn = @, (T) (5.8)
is an unbounded arc in U’ with the initial point 1.
Definition. For n > 1, we define
Sa, = Pp 0 EXp : Yn—1 = Yn. (5.9)
Then s,, is a homeomorphism with s, (1) = 1.

In the following, we assume that a = ag € By, where By is the set of high type
Brjuno numbers defined in (2.39). Let B(ay,) be the Brjuno sum defined in (3.2)).

Definition. For n > 0, we define

g(an) = %

where M > 1 is a constant which will be determined in a moment.

+ M,

Lemma 5.4. There exists a constant My > 1 such that if M > My, for ( € Yp—1
with Im ¢ > B(ay,), then Im s, (¢) = B(ant1), where n > 1.

Proof. Let Dy > 0 be the constant introduced in Lemma [2.12} If M > Dy, then

~ B(a, 1
B(ay) = (2(:) +M > —1og—+D4
By Lemma 2 -(a if M > 2D5 and Im ¢ > B , then

Im sq,(C) > - (Im( ~ 5= log— - D5) < (o) — % log ai - D5>

~ 1
= B(Oanrl) + ;((1 — O[n)M — D5) > B(O[n+1).
n
Then the lemma follows by setting My := max{Dy4,2D5}. O

Since a € By, every fo € ZS,U{Q,} has a Siegel disk Ag centered at the origin.
Let D7 > 1 be the universal constant in Lemma [3:2] In the following we fix

27D
M > max {Mo7 log 1 7} . (5.10)
Let T'p U {0} be the Jordan arc connecting the critical value cv = —% with 0

corresponding to fj (see Lemma. For a given point zg € Iy, let ({,)n>0 be the
sequence defined by

Co:=Po(20) €70 and (=584, (Cn-1) Eyn forn >1.

Lemma 5.5. If zo € 'g N Aq, then there exists ng > 0 such that Im(, > (anH)
for alln = ng.
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Proof. Let zp € To N Ap. By Lemma for every n € N, the inner radius of the
Siegel disk of £, is c,e B(@n) where ¢,, € [1/D7, D7]. Let U be the half-infinite strip
defined in . By the definition of near-parabolic renormalization f,11 = Rfy,
there exists En € U such that Exp(gn) € 0A, 41 and (see )

-1 1. 27,
Im¢, = 7B(an+1) - 710gﬁ~

A1
2 2 4 (5 )

Assume there exists a subsequence (n;);>1 such that Im(,; < g(oznj_H) =

= Ban,+1) + M. I Im(,, < Im,,, there exists (), € @, (9A,, NPy,,) NT with

Im ¢, = Im(,; such that

Gy =€l < 1. (5.12)
If Im ¢, > Im Z“nw we have
1 1 27¢n, 11 1
and hence
~ 1 27D7\2
Gy = Goy P < 14+ (M + 5-log =) (5.13)

By and (5.13), for each (,, with j > 1, one can find a point (G, or
Enj) in @, (0An; NPp,;) N U’ such that the hyperbolic distance with respect to pgs
between them are uniformly bounded above. By a similar argument to Proposition
based on Lemma we conclude that (o € ®q(0A; N Py) NV’ and 29 € OA,
which violates our assumption that zy € Ag. Therefore, there exists ng > 0 such

that Im ¢,, > B(an41) for all n > ng. O

Lemma 5.6. T'oN90A is a singleton. In particular, To \ {cv} C Ag if and only if
CV € 8A0

Proof. Since T'g U {0} is a Jodan arc connecting cv = —5- with 0, there exists a

homeomorphism 8 : [0,1] — I'o U {0} such that 5(0) = cv and §(1) = 0. Assume
that T'g N 04y is not a singleton. Then there exist 0 < t; < to < 1 such that

o B(t;) € 07 for i = 1,2; and
L] 5([O,t1]) N A() = @ and ﬂ((tg, 1]) - Ao.

Let T := B([t1,12]) be a subarc of I'y. Then we have the following two cases.

(1) Assume I'{;, C OA,. There exists zo € I'j such that f39"(z0) € I} for some
big integer n since the restriction of fy on 04 is conjugate to the rigid rotation.
Denote I', := Expo ®,_; 0---0Exp o ®y(I'y). Then I', is a Jordan arc contained
inT,, C Q). By Lemma a), Il and hence I',, contains a point z,, and f,(z,),
which is impossible.

(2) Assume Iy ¢ 0A¢. Since @,(I';,) C U, it follows that f,(T',) is well-
defined and contained in P,. Thus by Lemma T'p (and hence I'j) can be
iterated infinitely many times by fy. Let W # Ag be any bounded component of
C\ (0AgUTY). Since 9A(UT( and W can be iterated infinitely many times by fo,
it follows from the maximum modulus principle that W is contained in the Fatou
set of fy. Since OW NOA( contains a subarc of A, it follows that W is contained
in Ag, which is a contradiction. This finishes the proof that I'oN0A is a singleton.

From I'y \ {cv} C Ag we obtain cv € 0Ag immediately. If cv € A, since Ty is
a Jordan arc and I'o N 9Ag is a singleton, we conclude that Ty \ {cv} C Ay. O
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5.3. A new class of irrational numbers. For n > 1, let s4, @ Yn—1 — 7n be
the homeomorphism defined in (5.9). In the following, we use I'y (resp. 7,) to
denote Ty (resp. v = ®o(Iy)) when we want to emphasize the dependence on
a=aqag € HTy.

Definition. Let ﬁN be a subset of By defined as

V(e ’ya\{l}, In > 1 such that }

Hy = {a € By ‘ Im sq, 0+ 05q,(C) 2 B(Oén+1)

In the next section we show that H ~ is independent of the choice of fy € ZS, U
{Q4} by proving that H coincides with the set of high type Herman numbers.

Proposition 5.7. The critical value cv = —2% is contained in 0Ag if and only if
o€ ﬁN.

Proof. For each ¢ € v, \ {1} and n > 1, we denote
Cn o= Sa, 0+ 0 80, (C)-

Suppose a € HN Then there exists n > 1 such that Im(, > anﬂ By -
and the choice of M in 7 we have ®,1(¢,) € A, and hence ®;'(¢) € Ao.
Therefore, Ty, \ {cv} = @5 (’ya \ {1}) is contained in Ag and cv € 8A0

Suppose a € By and cv € 0Ag. By Lemma we have ®;'(¢) € Ao NTq
According to Lemma 5.5, there exists an 1nteger n > 1 so that Im(,, > (anﬂ)
This implies that o € 7—[ N- O

6. OPTIMALITY OF HERMAN CONDITION

Herman condition is not easy to verify in general. Yoccoz gave this condition
an arithmetic characterization so that one can check easily whether an irrational
number is of Herman type. In this section, we first recall Yoccoz’s characterization
and then prove that under the high type condition, an irrational number is of
Herman type if and only if it belongs to the set Hy defined in

6.1. Yoccoz’s characterization on H. For a € (0,1) and = € R, define

1 1 1
7<x—10g—+1> if x> log—,
Ta($) = (0% « «

x

1
e if z<log—.
«

The map r, is of class C! on R, satisfying ro(log 1) = r/ (logl) = r+1<

ro(z) < e® for all z € R, and 7}, (z) > 1 for all z > 0.

OL’

For an irrational number a € (0,1), we use (a,)n>0 to denote the sequence
of irrationals defined as in (2.35). Let B(c) be the Brjuno sum of a (see (3.1)).
A Brjuno number « is a Herman number (or belongs to Herman type) if every
orientation-preserving analytic circle diffeomorphism of rotation number « is ana-
lytically conjugate to a rigid rotation. Let H be the set of all Herman numbers.

Theorem 6.1 ([Yoc02] §2.5]). Herman condition has the following arithmetic char-
acterization:

H={aeB:Ym=0,3In>m such that o, , 0---orq, (0) > B(a,)}.



42 MITSUHIRO SHISHIKURA AND FEI YANG

6.2. Two conditions are equiyalent. In this subsection, we prove that the set
of Herman numbers is equal to H defined in under the high type condition.

Lemma 6.2 ([Yoc02, Lemma 4.9]). Let « be irrational and x > 0. Then o € H if
and only if there exist m and an infinite set I = I(m,xz,a) C N such that, for all

k €I, we have
1
Atk

ro‘7n+k71 ©:--0 7('Oé'm, ('T) < log

Let D4 and D5 > 1 be the constants introduced in Lemma, [2.12
Definition. For o € (0,1) and y € R, we define

1 1 1 1 1
—(y—Q—logf—kDg,) if y>2—log7+D4,
= _ )« ™ o s o
sa(y) T D o . 1 1 (61)
e’s e ™Y if y<—1log—+ Dy.
27 «

Let 7o = 7a, be the unbounded arc defined in (5.8) and s,, := @, o Exp :
Yn—1 — Yn the map defined in (5.9). By Lemma and the definition of 5,, we

have the following immediate result.
Lemma 6.3. For each o € By and ¢ € o, we have
Im 54(¢) < 5o (Im ().
Define Hy := H N By.
Lemma 6.4. We have ﬁN C Hn.
Proof. Assume by contradiction that o € Hy \ Hy. Define
Cp := 8rel3+2mPa (6.2)

By Lemma for the number 2Cy, there exist m > 1 and an infinite subset
I =1I(m,2Cy,a) of N such that for all k € I, we have

Taino © " O Ta,, (2C0) <log o (6.3)

QAmtk

Denote z,,,—1 := 2Cy and y,,—1 := 1. For k > 1, we define

Tm4+k—1 = Taqp—1 © """ OTa, (200) and Ym+k—1 = ga‘mnkk:fl 0+ 038q,, (1)’
where 5,,, is the map defined in (6.1]). We claim that
Tm4k—1 > 27Tym+k71 + Co for all k > 0. (64)
Assume that (6.4)) holds temporarily. Since 7, is an arc starting at the point 1
and finally going up to the infinity, there exists { € 7,,, , so that Im{ = 1. For
k > 1, we denote
<m+k:*1 = Sapir—1 99 8a,, (C)’
where each s, is defined in (5.9). By Lemma we have ypirp—1 = Im Gnak—1
for all £ > 1. B B
Since a € Hy, by the definition of H and Lemma there exists an integer
ko = 1 such that for all k > kg, one has
~ B (0% k
Ym+k—1 2 Im Cerkfl > B(am+k) - %
™ AUtk
On the other hand, since o & Hy, by (6.3) there exists k € I with k > ko such
that 2,,4x_1 < log ——. This is a contradiction since by (6.4]) we have x,,,_1 >

Qmpk
Hence it suffices to prove the claim (6.4]).

1 .
Xtk
Obviously, is true when k = 0 since Cy > 27w. Suppose Zpik_1 =
20Ym+k—1 + Co for some k > 0. It suffices to obtain x,,1x = 27Ymir + Co.
The arguments are divided into following three cases.

+ M.

1
+ M > —log
27

27 Ym1k—1 + Co > log
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Case I: Suppose z,,1x—1 < log ij and Ypmyx—1 < % log a,j+k +Dy. By (6.2),

we have Cy > 2(Ds +log(27)) and hence e¥ ™0 > ev+Ps+1os(2m) 4 ) for any y > 1.
Therefore,

Tk = eTmrk—1 > 627Tym+k71+00 > 627Tym+k71+D5+10g(27f) +Cy

= 27r§0¢m+k: (ym+k—1) + Co = 27Ymyr + Co.
1

Om+k

Case 1I: Suppose Z,, -1 = log
1

and Ymik—1 = %log L_ 4+ D,. Then

Om+k

1
(merkfl — log P + 1)
m

2 1
z — (Um—&-k—l - ? 1Og + D5) + (C() +1- 27T'D5)
k

Am4 2 Am+k Amtk
> 27Ym+k + 2(Co + 1 — 2w D5) > 27ymir + Co.
1

Qi

Case III: Suppose Z;,4r—1 = log and Ym4k—1 < ilog L+ D, We

Atk
consider the following two subcases:

Subcase (i): Suppose 27y k-1 < log — 1+k — %. Note that
1
Ttk = ($m+k1 — log + 1) > .
Atk U4k Um+k
Since z,,—1 = 2Cy, we have x,,1; > max {200, - 1+k } By (6.2)), we have Cy >

4D5 + 4log(47) and hence 2mePs=C0/4 < 1/2. Then
1 2meDs—Co/4
b>

Otk

Tm+k 2 max {200, + CO

Otk
> 2mels 2™ Ymik-1 4 O = 27Ym+k + Co.

Subcase (ii): Suppose log %3% — % < 2TYmtk—1 < log %Lk + 2w Dy. Then
Uik (Zmik — CTYmir + Co))
= Tyik_1 — log a"}M + 1 — i (2melse2mymn-1 4 ) (6.5)
2 2Ymik—1+ Co + 1 —log an}#»k — 2w P €21 — Choum s

For a € (0,1/2], we consider the following continuous function:
h(t) :=t+Co+1—logl —2rae e’ — Cyar, where t € R.
Then A/ (t) = 1 — 2maePse’. Hence h is increasing on (—o0,log 2 — D5 — log(2m)]

and decreasing on [logé — D5 —log(2m), +00). By (6.2) and a direct calculation,
we have

h(logé - %) - (% —a)Cy+1— 27eP5=Co/4 5 0 and
h(logé +21Dy) = (1 — a)Cp + 27Dy + 1 — 2P+ Pa >,

By (6.5) and , we have 1k > 27Ym+tx + Co. This finishes the proof of the
claim (6.4) and the lemma holds. d

(6.6)

Let D3 > 0 be the constant introduced in Lemma [2.11}
Definition. For a € (0,1) and y € R, we define
1 1 1 1 1
—(y——log——Dg) if y>-—log—+Ds+1,
s.(y) =4 2m o 2m o

1 1 (6.7)
e D5y _ 3 if y<—log—+ D3+ 1.
27 «
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Lemma 6.5. For each a € By and € 74, we have
$o(Im¢) < Imsa(Q).
Proof. Tt follows from the proof of Lemma 212 that Dy = D3 + 1. Moreover,

we choose D5 = Ds in the proof of Lemma [2.12(a). Then this lemma follows
immediately from Lemma and the definition of s . O

Lemma 6.6. We have Hy C ’)EZN.

Proof. The proof is similar to that of Lemma Suppose o € Hpy \ Hy by
contradiction. Since a € Hy, by the definition of Hp, there exist a point ( €
Yo \ {1} and an infinite sequence (ng)gen such that

Im G, < Bty 41)5 (6.8)

where
Cn i=8qa, 0+ +084,(¢) forallneN.

By the uniform contraction with respect to the hyperbolic metric as in the proof of
Proposition 4.9 and Lemma there exists an integer m > 1 such that

Cm—1 € Ym—1 and Im(,—q = 2C),

where Cy > 2M is a large number and M > 1 is introduced in the definition of
B(ay,). Then by there exists an infinite subset I’ = I'(m, ¢, &) of N such that
for all k € I’, we have

Im Cerkfl < B(am+k). (69)

Since a € Hp, by Theorem there exists ko = ko(m) > 1 such that ro,, , ,©
w07y, (0) = B(mtk,)- A direct calculation shows that for all k > ko, one has

Tamin1 ©° " 0Ta,, (0) = B(tmr)- (6.10)
Denote x,,_1 := 0 and y,,,_1 := 2Cy. For k > 1, we define
Tmik—1 = Tapip1 © " °Ta,(0) and yYmir—1:= Samin1 98 a, (2Cy),
where s, is the map defined in . We claim that if Cy is large enough, then
2T Ymtk—1 = Tmyk—1 + Co  for all k > 0. (6.11)

Assume that holds temporarily. By Lemma we have ypik-1 <
Im (yk—1 for all & > 1. By (6.9), there exists an integer k € I’ with k > ko
such that
B(am k)

2w
On the other hand, by 7 we have k-1 = B(amyr). However, by
we have T yr-1 < 27Ymik—1 — Co < B(am+k), which is a contradiction. Hence it
suffices to prove the claim .

Obviously, is true when k& = 0. Suppose 27¥mik—1 = Tmar_1 + Co for
some k > 0. Then one can divide the arguments into three cases as in Lemma
to obtain 27Ym+k = Tmikr + Co. We omit the details since the rest proof is
completely the same. 0

Ymoh1 I Cnag1 < Bloumar) = + M.

Remark. In fact, if & € Hy, then according to [Ghy84] and [Her85], the boundary

of the Siegel disk of each f € ZS, U {Q,} contains the unique critical value —%.

This implies that « € H ~ by Proposition Therefore in this way we also obtain
Hyn CHn.
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Proof of the second part of the Main Theorem. Let o € HT y be an irrational num-
ber of sufficiently high type. By Lemmasand a € Hy ifand only if a € Hy.
By Proposition , o € Hy if and only if cv = f(cpy) € OAy, where Ay is the
Siegel disk of f € ZS, U{Q,} and cp ¢ is the unique critical point of f. Therefore,
a € Hy if and only if cpy € OAy. (]

APPENDIX A. SOME CALCULATIONS IN FATOU COORDINATE PLANES
In this appendix we give the proof of Lemma based on some estimates in
[ISO8]. Let 0 < o < 1/2. Define

1 3 2
Y = {w:x-f—yie((]:—%(arccosw%—%) <Jc<3—aandy>1}

and R := 7€ (see Figure .

I

—2miaw

Figure 8: The domain Y and its image under w — e

Lemma A.1. There exists €' > 0 such that for all f € TS, with a € (0,€'],
7(Y) € D(0, R) \ [0, R),
where 75 : C — C\ {o, of} is the universal covering defined in (2.13).

Proof. By a direct calculation, we have

‘ 4 3
{e72mow e Y} = {f €C:[¢>e™ and — ?ﬂ <arg§ < arccos V5 E}

2l 6
_ m™m 2T E - 1—\/§l 21
—(C\(]D(Qe )u{gec.3<arg(g : )gg}).
Since 4ra/(3R) < €?™ — 1, we have (see Figure
omiaw —, Ara 7T 2m
e 2 EC\(D(l,ﬁ)u{ééC:géarg(f—l)gg}).

This implies that

1 3R

WED(Oam)\{feC:géargféﬁ}. (A1)
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Note that arcsinz < Zz for 0 < x < 1/2. By [IS08, Main Theorem 1(a)],
| f§/(0) — 4.91| < 1.14 for all fo € ZSo. Hence |arg f{(0)| < arcsin < § and
c 47ra<| |<87Ta d2571'< <297r}
- — P — < |z| < — and — < argz < — ¢.
77(0) 7 7 18 " MEES g
By (2.11) and the pre-compactness of ZS,,, there exists a small ¢/ > 0 such that
for all f € ZS, with a € (0,€’], then

4T { cC

UfE{ZE(C:%<|z|<47r7aand4§<argz<5§}. (A.2)
By and we have
(W) = T € D0, R)\ [0, R).
The proof is complete. U
For each C > 1, we define a subset of U (see (5.1))):
U1(C):={CeC:1/4<Re( < 7/4and Im( > C}. (A.3)

Lemma A.2. There exist C > 1 and €’ > 0 such that for all f € IS, with
a € (0,¢"], we have
LN (G1(C) C Y.

where Ly : ﬁf — C is the univalent map defined in (2.14]).
Proof. Let Dy > 0 be introduced in Proposition For y > 0, we define

p1(y) == 1og(2 + /y? + (7/4)?).

There exists a constant C' > 0 depending only on Dy such that if y > C', then

y—2D2p1(y) > 1 (A.4)
and ¥
Y 37Ty _
o (arccos 5o 6) Dyp1(y) > 0. (A.5)

Let 0 < a < 1/C. By Proposition we have LJIl(Ul(C)) C X1 UXoU Xs,

where
X; ={z+yi: —Dylog(l+ 1)<z < Dylog(l+ 1)+ Tandy>1}
Xo ={z+yi: —Dapr(y) <@ < Dapn(y) + | and y € [C, 1]}
and
Xz ={x+yi: —Dyp1(C) <z < Dayp1(C) + § and y € [C — Daip1 (C), O}

For y > 0, we define a continuous function

o(y) ! (a ccos V3 W)
= —|ar — = — .
Y= ora 2e270y 6

Note that alog(1 + 1/«) is uniformly bounded above for 0 < o < 1. There exists
a constant k1 > 0 depending only on Dj such that if a € (0, k1], then for y > 1/«

1 1 3 1
¢(y) — D2 log (1 + *) > 7(arcc0si — z) — Dy log (1 + ,> < 0.
«Q 2ra 2e2™ 6 o

For y € [C,1/a], we denote t = 2may € [2raC, 27]. Then
¢(y) — D21 (y) = yo(t) — Dagr (y),
where

P(t) = %(arccos 2—\/5 - %) (A.6)
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A direct calculatiorﬂ shows that ¢(t) is decreasing on (0, 27]. By (A.5) we have

Y 3 0w
6y) = Dapr(y) > 5= avecos 5 — T ) = D (y) > 0.

Finally, let y € [C'— D21 (C), C] and we still denote ¢ = 2may. A direct calculation

shows that lim,_,o+ ¥(t) = v/3, where ¢ is defined in (A.6). By (A.4)), there exists
a constant kg > 0 depending only on Ds such that if o € (0, k2], then for y €

[C — D31 (C), C] we have
(y) — D2p1(C) =2 y — Dagp1(C) = (C = Dap1(C)) — D2p1(C) > 1.

Let k3 > 0 be a constant depending only on D2 such that Dggol( ) + < 3—(1
for all a € (0, k3]. The proof is finished if we set &’ := min{1/C, k1, k2, /13}

Proof of Lemma[5.1 For fo € ISy, one can define Cy, and Cfpo as in (2.3 similarly
(Replacing Py and ®¢ there by Passr, £, and Passr, £,). We first show that (5.2) holds
for fo € ZS( and then use an argument of continuity.

The Main Theorem 1 in [ISO8] was proved by transferring the parabolic fixed

point 0 of fy € ZSy to co and a class corresponding to ZS, was defined (see [ISOS,
§5.A]):

ISQ {F Qop~ 1

where FE' is the ellipse defined in and Q(z) = z(1+ 2)%/(1— 1) is a parabolic
map. Each map in this class has a parabolic fixed point at co, a critical point at
cpp = (5 + 2V/6) and a critical value at cvg = 27 which is independent of F.
By [IS08, Lemma 5.14(a)], P and @ are related by @ = 77[;0_1 o P o1y, where
P1(2) = —4z/(1 + 2)? is defined in and g (z) = —4/z. By [IS08, Proposition
( )], there exists a one-to-one correspondence between ZSy and ISOQ. For F €

¢:C\ E — C\ {0} is univalent,
p(00) = 00 and ¢’(00) =1 ’

ISO, one has natural definitions of the attracting petal Pguy r, repelling petal
Prep,r, attracting Fatou coordinate ®g4 p and repelling Fatou coordinate ®,.., ¢
etc based on the definitions relating to fo € ZSg in For example, the attracting
Fatou coordinate of F' is defined as ®qi1r p(2) = Pater, £, © Yo(2).

For fy € ISy, we define a topological triangle
Qfo = {Z € Pattr,fg : (I)atthfo (Z) € U}

In order to prove (5.2)), it is convenient to work in the corresponding dynamical
plane of F =5t o fo o1y € ISY. Define

Do.p :={2 € Pattr,r : 0 < Re Pyyir p(2) < 1 and Im @y p(2) > —2}

and Dy g := F(Dy r). By [IS08, Proposition 5.7(e)], for z € Do r we have
|2| > 0.05>27e¢ 3™ and z¢R_.
By [IS08, Proposition 5.6(b)], for z € Dy ¢ we have
|z| > \/E’gsmg— 259273 and z¢gR_.

Let R = 24763” We have

Do,r UD1r C 95 (D(0,R)\[0,R)) =C\ (D(0,27¢ ") UR™). (A7)
By the definition of Qf,, we have

wal(Qfo) ={2 € Pattr.r : 1/4 <RePuuir r(2) < 7/4 and Im @uyyr p(2) > —2}.

L5Note that P(t) = fo (4 28 _ ) /245 can be seen as the average of the integral of 1;(5) =

(% 25—1)" /2 in the interval (0,t). Since s — () is strictly decreasing in (0, +-00), we conclude
that ¢ — 1(¢) is also.
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Therefore, by (A7) we have 1, 1(Qy, \ {0}) € Do.r U Dy . This implies that
04, \ {0} € D(0,R)\ [0,R) for all f, € ZS,. (A.8)

Let C > 1 be the constant introduced in Lemma[A.2]and U; = U;(C) be defined
in (A.3). By Lemmas and for every f € ZS, with 0 < a < min{e’,e"},

we have - -
;1 (Ty) =750 L7 (T1) € D(0, R)\ [0, R).
Define
Uy:=0\0;={Ce€C:1/4<Re(<7/4and —2<Im( < C}.

By (A-), the continuity of the Fatou coordinates in Proposition [2.2[d) (see also
[Shi00, Proposition 3.2.2]) and the pre-compactness of ZSy, there exists a constant
0 < &} < min{e’,e”} such that for all f € ZS,, with a € (0, )], we have @;I(Ug) C
D(0, R) \ [0, R) and hence Q; \ {0} = &,(T) c D(0, R) \ [0, R). O
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