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1 Preliminaries in complex analysis

Let Q be a domain of C with piecewise C! boundary. f = u + V-1v : Q — Cbe a C!

map. We generally regard this as a complex-valued function. It is usually convenient to
introduce the differential operators

o 1,0 0 o 1,0 0
—=—(=—-V-1= — ===+ V-1—).
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Then it is easy to see that

aof of of .~ of _
df .= —dx+ —dy = —dz+ —dz.
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Then it is direct to check that the Cauchy-Riemann equation can be expressed as

of _

=0.
0z

Now we assume f is only C', not necessarily holomorphic. For any z € Q, let A(z, €)

be a small disc with center z and radius €. By Green formula (written in the form of
differential forms), we have

f fw) o f d( fw) dw)
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In polar coordinates around z, the final integrand is in fact bounded, so we can let € — 0

to get
a—-’f(w)
f W dw A dw.
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On the other hand, we have
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So we finally get

af
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One direct corollary is the following solution formula for 1-dimensional d-equation:

Lemma 1.1. Let f € C7(C) be a complex-valued function, then the function defined by

u(z) = — IO o n i

2n V=1 Jdcw—Z

is a smooth function on C and satisfies the equation

Oou
a7

Proof. Assume suppf C A(0, R), then for any z € A(O, R") we have

1 fz+w) _
”(Z)_zm/__lfc =
! JEEW) 1A a.

2 V=1 JAO,R+R) w

We can taking derivative with respect to Z under the integration sign to get

of
0 1 =(z+w)
L= f BT dw A dw
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of
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By (1.1), this equals
1 Jf(w)
f@- dw = f(2),
2n V-1 Jaaopy W — 2
since suppf C A(0, R). O



Now we use the following conventions: z = (z1,...,2,) € C", with z; = x; + V-1y,,
and
2. 2 2 2, .2 2, .2
lzZ“ =zl + -+ |zl =27+ Y]+ -+ x, +

n

2> We write

For multi-index « = (ay,...,q@,) € Z

Za = Z(ln .. .Zgn,
with || :=a; +---+ @, and a! := ¢! - - @,!.
In one variable complex analysis, the unit disc plays a special role. The higher dimen-
sional generalizations are balls and polydiscs:

e A complex ball with center a = (ay, ..., a,) and radius r > 0 is defined by
B(a,r) :={ze€C"||z—a| < r}.
This is nothing but the Euclidean ball in R?".
e A polydic with center a = (ay,...,a,) and multi-radius r = (ry,...,r,) with r; >
0,Vi=1,...,nis defined by
A@,r):={zeC'|lz;—al <r,Yi=1,...,n}.

This is the product of n 1-dimensional discs. When all the r; equal » > 0, we usually
abuse the notation to write it as A(a, r).

Definition 1.2. Let Q C C" be a non-empty open set (we call it a “region”), f = u+ V—1v:
Q — Ca C" map. We call f a holomorphic function, denoted by f € O(Q), if f satisfies
the Cauchy-Riemann equation:

ou ov ou ov
— = —=—— i=1,....1 1.2
ox oy oy ox " (2

This is equivalent to say f is holomorphic in each of its complex variables.

Remark 1.3. By a deep theorem of Hartogs, we can remove the C' assumption in the
above definition. For a proof, see Hormander’s book.

As in the one-variable case, we introduce

0 1(8 \/—16)’ 0 1(8+\/_—1i).

0z 2%ox, Ay % 2%on yi
We also define
9o L 33 L
- aZ ZH - azl Zl’

then it is direct to check that df = df + 0f, and f is holomorphic if and only if f = 0.
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A 1-form of the form
@ =@idz + -+ @dz,

with ¢; functions on Q is called a (1, 0)-form on €, and a 1-form of the form
n= nldzl +-e-t nndzn

with 7; functions on Q is called a (0, 1)-form on €. A central technique in the modern the-
ory of complex analysis is to use the d-equation du = n with good estimates to construct
holomorphic objects.

As in one variable case, Cauchy formula is very important in several complex vari-
ables:

Theorem 1.4 (Cauchy formula). If f € O(A(a,r)) N C°(A(a, 1)), then we have

Ly S, 80
- d¢y---dé,, VzeAar). (1.3
f(Z) (27T \/—_1) flg:1|=r1 *f|é:n|=rn (é/l _Zl)' : (gn _Zn) (1 g ‘€ (a r) ( )

In particular, f € C*(A(a,r)).

Proof. If f is holomorphic in a neighborhood of A(a, r), then (1.3) follows from repeating
use of 1-dimensional Cauchy formula. In general, we work on A(a, fr) for 0 < 6 < 1 and
letd — 1.

The last claim follows from Cauchy formula by taking derivatives with respect to z
under the integration sign. O

Remark 1.5. An interesting feature of this formula is that the interior value of f depends
only on its value on a part of the boundary. We write

dA@,r) ={zllzi—al =r,i=1,...,n}

It is called “characteristic boundary” or “distinguished boundary” or “Shilov boundary”
of A(a,r). If f is a given continuous function in a neighborhood of 0y/A(a,r), then the
integral (1.3) defines a holomorphic function in A(a,r), since it is easy to see that the
function is C' in z, and we can take derivatives under the integration sign.

A direct corollary is the following useful derivative estimate:

Corollary 1.6 (Cauchy estimate). If f € 0(Q) and A(a,r) C Q, then we have

|
10 f(a)] < ‘:— sup |f1. (1.4)

A(a,r)

Moreover, if K C Q is compact, then for any relatively compact open neighborhood U, we
have
sup |0 f| < Cysup|f], VYfe OQ),
K U

where C, is a constant depending only on a, K and U.
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Proof. Again if A(a,r) C Q, by (1.3), we have for any z € A(a,r) :

f(gl? 7 )

8(1’
1= Q2r \/_)” LOA(a n (§1—z)™* - ({n — Z,)*!

déy---dg,. (1.5)

This implies that

1 a!
e i)« s

0% f(a)] <

Again if A(a,r) ¢ Q, we work on A(a,fr) forO <6 < 1andletd — 1.
The second statement follows directly from (1.4) by a compactness argument. O

Remark 1.7. By (1.4), we can bound g—g by sup |f|. On the other hand, we always have

(‘% = 0, so we can bound the real partial derivatives of f by sup |f].
There are several interesting corollaries of Cauchy formula and Cauchy estimates:
We say a series of functions ) ; f; converges normally to f in a domain Q, if it con-

verges uniformly and absolutely on any compact subset K C Q to f. Then we have

Corollary 1.8. If f € O(A(a,r)), then we can expand f into a power series, converging
normally in A(a,r):

flo) = Z bwf(a)( —a)*, VYzeA(,r).

a

Proof. For any compact subset K C A(a,r), we can find a8 € (0, 1) such that K C A(a, 6r).
So we can assume without loss of generality that f is holomorphic in a neighborhood of
A(a,r). Also we assume a = 0. Note that we have

1 1 1 1 1 et

(g —z) G 1- o 1=z I = g’

with the right hand side converging normally in A(0, r) when ¢ € dyA(0,r). So we have
by Cauchy formula:

B IENC &, .80)
@ = (27r\/—_1 a0 (L1 =20+ (&n — 20)

_ 1 n f({lf' )
_(27r\/—_1) fa;A(Or) SRR Zga ér

a

dg,---dg,

where | e )
n I»°° n
Coy = |—— ——d{, - - di,.
(27_[\/__1) ‘J(;()A(O 0 é«a/l+l . ;ll,,+l 1
Comparing with (1.5), we have 9° f(0) = a!c,. O
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Remark 1.9. It is a good exercise for the readers to develop a theory of power series in
more than one variables. The corresponding Abel’s lemma also holds. One can find it in
Grauert and Fritzsche’s book “Several Complex Variables” (GTM38).

Corollary 1.10 (Weierstrass theorem). If {f;} € O(Q), and f; converges to a function f,
uniformly on any compact subset of Q, then f € O(Q).

Proof. For any A(a,r) C Q, we have Cauchy formula for each f;. By uniform convergence
of f;, we can take limit inside the integration to get

1 n f(gl’a{n)
_ ¢, ---de,, Vze A@a,r).
1@ (27r \/—_1) faoMa,r) G1—z1) (& —20) ¢ 6 €A,

Since f is continuous and the right hand side of the above formula is holomorphic in z, we
conclude that f € O(Q). O

Corollary 1.11 (Montel theorem). Let {f,} C O(Q). If they are uniformly bounded on any
compact subset K C Q, then {f,} is a normal family, i.e., any sequence of {f,} contains
a subsequence that converges to a holomorphic function f € O(Q), uniformly on any
compact subset of Q.

Proof. By (1.4), we can bound the first order derivatives of f; uniformly on any compact
set K C Q. So {f;}2, is equi-continuous. Then the corollary follows from Arzela-Ascoli
theorem and Corollary 1.10. O

Corollary 1.12 (Uniqueness theorem). Let Q C C" be a domain and f € O(Q). If there is
a non-empty open set U C Q such that f|y =0, then f = 0 in Q.

Proof. Define the set
N:={zeQ|d"f(z) = 0,Ya € Z}.
By definition it is a closed subset of Q. By Cauchy formula, N is also open. Since by

assumption N # (), the connectivity assumption of Q implies that N = Q, so f = 0. O

Corollary 1.13 (Maximum Principle). Let Q c C" be a domain. If f € 0(Q) N C*(Q),
then

max | f| = max
ax /] = max |f]
and max | f| can not be achieved at an interior point unless f is a constant.

Proof. Suppose maxg |f| 1s achieved at a € Q, choose r > 0 such that A(a,r) Cc Q.
Repeating the 1-dimensional maximum principle, we conclude that flya, = f(a). By
Corollary 1.12, f = f(a). O



One of the first examples showing that complex analysis in higher dimensions is dras-
tically different form the 1-dimensional case is the following phenomenon discovered by
Hartogs.

Example 1.14 (Hartogs phenomenon). Define a domain H C A0, 1) C C? by
2 1 2 1
H:={(z,w) € C?| Izl < S <juiewec |12l < Ly <i<1}.

Then the restriction map O(A(0,1)) — O(H) is always surjective, i.e. any holomorphic
functions on H can be continued holomorphically to the larger domain A(0, 1). In fact, for
f € O(H), we choose a % < B < 1, and define

1 f(z,&)
2rV-1 = & —W

Then by uniqueness, f is independent of B, hence defines a function f € O(A(0, 1)). Again
by uniqueness, we have fly = f.

fw) = dé, |z <1,lwl <p.

Note that for a pair of domains Q & Q' c C, we can always find a f € 0(Q) such that
f can not be continued holomorphically to Q’. For example, choose any a € QN QY then
Z%ﬂ is what we want.

We have another extension theorem, also due to Hartogs:

Theorem 1.15 (Hartogs’s extension theorem). Let K be a compact subset of the open set
Q c C". Assume Q\ K is connected, then any f € O(Q \ K) extends holomorphically to
Q.

Proof. We need a lemma:

Lemma 1.16. Let n := m1dZ, + .. .n,dZ, be a smooth (0, 1)-form with compact support on

c If

on; _ On;

- _ Y 1.6

(921' aZi ( )
for any pair i, j = 1,...,n, then we can always find a smooth function u € C5(C") such
that Ou = n.

Assuming the lemma at present. Choose a real-valued smooth function with compact
support ¢ € Ci(2) such that ¢ is identically 1 in a small neighborhood of K. Then
v := (1 —¢)f can be viewed as a smooth function on €2, vanishing near K and holomorphic
outside suppy. We define a smooth (0, 1)-form with compact support on C" by

B v = —fag, on Q,
=10, onC"\ Q.



Then_ it is easy to see that 7 satisfies (1.6), so by Lemmal.16, we can find u € C7(C") such
that Ou = n. We define a function F' on Q by

F(2) =v() —ulz), VYzeQ.

Then we have F = 0, so F € O(Q).

Finally we need to check that Flgx = f. Since Q \ K is connected, by uniqueness
theorem, we only need to show that they coincide on an open subset of Q2 \ K.

Note that u is in fact holomorphic on C" \ suppy (which may not be connected). Since
it also has compact support, it necessarily vanishes on the unbounded component of C" \
suppy by the uniqueness theorem. But the boundary of this unbounded component must
belong to Q \ K, so we can find open subset of Q \ K on which #u = 0 and v = f, thus
F = f there. O

Proof of Lemma 1.16: We define

T]l(W19Z2’- . ’Zn)d

2r V-1 fc wi—2i

Then it is easy to see that u € C*(C") and. since 7; has compact support, vanishes when
|zo| + - - - + |z, is large enough. By Lemmal.1,

ou
07; -

wq /\dwl.

u(z) =

Also, fork =2,...,n, by (1.6)

0 1 O 32253 2n ~
—_M(Z) _ f (wi, 22 g )dwl A dw,
0Zx 2r V-1 Jc w1 — 24
1 a_ D) s+ 94n —
_ f im(wi, 22 Z )dw1 A dib,
2r V-1 Jc wi; — 2
= m(2).

The last equality also uses (1.1) as in the proof of Lemmal.l. So we proved that du = 7.

Finally we prove that u has compact support. We already knew that u# vanishes when
one of |z,],..., |z, is large enough. Now choose R > 0 large enough and apply (1.1) to u
as a function of z,:

u
1 T(Z],W,Z:‘),---,Zn)
u(z) = % dw A div
2n V=1 Jwi<r w—2
1 9 9 PR RN /4 —
7221, W, 23 £ )dw A dw.

- 2 V=1 Jwi<r w—2

From this expression, we conclude that u also vanishes when |z;| is large enough, hence u
has compact support. O
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Remark 1.17. It is interesting to compare Lemma 1.16 with Lemmal.l. One could say
that many of the “strange” properties in higher dimensional complex analysis are caused
by the fact that we can solve the 0-equation with a solution also with compact support.

As a direct corollary of Theorem 1.15, we see that all isolated singularities of holo-
morphic functions with more than one variable are always removable.

Definition 1.18. Let U c C" be a domain, then amap f = (fi,..., fn) : U = C" is called
holomorphic, if all its components are holomorphic, i.e. fi € O(U),Yi=1,...,m. If f is
bijective onto its image and its inverse is also holomorphic, then we say it is biholomor-
phic', and U is biholomorphic to f(U).

Example 1.19. If Q & C is a simply connected domain, then € is biholomorphic to A(1) C
C. This is the famous “Riemann mapping theorem”.

Example 1.20. 1. Any polydisc A(a,r) is biholomorphic to A0, 1): we can choose the
biholomorphic map to be

71 —ay Zn — a
f(le'-"Zn):( LR - n)'

r I'n

2. The ball B(0, 1) c C" is biholomorphic to the unbounded domain

n—1
H:={weC |Imw, > Z wil?)

i=1

by the map

2 Zn-1 1 -z,
= = , V=1
w=r@ (1+zn’ “1+z, 1+z,

).

The boundary of H is called the “Heisenberg group”, which plays important roles
in CR-geometry and harmonic analysis.

Another example showing that complex analysis in higher dimensions is drastically
different form the 1-dimensional case is the following theorem discovered by H. Poincaré.

Theorem 1.21 (H. Poincaré). Let n > 2, then B(0,1) c C" is not biholomorphic to
A(0,1) c C".

Proof. 1 learnt the following proof from the book of R. Narasimhan , where the author
attributes the idea to Remmert and Stein. Poincaré’s original proof is to show that the
groups of automorphisms (means biholomorphic maps onto itself) of these two domains
are not isomorphic. For simplicity, we only prove the n = 2 case and left the general case
to readers.

'The we necessarily have m = n

11



Step 1: Suppose we have a biholomorphic map f(z,w) : A0, 1) — B(0, 1). Then for any
sequence {z;} ¢ A c C with |z;] — 1, the sequence of one-variable holomorphic func-
tions g;(w) = f(z;,w) : A — B(0,1) is uniformly bounded. By Montel’s theorem, we
can assume that g; converges uniformly on compact subsets of A to a holomorphic map
gw) = (g1(w), &2(w)) : A — B(0, 1).

Step 2: We have |g(w)| = 1 on A.

In fact, if there is a point wy € A such that g(wy) € B(0,1). Choose a small € > 0
such that B(g(wg),€) € B(0,1). Since a biholomorphic map is necessarily proper (i.e.
the preimage of any compact set is also compact), f~'(B(g(wy), €)) is a compact subset of
A(0, 1). Since (z;, wg) — OA(0,1) as i — oo, we have (z;, wy) € f~(B(g(wy), €)) when i is
large enough. This means

f(zi,wo) & B(g(wp), €)

when i is large enough, contradicting the fact f(z;, wo) — g(wo).

Step 3: From Step 2, we further conclude that g(w) is a constant map, i.e. g’(w) = (0, 0).
One way of seeing this is to use the fact that a non-constant holomorphic function in
one variable is always an open map. Alternatively, we can compute the derivatives:

o Plsmp
© Owow
0 0g 0 08>
= (10052 00) + = (8200 5= (w)

= g W) + lg5w)I*.

It follows that

0
lim 2 2. w) = ¢'(w) = 0.
i~ Ow

This implies that for each fixed w € A, %(z, w), as a function of z, is holomorphicin A c C

and continuous on A with boundary value 0. By maximum principle we get 37’;(1, w) = 0on
A(0, 1). This implies f is independent of w, contradicts the fact that f is a biholomorphic
map. O
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Many theorems in multi-variable calculus have “holomorphic” versions, for example,
the inverse function theorem and implicit function theorem. Let Q be a non-empty domain
of C" and f : Q — C™ be a holomorphic map. Then we can define the holomorphic
Jacobian of f at z € Q to be the m X n matrix:

Ofis-- s fm) (%

01y r2n) 0z; (Z))lﬁiﬁm,lﬁjsrz'

Theorem 1.22 (The inverse function theorem). Let f : Q — C" be a holomorphic map
and Jf}(zo) is non-degenerate for some point zo € €, then f has a local holomorphic
inverse g in a neighborhood of f(z¢), and we have

IE(F@) = IS

Proof. We shall first apply the traditional inverse function theorem to get an inverse map.
For this, we need to study the real Jacobian of f at zy:

() (200)

JR( )= Oxj)1<ijsn  \yj 1<i,j<n

) B )
Oxj)1<ijj<n \0Y; ) 1<i j<n

where we write z; = x; + V=1y;and f; = u; + V-1v,.

J7(2) ==

Claim: For holomorphic f, we have
det J]j}(z) = |det Jff(z)lz.

The reason is simple. For short, we write

R U oU
po=(% 1)
0X 1) 4

Then the Cauchy-Riemann equation can be written as

U _ov U _ oV
X oY’ oY 0xX’

and hence
ol _0U iU
ez ax oY
So we have
U dU au U
det JR det( X o )— det( ox, 9 )
X 9y To9Y X
JC U Jc 9y
( f ‘;’Ly, ): det( - )
V— 0X 0 J f

13



Now we have det J}?(zo) = |det Jf;(zo)l2 # 0. By classical inverse function theorem, we

have a local C! inverse of f near wy := f(zo). We write it as z = g(w). We shall prove that
it is holomorphic.
In fact, from the identity w; = fi(g;(w), ..., g.(w)), we have, by the chain rule,

aw’ Z—(( ))%w

Since the matrix JCc is invertible near zp, we conclude that 6g;(. = 0 for all k,j. So g is
holomorphic. Agam takmg 5. on both sides of w; = f,(gl(w), oo 8n(w)), we get I, =
T3 WIS (w). 0

Theorem 1.23 (The implicit function theorem). Let f : Q — C™ be a holomorphic map
with m < n. Suppose f(z9, wo) = 0 with zo € C"™", wy € C" and (zo, wp) € Q. If

det i s fn) (zo, wo) % 0,

a(Zn—m+1» ey Zn)

then we can find a holomorphic map g : A(zp,€) — A(wy,0) C C™ such that g(zo) = wy
and

f(z,8(2) =0, Vze Az, e).

Moreover, we have
{(Z’ W) € A(ZO’ E) X A(‘/VOa 5)' f(Z7 W) = O} = {(Z’ W)l Z€ A(ZO’ 6)7 w = g(Z)}

Proof. There are at least two ways of proof. For example, we can argue as in the inverse
function theorem by reducing it to the classical implicit function theorem, or we can con-
sider the map f(z, w) = (z, f(z, w)) : Q@ — C" and apply Theorem 1.22. We leave the detail
as an exercise. O

Remark 1.24. The implicit function theorem says that if a holomorphic map is non-
degenerate at a given zero point, then its zero locus is locally a graph near that point.
What happens if the Jacobian degenerates at a given point? For example, consider the
m = 1 case. If a holomorphic function f(zy,...,Z,-1,w) satisfies gf—j,:(zo,wo) # 0 but
%(zo, wo) =0,Yi=0,...,k— 1. What can we say about the zero locus of f near (zo, wy)?
Weierstrass’s “preparation theorem” answers this question. This theorem is fundamental
to the local theory of several complex variables.

14



2 Complex manifolds and complex vector bundles

2.1 Complex manifolds

Roughly speaking, a complex manifold is a topological space X on which we can talk
about “holomorphic” functions. Since we know what does a holomorphic function means
in Euclidean spaces, the first condition we impose on X is:

Condition 1:(existence of coordinate charts) X is locally homeomorphic to open sets of
C". To be precise, we require that there is an open covering U = {U,};cp of X such that for
each U; we have a homeomorphism ¢; : U; — ¢;(U;) € C" onto an open set ¢;(U;) of C".

Given these coordinates, we should define a function f : @ — C to be holomorphic
if all its coordinate-representations f o gol.‘l € O(p;(U; N Q)). But is this a well-defined
notion? For example if Q C U; N U; # 0, then on Q we have two sets of coordinates. Is
it possible that f o ;' € O(pi(Ui N Q) but f o ¢7' & O(pi(U; N Q))? To avoid this, note

that f o g7 = (f o ;") o (¢ 0 @), s0 we require:

Condition 2:(compatibility) Coordinate changes of Condition 1 should be holomorphic.
To be precise, we require that whenever U; N U; # 0, we have ¢; o <pj‘.1 is a biholomorphic
map from ¢;(U; N U;) to ¢;(U; N U;).

Given these 2 conditions, one can check easily that the notion of “holomorphic func-
tion” makes perfect sense. However, to avoid pathology and use more analytic tools such
as metrics and integration, we also require a complex manifold to be a nice topological
space:

Condition 3: X satisfies 7, and C, axioms, i.e. X is a Hausdorff space, and has a count-
able topological basis.

Definition 2.1. A complex (analytic) manifold of dimension n is a topological space X
satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a
“Riemann surface”. A map f : X — C from a complex manifold X is called a “holomor-
phic function”, if f o ¢;' € O(¢i(Uy)) for all i € A. In this case, we write f € O(X).

If X, Y are both complex manifolds of dimensions n and m respectively, amap F : X —
Y is called “holomorphic”, if for all coordinate charts (U, @) of X and (V,¥) of Y, the map
Yo F o™ is a holomorphic map on o(U N F~'(V)) C C" whenever U N F~ (V) # 0. A
holomorphic map with a holomorphic inverse is called “biholomorphic”.

Remark 2.2. In standard textbooks, the set of coordinate charts {(U;, ¢;)}icn is assumed
to be maximal, i.e., whenever a homeomorphism from an open set V,  : V. — (V) c C"
is compatible with (U;, ¢;) for all U; "'V # 0, we have (V,) € {(U;, ¢i)}ica- It is easy
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to check that from the coordinate charts in our definition, one can always enlarge it to a
unique maximal one satisfying the compatibility condition.

Example 2.3. 1. Open subsets of C" are complex manifolds.

2. Let{ey,...,e} be any fixed R-basis of C", and let A := {me| +- - - +my,es,| m; € Z}
be a lattice of rank 2n. Then we can define the quotient space C" /A, it is a com-
pact Hausdorff space equipped with quotient topology. There is a natural complex
manifold structure on C"| A, we call this complex manifold a “complex torus”.

3. Let P € C[z,w] be a polynomial of degree d. Define
C = {(zw)| P(z,w) = O}.

We call it an “affine plane algebraic curve”. Assume P is irreducible and ‘;—I;, g—f: have

no common zeroes on C. Then C is a natural complex manifold. The coordinates
can be chosen in the following way: if g—f:(zo, wo) # 0, then we can apply the implicit
function theorem 1.23 to find a neighborhood A(z, €) X A(wy, 6) and a holomorphic
function g(z) such that U := CN(A(zg, €)X A(wy, 8)) = {(z, w)| z € A(zp, €), w = g(2)}.
We choose ¢ : U — C to be p(z,w) = z. If%—f(zo, wo) # 0, we use w as local coordi-
nate. Exercise: what’s the coordinates transformation function?

The last example is a special case of “complex submanifold” we now define:

Definition 2.4. A closed subset Y of a n-dimensional complex manifold X is called a “com-
plex (analytic) submanifold” of dimension k, if for any p € Y, we can find a compatible
chart (U, ¢) of X such that p € U and

eUNY) =i 20) € PU)| 2g1 = --- = 2, = O}

One can check that the restriction of such charts (we call them “adapted charts”) to Y
makes Y a complex manifold and the inclusion Y C X is a holomorphic map.

Example 2.5 (The complex projective space). We define an equivalence relation on C"!\
{0}: (20 --.»20) ~ (Wo,...,wy) if and only if we can find a non-zero A € C (write A € C*
for short) such that w; = Az; for all i = 0,...,n. The equivalent class of (zo,...,2,) is
denoted by [z, . .., z,]. The n-dimensional complex projective space CP" is defined to be
the space of all equivalent classes, endowed with quotient topology. Then it is a compact
Hausdorff space. We choose the holomorphic coordinate charts as follows: Define

U :={lz0,...,2,.] €CP"|z; #0}, i=0,...,n.

These are open sets, and we define

" <0 Zi Zn
‘)Di:Ui_)C7 Soi([ZO,---’Zn])::(_,---,_,---,_)-
Zi < <j

The checking of compatibility is left to readers. Also it is easy to check that CP' is our
familiar S°.
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Let Fy,...,F; € Clzo,...,z,] be a set of irreducible homogeneous polynomials of
degrees di, . . ., d; respectively. Then the set

V(Fb"-’Fk) = {[Z()""’Zn]lFI(ZO7~"7Zn):'”:Fk(ZO’~'-’Zn):0}

is well-defined and is called a (complex) projective algebraic variety. If we assume that
V(Fy,...,Fy)is a complex submanifold of CP”", then it will be called a “projective alge-
braic manifold”.

Example 2.6. If F € C|z,...,z,] is irreducible and homogeneous of degree d. If we

assume that the only common zero of 37’2, e 271: in C"™' is (0,...,0). Then V(F) is
a complex submanifold of dimension n — 1. We check this on U,. V(F) N U, is the
zero locus of the holomorphic function F(1,zy,...,z,) € O(Uy). We shall show that
gTF.(l’Zl’ R 4% g{;(l,zl, ..., 2Zn) have no common zeroes on V(F) N U,
Suppose
F(1,2%...20 = Z—Z(Lzﬁ’,...,zg) == 22(1,z?,...,z2) =0.

By Euler’s theorem on homogeneous functions, we have

oF oF oF

0 0 0 0 0 0 0 0 0 0
—,zi,...,z2)+z;—(,z7,...,2)+ -+ 2 (1,z5,...,z)=dF(,z,...,z,) =0.
GZO 1 n lazl 1 n nazn 1 n 1 n
This implies %(l,z(l),...,zg) =0, so (l,z?,...,zg) IS a common zero of%,...,STF in C+1

different from ©,...,0).
For example, V(Zg + -+ z,dz) is a smooth submanifold of CP", called the “Fermat
hypersurface” of degree d.

A generalization of submanifold is the following:

Definition 2.7. A closed subset A of a complex manifold X is called an “analytic subvari-
ety”, if it is locally the common zeroes of finitely many holomorphic functions, i.e. Vp € A,
there is an open set U C X and fi,..., fr € O(U) suchthat ANU ={ze U| fi(z)=--- =
fi(z) = 0}.

An analytic subvariety A is called a “hypersurface” if it is locally the zero locus of a
holomorphic function.

Note that a complex submanifold is an analytic subvariety, we just choose U to be the
domain of the adapted chart and f; to be z;,1, ..., 2.
Let A C X be an analytic subvariety. p € A is called a “regular point”, if we can find

open U C Xand fi,...,fir € O(U)suchthat AN U ={z € U| fi(z) =--- = fi(z) = 0} and
a(fl""’ﬁ() _
rank—a(Zl, .z (p) = k.

17



In this case, A is locally near p a complex submanifold of dimension n — k: without loss
of generality, assume o0 o
( 1o -5 Jk

ta(zl’._"Zk)(p) # 0,
then we can choose a new compatible coordinate system (fi, ..., fi, Zk+1»---»2n). This is
an adapted chart for A near p.

The locus of regular points of A is denoted by A,,. Its complement in A is called the
“singular locus”, and its elements are called “singular points of A”.

Chow’s theorem says that any complex analytic subvariety of CP" is projective alge-
braic, i.e., the common zeroes of finitely many homogeneous polynomials.

de

To end this section, we say something about the existence of complex structures on a
given differential manifold. A complex manifold is an even dimensional orientable differ-
ential manifold. However, for a given even dimensional oriented manifold, it is not always
clear whether or not we can make it a complex manifold. There are topological obstruc-
tions to “almost complex structure”, this can rule out all even dimensional spheres except
S2 and S6. We already knew S? is a complex manifold. But the S¢ case is still open.
In this view, we give an example of complex structures on product of odd dimensional
spheres:

Example 2.8 (Calabi-Eckman). We can make S*"*! x §29*! into a complex manifold. The
idea is that we can write

p q
sl = e Yl =1}, $H=(zec] Yl =1}
i=0 =0

and we have the Hopf fibration maps:
Ty s+l cpr, T, St 5 cpe,

each with fiber S'. So if we consider the map nt = (n,,7,) : S?*! x §24*! — CP? x CP4,
then we can view S*"*! x §24*! qs a fiber bundle on CPP x CP4, which is a complex
manifold, with fiber S' x S' = T?, which can also be made a complex manifold.

To be precise, fix at € Cwith Imt > 0. We donote by T, the complex torus C/ < 1,7 >.
Consider the open sets:

Uy = {(z.7) € S x 82| 142, # 0,

and the map hy; : Uy; — CP* x T, given by

20 Zk Zp %

hkj(z’ 7)=(

%

J q
Z Z ""’Z ’Z,""’Z_’""’Z_,’tkj)’
k k k j j j

where t; = ﬁ(log z + tlogz)) mod < 1,7 >. Exercise: check that these charts
makes S+ x §24*1 q complex manifold.
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A direct application of the maximum principle gives:

Theorem 2.9. Any holomorphic function on a compact connected complex manifold should
be a constant.

Let M be a complex submanifolds of C". Since the restriction of complex coordinate
functions of C" to M are holomorphic functions on M, we get:

Corollary 2.10. There are no compact complex submanifolds of C" of positive dimension.

Remark 2.11. Those non-compact complex manifolds which admit proper holomorphic
embeddings into CN for some large N are precisely “Stein manifolds” in complex analysis
(Remmert’s theorem).

The triumph of this short course is Kodaira’s “projective embedding theorem”, char-
acterizing those compact complex manfolds which admit holomorphic embeddings into
CP" for some large N, i.e., projective algebraic manifolds.
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2.2 Vector bundles

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of
vector spaces, varying holomorphically.

Definition 2.12. A holomorphic vector bundle of rank r over a n-dimensional complex
manifold X is a complex manifold E of dimension n + r, together with a holomorphic
surjective map n . E — X satisfying:

1. (Fiberwise linear) Each fiber E,, := 7~ (p) has the structure of r-dimensional vector
space over C;

2. (Locally trivial) There is an open cover of X, U = {Uj}ien such that each 7~ (U;)
is biholomorphic to U; x C" via ¢; : n='(U;) — U; x C", and E, — m\(U) —
U; x C" is a linear isomorphism onto {p} X C" for any p € U,. ¢; is called a “local
trivialization”.

In this case, whenever U; N U; # 0, we have a holomorphic map, called the “transition
map”, ¥;; : UiNnU; — GL(r,C) (viewed as an open subset of C’z) such that ¢; o 90]‘.1 (z,v) =
(z,¥ii(z)v). These families of transition maps satisfies the “cocycle condition™:

(D) yipji=1onU;NUj
(2) Whenever U; N U; N Uy # 0, we have y; iy = I, on U; N U; N Uy

The name “cocycle” is no coincidence. In fact we will see later that {i};;} above is indeed
a cocycle in Cech’s approach to sheaf cohomology theory.

Remark 2.13. On the other hand, if we are given a set of holomorphic transition maps
Yij: UinUj — GL(r, C) satisfying the cocycle condition, we can construct a holomorphic
vector bundle by setting E = | [;ca(U; X C")/ ~, where (z,v) ~ (', w) for (z,v) € U; X C”
and (Z,w) € U; X C" if and only if z = 2’ and v = {;j(z)w. We leave the detail as an
exercise.

A holomorphic vector bundle of rank 1 is usually called a “holomorphic line bundle”.

Definition 2.14 (holomorphic section). Let 7 : E — X be a holomorphic vector bundle
over X. Let U C X be an open set. A holomorphic section of E over U is a holomorphic
map s : U — E suchthatwos = idy, i.e., s(p) € E, forany p € U. The set of holomorphic
sections over U is usually denoted by I'(U, O(E)) or O(E)(U).

One of the fundamental problem for the theory of vector bundles is the construction of
global holomorphic sections of a given bundle. An important tool is the L?>-method for the
d-equation. One can find the basics from Hoérmander’s book. It is interesting that whether
or not we can solve the equation depends on the geometry, in particular, the curvature of
the bundle.

20



Definition 2.15 (bundle map). Let nf : E — X and n* : F — X are holomorphic vector
bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map
S+ E > F such that f maps E, to F, forany p € X and flg, : E, — F, is linear. When a
bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

Another fundamental problem is the classification problem. One important tool is the
theory of characteristic classes that we shall discuss later. Also the set of isomorphic
classes of holomorphic vector bundles over a given complex manifold has rich structures
and is an important invariant for the complex manifold.

Example 2.16 (trivial bundle). X X C" with n; : X X C" — X is a holomorphic vector
bundle over X, called the “trivial bundle” over X, denoted by C'.

Example 2.17 (holomorphic tangent bundle). Let X be a complex manifold of dimension
n. We shall now construct its “holomorphic tangent bundle” T X as follows:
Let p € X, we first define the ring

ﬁx’p = lim ﬁx(U),

where the direct limit is taken with respect to open sets p € U. For persons not familiar
with direct limit, this is [, Ox(U)/ ~, with f € Ox(U) equivalent to g € Ox(V) iff we
can find another open set p € W C U NV such that fly = glw. As an exercise, we can see
that O, is isomorphic to the ring of convergent power series C{z,, . ..,z,}. An element of
Oxp is called a “germ of holomorphic function” at p.

A tangent vector at p is a derivation v : Ox, — C, i.e., a C-linear map satisfying the
Leibniz rule

v(fg) = v(f)g(p) + f(pIv(g).

The set of tangent vectors at p is easily seen to be a C-vector space. We call it the (holo-
morphic) tangent space of X at p, denoted by T, X.
If ¢ : U; = C" is a holomorphic coordinate chart with ¢; = (21, ...,2,). Then we can
define a‘—zil » € T,X to be
o(f o ¢!
(925
Then one can show that {%I oYy is a basis of T, X.
Let TX := [l,ex T,X, and define n : TX — X in the obvious way. We can make it
a holomorphic vector bundle of rank n over X as follows: Let (U;, ¢;) be a holomorphic
chart. Then we can define the local trivialization @; : n~'(U;) — U; x C" to be

0
G_Z,-lp(f) = (wi(p)).

. 0
‘Pi(q, Z aia_Z'lq) = (Qa ais ..., an)'

i
This gives a complex structure on TX and at the same time gives a local trivialization of

TX over U,.
A holomorphic section of TX over U is called a “holomorphic vector field” on U.
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Example 2.18 (holomorphic cotangent bundle). Any f € O, defines a linear functional
on T,X by v v(f). We call this dfl, € (T, X)" =: T ,X. T,X is called the (holomorphic)
cotangent space of X at p. It is easy to see that if (U;, ¢;) is a holomorphic chart, then
{dzil, ), is the basis of TyX dual to (3|, )1,

We can similarly give T*X := ] ,ex T,X a holomorphic bundle structure, called the
“(holomorphic) cotangent bundle” of X. We leave this as an exercise.

A holomorphic section of T*X over U is called a “holomorphic 1-form” on U.

In this course, holomorphic line bundles play very important roles. Let 7 : L — X be
a holomorphic line bundle and {U;};ca an open cover by trivialization neighborhoods, and
@i : mY(U;)) = U; x C the trivialization map. Since GL(1,C) = C*, now the transition
maps i;; become non-vanishing holomorphic functions on U; N U;. Let s € I'(X, O(L)),
then ¢; o s|y, : U; = U; X C could be represented by a holomorphic function f; € O(U,),
such that ¢; o s|y,(p) = (p, fi(p)). When U;NU; # 0, since sly, = s|ly, on U; N U;, we have
forany pe U;NU;:

(p, fi(p)) = @i(s(p))
= (pio@;) o pi(s(p))
= (@i o @7 ). fi(p))
= (p. ¥ij(p) fi(P))-

So we have f; = ¢;;f; on U; N U;. On the other hand, it is direct to check that given a
family of holomorphic functions f; € O(U;), satistying f; = y;;f; on U; N U;, then there
corresponds a unique s € I'(X, O'(L)).

Example 2.19 (Universal line bundle over CP"). > We define a holomorphic line bundle
U — CP" as follows: As a set,

U = {([z],v) € CP" x C"™*'| v € [2]},

where we view [z] as the 1-dimensional subspace of C**! determined by z. As one can
check easily, we can write

U ={([z],v) € CP"XC"|viz; — 221 = 0,V¥i,j = 0,...,n}

From this, it is easy to see that U is a complex submanifold of CP" x C"*, and hence a
complex manifold. The projection onto its first component CP" is clearly a holomorphic
map, with fiber the I-dimensional linear subspace of C'*!' generated by (zy, . . . , z,).

For local triviality, we use the holomorphic charts {(U;, o)}, defined before. On
7 Y(U,), eachv € U\, can be uniquely write as t - (Zz_?’ AU P ZZ—'IT), so we define

- Z Zn
B0, o2t oL ) = (o2l 1) € U X C.

i
This is easily seen to be a biholomorphic map.
Zi

It is easy to write down the transition functions: y;;([z]) = >
X J

2 Also called the “tautological bundle”
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Construct new bundles from old ones: The usual constructions in linear algebra all have
counterparts in the category of vector bundles over X.

Direct sum

Let E, F be vector bundles over X of rank r and s respectively. Then their direct sum
is a vector bundle of rank r + s with fiber E, ® F',. To describe it, it suffices to write down
the transition maps: if {U;},ca is @ common trivializing covering of X for E and F. The
transition maps are ;; and 7;; respectively, then the transition maps for E® F’ are precisely
diag(y;j, n;j) with values in GL(r + s, C).

Tensor product

Let E, F be vector bundles over X of rank r and s respectively. Then their tensor prod-
uct is a vector bundle of rank rs with fiber £, ® F',,. In applications, we only use the tensor
product of a line bundle L with a general vector bundle E. In this case, if the transition
maps for E and L with respect to a common trivializing covering are ;; and n;;, then the
transition maps of £ ® L are n;\);;.

Hom(E, F)

Let E, F be vector bundles over X of rank r and s respectively. Then Hom(E, F) is a
vector bundle of rank rs with fiber Hom(E,, F',), the space of linear maps from E,, to F,.
In particular, we define the dual of E to be E* := Hom(E, C), whose fiber over p is exactly
the dual space of £, (E,)".

When L — X is a holomorphic line bundle, we can easily describe L* in terms of
transition functions: if the transition functions of L are i;;, then the transition functions of
L* are l//l-_jl. For this reason, we usually also write L~ for L*.

Exercise: Prove that the bundle Hom(E, F) is isomorphic to E* ® F.

Example 2.20. Let U — CP" be the universal bundle, its dual is usually denoted by H, we
call it the “hyperplane line bundle”. 3 Another common notation for H is O(1). We also
write the H*, or O'(k), short for the k-times tensor product of H, H* := H* = H®---® H,
and O(=k) := H™* := U®k.

We now study the holomorphic sections of H* for k > 0. Let s € I'(CP", O(H)), we
know that s can be represented by a family of holomorphic functions f, € O(U,), where
U, ={lz] € CP"| z, # 0}. These f,’s satisfy the condition

fullz) = (2) 12D

onU, N U.

3The reason for this name should be clear after we find out what are the zero locus of its holomorphic
sections.
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Pulling back to C"*' \ {0}, we can view Z* f,([z]) as a homogeneous function of degree
k on C"'\ {z, = 0}, which is also holomorphic. Now the above compatibility condition
means that these z, f,([z])’s could be “glued” together to form a holomorphic function on
C™1\ {0}, homogeneous of degree k. By Hartogs extension theorem 1.15, this function
extends to a holomorphic function F (2o, . ..,z,) € O(C""). We necessarily have F(0) = 0
by homogeneity and continuity. From this we easily conclude that F is a homogeneous
polynomial of degree k.

On the other hand, it is easy to see that any homogeneous polynomial of degree k in
Clzo, - - - » 2n] determines uniquely a holomorphic section of H*. So we have

dime T(CP", O(HY)) = (” Z k).

Exercise: Prove that when k < 0, [(CP", O(H")) = {0).

Definition 2.21. The isomorphic classes of holomorphic line bundles over X is called the
“Picard group” of X, denoted by Pic(X).

Pic(X) is indeed a group: we define [L;] - [L,] := [L; ® L,], then C is the identity
element and [L]™! is just [L*].

For CP", we have Pic(CP") = Z, and any holomorphic line bundle is isomorphic to
O'(k) for some k € Z. However, this is rather deep, and we can not prove it here. One can
find a proof in Chapter 1 of [2].

Wedge product

Let E be vector bundles over X of rank r, for k € N and k < r, the degree k wedge
product of E is a vector bundle A*E with fiber AE, at p. The highest degree wedge
product A"E is also called the “determinant line bundle” of E, since its transition functions
are precisely deti;;.

QP(X) := APT*X is the bundle of holomorphic p-forms.

Pull back via holomorphic map

Let E — X be a holomorphic vector bundle of rank r, f : ¥ — X be a holomorphic
map between complex manifolds, then we can define a “pull back” holomorphic vector
f*E over Y. In fact, we can simply define the total space of f*E to be

JE={0(x,v)) €Y X E| x = f(y)},

and p : f*E — Y is just the projection to its first component.

We can also describe f*E via transition maps: if {U;};cs 1s a trivializing covering of
X for E with transition maps ¢;; : U; N U; — GL(r,C), and we choose an open covering
{Va}aer such that f(V,) c U; for some i € A. We fix amap 7 : I — A such that
f(Vy) C Uy Then the transition maps for f*E with respect to {V,, },es are just f* ¢ (q)rp) =
Yy © f 2 Vo N Vg — GL(r,C).
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2.3 Almost complex manifolds

The definition of a n-dimensional differential manifold is similar to that of complex man-
ifolds. Just replace every C" by R" and every “holomorphic” by “smooth” or C*. Similar
for differential vector bundles over a differential manifold. A differential manifold is called
orientable, if we can find a coordinate covering such that whenever two coordinate charts
intersect, the Jacobian determinant of the coordinate transform is positive.

Lemma 2.22. A n-dimensional complex manifold X is also a 2n-dimensional orientable

differential manifold.

This follows from the computation we did before in the proof of Theorem 1.22. Here if

we have a holomorphic coordinate chart (U, ¢) with ¢ = (z;, ..., z,), then the correspond-
ing chart to define the oriented differential structure is (X1,..., X;, Y15« -5 Yn)-
For p € X, we can define a real tangent vector at p and the corresponding real tangent
space at p, TEX . In terms of coordinate chart ¢ = (zy,...,z,), we have
o 0
TRX =R< —, — >" .
g ox;” ay; !

We can give [ [ ,ex TEX a structure of R-vector bundle of rank 2n, called the “real tangent
bundle” of X, and denoted by T%X. Similarly, we can define the real cotangent bundle
TEX.

There are two ways to get from this our previous holomorphic tangent and cotangent
bundles.

Recall that any real vector space V of dimension 2n can be regarded as C-vector space
of dimension n once we know what does it mean to multiply V-1 to an element of V.
This is equivalent to giving a R-linear map J : V — V such that J? := JoJ = —id. We call
such a J a “complex structure” on V. In this case, V can be regarded as a C-vector space
by defining

(a + \/—_1,8)\/ =av+BJv, Va,BeR,VYvelV.

Definition 2.23. Let M be a real orientable differential manifold of dimension 2n. An
almost complex structure on M is a bundle map J : TM — T M satisfying J* = —id.

Note that a complex manifold X has a natural almost complex structure: just define

o 0 o 0
0x; - 5)’1', 0y - ox;
If an almost complex structure is induced from a complex structure as above, we will

call it “integrable”.

Example 2.24. For S?, we can define J : TS?> — TS? as follows: we identify T,S? with
the subspace of R3:
T.S*={yeRx-y=0}.

25



Then we define J, : T,.S* — T.S? by

J,(y) = xxy.

On can check that this is an integrable almost complex structure, induced by the complex
structure of S* = CP".

Example 2.25. For S, we have a similar almost complex structure given by “wedge
product” in R7. Note that the wedge product in R* can be defined as the product of purely
imaginary quaternions. To define this wedge product in R’, we shall use Cayley’s theory
of octonions.

We write H = R* the space of quaternions q = a + bi + cj + dk with a,b,c,d € R,
satisfying i> = j> = k> = =l andij = —ji = k jk = -kj = i, and ki = —ik = j.
Then this multiplication is still associative but not commutative. For q € H, we define
G = a - bi— cj — dKk, then |q* = q4.

Now we define the space of octonians, O = R8, as O := {x = (q1,92)| 1, 9> € H}. The
multiplication is defined by

(91> 92)(q1, 45) = (q19) = §>G2, 9591 + §2G))-

And we also define % := (G, —q»). Then we still have x% = x - x = |x|%, here the - means the
usual inner product in R®. Note that this multiplication is even not associative.

We identify R’ as the space of purely imaginary octonians. If x,x' € R’, we define
x X x' as the imaginary part of xx'. Then one can check that xx = —|x|*>, x X X’ = =X’ X X,
and (x X x') - x" =x- (X' xx").

From this, one can define an almost complex structure on S® C R’ in a similar way as
S2: identify T.S® with {y € R’| x - y = 0}, then define

J,(y) == xxy.

Remark 2.26. For spheres of even dimension 2n, it is known (Borel-Serre) that there
are no almost complex structures unless n = 1,3. A modern proof of this fact using
characteristic classes can be found in P. May’s book on algebraic topology. It is generally
believed that there are no integrable almost complex structures on S°, however S.T. Yau
has a different conjecture saying that one can make S° into a complex manifold. This is
still open.

Now given J : T®*X — T®X, we can view T*X as a C-vector bundle. One can check
that, when X is a complex manifold, (T%X, J) is isomorphic to the holomorphic tangent
bundle 7X as C-vector bundles. This is the first approach.

The second approach also uses J. Let again V be a real vector space with complex
structure J. But now we simply complexify V to get

VC = V®R C.
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We also extend J C-linearly to V¢, again J? = —id.
There is a direct sum decomposition of Ve = V¥ @ V*! which are V-1 and — V-1
eigenspaces of J respectively. In fact we have a very precise description of V! and V%!:

V0= fv— V=Ihlve V), V¥ =+ V-1lveV)

It is direct to check that they are both C-linear subspaces of V¢ and V®! = V10,
Now apply this to (TX, J) for a manifold with an almost complex structure: define
the complexified tangent bundle to be

TCX :=T*X @ C
and we have the decomposition
T°X =TYX o T"'X,

which are the V-1 and — V-1 eigenspaces of J, respectively. When J is integrable, 7'°X
is locally generated by {(9‘—;}?:1, so we can again identify it with our previous holomorphic
vector bundle 7X.

We define 7*!°X to be the subspace of T*CX := T**X ®; C that annihilates 7%!X. And

similarly define 7*%!X. Then
T°°X =T""'Xe T"'X.

When J is integrable, T7*"°X is locally generated by {dz;}i<i<, and T*%'X is generated
by {dZ;}1<i<n. We define the vector bundle A”YT*X, the bundle of (p, g)-forms to be the
sub-bundle of AP*4T*“X, generated by APT*1°X and AYT**!X. Then we have

k
AFTCX = @ APR=PT*X
p=0

and we denote the projection map of A”*T*X onto AP4T*X by I1,,. The set of smooth
sections of A”4T*X over an open set U is denoted by A”4(U), while the set of smooth
sections of A*T*CX is denoted by A¥(U).

When J is integrable, a smooth section of A”¢T*X over a coordinate open set U is of
the forms

Z o 5.4z Ao Adzy AT, A AdT,,

1<iy<<ip<n, 1< ji << j,<n

where a;, ; j,..7, € C*(U; C).
The exterior differential operator d extends C-linearly to d : AX(U) — A*'(U). We
define the operators
8 =T, 0d: AP(U) - APTH(U),
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and )
d:=1M,, 0d: AP(U) —» AP"(U).

When J is integrable, then for n = Zm:pM:q a;idz; A dz; € AP4(U), we have
dn =) daj; Ndz Adz
IJ

= Zaa,,—/\dzl ANdZ; + Zéa”—/\ dz; N\ dz; €Ap+1’q(U)€BAp’q+l(U).
1.J 1.J

So we always have d = 0 + 9. Conversely, we have:

Theorem 2.27 (Newlander-Nirenberg). An almost complex structure is integrable if and
only ifd = 8 + 0 (equivalently, [T'°X, T'°X] c T'°X) for any AP4(U).

Besides the original proof of Newlander-Nirenberg, there is another proof by J.J. Kohn
based on techniques for solving the “0-equation”, which can be found in Hérmander’s
book.
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2.4 De Rham cohomology and Dolbeault cohomology

In the following, we always assume the almost complex structure J is integrable, i.e., X is
a complex manifold.

Now d = 9 + 0. Since we always have d> = 0, a fact first noticed by Poincaré, we have
0=08"+0"+ (40 + 90),
acting on A”9(X). Comparing types, we get

’?=0, =0, 00+00=0.

We can define from these identities several differential cochain complexes:
The de Rham complex

05 A05A XS . 5 A"X) -0
We define the de Rham cohomology (with coeflicient C)
Hin(X, C) = Ker(AKX) 5 AF1(X))/dA* (X).

The Dolbeault complex

0 - 4P°X) S AP (x) S .S APrx) > 0.
We define the Dolbeault cohomology
HP(X) 1= Ker(AP(X) 5 AP0 (X)) /84747 (X).

The holomorphic de Rham complex

050X Lo Eax o
We define the holomorphic de Rham cohomology
Hix(X, hol) := Ker(Q4(X) 5 Q@ (X)) /dQ (x0).

The relation between these cohomology theories, as well as computational tools will
be discussed when we finish sheaf cohomology theory and Hodge theorem.

29



3 A brief introduction to sheaf theory

3.1 Basic concepts in sheaf theory

Recall that a presheaf .# of abelian groups over a topological space X is a rule assigning an
abelian group .% (U) for each open set U C X, and for each pair V ¢ U a homomorphism
ry : F(U) - F(V) (called “restriction homomorphism”), satisfying ¥ = id and for any
W cV cU, wehave ry = ry, orl. An element of .Z (U) is usually called a “section” of
Z over U. We also defined the stalk of .% at a point p € X to be

Z, =1im .7 (U),

where the direct limit is taken with respect to open sets p € U. This is [[, #(U)/ ~,
with s € #(U) equivalent to r € .% (V) iff we can find another openset pe Wc UNV
such that r{(s) = ry,(1).

By a morphism f between two presheaves .% and ¢ over X, we mean for each U open,
we are given a homomorphism of abelian groups fy : .% (U) — ¥4(U), such that whenever
we have open sets V C U, we have a commutative diagram:

FWU) - )

o

F (V) —7—> G(V).

Definition 3.1. A presheaf of abelian groups % over X is called a sheaf, if it satisfies the
following two properties:

(S1) Assume we have a family of open sets U; C U,i € A and U;U; = U. If s € F(U)
satisfies rgl_(s) =0,Yi€ A, then s =0.

(§2) Assume we have a family of open sets U; C U,i € A and U;U; = U. If we also have
a family of sections s; € .7 (U;),Yi € A, satisfying rZ;mU/(si) = ’”Z;/nu,(si) whenever

UiNU; # 0, then there is a section s € F (U) such that rgl_(s) =5, VieA.
A morphism between two sheaves is just a morphism between presheaves.
Note that by (S1), the section in (S2) is also unique.

Example 3.2. Let X be a complex manifold, then O is a sheaf of commutative rings over
X. We call it the “structure sheaf” of X.

We can also define other sheaves on X. For example, define &U) := C*(U; C), then it
is easy to see that & is a sheaf, called the “sheaf of smooth functions”. Similarly, we can
define the sheaf of continuous functions on X.

If E — X is a holomorphic vector bundle, then O(E)(U) defines a sheaf of abelian
groups. It can also be viewed as a sheaf of Ox-modules.
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Example 3.3. For X = C, if we define 0,(U) to be the set of bounded holomorphic func-
tions on U C X, then O, is a presheaf over C, but not a sheaf.

Example 3.4. Let G be a given abelian group, we define the constant presheaf over X to
be Qm(U ) := G for any non-empty open set U C X, and r‘[f = id for any non-empty pair

V c U. Then it is in general not a sheaf.

Example 3.5. Let n : Y — X be a continuous surjective map between topological spaces.
We define the sheaf of continuous sections of m as follows: for any open U C X, define
C,(U):={0:U — Y|noo =idy). Then it is a sheaf of sets over X.* This example is in
fact very general.

Proposition 3.6. For any presheaf .7 over X, there is a unique (up to isomorphism) sheaf
F* and a morphism 0 : F — F* satisfying the following “universal property”: for any
sheaf G over X and any morphism of presheaves f . F — 94, there is a unique morphism
of sheaves f* : F* — & such that f = f* o 6.

If 7 is already a sheaf, then 0 is an isomorphism. F* is called the “sheafification” of
F.

Outline of proof. 1just outline one way of proof. From .%, we define a topological space,
called the “étalé space” associated to .%:

G = Uﬁp.

peX

We have a natural surjective projection map 7 : % — X. The topology on .% is given as
follows: If s € .Z(U), then we have a natural map § : U — .%, sending p to the germ
of s at p, which is an element of .%,. Then we require {S(U)| s € .#(U),VU} to be a
topological basis for .%.

Now we can use the construction of Example3.5 to get a sheaf .%#*. The morphism 6
is defined by 6y : F(U) —» #*(U), Oy(s) := 5. O

Exercise: Check that we have the following concrete description of .#*: amap §: U —
[ e %) is an element of .%*(U) if and only if:

1. mo § =idy;

2. For any p € U, there is an open neighborhood p € V Cc U and a s € .# (V) such that
for any g € V, 5(g) equals the germ of s at q.

“For the general definition of presheaves and sheaves of sets, one need to generalize our previous defi-
nition properly. For example, all “homomorphisms between Abelian groups” need to be replaced by “maps
between sets”. The last sentence of “sheaf axiom” (S1) should read “For any section s,z € #(U), if
rgi(s) = rgi(t) for any i, then s = 1.”
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3.2 Sheaf cohomology (Cech’s theory)

Sheaf is a useful tool to describe the obstructions to solve global problems when we can
always solve a local one.

To illustrate this point, we come back to the Mittag-Leffler problem on a Riemann
surface M. Suppose we are given finitely many points py, ..., p, € M, and for each p; we

are given a Laurant polynomial ;" | % We can view this as an element of .#,/0,. We
want to find a meromorphic function on M whose poles are precisely those p;’s with the
given Laurant polynomial as its principal part at p;.

This problem is always solvable locally: we can find a locally finite open covering
U = {U,| i € A} of M such that each U, contains at most one of the p;’s, and f; € .Z (U;)
such that the only poles of f; are those of {p;} contained in U; with principal part equals
the given Laurent polynomial. The problem is that we can not patch them together: if
U; N Uj, there is no reason to have f; = f;. We have to define f;; := f; — f; and view
the totality of these f;;’s as the obstruction to solve the problem. Now by our choice of f;,
fij € O(U;NUj). Note that we have f;;+ f;; = 0 on U;NU; and whenever U;NU;NU; # 0,
we have on U; N U; N Uy: fij + fix + fii = 0. We call this the “cocycle” condition and {f;;}
is a “Cech cocycle” for the sheaf & with respect to the cover U.

When can we solve the Mittag-Leffler problem on M? We can solve it if we can mod-
ify the f; by a holomorphic function #; € &(U;) such that f; := f; — h; with patch together.
This means that f;; = h; — h; on U; N U;. We call a cocycle of the form {h; — h;} where
each h; is holomorphic a Cech coboundary. We get the conclusion that we can solve the
Mittag-Leffler problem if the Cech cocycle {f; ;1 1s a coboundary.

This motivates the introduction of the following Cech cohomology of a sheaf .# with
respect to a locally finite cover U of X: We first define the chain groups:
Co(U, F) = TeaZ (U))
Cl(q/[, y) C H(i,j)EAzy(Ui N U])

Cp(ﬂ, y) C H(i(),i] ip)EAl“'l‘g.(Uio ﬂ et ﬂ U,‘p)

}is in CP(U, .F) if and only if:

..... i

(1) Whenever iy = i; for some k # [, we have o,__;, = 0;

(2) For any permutation 7 € § .1, we have o

Note that we always define .# (U) = {0} if U = 0.
We define the coboundary operator 6 : C*(U,.F) — CP*Y (U, .F) to be:

p+1
(60)i.. ipr1 *— Z(—l)JO'iO ,,,,, {jpeens ip+1|UiOm‘“mUip+1'
j=0
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Here we use .. .| . to denote the restriction homomorphism of .%. It is direct to check that
0 06 = 0. So we have a chain complex

0— CU,F)S CU,F)S .5 U, F)> ...
We can define
ZP(U, F) = Kers c CP(U, F),
whose elements are called Cech p-cocycles. Also define
B (U, F) =6C"" (U, F) c Z'(U,.F),
whose elements are called Cech p-coboundaries. Then we define the Cech cohomology of
7 with respect to U:
H'(U,7) :=Z' (U, F)/B"(U, 7).

For example, an element of H°(U,.7) is given by a family of sections f; € .Z(U,)

such that 6{f;} = 0. This means precisely

U; _ Uj
0w, (D) = Ty0p,(f)

whenever U; N U; # 0. By sheaf axiom (52), we get a global section of .7 over X. So
H°(U,.7) is in fact independent of U and we have a canonical isomorphism

H'(U, F) = F(X).

When p = 1, {f;;} € CP(U, F)isacocycleif f;;+ f; =0and fix — fu + fij = fij + fue +
Jfxi = 0. This is precisely the “cocycle condition” we met before. However, this time the
cohomology may depend on the cover.

Let V = {V,}eer be a locally finite refinement of ¢/. This means we have a map

7 : I' —» A (not unique) such that V, € U,,). Then we have a homomorphism (D;L,’ :
HY(U, F) — HP(V,.%) induced by

{Ti.... ip}H{O-T(a/o) ..... T(ap)|v AV, |-

ag ap

One can prove that @% is in fact independent of the choice of the map 7. Then the coho-
mology of X with coefficients sheaf .% is defined to be the direct limit:

H(X, ) = lim HY (U, F) = ]_[ HP(U, F)] ~
u

.....

Thus an element of H”(X,.%) is an equivalent class of Cech cohomology classes, repre-
sented by an element of H”(U,.#), for some cover Y. But in many cases, in particu-
lar all the sheaves we use in this course, there exists sufficiently fine cover U such that
HP(U,.F) = H' (X, F).
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3.3 Useful results for sheaf cohomology

We present two useful results for sheaf cohomology. In many cases, it is safe to know only
these results and forget the definition details.

Recall that a morphism f : % — ¥ of sheaves over X induces for each point p € X a
homomorphism of stalks: f, : .%, — ¢,. We call a sequence of morphisms of sheaves an
“exact sequence” if the induced sequence on stalks is so for each pint p.

The first result saying that a short exact sequence for morphisms of sheaves gives rise
to a long exact sequence for sheaf cohomology:

Theorem 3.7. If we have a short exact sequence for sheaves of abelian groups over X

0—- F L N7 N 0,
then we have a long exact sequence for cohomologies
0- H'X, %) > H(X,9) > HX,#) > H(X %) > ...
.o H(X, ) - H'(X, F) - H'(X,9) > ...

We won’t prove this, but will explain the meaning of this theorem.
For the given short exact sequence, we always get an exact sequence

0> 7X) - Y9X) » HX),

(Exercise: Show that for any open set U, the sequence 0 — #(U) —» 4(U) — J(U)
is always exact.)but the last homomorphism is in general not surjective. Let’s explain
why. Given an element o € J7(X), we’d like to know whether we can find n € 4(X)

such that gx(n) = o. But we already know that 0 — .#, i 9, R 7€, — 0 is exact,
so we can always find a germ 1, € ¢, such that g,(17,) = 0 ,. This actually means that
we can find a cover U = {U;} of X and a sequence 7; € 4(U,) such that gy.(7;) = oly,.
If all the n;; := ; —n; = 0 on U; N U}, then we can patch these 7,’s together, then we
finish the problem. We’d like to modify n;. Note that since gy,ny,(7;;) = 0, we can find
Hij € Z(U;NU;) such that Junu,(uij) = nij. By the injectivity of f, we in fact get a cocycle
{wi;} € CY (U, F). So we get a homomorphism 7 (X) — H'(X, Z). It is fairly easy to
check that if o goes to 0 in H'(X, .%), then we can modify 7, properly (on a refinement of
U ) such that they patch together to get an element of ¥4 (X).

A corollary of Theorem3.7 is the following “abstract de Rham theorem™:
Theorem 3.8. Suppose we have an exact sequence of the form:
0> F > SH>A>—>F—...

where each .7, satisfies H?(X,.%,) = 0,¥p > 1. (This is called an “acyclic resolution of
F”.) Then H*(X, F) is isomorphic to the cohomology of the chain complex

0> AHX) > AX)—> > LX) > ...
e, H' (X, 7) = H' (X, .%)).
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Proof. We break the sheaf sequence into a sequence of short exact sequences for p > 1:
0—> K, » Sp = K, = 0, where %), = Ker(S, = Sps1) = Im(F .1 = 7).
Note that 7, = .%. By the above theorem and the assumption for .#),, we have an exact
sequence

0 = Ayt (X) = St (X) = Hp(X) — H'(X, Hyp1) = 0.

Also note that J7,(X) = Ker(-/,(X) = 7,+1(X)), so we get
H'(X, Hp1) = Ker(Sp(X) = S 1 )/ Im(Sp1(X) = Hp(X)) = H'T(X, ).

We need to prove H'(X, %,-1) = H?(X,.%) = HP(X, ;). For this, we only need to
show for2 <r<p
Hr_l (X’ ‘qup—r+l) = HV(X’ ‘ji/p—r)'

But this again follows from the segment of long exact sequence:
e Hr_l(X’ yp—r) - Hr_l(Xa t}g/p—r+l) - Hr(X’ ji/p—r) - Hr(Xa typ—r) ...
O

When can we get an acyclic resolution? In particular, how can we find a lot of sheaves
#, such that H*(X,.%,) = 0,¥p > 1?

Definition 3.9. A sheaf .% over X is called a “fine sheaf”, if for any locally finite open
cover U = {U;}, we can find a family of morphisms n; : F — ¥ such that:

(1) Foreach i, ni(p) : #, = F, equals O for p outside a compact set W; C U,
(2) Xini = idz.

It is obvious that in case we can use a smooth function to multiply the sections of .%,
then a usual partition of unity will make .# a fine sheaf.

Proposition 3.10. If .7 is a fine sheaf, then HP(X,. %) = 0,¥p > 1.

.....

Let n; be the above morphisms in the definition. We define a p — 1 cochain {i;, _;,_,} as
follows:

Yi..., ipol T Z ni(o-i,io,...,ip,l)~
i

Then (using the fact that 6{c_} = 0)

p

O)i,...i, = Z(—l)jl//io ..... Fivoy
J=0
= > D Do i)
7
= Z’]i(O'io ,,,,, i) = gy
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3.4 Applications of sheaf cohomology

Cohomology of constant sheaf

Let G be a given abelian group, we can define the constant sheaf G over X by G(U) =
{locally constant maps U — G}, then we usually denote H”(X, G) by H”(X, G). One can
show that when X is a manifold, this is isomorphic to the singular cohomology or simpli-
cial cohomology. But we won’t prove this. For the isomorphism to simplicial cohomology
when G = Z, one can read Chapter 0 of Griffiths-Harris.

Picard group

Recall that when X is a complex manifold, then a holomorphic line bundle can be de-
scribed by a family of “transition functions” f;; € &*(U; N U)), satisfying the “cocycle”
condition. So any holomorphic line bundle L determines an element of H'(X, 0*). And
on the other hand, given an element of H (U, 0*), we can construct a holomorphic line
bundle. In fact, one can show that [{f;;}] € H'(U, 0*) and [{h.s}] € H'(V, 0*) determines
isomorphic line bundles if and only if they define the same class in H'(X, 0*). So we can
in fact identify H'(X, €*) with the Picard group of X.

de Rham and Dolbeault theorem
We use the de Rham resolution of C:

05Co St S Sy o
to get de Rham isomorphism:
H’(X,C) = H,(X,C), p=0,...,2n.

The reason for this to be a resolution is Poincaré’s Lemma. )
Simila_rly, we have a Dolbeault-Grothendieck Lemma, which says that a d-closed form
is locally d-exact. So we get a fine resolution for any 0 < p < n:

d d d
0> Q - g S gr = S P >0,

So we get
HY(X, Q) = Hg’q(X).

Also for a holomorphic vector bundle E, we have
HY(X,QF(E)) = Hg’q(X, E).

Divisor and line bundle

We define the sheaf of meromorphic functions .# on X, where X is a compact complex
manifold, to be the sheafification of the presheaf U — quotient field of &'(U). We define
A to be the sheaf of meromorphic functions that are not identically 0, and let * be
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the subsheaf of .Z*, consisting of no-where vanishing holomorphic functions. The short
exact sequence

| >0 "> > 40" — 1
gives us a long exact sequence, starting with

(1) 5 C' > 4X) > )0 X) > HX,0) — ....

The global section of .#Z*/0*(X) can be equivalently described as a finite formal sum
Y.iaiD;, where a; € Z and D; is codimension 1 irreducible analytic hypersurface of X.
This is called a “divisor”. We define the groups of divisor classes by

muyqﬂwﬂmﬂwa)

Two divisors are called linearly equivalent, if their difference is a divisor of a global mero-
morphic function.

The map .#*/0*(X) — H'(X, 0*) is given as follows: locally we can cover X by {U;}
such that an element of .#*/0*(X) is given by f; € .#*(U;). Then g;; := f;/ f; defines a
class in H'(X, 0™).

First Chern class
A very useful exact sequence is the following

OHZ%ﬁMﬁ*—)I.

We get the exact sequence
S HY(X, 07 S HXX,Z) > ...

We call ¢, : H'(X, 0*) — H*(X,Z) the “first Chern class” map. We shall use differential
forms to give another characterization of Chern classes in the next chapter.
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4 Differential geometry of vector bundles

4.1 Metrics, connections and curvatures

Definition 4.1. Let E — X be a complex vector bundle of rank r over a smooth manifold X.
A smooth Hermitian metric on E is an assignment of Hermitian inner products hp(-,-) =<

-+ >, on each fiber E,, such that if £, 11 are smooth sections of E over an open set U, then
h(,n) € C=(U;C).

If U is a local triviliazation neighborhood of E via ¢y : n7'(U) — U x C’, then we
can define r smooth sections of E over U:

eo(p) = 0 (p,0,...,0,1,0...,0).

Then at any point p € U, {e,(p)},,_, is a basis of E,. We call {e,}! _, alocal frame of E over
U. Note that when E is a holomorphic bundle and (U, ¢) a holomorphic trivialization,
then these e,’s are also holomorphic sections, and we call it a holomorphic frame.

If £ is a smooth section over U, then we can write in a unique way & = &%,, with
£, € CT(U;C),a = 1,...,r. If we define the (positive definite) Hermitian matrix-valuded
smooth functions: &,z := h(e,, e), then we have

h(é,m) = h(Eeq, 1 ep) = hopé' TP .

Sometimes, we also denote the matrix-valued smooth function (/,3) by h. Hopefully this
will cause no confusion.

Notation: We shall denote the space of smooth sections of E over U by C*(U; E).
When E is a holomorphic bundle, the set of holomorphic sections over U is denoted by
I'(U;E)or OE)U).

Definition 4.2. A connection on a smooth rank r complex vector bundle over a manifold
Xisamap D : C°(X;E) —» C*(X, T*°X ® E) satisfying :

1. D is C-linear;
2. (Leibniz rule) D(f¢é) =df @&+ fDE VYV f € CO(X;C), & € C(X E).

If {e,} is a local frame, then we can define a family of local smooth 1-forms eﬁ e A (U)
satisfying:
De, = ® eg.

Sometimes we just write De, = ngﬁ for short. We call these {Qf,} “connection one-forms”.
For € = é%¢, € C*(U; E), we then have

D¢ = D(¢%e,) = (dE° + EG)e,.

38



Convention: We always regard £&* as a column vector, and for ¢ we always regard the
upper index as line index and the lower index the column index.

So if we identify & with its coordinate representation with respect to the frame {e,},
then we can write D¢ = dé + 6&, or D = d + 6. Physicists always use this way to represent
a connection.

We can extend the action of D to bundle-valued differential forms. We write A*(X, E) :=
C*(X; A*T*°X ® E). Then we define D : A¥(X, E) — AM!(X, E) by

D(pé) := (dp)¢ + (-1)'p A DE,

where ¢ is a C-valued k-form and £ is a smooth section of E.

Definition 4.3. We define the curvature of D to be ® := D* : A°(X; E) — A*(X, E).

If  is a smooth function and ¢ € A°(X, E), we have

O(fé) = D(fé + fDE)
= d(df)é —df A DE+df A DE+ fD*¢
= fO(&).

Locally if we define the 2-forms @ by
BO(e,) = Oeg.
Then we have

05 = O(£%e,)
= £"0(ea)
= @gfﬁea.

From this, we conclude that ® € A%(X, End(E)).
We can also represent @ in terms of 6;:

©®’es = D(De,) = D(0e,)
=d6e, — 6" A De,
= ngeﬁ - Qg AN 9‘;63
= (d6f, + & A O))ep.

So we get
O = db; + 6 A 923/,
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or ® = d6+ 6 A6 for short. Note that our sign convention is different from Griffiths-Harris,
since they regard the upper index as the column index.

We now study the change of connection forms and curvature forms under the change
of frames.

Suppose {é,} is another local frame on U, then we can write é, = aﬁeﬂ, where (aﬁ) isa
GL(r,C)-valued smooth function on U. (When both frames are local holomorphic frames
of a holomorphic bundle, then () is a GL(r, C)-valued holomorphic function on U.) The
new connection forms and curvature forms are denoted by 8 and . We have

0é, = D, = D(dep)
=ddles + agegey
= (dd® + ijag)eﬁ.

On the other hand, the left equals

éga'f;eﬁ.
So we get
ad = da + Oa,
or
6 =a'da+a'ba. “4.1)

From this, we get
O=di+0n0
=d(a'da+a'0a) + (a 'da + a'0a) A (a"'da + a"'0a)
=—a'dana'da—a'dana'0a+a'dba—a 'O Ada
+a'dana'da+a'dana'Oa+a'OANda+a ' A6ba

=a '(d6 + 6 A O)a.

So we conclude
O =a'0a. 4.2)

From this, we can construct a family of globally defined differential forms:

V=1
det(l, n 2—@) =1 +¢,(E,D)+ -+ c,(E, D),
JT

where c;(E, D) € A%*(X) is called the “k-th” Chern form of E associated to the connection
D.

In physicists’ language, a connection is a “field”, the curvature is the “strength” of the
field, and choosing a local frame is called “fixing the gauge”. The reason for these names
comes from H. Weyl’s work, rewriting Maxwell’s equations. The “vector potential” and
“scalar potential” together form the connection 1-form, and the curvature 2-form has 6
components, consisting the components of the electric field and the magnetic field.
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4.2 Chern connection on holomorphic vector bundles

In general, there is no “canonical connections” on a given vector bundle with a smooth
Hermitian metric. However, if the bundle is a holomorphic vector bundle, there is indeed
a canonical connection, called the “Chern connection’:

Theorem 4.4. On a given holomorphic vector bundle E with a smooth Hermitian metric
h, there is a unique connection D, called the “Chern connection” satisfying the following
two additional conditions:

1. (Compatibility with the metric) If £, n are two smooth sections, then we have
dh(&,n) = (D&, n) + h(&, D).
2. (Compatibility with the complex structure) If ¢ is a holomorphic section of E,
then D¢ is a E-valued (1, 0)-form.
Proof. We first prove the uniqueness part. Let {e,}_, be a local holomorphic frame, and
the connection 1-form with respect to this frame is (05) I<ap<r» Satisfying De, = eﬁe,,. By
the compatibility with complex structure, each 9§ is a smooth (1, 0)-form. Now we use the
compatibility with metric to get
dh,z = h(De,, eg) + h(e,, Deg)
On the other hand, we have dh,z = 0h,; + éhaﬁ. Comparing types, we get 0h = 6'h, so
0" = Oh-h~'. Denote h™! = (W#®), then we can rewrite this as
95 = h?ﬂahav.

Also, since h' = h, the (0, 1)-part gives the same equation. This proves the uniqueness.

For existence, we simply set locally &’ := h"Pdh,;, and define for s = fPeq:

Ds = (df* + fﬁﬁg)ea.

We need to check that this is globally well-defined. For this, if &, = ageﬁ is another
holomorphic frame on V with U NV # 0. Then a is a holomorphic matrix. We have
h = a'ha, so we have 8 := (B")"'0h' = a'da + a~'0a. Since s = f*&, = f®e,, we have
f=alf,so

e(df +0f) = ea(~a 'daa™ f + a”'df + a ' 0aa”" f + a'Oaa”"' f)

=e(df + 0f).
So D is globally defined. It is direct to check that D is compatible with both the metric
and the complex structure of the bundle. O

It is worth pointing out that the line bundle case is particularly simple: if e is a local
holomorphic frame and we set & = h(e, e) > 0. Then the connection 1-formis 6 = h~'6h =
dlog h. Then the curvature is @ = df + 6 A § = df = ddlogh = ddlog h. It is already a
globally defined closed (1, 1)-form.
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4.3 Chern classes

We give a very elementary introduction to Chern-Weil theory in this section, following
Professor Weiping Zhang’s book [9].

We first define a trace map tr : A%(X, EndE) — AK(X). For a EndE-valued form
n € AX(X, EndE), the trace of 7 is the k-form tr(57) obtained by tracing out the EndE
factor. Locally, we can write 1 as a matrix of k-forms, and tr(n) is just the trace of this
matrix. Or equivalently, we can write 7 as ) ; w; ® A; with w; a family of k-forms and A; a
family of local sections of EndE, and then tr(n) = ., tr(A)w;.

Another tool we shall use is the (super)-commutator, defined by [w ® A,n ® B] :=
(w A1) ®[A, B], where w, n are locally defined forms and A, B are local sections of EndE.
It is easy to see that

[wW®A,7® B] = WA A B — (=1)78@destDpp A A,

The appearance of the extra factor (—1)9¢@¢s ig the reason why sometimes it is called
a “super”’-commutator. We sometimes extend the definition: we define for the connection
Dand w®A: [D,w®Als := D(w ® As) — (=1)?€“ ¢ ® A A Ds.

We state two useful lemmas, whose proofs are left as exercises.
Lemma 4.5. If D is another connection on E, then D — D € A'(X, EndE).
Lemma 4.6. If P, Q are both EndE-valued differential forms, then tr[P, Q] = 0.

The first nontrivial lemma is:
Lemma 4.7 (Bianchi identity). We have [D, O =0, forany k € N.
Proof. Simply note that ® = D?, so [D, ®] = [D, D*] = 0. O
Exercise: Check that under local frames [D, ®] = 0 means d® = O, 9].

The next lemma is one of our key tool:
Lemma 4.8. For A € A*(X, EndE), we have

dtr(A) = tr[D, A].

Proof. First note that the left hand side is obviously independent of the connection. For
the right hand side, if we use another connection D, by Lemma4.5 and Lemma4.6, we have
tr[D,A] = tr[D — D, A] + tr[D, A] = tr[D, A]. So the right hand side is also independent
of the connection.

So we can in fact choose a trivial connection locally to carry out the computation: Let
Dy = d be a trivial connection on E|; — U, then

[Do, Als = Dy(As) — (=1)¥DA A Dys
= d(AL f")es — (1) WAL A df e
= dAP fey.
Hence tr[Dy, A] = d tr(A). O
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For any formal power series in one variable f(x) = ap + a1x + ..., we define f(Q) :=
ag+a®+---+q,0" € A*(X).

Theorem 4.9 (Chern-Weil). For f as above, we have:
1. dtrf(®)=0;

2. If D is another connection with curvature ©, there is a differential form n € A*(X)
such that tr f(®) — tr f(®) = dn.

So the cohomology class of tr f(0®) is independent of the connection. We call it the “char-
acteristic class” of E associated to f, and tr f(©) the corresponding “characteristic form”
of E associated to f and D.

Example 4.10. Since det(I, + $1@) = exp (rrlog(l, + “=10)). So ci(E, D) € A¥(X) are
all closed forms, whose cohomology classes are all independent of D. These are called
“Chern classes”. For example we have

\/__ltrG), c»(E, D) = 8L(tr(®2) - (zr®)2).

CI(E,D): B
T T

Proof of Theorem 4.9: For the first conclusion, by Lemma4.8, we have

d trf(®) = tr[D, f(©)]
- Z a;tr[D, ® = 0,
k

where we used Lemma4.7 in the last step.
For the second one, we choose a family of connections D, := tD + (1 — f)D. Then

. dD, -
D, := —dtf =D -De A X, EndE),
and d®, dD dD dD
S t t t t 3
=—1="7'p + D~ =D, —L1=[D,,D,.
0, i i ; + ar (D, dt] [D;, D]

So we have (by Lemma4.6, we can change the positions of ® and ®)

d .

Etr fO) = tr(®tf/(®t))
= tr([D;, D11 (©,))
Bi@chi

= tr[D,, th/((at)]
=d 1r(D,f'(®))).

So we conclude that tr f(®) — tr f(©) = d fol tr(D.f(®,))dt. O
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4.4 Comparing two definitions of first Chern classes
Let X be a complex manifold, using the short exact sequence

O—)Zﬁﬁwﬁ*ﬁl

we get the exact sequence

s H(X, 0SS HXX.Z) — ...

We call § : H'(X, 0*) — H?*(X,Z) the “first Chern class” map.
Instead of holomorphic line bundles, we can consider C* line bundles. These bundles
are classified by H'(X, ). Similarly, we have short exact sequence

xp(2r V—1-
Oqzqgug*ﬁl,

and consequently a short exact sequence:

S H'(X,E) o H(X,E) S HAX,Z) — HXX,E) = ...

Since & is a fine sheaf, we have H?(X,&) = 0 whenever p > 1. So ¢ : H(X, &) —
H?*(X,Z)is an isomorphism (also called “first Chern class map”). This means that complex
line bundles are determined up to C* isomorphisms by their first Chern class.

On the other hand, we can use a connection on a given C* complex line bundle L, and
use the curvature form © to define

(L) = [\;—_1@)] € H2(X;R) = HX(X,R).
Vs

Since we have a natural homomorphism ® : H*(X,Z) — H*(X,R) using the sheaf
morphism Z — R. We shall explore the relation between ®(5([L])) € H*(X,R) and
ci(L) € H(X,R).

For simplicity, in the following we assume L is a holomorphic line bundle with Her-
mitian metric 4. We leave the necessary modification in the general complex line bundle
case as an exercise. (hint: you need to replace the Chern connection by any connection
on the bundle, use the transformation formula for connection 1-forms when you change a
frame.)

First recall the construction of § : H'(X, 0*) — H*(X,Z). Let L be a complex line
bundle. We use sufficiently fine locally finite trivializations U = {U,}4ea such that each U,
is simply connected and H*(X, %) is isomorphic to H*(U, 0*). Then [L] € H'(X, 0*) is
determined by the Cech cocycle {Waph Wap € O (Uy,NUp). We define ¢yp 1= #ﬁl log Y op.

Note that this is not a well-defined Cech cochain: log is a multi-valued function!
However, since Y s\, = 1 on U, N Ug N U, we get

Zapy '= Pap + Ppy — Py € Z(Ua N U N UY).
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This defines a Cech cocycle, whose cohomology class defines ([L]). Then ®(5([L])) is
also defined by {z,s,}, just viewing Z as a subsheaf of R.

To compare it with ¢;(L), we need a closer look at the de Rham isomorphism. We first
break the resolution
0-R->& - — . .

into short exact sequences:
0-R->&' 5K -0, 0K - - %K, -0,
where % is the sheaf of closed i-forms. We get exact sequence for cohomology:
0 H'(X, %) » H(X,R) » 0, A'(X)—> K(X) - H'(X,%,) — 0.

The first one gives 6, : H'(X, %)) = H*(X,R) and the second gives &; : H (X)) =
H'(X,K)).

First we study ¢,: Our de Rham class is given by ‘é—?@(k) € K>(X). Locally, we have
® = df,, where 0, = d10ghy, hy = h(eq. €4). €a(p) = @;'(p. 1). Then &;([ELO(h)]) is
given by [{‘ﬁ—f‘(% — 0)}].

Now

es(p) = @5 (P, 1) = ¢,' 0 (9o 0 05 )P, 1) = 0, (P Wap(D)) = Yap(P)ea(p).

So we get hg = hal.pl*, and hence log by = log h, + 1og [4p*. So on U, N Up, we have

V-1 V-1 V-1 V-1
~ (8- 60,) = —01 2= 51 = —dl .
7 (Qﬁ ga/) o 0 0og |w(xﬁ| o 0 og waﬁ o d og waﬁ

Then 52([{2£”1(95 — 6,)}]) is represented by

{\g—__ﬂ-l( log wﬁ)’ - 10g way + 1Og wwﬂ)}

This is precisely our {zqg,}.
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4.5 Hermitian metrics and Kihler metrics

Let X be a complex manifold of dimension n. We denote the canonical almost complex
structure by J. A Riemannian metric g on X is called “Hermitian”, if g is J-invariant, 1.e.

g(Ju,Jv) = g(u,v), Vu,ve T;RX, Vxe X

As before, we extend g to T°X as a complex bilinear form. For simplicity, we also denote
this bilinear form by g. Then we have

g(Tl,O’ TI,O) — 0 — g(TO’l, TO,I)

and (Z, W) := g(Z, W) defines an Hermitian metric on the rank n holomorphic vector bun-
dle T'°X. Conversely, any Hermitian metric on 7'°X determines uniquely a J-invariant
Riemannian metric on X.

For an Hermitian metric g on (X, J), we define the associated Kéhler form w, by

w,(u,v) := g(Ju,v).
It is direct to check that w, is a real 2-form on X.

Definition 4.11. An Hermitian metric g on X is called a Kdhler metric, if dw, = 0. Its
cohomology class in HjR(X) is call the “Kdhler class” of g. If a (compact) complex
manifold admits a Kdhler metric, we call it a “Kdhler manifold”

Locally, if (z, ..., z,) is a holomorphic coordinate system, then g is determined by
L 8 0 9,
gl] L (9 a_

since g;; = g7 = 0. Then we have
= V—lg,-jdzi AN de,
where Einstein’s summation convention is always used. Now we have
0 =dw, = V-1dg;;dz; A dz;

0g; — 087
= V-1 0_de/\le/\de —1%6[&/\(12[/\6121
<l

0gi;  0Ogi
= V-1 —”——’d Adz; A dz;
ZZ 07, 5zl < AN A2 <

J o ok<i

+ \/_ZZ 6g” —6g” dz A dZ; A dz,.

07 0z j
So being Kéhler mean that g;; have the additional symmetries:

dgii Oz Ogi  Oes
U P YY)
0z 0z 07, (9Zj
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Example 4.12. The Euclidean metric g = }i_,(dx; ® dx; + dy; ® dy;) is a Kdihler metric,
since we have

V=1 <&
(Ug = T Zdzi A dz,
i=1

To give more examples, note that to define a Kihler metrics, it suffices to define its
associated Kihler form, since we have g(u,v) = g(Ju, Jv) = w,(u, Jv). So sometimes we
will also say “Let w, be a Kdhler metric...”

Example 4.13. Let X = B(1) c C" be the unit ball in C". We define a Kdhler metric:

w, := V=100 1log

1—z>
This is called the “complex hyperbolic metric”.

Example 4.14. Let X = CP" with homogeneous coordinates [Zy,...,7Z,], we define a
Kdihler metric:
V-1

o 1= ——0010g(1Zof? + - -+ +1Z,P).
2w

It is easy to check that this is well-defined. It is called the “Fubini-Study metric”.

w

Not every compact complex manifold is Kéhler, since, for example, HﬁR(X) must be
non-trivial’. So Calabi-Eckman manifolds are never Kihler. However, we have the fol-
lowing:

Lemma 4.15. If X is Kdhler and Y is a complex analytic submanifold of X, then Y is also
Kdihler.

Proof. (Outline) Let g be a Kéhler metric on X and ¢ : ¥ — X be the embedding map,
then ¢*g is a Kihler metric on Y and the associated Kéhler form is just ¢*w,. O

By this lemma, all projective algebraic manifolds are Kéhler.

In Riemannian geometry, normal coordinates are very useful in tensor calculations.
The next lemma shows that being Kihler is both necessary and sufficient for the existence
of complex analogue of normal coordinates.

Lemma 4.16. For an Hermitian metric g on X, the follows two properties are equivalent:
(1) gis Kdhler,

(2) For any point p € X, there are local holomorphic coordinates (z1, ... ,z,) such that
zi(p) = 0, gi5(p) = 6;j and dg;;(p) = 0.

3If not, w, will be exact, so fx wy = 0 by Stokes theorem. But this is impossible since fx wy > 0.
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Proof. (2) = (1): For any given point p, we choose the coordinate in (2), then since first
order derivatives of g;; at p vanish, we will have dw,(p) = 0. This implies dw, = 0, i.e., g
is Kéhler.

(1) = (2): Suppose g is Kihler. Given any point p € X, we can ﬁrst choose local

holomorphic coordinates (wy, ..., w,) such that w;(p) = 0 and g(:% By B )(p) = 0;;. We

want to find holomorphic coordinate transformation of the form w; = z; + a, %22, with
aijk = Qikj such that
w, = V=1(6;; + O(|z1*))dz; A dZ;.
Direct computation shows that
wy = V=1(83; + gi7.(0)wy. + 51000y + O(wl))dw; A div;
=N —1(5ij + &iix(0)zx + gi7,(0)Z; + O(|Z|2))(d2i + QipgZpdzy) A (dZj + GjuZ,dZ;)
= V—l(éijdzi AN de + Zzi,jzldzi AN de + ajkideZi AN de
+ (817402 + g7(0)2)dz; A dz; + O(1z)).

So the condition we need is a; + g;5,(0) = 0 and a@;;; + g;77(0) = 0. So we simply take

g i
aji; = — / (0)

The Kihler condition makes sure that this is well-deﬁned. O

Remark 4.17. We shall call such a holomorphic coordinate system a “Kdihler normal
coordinate system”.

Recall that for a connection V on a vector bundle E, we can define the covariant deriva-
tive of a section s with respect to a tangent vector v € T, X by setting V,s := Vs(v). If e, 1s
a local frame of E, then we have Ve, = wﬁeﬁ, and V,e, = w’g(v)eﬁ. Another good feature
of the Kihler condition is that if we complexify the usual Levi-Civita connection, we will
automatically get the Chern connection on 7'°X.

Proposition 4.18. Let (X, J,g) be a Kdihler manifold. Then the complexification of the
Levi-Civita connection restricts to the Chern connection on T'°X.

Proof. We also denote the complexified Levi-Civita connection by V. Recall that V is
characterized as the only connection on T*X that is both torsion free and compatible with
g. For short, we write 0; := a% and 95 := %. By definition, we can assume V,,0; := Fﬁ.‘jé‘k +
Ff} j('),;, V3.0 := l"éfjc')k + Fg‘j('),;. Since V is a real operator, we also have V.05 := ﬁ(’),; + F’? ﬁk,
V5,07 = F;Fja,; + r;?jak. Since V is torsion free, we have Fk = F’j‘l, Fk = F’J‘l, and Ff‘ = 1""

F;‘j = F’Jil,. Now we use the metric compatibility:

0 = 0;8(0k, 0;) = 8(V,0k, 01) + (0, V5,01
Flkglq + I_‘?lg/a?a
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Exchange i and k, we get 0 = T g, + I'7,g;z, and hence I'! g;s = T g15. So
Th8i = T8 = Tigi = Tigug-
This implies F?kglq = 0 and hence F?k = (. This means
Vod; =T,  V40;=T' 0. 4.3)
On the other hand,

9i8(0k, 9p) = §(V5,0k, 9p) + 8(9k, V,07)
= FZ{gl,; + F%gk[].
By Kiéhler condition, the last quantity also equals
08(0;, 07) = Tg 1 + T gig
1

) Ik
g1z = 0 and hence I'! = 0. This also implies I'] = 0. So we get

sowe getI'; giz = F?igl_cq- But the sum of these two quantity equals 9;8(9;, dx) = 0, we get

V5,07 =0 =Vy,0;, (4.4)
and also
0igu = T80
equivalently,
_ 8g_
Ik = g2t 4.5
Y 0z j (4.5)
This is precisely the formula for the Chern connection. |

For curvature, we also extend the curvature tensor C-linearly to the complexified tan-
gent bundle. Then this curvature tensor automatically satisfies the Bianchi identities. The
Kihler condition also implies that the curvature tensor has more symmetries, and hence
has much simpler formula. We leave this to later sections. Here we only add one warming
exercise:

Exercise: Let (E£,V) be a vector bundle with connection. We define for u,v € I'(TX)
and s € I'(E), R(u,v)s := (V,V, = V,V, = V,,1)s. Show that R(u,v)s = Q(u,v)s, where
Q e T(A’T*X ® End(E)) is the curvature form of V.

Let (X, J, g) be a Kihler manifold. We know from Proposition 4.18 that the connection
of g has very special properties. We now explore its implication for the curvature.

Lemma 4.19. For a Kdihler manifold (X, J, g), we always have VJ = 0.
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Proof. For any given point p € X, we compute using Kédhler normal coordinates in Lemma
4.16. Now in complex coordinates, J has constant coefficients, this implies VJ vanishes
at p. Since p is arbitrary, we have VJ = 0. O

By definition, this implies that V(JX) = JVX, so for the curvature R(X,Y) = VyxVy —
VyVx — Vixy}, we have R(X,Y)JZ = JR(X,Y)Z. Also, by symmetry of curvature tensor,
we have

(RUX,JY)Z,W) =(R(Z,W)JX,JY) =(R(Z,W)X,Y) =(R(X,Y)Z,W).
Since W is arbitrary, we also have R(JX, JY)Z = R(X, Y)Z. Moreover, we have:
Proposition 4.20 We C-linearly extend the curvature tensor of the Kdhler metric g, then
(R(0;,0),-) = 0 =(R(0;,05)-, ), and the only essentially non-trivial term is
62&7 T g 0gig agpj.
02,07 0z 0%

In particular, besides Bianchi identities, we have an extra symmetry: Ry = Ry; = Ry
The Ricci curvature Rc is also J-invariant, and the 2-form Ric(wg) = Rc(J-,") is called
the Ricci form, and we have Ric(w,) = V—1R;3dz; A dZ;, with

2

07,07

Rizir := (R(0;, 07)0, 0) = —

R;; = Rc(0;, 05) = lkR,-;k,- = - log det(g,3).

Proof. We compute by definition:
Rizi = (VY5 = ViV)ok, &) = —~(VT%8,), )

ag kq

= ~O8, = 018" 5 )8y

2

- 0 8ig
=gV ——g,u+

07;07;

— (9 8kl + (}S%%
02:0z; dz; 0z

qs tpagSt agkq
0z; 0z

The first conclusion follows by Kéhler metric’s special symmetry.
For Ricci curvature, we choose a local orthonormal frame {e }2” to compute:

2n 2n
Re(JX,JY) = Z(R(JX, een JY) = Z(JR(JX, e)es, J2Y)

i=1 i=1

2n 2n
== D (RUX,e)Je, Y) = = > (RUPX, JeJei, Y)
i=1 i=1
2n

= Z(R(X, JeJe, Y) = Re(X, Y),

i=1
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since {Je;}2", is also an orthonormal frame. As the computation for w,, we easily get the
formula
Ric(a)g) = V—llele' A dzj

Finally, we calculate R;;: Choose a local orthonormal frame of the form {e,, Je,};_, at
one point, and write Z, := e, — V—1Je,. Then we have

R = Re(9:,07) = ) (R(Disea)ew, D) + ) (R, Jea)Jear 07)
= D [(R@:, ea)ea, 07y + N=1 ) (R(8;, Jew)ea, 37)

= > (R@, Za)ew 07)
1 - -1 -

= 5 D (RO Z)ew 35) T‘/_ D (R@:,Z) eq, 07)
1 -

= 5 D (R01.2,)2.:,0)).

On the other hand, we have Z, = d,d, and 9, = b Z,, with a’;bﬁ = &°, so at the given
point, we have
26(1B = g(ZmZ,B) = aﬁa}';gﬂv,

which implies that g% = 1@a?, and so

1
2
1—1/ " Ik Tk
R;; = E%%Rm; =g Rpj =8 R
_ gk & gu Lk 0898 _ 0 _gz‘kaiki)
Bz,ﬁzj Bzi 0Zj Gzi 6Zj
2

82,02 j

log det(gpg)-
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5 Hodge theorem

5.1 Hodge theorem on compact Riemannian manifolds

Let (M™, g) be a compact oriented Riemannian manifold. Then we can define inner prod-
uct on the space of real differential forms: for w,n € A?(M)

(w,n) ::f(w,n)ngg.
M

The idea of Hodge theorem is to represent a de Rham cohomology class by a “best” closed
form. Since we can define norm of a differential form, a natural idea is to find a closed
form of minimal norm within its cohomology class.

To be precise, start with a closed p-form n € A?(M), we want to minimize the func-
tional:
D) = lInp + délP, € € AP (M.

We can solve this variational problem by considering the corresponding Euler-Lagrange
equation, which is an elliptic system.

Suppose 179 = 17 + dé&, achieves the minimum of ||y + dé||*, then for any & € AP~Y(M),

o + td€I” = (po + td, no + 1d€) = lnoll* + 21(no, dé) + £*||d€II”

achieves its minimum at ¢ = 0. This happens if and only if (179,dé¢) = O for any & €
AP~Y(M). We can define an operator d*, the “formal adjoint” of d, such that (o, dB) =
(d*a,p) for any o € AP(M) and 8 € AP~Y(M). Then (n,,dé) = O for any & € AP"1(M) if
and only if (d*n, &) = 0 for any & € AP~! (M), which implies d*n, = 0.

Definition 5.1. Let (M™, g) be a compact oriented Riemannian manifold. A smooth differ-
ential form w € AP(M) is called a “harmonic p-form” if dw = 0,d"w = 0.

If we define the Laplacian operator to be A, : AP(M) — AP(M), Ay := dd* + d*d, then
for any smooth p-form w € A?(M), we have

(W, Aw) = (w,dd’ ) + (w,d"dw) = ||d*w|* + |ldw]]*.
So we conclude that w € A?(M) is harmonic if and only if Ayw = 0.

To write down a precise formula for d*, we introduce Hodge’s “star”’-operator: * :
AP(M) — A" P(M). If wy, . .., w, 1s an orthonormal basis of 7; M, such that w; A- - -Aw,, =
dV, gives the positive orientation, then we define

A T
xwi, Ao Ay =657 A A

P 1,2,...m J1 jm—p'
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(Note that this implies w;; A« -+ Aw;, A*w;; A+ Aw;i, = w1 A+ Awy. ) Then we extend
* linearly. It is direct to check that this is well-defined.

Moreover, if @ = Zi1<-~~<ip Aiy...i, Wiy N Aw;, B = Zi1<~-<ip bi,...i,wiy N+ A w;,, We
have

a A x83

..........

I
Q
Koy
§>~"
S
i
g
Ko
>
>
£
=
>
*
~
S
>
>
S
1\—/

= (a,B)dV, =B A *a.

From the definition, it is easy to check that s+ = (=1)P™=P = (=1)P"*F on AP(M).
Also, we have

(k@ %B)dV, = xa A x % f = (=) P xa A B = B A xa = (B, a),dV, = (@, B),dV,.
So * is a point-wise isometry. Using *, we can also express d* as:
Lemma 5.2. We have d* = (—=1)""*"*! x dx on AP(M).

Proof. Leta € AP(M), B € AP~'(M), then we have

f(oz, dpy,dV, = f dp A sa

M M

f d(B A *xa) + (-1)PB A d(xa)
M

(d o, pB) = (. dp)

f(_l)pﬁ A (_1)(m—17+1)(17—1) s xd(*@)
M

(= 1ympms] f (B, xd(+)),dV,
M
((_l)mp+m+1 % d % a,,B).

From this concrete formula, we have on A?(M):
Ad —dd*+d*d = (—1)mp+m+ld*d*+(_1)m(p+l)+m+1*d*d — (—l)mp+,n+ld*d*+(—1)mp+l*d*d.
We have

Ad* (_l)m(mfp)+m+ld>X< d s+ * + (_1)’71(171*[7)4’1 w d % d *

— (_l)mp+1(_1)mp+pd*d+ (_l)mp+m+l s d*d*
(—1)p+1d*d+ (_1)mp+m+l sdsdx.
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And

*Ad — (_l)mp+m+1 *d*d* +(_1)mp+1 % *d*d
— (_1)mp+m+1 s d % d * +(_1)mp+1+p(m—p)d*d
(=1 s d s d x +(=1)"'d « d.

So we get *A; = Ay = . Similarly,
dA; = (1" d s« d * d,
Agd = (—1)"PO e gy d s d = (=1 d s« d « d = dAy.

Example 5.3. In case of (R", gg,.), we can define d* by the same formula, then we still
have (¢,dn) = (d*&,n) when one of them has compact support. Then we have

d* ( Z ﬁl,_.ipdx,-l/\---/\dx,-,,)

I<ij<-<ip<m

- i Y fdd>

1<ij<<ip<m

— (_l)mp+m+1 *( Z Z 11 ip dXz A *dx” ‘/\dxip)

1<iy<-<ip<m i€liy,...,

P Of; ~
— (_1)mp+m+1 Z Z g)lc 2 (= 1)(17 D(m—p)+k— ldx A Adx, A ---/\dxip
ik

I<ij<-<ip<m k=1

Z aﬁlmip k ~
= > > (DA A N A A,

1<iy<-<ip<m k=1 %

From this we get

dd (> figdx A Adx,)

1<iy<-<ip<m

P 821‘ ;
Z fl""’dx,l/\ - Adx;

2 ;
1<iy <<ip<m k=1 ox;
P 62
iy...dp k -
+ Z Z E (- l)dx,/\dxil/\---/\dx,'k/\---/\dxl-p,
I<iy<-<ip<m k=1 i¢{iy,....ip} xl" Xi
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and

d*d ( Z Siriydxiy Ao A dxip)

1<ij<-<ip<m

oY Z Ji. l”dx,/\dxll < Adx;)

I<iy<--<ip<m igliy,..., ip}

- Z Z —82(;(:'2“[” dxi, A--- Ndx;,

1<iy <o <ip<m i@if oonip)
_ Z Z Ja. " (=1kdx; Adxi, A Adxy A Ada .
6xlk6xl !
1<ij<-- <ip<m i¢lit,..., ip} k=1
So we have
azﬁl...ip
Ad( Z filmipdx,'l A A Xm'p) = - Z (Z a 5 )dxl-l A A dxip.
1<iy<-<i,<m 1<iy<--<ip<m i xi

The main result is that harmonic forms exists in each cohomology class:

Theorem 5.4 (Hodge). Let (M™, g) be a compact oriented Riemannian manifold. Then
each de Rham cohomology class has a unique harmonic representative, so we have a
linear isomorphism

HP(M) := {w € AP(M) | Aqw = 0} = H),(M;R), p=0,....m

Moreover, HP(M) is always a finite dimensional vector space,® and we have a linear
operator G : AP(M) — AP(M) such that for any w € AP(M), if we denote its orthogonal
projection to HP (M) by wy, then we have the decomposition:

w=wy+AGw = wy, +ddGw) + d*(dGw).
In fact, we have a orthogonal direct sum decomposition AP(M) = HP(M)@® Im d & Im d*.

Remark 5.5. G is usually called the “Green operator”. It is constructed in the follow-
ing way: suppose the eigenvalues of A; on AP(M) are 0 = 19 < 41 < Ay < .... The
corresponding eigenspaces are HP(M) and E\, E,, . ... Then we define Glurary = 0 and
GlEi = /{leE

i

Proof of parts of the results: Uniqueness: Suppose w; and w, are both harmonic p-forms
and w, = w; + dn for some n € AP~ (M). Then
(dn,dn) = (w2 — w1, dn) = (d"(w2 — w1), 1) = 0.

%We can prove directly that H R(M;R) is a finite dimensional vector space via the Mayer-Vietoris argu-
ment as in Bott-Tu’s book.
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So we necessarily have dn = 0 and w, = w;.

HP(M), Im d,Im d* are orthogonal to each other: Let w, € HP(M), & € AP*'(M),n €
AP~Y (M), then

(wp, d°8) = (dwy,,§) =0
(wp,dn) = (d*wp,m) =0
(d°¢,dn) = (& ddn) =0.

Rough idea about existence: One can show that A, is a 2nd order elliptic operator, and we
have a “basic estimate” of the form

ol < C(Aw + w,w) = C(lwl + ldwl” + lld*w]P).

(For general elliptic operator, this kind of estimates still hold, known as “Garding’s in-
equality”.) We consider the quadratic form on W'2(M, A?T*M):

D(é‘:’ 77) = (é‘:’ 77) + (df’ dﬂ) + (d*é:’ d*ﬂ)

Garding’s inequality implies that D(w) is an equivalent norm on W'2(M, A?T*M). Given
n € LA(M,APT*M), ¢ — (&,1) is abounded linear functional on A?(M) C W'-2(M, APT*M):

& ml < NIl NIl < lmll - lEllwr2 < € VD(E, £).

This extends to a bounded linear functional on W'*(M, A?T*M), and we can use Riesz
representation theorem to get a unique ¢ € W'2(M, APT*M) such that for all £ € AP(M):

(fa 77) = Z)(fa ‘10)

Using this to define a linear map 7'(17) := ¢. Itis a bounded linear operator from L>(M, A?T* M)
to W'2(M, APT*M). Tts composition with the compact embedding W!? — L? (also
denoted by T) gives us a compact self-adjoint operator on L>(M, APT*M). Intuitively,
T =(id + Ay~

By spectrum theorem and elliptic regularity, we have a Hilbert space direct sum de-
composition L>(M,APT*M) = ®)_,En, where each E, is a finite dimensional space of
smooth p-forms, satisfying Ty = p,,p, V¢ € E,,, withpy =1 > p; > p,... and p,, — 0.
Then E, = HP(M) and for ¢ € E,,, we have Ayp = (pim - l)cp =: e, A, /0. O
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5.2 The Hermitian case

Now let X" be a n-dimensional compact complex manifold, with almost complex structure
J and Hermitian metric g. As before, we define w, := V-13,;;g;5dz; A dz;. Itis a real
(1, I)-form. A direct computation shows that we always have

n

(l)g
dVy, = —.
n!
In fact, we can choose coordinates around a given point p such that at p, {ﬂi, i}’? T
x;? Oy;i,j=1

an orthonormal basis with z; = x; + V—1y,; the complex coordinate function. 7 Then
at p the left equals dx; A dy; A --- A dx, A dy, while on the other hand, we have at p:

w, = LY dz; Adz; = ¥, dx; A dy; and hence 22 = dx; Ady, A -+ Adx, Ady, = dV,.

Exercise:Show that under local coordinates, we have

n

w
n—(‘g = det(glj_)( V—l)ndZI A\ dZI VANREEIAN dZn A dZn

In this case, we also extend Hodge’s star operator complex linearly to complex differ-
ential forms. Then we also have #* = (=1)?®"P) = (—=1)” on A”(X) and

a A #B ={a,B)cdV,.

On the space of smooth complex differential forms, the correct Hermitian inner product
should be

(a,B) ::fa/\*[i.
X

Lemma 5.6. The = operator maps AP4(X) to A" 7P (X).

Proof. We compute at a given point x, and we choose complex coordinates such that
gii(x) = %6,-]». Then dx,,dy,...,dx,,dy, is a positively oriented orthonormal basis of
T:*X. For multi-index I = (i, . . .,u,), we shall write

dzy:=dzy N+ Ndz,,, dxp:=dx, N ANdx,,,
Also for multi-index M, we define
wy = Hyepdz, A dz, = (=2 V—l)‘Mll'Iﬂedeﬂ A dyy.

A direct computation shows that for mutually disjoint increasing multi-indices A, B, M,
we have
#(dza N dZg Nwy) = y(a,b,m)dzs N dZg A wyr,

"What we need to do is to use a complex linear coordinate transformation such that g,,(a% s (%I p) = %6,~ -
i <j
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where a = |A|,b = |Bl,m = M|, M" = (1,2,,...,n) — (AU BU M), and y(a,b,m) is a
non-vanishing constant. In fact, one can show that

y(a,b,m) = (N=1)*(=1) 7 +(=2 V=17,

where k = a + b + 2m is the total degree.

If we write p = a + m,q = b + m, then all (p, g)-form is locally a linear combination
of forms of the type dzs A dZg A wy. Since dzy A dZg Awyy is a (a+ m',b + m') =
(a+n—-a-b-m,b+n—a—b—m) = (n—q,n—p)-form, we get xA74(X) c A" ¢"P(X). O

As in _the real case, we consider the Hermitian inner product on A”%(X), and define an
operator d* by ) )
(& 0n) = (0°,m),  VE € APU(X),n € API(X).

Then we get

Gen = f 5E A+
X

(6,5n)=(577,§)=fénA*§=f5ﬁA*§
X X

[[on )= ot naee = o [ gaace
X X

- f@(*f) AT =— f xQ(*E) A *1].
X X

So we get:
Lemma 5.7. On AP4(X), we always have 3* = — * Ox.
Exercise: Show that on the space of complex valued p-forms A”(X), we have d* = — = dx.
We define the 0-Laplacian Aj : AP4(X) — AP4(X) by
Ay := 09" + 0°0.

We look for d-closed form of minimal norm within a given Dolbeault cohomology
class. Suppose & € AP4(X) is such a d-closed form, then for any € AP4"(X), the
quadratic function of 7 € R:

1€ + ton|* = (€ + tOn, & + tdn) = ||E|* + 2tRe(&, On) + £]|0n|*

takes its minimum at 1 = 0. We get Re(&,0n) = 0 for all n € A7"'(X). Using ||€ +
tV=10n|]* instead, we get Im(£,dn) = 0 for all n € AP7(X). So we get (¢,0n) =
(0%¢,m) = 0 for all n € A7971(X). This implies §*¢ = 0.

58



Definition 5.8._If w € AP(X) satisfies 0w = 0 and 0*w = 0 (equivalently, Azw = 0), then
w is called a “0-harmonic (p, q)-form”.

The counterpart of Hodge theorem for Dolbeault cohomology is the following:

Theorem 5.9 (Hodge). Let (X", J,g) be a compact Hermitian manifold. Then each Dol-
beault cohomology class has a unique 0-harmonic representative, so we have a complex
linear isomorphism

HP(X) = {w € AP(X) | Ajw = 0} = H(X),  p.q=0,...,n.

Moreover, HP4(X) is always a finite dimensional complex vector space, and we have a
complex linear operator G : AP4(X) — AP4(X) such that for any w € AP4(X), if we denote
its orthogonal projection to HP1(X) by wy, then we have the decomposition:

w = wy + AGw = wy, + 00" Gw) + 0" (0Gw).

In fact, we have an orthogonal direct sum decomposition AP4(X) = HPI(X)®Im 0dIm 5"

Generalization: Assume also that we have a holomorphic vector bundle E — X of rank
r, with Hermitian metric 2. X is compact. We define an Hermitian inner product on
C*(X,A"1(X)® E) by

(s,0):= f(s,t)g,thg,
X

where the pointwise Hermitian inner product ¢, ), is induced from the Hermitian metric
g on X and bundle metric 4 on E. We can define a é—operator on A?4(X, E), which we
shall write 9 : AP4(X,E) — AP9*(X, E). We can also define a formal adjoint operator
9% : APU(X, E) — AP4Y(X, E) by requiring that

(s,0pt) = (Oys5,1), YseAPUX,E),t € AP (X, E).
Then we define A;, := 325,5 + 5155’;: : APYX,E) — API(X,E), and HP(X,E) :=

K er(AgE |aracx, E)). The elements of H”4(X, E) are called “E-valued harmonic (p, g)-forms”.
In this case, we also have:

Theorem 5.10. Let (X", J, g) be a compact Hermitian manifold. E — X be a holomor-
phic vector bundle of rank r, with Hermitian metric h. Then each cohomology class in
Hg’q(X, E) has a unique harmonic representative, so we have a complex linear isomor-
phism
HP(X, E) = Hg’q(X, E), p,g=0,...,n

Moreover, H?4(X, E) is always a finite dimensional complex vector space, and we have a
complex linear operator Gg : AP4(X, E) — AP4(X, E) such that for any w € AP4(X, E), if
we denote its orthogonal projection to HP(X, E) by wy, then we have the decomposition:

w = wy + AgEGEa) =wy t+ 5E((7)*EGEw) + 3*E(EEGE0-))
In fact, we have an orthogonal direct sum decomposition AP1(X, E) = HP4(X, EY®Im 05

Im B*E.
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5.3 Applications

Theorem 5.11 (Poincaré duality for de Rham cohomology). Let M™ be a compact ori-
ented differentiable manifold. Then

HgR(M, R) = H?R_I’(M, R).
In particular, b,(M) = b,,_,(M).

Proof. Since * commutes with A;, and #* = +1, we conclude that * induces a linear iso-
morphism between H?(M) and H™ P(M). Then the result follows from Hodge theorem.
O

Theorem 5.12 (Kodaira-Serre duality). Let E — X be a holomorphic vector bundle over
a compact complex manifold X of complex dimension n. Then we have a conjugate-linear
isomorphism

o H'(X,Q(E)) = H"™" (X, Q" P(E")).

Proof. (Sketch) We introduce a conjugate-linear operator *g, constructing from * : A?9 —
A""%""P and the conjugate-linear isomorphism 7 : £ — E* via bundle metric 4. To make
everything conjugate-linear, we also define * : AP9(X) — A" P"74(X) by #(n) := *;. Then
gt API(X, E) — A"P"4(X, E™) is defined by

¥ (M ® ) 1= *(1) ® 7(s).

Then we have 5*E = —%p. 0 O o % and hence *plg, = Np,. *E-
By Hodge theorem, we have

H'(X,Q"(E)) = H)' (X, E),  H'/(X,Q"(E") = H; """ (X, E").

Then % induces a conjugate-linear map o : H'(X, Q?(E)) — H" (X, Q" P(E")), and the
Kodaira-Serre duality follows from the fact ¥z o % = 1. O
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5.4 The Kaihler case

Now we assume (X", J, g) is a compact Kéhler manifold. Then we will have a better
understanding of harmonic forms and Dolbeault cohomology. We shall begin by exploring
the relation between A, and Aj.

5.4.1 Hodge identities for Kihler metrics
We introduce some operators that will be useful in our discussion:
d° = V-1(0 - 0).

Here my notation is the same as Wells, but differs from Griffiths-Harris by a factor 4.
Then dd° = V=10 + )@ — 8) = 2V-189. We define the “Lefschetz operator” L :
AP4(X) — APTLatL(X) by:

L) := w, A =: Ln.

Its adjoint will be denoted by A : AP*14*1(X) — AP4(X). We have
(& L) = (A& ), V€€ APTHH(X),n € API(X).

The basic equality in the Kéhler case is:
Lemma 5.13. On AP(X), we have [A,0] = V=15".

Given this, since L is a real operator, so is A, and we have

[A, 8] = - V-15".
Combining these two identities, we further get
[A,d] =-d”, [Ad]=4d".

Proof of Lemma 5.13 . We first prove the identity in C". Let w = g >.idz; A dz; be the
standard Kihler form on C". Let A2?(C") be the space of smooth (p, g)-forms on C" with
compact support. Then L : A?4(C") — AP*™MN(Cm), Ly := w A .

To derive a formula for A = L*, we introduce operators ey, €, by

ex(n) :=dz. ANn, en):=dz An.

Their adjoints are denoted by i; and i, respectively. Recall that |dz|> = |dx|* + |dy|* = 2,

so we conclude that iy = 2¢ s where ¢ i is the “interior product” operator, defined by
2k 2k

L%n = 77(6%, ...y ). Similarly, I = ZL%. It is easy to check that
ey + ey = 2, ;kék + ék;k =2.
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And for k # |,
e+ e, =0, ékil + ;lék =0.

We also define the degree-preserving linear maps dy, 9y by

O D mides A dzy) = g—gdz, Adz,,
1,J 1,J

5k( ; nidz A dZJ) r= a_deZI A dzZy.

Note that d; and d; commute with e, &; and hence also iy, ix. Also an “integration by part”
trick gives us the relation 9; = -0, (9 —0k.
Now we can express all the operators we care by ey, €y, iy, iy and Jy, O:

0= Z@kek = Z ekak, 5 = Zékék = Z ékgk.
k k k
Taking adjoints, we get
- Z ékik = Z l'kgk, 5* = — Z kak = - Z fk(?k.
k k k k

Also

So we can compute

AN = ——— lkzkébe,—

V_l =< . V—
T Z [lklkel
k.l

= - Z 6klklkek + Z allklkel

k#l

We compute the last two summands seperately.

V_l = .
——2 g Oklrirex
k

V-1 . .
5 Z Okir(2 — exiy)
%

- \/—_12 aklk - T Z akeklklk
k k

V-1 _
- — Z Okexliy,
T
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and

\ _1 = . \J _1 = . \J _1 = .
—T Z 8llklk€1 = T Z allkellk = —T Z 8l€]lklk.

k#l kil Kl

So we get

_ V-1 - V-1 - -
A0 = N-10" — —— Z akekikik - Z 6[€1ikik = V=190" + dA.
2 2
k k#l
For the general compact Kéhler case, one can use Kihler normal coordinates to reduce

the computations to our C" case. The key point is that only first order derivatives are
involved. =

5.4.2 Hodge decomposition for compact Kihler manifolds

A direct consequence of Hodge identities is that A; commutes with both L and A: Since
w, 18 closed, we have dL(n) = d(w, A1) = w, A dn, so [L,d] = 0. Taking adjoints, we get
[A,d"] = 0. So using [A,d] = —d“*, we get

AA; = Add*+d'd) =[N, dld" +dAd" + d*Ad
= =dd"+dd"'A + d'[A,d] + d"dA
= =dd" —d"'d” + AgA = AyA.
Taking adjoints, we also get [L, A;] = 0.

Besides A; and Aj, we can similarly define Ay. For compact Kihler manifolds, we
have the following:

Proposition 5.14. In the Kdhler case, we always have Az = Ay = %Ad.

Proof. Used = 8+ 0 and d* = 8" + 0" to compute:

Ag dd* +d*d = (0 + 9)(0" + 0*) + (0" + 0")( + I)
(00" + 0°0) + (90" + 3*0) + DO + D" + 30 + 3*9

Ag + Ay + (00" + 0°0) + (00" + 070).

We need to prove:
e 00" + "0 = 0, 00" + 3*0 = 0 (these two identities are equivalent by conjugation);

L A() = A;;.
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To prove 99* + 00 = 0, we use the Hodge identity [A, 0] = V-19":

V=108 + 5°9) I[N, 8] + [A, 8]0
OND — O’ + ANO* — ONO

= 0.

Now we compute Ay and Aj separately, both using Hodge identities:

—V=1A; = 9[A,d] +[A, D)0
= OAD — OOA + AIO — OND.

V=1A; = 8[A,0] +[A, 1
= OAO — 0N + NOO — ONO
= O0AO+ 00A — AJD — OND
= V-1A,.

From the above computations, we conclude that A; = Ay + Az = 2Ay = 2A;. O
From this we conclude that A, : A?9(X) — AP4(X), and

H™(X,C) N API(X) = H(X).

Since H/(X,C) = @p+q:r(7-{5+q(X, C)OAP"?(X)) = @p+q:,7-(§’q(X). Also note that 7—(5"’(X) =
7’(; ?(X). Applying Hodge theorem for compact Hermitian manifolds, we get:

Theorem 5.15 (Hodge decomposition for compact Kihler manifolds). Let (X", J, g) be a
compact Kdhler manifold, then we have isomorphisms

Hy(X,C) = EBp+q:,H§’q(X) = @pig-rHI(X,QP), r=0,1,...,2n,
and
Hg’q(X) = Hg’p(X).
In particular, we have
b, = Z RPa. pPa = paP.
p+q=r

For example, we always have
HIO(X) = HX, Q),

since any (p, 0)-form is 0*-closed and it is 0-closed if and only if it is holomorphic. Then
we conclude that any holomorphic p-form on a compact Kdhler manifold is also d-closed
and even d-harmonic.

Exercise: Show that any holomorphic 1-form on a compact complex surface (not neces-
sarily Kihler) is always d-closed. (Kodaira)
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Corollary 5.16. The odd Betti number by, of a compact Kdihler manifold X" is always
even.

Proof. We have

by = h?1

0<p.q<n,p+q=2k+1

_ Z KP4 4 Z B4

p<q.p+q=2k+1 p>q,p+q=2k+1
= E hp’q + E hq’p
p<q,p+q=2k+1 p>q,p+q=2k+1

2 Z WP4=0 mod 2.

p<q,p+q=2k+1
O

As a concrete application, let’s compute the cohomologies of CP": The topological
structure is rather simple: we have CP" = Uy U {zp = 0}, with Uy = C" and {zp = 0} =
CP™!. So we can construct CP" in the following way: start with a point (a “0-cell”), glue
a C! (a “2-cell”) to get CP!, then glue a C? (a “4-cell”) to get CP?, ....... So the cellular
cohomologies of CP" are:

H**\(CP",Z) =0, H*CP.Z)=Z,k=0,...,n.

Now wrs is a Kihler forms on CP". Since wk = L*1 and A,L = LA, each wh is

a harmonic (k, k)-form. So we conclude that #/”? > 1,p = 0,...,n. On the other hand,
1 = by, > P, we must have b,, = h?P. Also, h”? = 0 when p + g is odd. So the only
non-zero Dolbeault cohomologies of CP" are Hg’p (X) = C,p =0,...,n. In particular,

there are no non-zero holomorphic forms on CP".

For another application, we state the so called “00-lemma”, which is very useful in
Kéhler geometry:

Lemma 5.17. If n is any d-closed (p, q)-form on a compact Kdhler manifold X", and n is
d- or 8- or 0-exact, then .

n = 0dy
for some (p — 1,q — 1)-formy. When p = q and n is real, then we can take y = V—1£ for
areal (p—1,q— 1)-form&.

Proof. Recall that in the Kéhler case we have A; = 2A5 = 2A, they share the same kernel:
harmonic forms. Since 7 is d- or d- or d-exact, its harmonic projection must be zero. So
we have

n = A;Gan = 00"Gan.
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Here we use the fact that @ commutes with G; and that dy = 0 = 0 = 0.
Now we look at the form 0*Gjn, it is also orthogonal to harmonic forms. Also since
Gy = G5, we have 00°G3n = —0"0Gyn = —0"Gy0n = 0. Then we can use Hodge decom-
position for Ay:
0'Gsn = AyGy0"Gan = 00" G0*Gan.

So we get
N = 800°Go0"Gan = 00( — "G40 Gyn) = 08( - 9°9°Go).
O

The most often used case is about (1, 1)-class. Let w and @ be two K'a_ihler forms on X
such that [w] = [@] € HEIR(X ). Then & — w is a d—exact form, so by the J0-lemma, we can
find a smooth function ¢ € C*(X;R) such that

= w+ V-18d.

¢ is unique up to a constant. On the other hand, if ¢ € C*(X;R) satisfies w+ V-13d¢ > 0,
then it defines a Kéhler metric with the same Kéhler class. So we conclude that the space
of Kéhler metrics within the same cohomology class [w] is isomorphic to

{p € C™(X:R) | w + V=138 > 0}[R.

One of the most important problem in Kéihler geometry is the existence of canonical met-
rics in a given Kihler class. Through the dd-lemma, we can reduce the problem to a
(usually non-linear) partial differential equation for ¢. This is the starting point of using
non-linear PDEs to solve problems in Kéhler geometry.

Remark 5.18. If we further introduce the operator h : A*(X) — A*(X) by h = Zf,’;o(n -
P11, , then we will have

[A,L]=h, [h,A]l=2A, [hL]=-2L.

Recall the 3-dimensional complex Lie algebra sl,, generated by
1 0 0 1 00
w=o S x=loo) = 0)

[H,X]=2X, [HY]=-2Y, [X,Y]=H.

They satisfy

SoHw— h,X — A Y — L gives a representation of sl, on H*(X,C). Using elementary
representation theory, we can get a finer decomposition result, due to S. Lefschetz.
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6 Kodaira’s vanishing theorem and its applications

6.1 Kodaira vanishing theorem

Using Hodge theorem, we can prove an important cohomology vanishing theorem of Ko-
daira. To state the theorem, we recall the following positivity notions for real (1, 1)-forms
and for line bundles: We say a real (1, 1)-form w is “positive” if locally it can be written
asw= V-1 2 @i7dzi A dz; where (a;) is positive definite everywhere. A line bundle L is
called “positive” if there exists an Hermitian metric 4 on L such that V=10(h) is positive.

Theorem 6.1 (Kodaira-Nakano). If L — X is a positive holomorphic line bundle on a
compact Kéihler manifold,® then we have

HY(X,QP(L)) =0, forp+q>n.
In particular, HY(X, O(Kx ® L)) = 0 for g > 0.

Proof. ( due to Akizuki-Nakano) We use w := \/—_1®(h) as our reference Kéhler metric.
° The Hodge theorem ensures that H(X, QP(L)) = HP4(X, L). So we need to show that
when p + g > n each L-valued harmonic (p, g)-form must be zero.

We need the following lemma, whose proof is almost identical to the “un-twisted case”
we proved before:

Lemma 6.2. Let E be a holomorphic vector bundle over a compact Kéhler manifold (X, w)
with Hermitian metric h. Introduce the operator L : AP4(X, E) — AP*Y47Y(X, E) as before
and define A := L*. If we denote the (1,0) and (0, 1) components of the Chern connection
D by D’ and D" (= 0), then we have

[A,0] = - V-1D"*, [A,D']= V-15".

Assuming the lemma at present. Then the proof of Kodaira vanishing theorem essen-
tially follows from the comparison of two “Laplacians”, the so called “Bochner’s tech-
nique”:

Asp—Ap e =[V-10(h), A],

where Ap g := D’'D"™ + D"*D’. The reason for this equality is:

~V-1Apr = D'[A,d]+[A,0]D
= D'A6—D'OA + AOD' — OAD’,

8We can just assume X is compact complex manifold. Then if V=10(h) > 0, then it is a Kiihler form on
X and so X is in fact Kidhler. Later, by Kodaira’s embedding theorem, X is in fact projective algebraic.

°In this case, [w] = 2mci(L). In general, if we have a compact Kdhler manifold (X, J, g) such that
[we] = 27 (L) (or ¢((L)) for some holomorphic line bundle L, then we call the triple (X, L, g) a “polarized
manifold”. L is called “the polarizing line bundle” or “the polarization”.
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while

V=14, A[A,D'] +[A, D10

= OAD —OD'A + AD'0 — D'Ad.

So we get
V=1A;; = V=-1Apx = A@D' + D'8)— (8D + D'd)A.
Note that @(h) is of type (1,1), we get D’'D’ =0, 90 = 0, so
O(h) =D*= (D' +9)(D' +0)=D'd+0D'.

So we get

Asr — Ap e = —V=1[A, Oh)] = [ V=10(h), Al.

Now back to the proof of Kodaira’s vanishing theorem. We have V-10(h) = w, so
the above Bochner formula reduces to

Ay —Ap =[L, Al =(p+q—n)d.
Soif s € HP4(X, L) is not identically zero, then we have
(Ags = Aprs, $) = (p +q = nisl> > 0.
On the other hand,
(Ags — Apss,s) = —=(Aps, s) = —|ID's|> — ID"s|* < 0.
This is a contradiction. O

6.2 The embedding theorem

One important application of the Kodaira vanishing theorem is the following embedding
theorem of Kodaira:

Theorem 6.3. If a compact complex manifold X has a positive line bundle, then it is
projective algebraic.

The basic construction we shall use is the following: Let L — X be a holomorphic line
bundle, such that H(X, (L)) # 0. Then we can take a basis of H’(X, O(L)), s, ..., Sy,
and define a “map” from X to CP":

x> [so(x),...,sy(x0)].
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This is defined using a local trivialization, so that we can identify each s; as a locally
defined holomorphic function. This map is independent of the trivialization we choose,
but it is un-defined on the “base locus” of L: 1

Bs(L):={xeX|s(x)=0, VseH X, OL))).

What Kodaira actually proved is the following: If L — X is a positive line bundle on
a compact complex manifold, then we can find a large integer my > 0 such that for all
m > myg:

1. L®" is “base point free”, i.e. Bs(L®") = 0;

2. Choose a basis ofHO(X, O(L®™)), So,-..,SN,, then the “Kodaira map” ym : X —
CPNn defined by
x B [so(x), ..., 8w, (X)]

is a holomorphic embedding.
Definition 6.4. Let L — X be a holomorphic line bundle on a compact complex manifold.

e [f there is an integer my > 0 such that for all m > my, L®" is base point free, then
we say L is semi-ample;

e [f L is base point free and the Kodaira map t; is a holomorphic embedding, then we
say L is very ample;

e If there is an integer my > 0 such that for all m > my, L®" is very ample, then we
say L is ample.

A corollary of Kodaira’s theorem is that on a compact complex manifold, a holomor-
phic line bundle is ample if and only if it is positive.

In fact, if L is positive, then it is ample by Kodaira’s theorem. On the other hand, if L
is ample, we can find m € N such that ¢;» 1s a holomorphic embedding. Then the pulling
back of the hyperplane bundle is isomorphic to L#”, and the induced metric has positive
curvature. The corresponding metric on L also has positive curvature.

Outline of the proof of Kodaira embedding theorem: For simplicity, we only prove that
there is a sufficiently large m such that ¢;» is an embedding. We need to prove the fol-
lowing 3 properties:

1. Prove that L®" is base point free when m large enough. We only need to show that
for any point p € X, we can find a m, € N such that for all m > m,, we can find a
s € H(X, O(L®™)) such that s(p) # 0. That is, the linear map r, : H'(X, O(L®™)) —
L™ is surjective.

101n fact, one can suitably extend the map to codimension one part of Bs(L).
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2. Prove that for m large, global sections of L®" separate points. For this, we need to
prove that for any two points p # ¢ in X, the linear map r,, : H'(X, O(L®")) —
Ly" @ LY™ is surjective for m sufficiently large.

3. Prove that for m large, ¢;» is an immersion. That is, for any point p € X, global
sections of L®" separate tangent directions at p. We only need to show the linear
map r,, : H'(X, O(L®") — L%" ® (0,/m) is surjective for m sufficiently large.

Note that property 2 is stronger than property 1. So we only need to prove 2 and 3.
Also note that if we denote by m,, the ideal sheaf of holomorphic germs vanishing at p and
m, , the ideal sheaf of holomorphic germs vanishing at p and ¢, then what we need prove
is that

H(X, O(L®*™)) —» H'(X, O(L*") ® O|m,,)

and
H(X, O(L*™) — H'(X, O(L*") ® O |m})

are both surjective when m is large enough.
For this, we use short exact sequences of sheaves:

O-my, >0 — 0/m,, -0, O—>mfy—>ﬁ—>ﬁ’/m;—>0.
Tensor with the locally free sheaf &(L®™), we get exact sequences
0—- 0L @m,, > OL*) - OL*)Q O/m,, — 0
and
0— OWL®") ®mf, - O(L*") - O(L®) ® ﬁ/mf, - 0.

The induced long exact sequences give us:
H(X, 0(L*")) - H'(X, O(L*")® O |m,,,) — H'(X, O(L*") ® m,,,)

and
H(X, O(L*™) —» H'(X, O(L*") ® O|m>) —» H'(X, O(L*") @ m}).

We need to prove the vanishing of H'(X, O(L®") ® m, 4) and H'(X, O(L®") @ n0).

Comparing with Kodaira’s vanishing theorem, we found that the main problem is that
m, , and mf, are not sheaves of germs of holomorphic line bundles. They are examples of
“coherent analytic sheaves”. This “generalized Kodaira vanishing theorem” for coherent
analytic sheaves is indeed true, but harder to prove. Kodaira’s method (as appeared in
Griffiths-Harris and Wells) is to replace X by its blown-up X at p and g. Pulling everything
back to X we can work purely with line bundles, and then Kodaira’s vanishing theorem
works. Then one need to show that vanishing upstairs implies vanishing downstairs.

Finally, since both property 2 and 3 are “open” properties, we can use a “finite covering
trick” to find a uniform m, independent of p, g € X. O
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In short, the proof says that positivity of a line bundle L implies L®" has so many global
sections that they can separate points and tangent directions. Here we use Kodaira’s coho-
mology vanishing to prove the existence of global sections satisfying special properties.
This is typical when applying vanishing theorems. Also, to prove the existence of global
sections separating points and tangent directions, one can directly construct sections by
solving d-equations using Hérmander’s L2-method. It turns out that we also need a certain
type of Bochner type identity, and the positivity of the line bundle is also crucial.
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7 Calabi-Yau theorem

7.1 Calabi’s problem and Aubin-Yau, Calabi-Yau theorem

Recall that A"T'0X =: K! is the anticanonical line bundle, and g induced an Hermitian
metric on Ky', with ;2 A--- A 727 = det(g;7), its curvature form is exactly 49 log det(g;).
So we get

V-10(Ky', det g) = Ric(w,),

and by Chern’s theorem,
[Ric(wy)] = 2mei(Ky') =: 2mei(X).
Calabi asked the following questions:

1. Given a Kéhler metric g and a closed (1,1)-form 7 such that its cohomology class

in HflR(X) is [n] = 2nci(X), can we find another Kéhler metric g’ within the same
Kihler class [w,] such that Ric(wy ) = n?

2. When can we find a Kédhler metric which is at the same time an Einstein metric? That
is, Ric(w,) = Aw, for a constant 4 € R. We call such a metric an Kihler-Einstein
metric.

Recall that by d0-lemma, different Kihler metrics in the same Kihler class differ by
V-13d¢ for a R-valued function ¢. So Calabi’s problems actually ask whether we can
find smooth function ¢ satisfying a specific equation.

Also recall that for a real (1, 1)-form n = \/—_lni;dz,- A dZ;j, we say it is positive (write
n > 0), if the matrix (7;;) is positive definite everywhere. And we say a real (1,1)-class
@ € H7,(X) is positive if we can find a closed 7 > 0 such that [77] = a.

First, observe that:

Lemma 7.1. If the compact Kihler manifold (X, J, g) is Einstein, then either ¢1(X) > 0 or
c1(X) <0orc(X)=0.

Also observe that the Ricci form is invariant under rescaling, so for the Kédhler-Einstein
problem, we can assume A = 1,—1 or 0.

The results we discuss in this chapter are:

Theorem 7.2 (Aubin-Yau). If X is compact Kdhler manifold with c¢;(X) < 0, then there is
a unique Kdhler metric g satisfying

Ric(w,) = —w,.
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Theorem 7.3 (Calabi-Yau theorem). If X is compact Kdhler manifold with a given Kdhler
metric go, then given any closed (1, 1)-form n such that [n] = 2rnc1(X), there is a unique
Kiihler metric g with [w,] = [wg,] satisfying

Ric(w,) = 7.

In particular, if c;(X) = 0, then for any Kdhler class a, there is a unique Ricci-flat Kihler
metric in the class a. A Ricci-flat Kdhler metric is usually called a “Calabi-Yau metric”
in the literature.

However, when ¢;(X) > 0 (then we say “X is a Fano manifold” in honor of the Ital-
ian algebraic geometer Fano), in general we can not find Kéhler-Einstein metrics, due to
various obstructions, like the vanishing of Futaki invariant and the reductiveness of the
automorphism group of X. The ultimate result is:

Theorem 7.4 (Chen-Donaldson-Sun, Tian). Let X be a compact Kdhler manifold with
c1(X) > 0. Then X admits a Kdhler-Einstein metric if and only if X is K-polystable.

I won’t explain the meaning of K-stability here. For the original definition, we refer the
readers to Tian’s 1997 Invent. Math. paper. The uniqueness problem of positive Kihler-
Einstein metrics is also very difficult, and first solved by Bando-Mabuchi. There is a recent
proof by B. Berndtsson, using ideas from complex Brunn-Minkowski inequalities.

Now we derive the equation and prove the uniqueness part.

For Aubin-Yau theorem, we start with a gy such that its Kédhler form w € —2r¢;(X) =
—[Ric(w)], so we can apply the dd-lemma to get a smooth function / satisfying Ric(w) +
w = \/—_185}1, and 4 is unique if we require fX Wt = fx w". We want to find ¢ € C*(X;R)
.t wy 1= w + V=13d¢ > 0 and Ric(wy) + w, = 0, 1.e.,

det(gpg + ¥pa) h— )

0 = —0,0;log det(g,; + ¢p) + gij + @7 = —0:05( log Tetlz)
1%

So we get the equation
(w+ V=180p)" = e"*w". (7.1)

For Calabi-Yau theorem, we have a unique / satisfying Ric(w) — 7 = V-186h and
J,€"w" = [, w". We want to find ¢ such that w, > 0 and Ric(w,) =7, i.c.

—0,05log det(g,g + ¢pg) = —0,05log det(g,g) — hyj.

So the equation is
(w+ V=13dyp)" = e"w". (7.2)

Lemma 7.5 (Calabi). The solutions to (7.1) and (7.2) are both unique.
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Proof. If both ¢, and ¢, solve (7.1), set ¢ := @, — ¢,. Then y satisfies (w; + V—190y)" =
¢’w]. At the maximum point of ¢, we have e’ w] < &/, so ¢ < 0. Similarly, we get ¢ > 0,
hence ¥ = 0.

If both ¢; and ¢, solve (7.2), set ¥ := ¢, — ;. Then ¢ satisfies an elliptic equation of
the form Ly = 0, with L = AY(z, ¢, 8¢2)0;05. Since ¢ must achieve its maximum and
minimum somewhere, by strong maximum principle, ¥ is a constant, and the correspond-
ing metrics are the same. O
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7.2 Proof of (Aubin-)Calabi-Yau theorem

We start with the Aubin-Yau theorem. The idea of proof is to use the so called “continuity
method”, introduced in the first half of 20th century by H. Weyl.
We introduce an extra parameter ¢ into (7.1):

(w+ V=18dp)" = "¢ (7.3)

Then we study the set S := {t € I = [0, 1] | (7.3) is solvable in C¥¥(X)}. Obviously 0 € S,
since 1in this case ¢ = 0 is a solution. Then we try to show § is both open and closed. By
connectness of I, we will get 1 € §, i.e. (7.1) is solvable.

To show the openness, we shall use the implicit function theorem in Banach spaces.
We consider the operator ¥ : I x C**(X) — C¥29 where

. (w+ \/—_18590)” B

Y(t, ) :=1lo @ — th.

Then we have i
DY () = g, 007 — ¥ = (A, — Dy

This is invertible by Fredholm alternative, since we can easily prove its injectivity, either
use maximum principle or integration by parts. So we get the openness of S .

To prove the closedness, we shall derive a priori estimates: if #; € § with solution
@; € Ck*(X) and t; — ty € I, we need to show that l¢illke < C with a uniform constant C.
Then we can find a converging subsequence in C*?. If k > 2, then we will get a solution
for ty and S must be closed.

The C° estimate of ¢ is rather direct: if

(w+ V=190p)" = "¢ w"
and ¢ achieves its maximum at p € X. Then
eth(p)+max<pwn(p) < wn(p),

s0 ¢ < ||h||e. Similarly, we get ¢ > —||hl|ew, SO |[¢llc < ||A]lo- This is already known to
Calabi.

We shall not prove C! estimate directly, (which is not simple, and first proved directly
by Blocki, more than 30 years later than Yau’s work) but use C? estimates.

The C? estimate is due independently to Aubin and Yau, with slightly different calcu-
lations. i

We denote by A := gﬁc’?i@j—- and A, := g;"a,-a;. Since (g;;+;7) 1s positive definite, taking
trace with respect to w, we have 0 < g<7i(gi; + ¢ij) = tr,w, = n+ Ap. Now we compute
A, tr,w, at a point p, using Kihler normal coordinates of g at p. Note that at this point,
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we have R;5; = —0,05841, S0 we have

= 7 = 7 6g Kkl ag
Aptrow, = 818:03(8" gput) = 810/(g"—2= — gP g™ g 1)

07; 0z,
82
= gé’glk—_ + g‘,j;glpquRt/pqgw ki
07,07
= 808"(~ Ry + 87 ppiipuai) + 83878 " Rijpqut

= —tr Ric(w,) + 818" 87 0,01 + 818" 8™ Rijpa& ot
So we get

. .6-trwa)¢ _Agtruw, |0tr,w,l;

Il
oQ
S =
SN

~

A, log tr,w =
v 08wy 17,W, 17 Wy (tr,we)?

1 . i
= ( — tryRic(w,) + g{a glpquRl,pq& kl)

17 W,
Ik 2
+ (trwwcp)ggjag ggqapgopl_j_gokqt |atrwwgo|<p
(1r,w,)?

Claim: We always have (trwa)w)g#, 'e%ed o rprgi — 0tr,w,l% = 0.

To see this, recall that we work under a Kihler normal coordinate system. By an extra

linear coordinate change, we can further assume that ¢;; = 1;6;;, with 4; € Rand 1+4; > 0.

So at this point, we have g,,;; = (1 + 4;)6;; and gﬁ = 1; , and so tr,w, = 3, (1 + 4;), and

g“jaglkggp"oﬂj"o"q’ Dipk 1+1x 11, |901ka2 So we have
|0tr,w,l; Z _| (& 0P = Z —|g bt
=2 1+ﬁi|zk]sok,—a~|2 -2 M'Z VA
Z 1+ Z(l ) "”""" )- (trow @Z 1 +1 kp"ﬂp

1 2
< (rrww@; AT sl

Lemma 7.6. Let w be a Kéhler metric on a compact Kéiihler manifold X and ¢ € C*(X;R)
satisfies w + V—100¢ > 0, then

A log irw, > —TeRic@e) o (7.4)
o logtr,w, > o, RO )
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Proof. By the above discussions, we have

Ay logtr,w, > ( — tryRic(w,) + g{;igl_” quRfqugw,kz‘)

1T, Wy
—tryRic(w,) 1 1+ A
= + Ry
1T ,Wy 1ToWy “ 1+ 4
S —trwRic(w¢) + infi,k Rifkl_c 1+ A
- ITr,W, oWy 4 1+ 4
—tryRic(w,) .
= —2 ¥ L infRygtr,,w.
1T,Wy ik ¢
Since X is compact, we can find C > 0 such that inf;; Rz > —C. O

Note that we haven’t use the equation! So the above computation applies to other
situations.
Now we rewrite the equation (7.3) as

Ric(w,) = Ric(w) - t V—106h - \/—_10590
= Ric(w) — H(Ric(w) + w) — (v, — W)
= (1 — )(Ric(w) + w) — W,.

So —tr,Ric(w,) > tr,w, — C. So we conclude that

Aylogtr,wy > 1 — C( +try,w) 2 1= C'tr,,w.

17, Wy

o1 1
The last step used the fact oen = T = Teqy S e,w.

On the other hand, we have
Agp = tr%(ww —w)=n- 174, W,

and so we get
Ay(logtry,w, — (C" + 1)) > ~C” + tr,, w.

At the maximum point of log tr,w, — (C’ + )¢, we have tr,,w < C”. Use Kihler normal
coordinates at that point and assume g, is diagonal as before, we get ﬁ < C” for each
i. By (7.3), we have II;(1 + A;) = "¢ < C,, which implies 1 + A; < Co(C”)""'. So
tryw, < nCo(C”)*~!. This implies at this point log tr,,w, — (C’ + 1)¢ is uniformly bounded
from above (use |¢| < ||A|co). This in turn implies tr,w, < C for a uniform constant C.

Since we have L™ control of A, using L? theory for linear elliptic equations, we get
uniform control of C'-norm for ¢.

Also a direct consequence of the Ag estimate is that there is a uniform constant C > 0

such that w < w,, < Cw.
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After obtaining C? estimates, there are two ways to get higher order estimates. The
original approach of Aubin and Yau used Calabi’s 3rd order estimates, and then use
Schauder estimates and then bootstrapping. Later, Evans and Krylov independently dis-
covered that the C>? estimate follows directly from the C? estimate. The basic idea is
that if we differentiate the equation in the tangent direction y 2-times, we will get an el-
liptic equation for u,,. The above estimate implies that we have uniform control for the
ellipticity constants. Then we can get Harnack inequality for u,, by exploring the con-
cavity structure of the complex Monge-Ampere operator. One can find the proof for real
fully nonlinear equations in chapter 17 of Gilbarg-Trudinger’s book. The adaptation to the
complex Monge-Ampere equation has been carried out by Siu in his book [5].

After obtaining C? control of ¢, we can differentiate the equation once, then the
coeflicients have uniform Holder norm, so we can use Schauder estimates and then boot-
strapping. This finishes the proof to Theorem 7.2.

Now we study the Calabi-Yau equation.

First, we need a continuity path for the equation (7.2):
(w+ V=188p)" = "0, (7.5)
where ¢, is a constant defined by fx eregyt = fx w". Again let
S :={t € I(7.5) is solvable in C;"},

where we define Clg’“ = {p € CF(X) | fxtpa)" = 0}. When ¢ = 0, ¢ = 0 is the solution.
So S # 0. To show S is open, we use the implicit function theorem. However, there
is additional difficulty caused by the change of ¢;, so we modify the function spaces in
Aubin-Yau’s theorem.

We define the affine subspace of C¥2<:

cr = (fecl [ o= [ o)
X X
Then we define the operator @ : CS"’ — C’;‘Z’“,

(w+ \/—_18(7)<p)”

D(p) =
w
The linearization at ¢, is D®,, : Cg"’ - Cy
L2
DO, () = —LA,, Y.

This operator is invertible since Ay, Y = f is solvable if and only if fx wa,o = 0. This
proves the openness.
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For closedness, as before, we need to derive a priori estimates. Only the C” estimate
is different, other parts are almost identical.

We will basically follow Yau’s original proof using Moser iteration. Later there are
other proofs, e.g. S. Kolodziej’s approach using pluripotential theory and Z. Blocki’s
proof using Alexandrov’s maximum principles. Our exposition follows [4].

Rewrite the equation as (w + V-1900p)" = Fw" with F = ¢"*“. Note that F has
uniform positive upper and lower bounds, independent of . Sety ;= supy o —¢p +1 > 1.
Since

n—1
(F - D" = (w+ V=100¢)" — w" = V=180¢ A Z wg_j_l AW,
=0

we multiply *! on both sides for some a > 0, and integrate over X:

fwa+l(F _ 1)0)11
X

n—1

(a + I)Z fg[/“ \/—_181// A Oy A wz_j_l A
j=0 VX

\%

(a+1)fw\/—1a¢/\5¢/\w"—l

X

_ o atl f\/—_lalpi’“/\éw‘z’*m@"—l
X

5+ 1)2
a+1 o
= VeI
2

So we get

Y 24 1)
wpse < o 22 f i,
X

a+1

where C; depends only on ||F||z~.
On the other hand, we have Sobolev inequality

2 2 2
el 2 < Co(lIVullz + [lully).

We apply this to u := 7

1125 < CollIVe 212 + [W112,),

n

where 8 := = > 1. Then we choose p = a + 2, to get

1
Wl < (C3p)? W,  p =2

Then we can iterate p — pS — pB> — --- — pB° — .... Using the fact that
limy oo W]l ¢ = ]Iz, We conclude that once we have a uniform L” bound for ¢ for
some p > 2, then we will have uniform L* estimate for ¢.
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To get this L” bound, one can use, for example, the following result of G. Tian: Given
a Kéhler form w, we can find a positive number ¢ > 0, depending only on the Kihler class,
such that we can find another uniform constant C > 0 such that

f eSO <

X

Vo € C*(X;R) such that w + V—=18d¢ > 0. From this, we get uniform estimate of ||y||;
for any k € N.
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