
Introduction to complex geometry
(Chapter 0 Preliminaries on complex analysis)

Yalong Shi∗

Let Ω be a domain of C with piecewise C1 boundary. f = u +
√
−1v : Ω→ C be a C1

map. We generally regard this as a complex-valued function. It is usually convenient to
introduce the differential operators

∂

∂z
=

1
2

( ∂
∂x
−
√
−1

∂

∂y

)
,

∂

∂z̄
=

1
2

( ∂
∂x

+
√
−1

∂

∂y

)
.

Then it is easy to see that

d f :=
∂ f
∂x

dx +
∂ f
∂y

dy =
∂ f
∂z

dz +
∂ f
∂z̄

dz̄.

Then it is direct to check that the Cauchy-Riemann equation can be expressed as

∂ f
∂z̄

= 0.

Now we assume f is only C1, not necessarily holomorphic. For any z ∈ Ω, let ∆(z, ε)
be a small disc with center z and radius ε. By Green formula (written in the form of
differential forms), we have∫

∂
(
Ω\∆(z,ε)

) f (w)
w − z

dw =

∫
Ω\∆(z,ε)

d
( f (w)
w − z

dw
)

=

∫
Ω\∆(z,ε)

d
( f (w)
w − z

)
∧ dw

=

∫
Ω\∆(z,ε)

∂ f
∂w̄ (w)
w − z

dw̄ ∧ dw.

In polar coordinates around z, the final integrand is in fact bounded, so we can let ε → 0
to get ∫

Ω

∂ f
∂w̄ (w)
w − z

dw̄ ∧ dw.

On the other hand, we have∫
∂
(
Ω\∆(z,ε)

) f (w)
w − z

dw =

∫
∂Ω

f (w)
w − z

dw −
∫
|w−z|=ε

f (w)
w − z

dw

=

∫
∂Ω

f (w)
w − z

dw −
√
−1

∫ 2π

0
f (z + εe

√
−1θ)dθ

→

∫
∂Ω

f (w)
w − z

dw − 2π
√
−1 f (z).
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So we finally get

f (z) =
1

2π
√
−1

∫
∂Ω

f (w)
w − z

dw +
1

2π
√
−1

∫
Ω

∂ f
∂z̄ (w)

w − z
dw ∧ dw̄. (0.1)

One direct corollary is the following solution formula for 1-dimensional ∂̄-equation:

Lemma 0.1. Let f ∈ C∞0 (C) be a complex-valued function, then the function defined by

u(z) :=
1

2π
√
−1

∫
C

f (w)
w − z

dw ∧ dw̄

is a smooth function on C and satisfies the equation

∂u
∂z̄

= f .

Proof. Assume supp f ⊂ ∆(0,R), then for any z ∈ ∆(0,R′) we have

u(z) =
1

2π
√
−1

∫
C

f (z + w)
w

dw ∧ dw̄

=
1

2π
√
−1

∫
∆(0,R+R′)

f (z + w)
w

dw ∧ dw̄.

We can taking derivative with respect to z̄ under the integration sign to get

∂u
∂z̄

(z) =
1

2π
√
−1

∫
∆(0,R+R′)

∂ f
∂z̄ (z + w)

w
dw ∧ dw̄

=
1

2π
√
−1

∫
∆(0,R)

∂ f
∂z̄ (w)

w − z
dw ∧ dw̄.

By (0.1), this equals

f (z) −
1

2π
√
−1

∫
∂∆(0,R)

f (w)
w − z

dw = f (z),

since supp f ⊂ ∆(0,R). �
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Now we use the following conventions: z = (z1, . . . , zn) ∈ Cn, with zi = xi +
√
−1yi,

and
|z|2 := |z1|

2 + · · · + |zn|
2 = x2

1 + y2
1 + · · · + x2

n + y2
n.

For multi-index α = (α1, . . . , αn) ∈ Zn
≥0, we write

zα := zα1
1 . . . zαn

n ,

with |α| := α1 + · · · + αn and α! := α1! · · ·αn!.
In one variable complex analysis, the unit disc plays a special role. The higher dimen-

sional generalizations are balls and polydiscs:

• A complex ball with center a = (a1, . . . , an) and radius r > 0 is defined by

B(a, r) :=
{
z ∈ Cn

∣∣∣ |z − a| < r
}
.

This is nothing but the Euclidean ball in R2n.

• A polydic with center a = (a1, . . . , an) and multi-radius r = (r1, . . . , rn) with ri >
0,∀i = 1, . . . , n is defined by

∆(a, r) :=
{
z ∈ Cn

∣∣∣ |zi − ai| < ri,∀i = 1, . . . , n
}
.

This is the product of n 1-dimensional discs. When all the ri equal r > 0, we usually
abuse the notation to write it as ∆(a, r).

Definition 0.2. Let Ω ⊂ Cn be a non-empty open set (we call it a “region”), f = u+
√
−1v :

Ω → C a C1 map. We call f a holomorphic function, denoted by f ∈ O(Ω), if f satisfies
the Cauchy-Riemann equation:

∂u
∂xi

=
∂v
∂yi

,
∂u
∂yi

= −
∂v
∂xi

, i = 1, . . . , n. (0.2)

This is equivalent to say f is holomorphic in each of its complex variables.

Remark 0.3. By a deep theorem of Hartogs, we can remove the C1 assumption in the
above definition. For a proof, see Hörmander’s book.

As in the one-variable case, we introduce

∂

∂zi
=

1
2

( ∂
∂xi
−
√
−1

∂

∂yi

)
,

∂

∂z̄i
=

1
2

( ∂
∂xi

+
√
−1

∂

∂yi

)
.

We also define

∂ :=
n∑

i=1

∂

∂zi
dzi, ∂̄ :=

n∑
i=1

∂

∂z̄i
dz̄i,

then it is direct to check that d f = ∂ f + ∂̄ f , and f is holomorphic if and only if ∂̄ f = 0.
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A 1-form of the form
ϕ = ϕ1dz1 + · · · + ϕndzn

with ϕi functions on Ω is called a (1, 0)-form on Ω, and a 1-form of the form

η = η1dz̄1 + · · · + ηndz̄n

with ηi functions on Ω is called a (0, 1)-form on Ω. A central technique in the modern the-
ory of complex analysis is to use the ∂̄-equation ∂̄u = η with good estimates to construct
holomorphic objects.

As in one variable case, Cauchy formula is very important in several complex vari-
ables:

Theorem 0.4 (Cauchy formula). If f ∈ O(∆(a, r)) ∩C0(∆(a, r)), then we have

f (z) =
( 1

2π
√
−1

)n
∫
|ζ1 |=r1

· · ·

∫
|ζn |=rn

f (ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1 · · · dζn, ∀z ∈ ∆(a, r). (0.3)

In particular, f ∈ C∞(∆(a, r)).

Proof. If f is holomorphic in a neighborhood of ∆(a, r), then (0.3) follows from repeating
use of 1-dimensional Cauchy formula. In general, we work on ∆(a, θr) for 0 < θ < 1 and
let θ → 1.

The last claim follows from Cauchy formula by taking derivatives with respect to z
under the integration sign. �

Remark 0.5. An interesting feature of this formula is that the interior value of f depends
only on its value on a part of the boundary. We write

∂0∆(a, r) := {z| |zi − ai| = ri, i = 1, . . . , n}.

It is called “characteristic boundary” or “distinguished boundary” or “Shilov boundary”
of ∆(a, r). If f is a given continuous function in a neighborhood of ∂0∆(a, r), then the
integral (0.3) defines a holomorphic function in ∆(a, r), since it is easy to see that the
function is C1 in z, and we can take derivatives under the integration sign.

A direct corollary is the following useful derivative estimate:

Corollary 0.6 (Cauchy estimate). If f ∈ O(Ω) and ∆(a, r) ⊂ Ω, then we have

|∂α f (a)| ≤
α!
rα

sup
∆(a,r)
| f |. (0.4)

Moreover, if K ⊂ Ω is compact, then for any relatively compact open neighborhood U, we
have

sup
K
|∂α f | ≤ Cα sup

U
| f |, ∀ f ∈ O(Ω),

where Cα is a constant depending only on α,K and U.
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Proof. Again if ∆(a, r) ⊂ Ω, by (0.3), we have for any z ∈ ∆(a, r) :

∂α f (z) =
α!

(2π
√
−1)n

∫
∂0∆(a,r)

f (ζ1, · · · , ζn)
(ζ1 − z1)α1+1 · · · (ζn − zn)αn+1 dζ1 · · · dζn. (0.5)

This implies that

|∂α f (a)| ≤
α!

(2π)n sup
∆(a,r)

| f |
(
Πi(2πri)

)(
Πi

1

rαi+1
i

)
=
α!
rα

sup
∆(a,r)

| f |.

Again if ∆(a, r) 1 Ω, we work on ∆(a, θr) for 0 < θ < 1 and let θ → 1.
The second statement follows directly from (0.4) by a compactness argument. �

Remark 0.7. By (0.4), we can bound ∂ f
∂zi

by sup | f |. On the other hand, we always have
∂ f
∂z̄i

= 0, so we can bound the real partial derivatives of f by sup | f |.

There are several interesting corollaries of Cauchy formula and Cauchy estimates:
We say a series of functions

∑
i fi converges normally to f in a domain Ω, if it con-

verges uniformly and absolutely on any compact subset K ⊂ Ω to f . Then we have

Corollary 0.8. If f ∈ O(∆(a, r)), then we can expand f into a power series, converging
normally in ∆(a, r):

f (z) =
∑
α

∂α f (a)
α!

(z − a)α, ∀z ∈ ∆(a, r).

Proof. For any compact subset K ⊂ ∆(a, r), we can find a θ ∈ (0, 1) such that K ⊂ ∆(a, θr).
So we can assume without loss of generality that f is holomorphic in a neighborhood of
∆(a, r). Also we assume a = 0. Note that we have

1
Πi(ζi − zi)

=
1

Πiζi
·

1
1 − z1

ζ1

· · ·
1

1 − zn
ζn

=
1

Πiζi

∑
α∈Zn

≥0

zα

ζα
,

with the right hand side converging normally in ∆(0, r) when ζ ∈ ∂0∆(0, r). So we have
by Cauchy formula:

f (z) =
( 1

2π
√
−1

)n
∫
∂0∆(0,r)

f (ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1 · · · dζn

=
( 1

2π
√
−1

)n
∫
∂0∆(0,r)

f (ζ1, · · · , ζn)
ζ1 · · · ζn

∑
α

zα

ζα
dζ1 · · · dζn

=
∑
α

cαzα,

where
cα =

( 1

2π
√
−1

)n
∫
∂0∆(0,r)

f (ζ1, · · · , ζn)

ζα1+1
1 · · · ζαn+1

n

dζ1 · · · dζn.

Comparing with (0.5), we have ∂α f (0) = α!cα. �
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Remark 0.9. It is a good exercise for the readers to develop a theory of power series in
more than one variables. The corresponding Abel’s lemma also holds. One can find it in
Grauert and Fritzsche’s book “Several Complex Variables” (GTM38).

Corollary 0.10 (Weierstrass theorem). If { fi} ⊂ O(Ω), and fi converges to a function f ,
uniformly on any compact subset of Ω , then f ∈ O(Ω).

Proof. For any ∆(a, r) ⊂ Ω, we have Cauchy formula for each fi. By uniform convergence
of fi, we can take limit inside the integration to get

f (z) =
( 1

2π
√
−1

)n
∫
∂0∆(a,r)

f (ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1 · · · dζn, ∀z ∈ ∆(a, r).

Since f is continuous and the right hand side of the above formula is holomorphic in z, we
conclude that f ∈ O(Ω). �

Corollary 0.11 (Montel theorem). Let { fα} ⊂ O(Ω). If they are uniformly bounded on any
compact subset K ⊂ Ω, then { fα} is a normal family, i.e., any sequence of { fα} contains
a subsequence that converges to a holomorphic function f ∈ O(Ω), uniformly on any
compact subset of Ω.

Proof. By (0.4), we can bound the first order derivatives of fi uniformly on any compact
set K ⊂ Ω. So { fi}

∞
i=1 is equi-continuous. Then the corollary follows from Arzela-Ascoli

theorem and Corollary 0.10. �

Corollary 0.12 (Uniqueness theorem). Let Ω ⊂ Cn be a domain and f ∈ O(Ω). If there is
a non-empty open set U ⊂ Ω such that f |U ≡ 0, then f ≡ 0 in Ω.

Proof. Define the set
N :=

{
z ∈ Ω

∣∣∣ ∂α f (z) = 0,∀α ∈ Zn
≥0

}
.

By definition it is a closed subset of Ω. By Cauchy formula, N is also open. Since by
assumption N , ∅, the connectivity assumption of Ω implies that N = Ω, so f ≡ 0. �

Corollary 0.13 (Maximum Principle). Let Ω ⊂ Cn be a domain. If f ∈ O(Ω) ∩ C0(Ω̄),
then

max
Ω̄
| f | = max

∂Ω
| f |,

and max | f | can not be achieved at an interior point unless f is a constant.

Proof. Suppose maxΩ̄ | f | is achieved at a ∈ Ω, choose r > 0 such that ∆(a, r) ⊂ Ω.
Repeating the 1-dimensional maximum principle, we conclude that f |∆(a,r) ≡ f (a). By
Corollary 0.12, f ≡ f (a). �
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One of the first examples showing that complex analysis in higher dimensions is dras-
tically different form the 1-dimensional case is the following phenomenon discovered by
Hartogs.

Example 0.14 (Hartogs phenomenon). Define a domain H ⊂ ∆(0, 1) ⊂ C2 by

H :=
{
(z,w) ∈ C2

∣∣∣ |z| < 1
2
, |w| < 1

}
∪

{
(z,w) ∈ C2

∣∣∣ |z| < 1,
1
2
< |w| < 1

}
.

Then the restriction map O(∆(0, 1)) → O(H) is always surjective, i.e. any holomorphic
functions on H can be continued holomorphically to the larger domain ∆(0, 1). In fact, for
f ∈ O(H), we choose a 1

2 < β < 1, and define

f̃ (z,w) :=
1

2π
√
−1

∫
|ξ|=β

f (z, ξ)
ξ − w

dξ, |z| < 1, |w| < β.

Then by uniqueness, f̃ is independent of β, hence defines a function f̃ ∈ O(∆(0, 1)). Again
by uniqueness, we have f̃ |H = f .

Note that for a pair of domains Ω $ Ω′ ⊂ C, we can always find a f ∈ O(Ω) such that
f can not be continued holomorphically to Ω′. For example, choose any a ∈ ∂Ω∩Ω′, then
1

z−a is what we want.
We have another extension theorem, also due to Hartogs:

Theorem 0.15 (Hartogs’s extension theorem). Let K be a compact subset of the open set
Ω ⊂ Cn. Assume Ω \ K is connected, then any f ∈ O(Ω \ K) extends holomorphically to
Ω.

Proof. We need a lemma:

Lemma 0.16. Let η := η1dz̄1 + . . . ηndz̄n be a smooth (0, 1)-form with compact support on
Cn. If

∂ηi

∂z̄ j
=
∂η j

∂z̄i
(0.6)

for any pair i, j = 1, . . . , n, then we can always find a smooth function u ∈ C∞0 (Cn) such
that ∂̄u = η.

Assuming the lemma at present. Choose a real-valued smooth function with compact
support ϕ ∈ C∞0 (Ω) such that ϕ is identically 1 in a small neighborhood of K. Then
v := (1−ϕ) f can be viewed as a smooth function on Ω, vanishing near K and holomorphic
outside suppϕ. We define a smooth (0, 1)-form with compact support on Cn by

η :=
{
∂̄v = − f ∂̄ϕ, on Ω,

0, on Cn \Ω.
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Then it is easy to see that η satisfies (0.6), so by Lemma0.16, we can find u ∈ C∞0 (Cn) such
that ∂̄u = η. We define a function F on Ω by

F(z) := v(z) − u(z), ∀z ∈ Ω.

Then we have ∂̄F = 0, so F ∈ O(Ω).
Finally we need to check that F|Ω\K = f . Since Ω \ K is connected, by uniqueness

theorem, we only need to show that they coincide on an open subset of Ω \ K.
Note that u is in fact holomorphic on Cn \ suppϕ (which may not be connected). Since

it also has compact support, it necessarily vanishes on the unbounded component of Cn \

suppϕ by the uniqueness theorem. But the boundary of this unbounded component must
belong to Ω \ K, so we can find open subset of Ω \ K on which u = 0 and v = f , thus
F = f there. �

Proof of Lemma 0.16: We define

u(z) :=
1

2π
√
−1

∫
C

η1(w1, z2, . . . , zn)
w1 − z1

dw1 ∧ dw̄1.

Then it is easy to see that u ∈ C∞(Cn) and. since η1 has compact support, vanishes when
|z2| + · · · + |zn| is large enough. By Lemma0.1,

∂u
∂z̄1

= η1.

Also, for k = 2, . . . , n, by (0.6)

∂u
∂z̄k

(z) =
1

2π
√
−1

∫
C

∂k̄η1(w1, z2, . . . , zn)
w1 − z1

dw1 ∧ dw̄1

=
1

2π
√
−1

∫
C

∂1̄ηk(w1, z2, . . . , zn)
w1 − z1

dw1 ∧ dw̄1

= ηk(z).

The last equality also uses (0.1) as in the proof of Lemma0.1. So we proved that ∂̄u = η.
Finally we prove that u has compact support. We already knew that u vanishes when

one of |z2|, . . . , |zn| is large enough. Now choose R > 0 large enough and apply (0.1) to u
as a function of z2:

u(z) =
1

2π
√
−1

∫
|w|<R

∂u
∂z̄2

(z1,w, z3, . . . , zn)

w − z2
dw ∧ dw̄

=
1

2π
√
−1

∫
|w|<R

η2(z1,w, z3, . . . , zn)
w − z2

dw ∧ dw̄.

From this expression, we conclude that u also vanishes when |z1| is large enough, hence u
has compact support. �
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Remark 0.17. It is interesting to compare Lemma 0.16 with Lemma0.1. One could say
that many of the “strange” properties in higher dimensional complex analysis are caused
by the fact that we can solve the ∂̄-equation with a solution also with compact support.

As a direct corollary of Theorem 0.15, we see that all isolated singularities of holo-
morphic functions with more than one variable are always removable.

Definition 0.18. Let U ⊂ Cn be a domain, then a map f = ( f1, . . . , fm) : U → Cm is called
holomorphic, if all its components are holomorphic, i.e. fi ∈ O(U),∀i = 1, . . . ,m. If f is
bijective onto its image and its inverse is also holomorphic, then we say it is biholomor-
phic1, and U is biholomorphic to f (U).

Example 0.19. If Ω $ C is a simply connected domain, then Ω is biholomorphic to ∆(1) ⊂
C. This is the famous “Riemann mapping theorem”.

Example 0.20. 1. Any polydisc ∆(a, r) is biholomorphic to ∆(0, 1): we can choose the
biholomorphic map to be

f (z1, . . . , zn) =
(z1 − a1

r1
, . . . ,

zn − an

rn

)
.

2. The ball B(0, 1) ⊂ Cn is biholomorphic to the unbounded domain

H := {w ∈ Cn | Im wn >

n−1∑
i=1

|wi|
2}

by the map

w = f (z) = (
z1

1 + zn
, . . . ,

zn−1

1 + zn
,
√
−1

1 − zn

1 + zn
).

The boundary of H is called the “Heisenberg group”, which plays important roles
in CR-geometry and harmonic analysis.

Another example showing that complex analysis in higher dimensions is drastically
different form the 1-dimensional case is the following theorem discovered by H. Poincaré.

Theorem 0.21 (H. Poincaré). Let n ≥ 2, then B(0, 1) ⊂ Cn is not biholomorphic to
∆(0, 1) ⊂ Cn.

Proof. I learnt the following proof from the book of R. Narasimhan , where the author
attributes the idea to Remmert and Stein. Poincaré’s original proof is to show that the
groups of automorphisms (means biholomorphic maps onto itself) of these two domains
are not isomorphic. For simplicity, we only prove the n = 2 case and left the general case
to readers.

1The we necessarily have m = n
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Step 1: Suppose we have a biholomorphic map f (z,w) : ∆(0, 1) → B(0, 1). Then for any
sequence {zi} ⊂ ∆ ⊂ C with |zi| → 1, the sequence of one-variable holomorphic func-
tions gi(w) = f (zi,w) : ∆ → B(0, 1) is uniformly bounded. By Montel’s theorem, we
can assume that gi converges uniformly on compact subsets of ∆ to a holomorphic map
g(w) = (g1(w), g2(w)) : ∆→ B(0, 1).

Step 2: We have |g(w)| ≡ 1 on ∆.
In fact, if there is a point w0 ∈ ∆ such that g(w0) ∈ B(0, 1). Choose a small ε > 0

such that B(g(w0), ε) ⊂ B(0, 1). Since a biholomorphic map is necessarily proper (i.e.
the preimage of any compact set is also compact), f −1(B(g(w0), ε)

)
is a compact subset of

∆(0, 1). Since (zi,w0) → ∂∆(0, 1) as i → ∞, we have (zi,w0) < f −1(B(g(w0), ε)
)

when i is
large enough. This means

f (zi,w0) < B(g(w0), ε)

when i is large enough, contradicting the fact f (zi,w0)→ g(w0).

Step 3: From Step 2, we further conclude that g(w) is a constant map, i.e. g′(w) ≡ (0, 0).
One way of seeing this is to use the fact that a non-constant holomorphic function in

one variable is always an open map. Alternatively, we can compute the derivatives:

0 =
∂2|g(w)|2

∂w∂w̄

=
∂

∂w

(
g1(w)

∂ḡ1

∂w̄
(w)

)
+

∂

∂w

(
g2(w)

∂ḡ2

∂w̄
(w)

)
= |g′1(w)|2 + |g′2(w)|2.

It follows that
lim
i→∞

∂ f
∂w

(zi,w) = g′(w) ≡ 0.

This implies that for each fixed w ∈ ∆, ∂ f
∂w (z,w), as a function of z, is holomorphic in ∆ ⊂ C

and continuous on ∆̄ with boundary value 0. By maximum principle we get ∂ f
∂w (z,w) ≡ 0 on

∆(0, 1). This implies f is independent of w, contradicts the fact that f is a biholomorphic
map. �
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Many theorems in multi-variable calculus have “holomorphic” versions, for example,
the inverse function theorem and implicit function theorem. Let Ω be a non-empty domain
of Cn and f : Ω → Cm be a holomorphic map. Then we can define the holomorphic
Jacobian of f at z ∈ Ω to be the m × n matrix:

JCf (z) :=
∂( f1, . . . , fm)
∂(z1, . . . , zn)

:=
(∂ fi

∂z j
(z)

)
1≤i≤m,1≤ j≤n

.

Theorem 0.22 (The inverse function theorem). Let f : Ω → Cn be a holomorphic map
and JCf (z0) is non-degenerate for some point z0 ∈ Ω, then f has a local holomorphic
inverse g in a neighborhood of f (z0), and we have

JCg ( f (z)) = JCf (z)−1.

Proof. We shall first apply the traditional inverse function theorem to get an inverse map.
For this, we need to study the real Jacobian of f at z0:

JRf (z) :=


(
∂ui
∂x j

)
1≤i, j≤n

(
∂ui
∂y j

(z)
)

1≤i, j≤n(
∂vi
∂x j

)
1≤i, j≤n

(
∂vi
∂y j

(z)
)

1≤i, j≤n

 ,
where we write zi = xi +

√
−1yi and fi = ui +

√
−1vi.

Claim: For holomorphic f , we have

det JRf (z) = | det JCf (z)|2.

The reason is simple. For short, we write

JRf (z) =:
(

∂U
∂X

∂U
∂Y

∂V
∂X

∂V
∂Y

)
.

Then the Cauchy-Riemann equation can be written as

∂U
∂X

=
∂V
∂Y

,
∂U
∂Y

= −
∂V
∂X

,

and hence
JCf =

∂ f
∂Z

=
∂U
∂X
−
√
−1

∂U
∂Y

.

So we have

det JRf = det
(

∂U
∂X

∂U
∂Y

∂V
∂X

∂V
∂Y

)
= det

(
∂U
∂X

∂U
∂Y

−∂U
∂Y

∂U
∂X

)
= det

 JCf
∂U
∂Y

−
√
−1JCf

∂U
∂X

 = det

 JCf
∂U
∂Y

0 J
C

f


= | det JCf |

2.
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Now we have det JRf (z0) = | det JCf (z0)|2 , 0. By classical inverse function theorem, we
have a local C1 inverse of f near w0 := f (z0). We write it as z = g(w). We shall prove that
it is holomorphic.

In fact, from the identity wi = fi(g1(w), . . . , gn(w)), we have, by the chain rule,

0 =
∂wi

∂w̄ j
=

∑
k

∂ fi

∂zk
(g(w))

∂gk

∂w̄ j
(w).

Since the matrix JCf is invertible near z0, we conclude that ∂gk
∂w̄ j

= 0 for all k, j. So g is
holomorphic. Again taking ∂

∂w j
on both sides of wi = fi(g1(w), . . . , gn(w)), we get In =

JCf (g(w))JCg (w). �

Theorem 0.23 (The implicit function theorem). Let f : Ω → Cm be a holomorphic map
with m < n. Suppose f (z0,w0) = 0 with z0 ∈ C

n−m,w0 ∈ C
m and (z0,w0) ∈ Ω. If

det
∂( f1, . . . , fm)

∂(zn−m+1, . . . , zn)
(z0,w0) , 0,

then we can find a holomorphic map g : ∆(z0, ε) → ∆(w0, δ) ⊂ Cm such that g(z0) = w0

and
f (z, g(z)) ≡ 0, ∀z ∈ ∆(z0, ε).

Moreover, we have{
(z,w) ∈ ∆(z0, ε) × ∆(w0, δ)| f (z,w) = 0

}
=

{
(z,w)| z ∈ ∆(z0, ε),w = g(z)

}
.

Proof. There are at least two ways of proof. For example, we can argue as in the inverse
function theorem by reducing it to the classical implicit function theorem, or we can con-
sider the map f̃ (z,w) = (z, f (z,w)) : Ω→ Cn and apply Theorem 0.22. We leave the detail
as an exercise. �

Remark 0.24. The implicit function theorem says that if a holomorphic map is non-
degenerate at a given zero point, then its zero locus is locally a graph near that point.
What happens if the Jacobian degenerates at a given point? For example, consider the
m = 1 case. If a holomorphic function f (z1, . . . , zn−1,w) satisfies ∂k f

∂wk (z0,w0) , 0 but
∂i f
∂wi (z0,w0) = 0,∀i = 0, . . . , k − 1. What can we say about the zero locus of f near (z0,w0)?
Weierstrass’s “preparation theorem” answers this question. This theorem is fundamental
to the local theory of several complex variables.
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[3] Lars Hörmander, An introduction to complex analysis in several variables,Third edition. North-
Holland Mathematical Library, 7. North-Holland Publishing Co., Amsterdam, 1990.

13


