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1 Complex manifolds and complex vector bundles

1.1 Complex manifolds

Roughly speaking, a complex manifold is a topological space X on which we can talk
about “holomorphic” functions. Since we know what does a holomorphic function means
in Euclidean spaces, the first condition we impose on X is:

Condition 1:(existence of coordinate charts) X is locally homeomorphic to open sets of
Cn. To be precise, we require that there is an open coveringU = {Ui}i∈Λ of X such that for
each Ui we have a homeomorphism ϕi : Ui → ϕi(Ui) ⊂ Cn onto an open set ϕi(Ui) of Cn.

Given these coordinates, we should define a function f : Ω → C to be holomorphic
if all its coordinate-representations f ◦ ϕ−1

i ∈ O(ϕi(Ui ∩ Ω)). But is this a well-defined
notion? For example if Ω ⊂ Ui ∩ U j , ∅, then on Ω we have two sets of coordinates. Is
it possible that f ◦ ϕ−1

i ∈ O(ϕi(Ui ∩ Ω)) but f ◦ ϕ−1
j < O(ϕi(U j ∩ Ω))? To avoid this, note

that f ◦ ϕ−1
j =

(
f ◦ ϕ−1

i
)
◦
(
ϕi ◦ ϕ

−1
j
)
, so we require:

Condition 2:(compatibility) Coordinate changes of Condition 1 should be holomorphic.
To be precise, we require that whenever Ui ∩U j , ∅, we have ϕi ◦ ϕ

−1
j is a biholomorphic

map from ϕ j(Ui ∩ U j) to ϕi(Ui ∩ U j).

Given these 2 conditions, one can check easily that the notion of “holomorphic func-
tion” makes perfect sense. However, to avoid pathology and use more analytic tools such
as metrics and integration, we also require a complex manifold to be a nice topological
space:

Condition 3: X satisfies T2 and C2 axioms, i.e. X is a Hausdorff space, and has a count-
able topological basis.

Definition 1.1. A complex (analytic) manifold of dimension n is a topological space X
satisfying Conditions 1,2,3 above. A 1-dimensional complex manifold is also known as a
“Riemann surface”. A map f : X → C from a complex manifold X is called a “holomor-
phic function”, if f ◦ ϕ−1

i ∈ O(ϕi(Ui)) for all i ∈ Λ. In this case, we write f ∈ O(X).
If X,Y are both complex manifolds of dimensions n and m respectively, a map F : X →

Y is called “holomorphic”, if for all coordinate charts (U, ϕ) of X and (V, ψ) of Y, the map
ψ ◦ F ◦ ϕ−1 is a holomorphic map on ϕ

(
U ∩ F−1(V)

)
⊂ Cn whenever U ∩ F−1(V) , ∅. A

holomorphic map with a holomorphic inverse is called “biholomorphic”.

Remark 1.2. In standard textbooks, the set of coordinate charts {(Ui, ϕi)}i∈Λ is assumed
to be maximal, i.e., whenever a homeomorphism from an open set V, ψ : V → ψ(V) ⊂ Cn

is compatible with (Ui, ϕi) for all Ui ∩ V , ∅, we have (V, ψ) ∈ {(Ui, ϕi)}i∈Λ. It is easy
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to check that from the coordinate charts in our definition, one can always enlarge it to a
unique maximal one satisfying the compatibility condition.

Example 1.3. 1. Open subsets of Cn are complex manifolds.

2. Let {e1, . . . , e2n} be any fixed R-basis of Cn, and let Λ := {m1e1 + · · ·+m2ne2n| mi ∈ Z}
be a lattice of rank 2n. Then we can define the quotient space Cn/Λ, it is a com-
pact Hausdorff space equipped with quotient topology. There is a natural complex
manifold structure on Cn/Λ, we call this complex manifold a “complex torus”.

3. Let P ∈ C[z,w] be a polynomial of degree d. Define

C := {(z,w)| P(z,w) = 0}.

We call it an “affine plane algebraic curve”. Assume P is irreducible and ∂P
∂z ,

∂P
∂w have

no common zeroes on C. Then C is a natural complex manifold. The coordinates
can be chosen in the following way: if ∂P

∂w (z0,w0) , 0, then we can apply the implicit
function theorem ?? to find a neighborhood ∆(z0, ε) × ∆(w0, δ) and a holomorphic
function g(z) such that U := C∩

(
∆(z0, ε)×∆(w0, δ)

)
= {(z,w)| z ∈ ∆(z0, ε),w = g(z)}.

We choose ϕ : U → C to be ϕ(z,w) = z. If ∂P
∂z (z0,w0) , 0, we use w as local coordi-

nate. Exercise: what’s the coordinates transformation function?

The last example is a special case of “complex submanifold” we now define:

Definition 1.4. A closed subset Y of a n-dimensional complex manifold X is called a “com-
plex (analytic) submanifold” of dimension k, if for any p ∈ Y, we can find a compatible
chart (U, ϕ) of X such that p ∈ U and

ϕ(U ∩ Y) = {(z1, . . . , zn) ∈ ϕ(U)| zk+1 = · · · = zn = 0}.

One can check that the restriction of such charts (we call them “adapted charts”) to Y
makes Y a complex manifold and the inclusion Y ⊂ X is a holomorphic map.

Example 1.5 (The complex projective space). We define an equivalence relation on Cn+1 \

{0}: (z0, . . . , zn) ∼ (w0, . . . ,wn) if and only if we can find a non-zero λ ∈ C (write λ ∈ C∗

for short) such that wi = λzi for all i = 0, . . . , n. The equivalent class of (z0, . . . , zn) is
denoted by [z0, . . . , zn]. The n-dimensional complex projective space CPn is defined to be
the space of all equivalent classes, endowed with quotient topology. Then it is a compact
Hausdorff space. We choose the holomorphic coordinate charts as follows: Define

Ui := {[z0, . . . , zn] ∈ CPn| zi , 0}, i = 0, . . . , n.

These are open sets, and we define

ϕi : Ui → C
n, ϕi([z0, . . . , zn]) := (

z0

zi
, . . . ,

ẑi

zi
, . . . ,

zn

zi
).

The checking of compatibility is left to readers. Also it is easy to check that CP1 is our
familiar S 2.
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Let F1, . . . , Fk ∈ C[z0, . . . , zn] be a set of irreducible homogeneous polynomials of
degrees d1, . . . , dk respectively. Then the set

V(F1, . . . , Fk) := {[z0, . . . , zn]| F1(z0, . . . , zn) = · · · = Fk(z0, . . . , zn) = 0}

is well-defined and is called a (complex) projective algebraic variety. If we assume that
V(F1, . . . , Fk) is a complex submanifold of CPn, then it will be called a “projective alge-
braic manifold”.

Example 1.6. If F ∈ C[z0, . . . , zn] is irreducible and homogeneous of degree d. If we
assume that the only common zero of ∂F

∂z0
, . . . , ∂F

∂zn
in Cn+1 is (0, . . . , 0). Then V(F) is

a complex submanifold of dimension n − 1. We check this on U0. V(F) ∩ U0 is the
zero locus of the holomorphic function F(1, z1, . . . , zn) ∈ O(U0). We shall show that
∂F
∂z1

(1, z1, . . . , zn), . . . ∂F
∂zn

(1, z1, . . . , zn) have no common zeroes on V(F) ∩ U0.
Suppose

F(1, z0
1, . . . z

0
n) =

∂F
∂z1

(1, z0
1, . . . , z

0
n) = · · · =

∂F
∂zn

(1, z0
1, . . . , z

0
n) = 0.

By Euler’s theorem on homogeneous functions, we have

∂F
∂z0

(1, z0
1, . . . , z

0
n) + z0

1
∂F
∂z1

(1, z0
1, . . . , z

0
n) + · · · + z0

n
∂F
∂zn

(1, z0
1, . . . , z

0
n) = dF(1, z0

1, . . . , z
0
n) = 0.

This implies ∂F
∂z0

(1, z0
1, . . . , z

0
n) = 0, so (1, z0

1, . . . , z
0
n) is a common zero of ∂F

∂z0
, . . . , ∂F

∂zn
in Cn+1

different from (0, . . . , 0).
For example, V(zd

0 + · · · + zd
n) is a smooth submanifold of CPn, called the “Fermat

hypersurface” of degree d.

A generalization of submanifold is the following:

Definition 1.7. A closed subset A of a complex manifold X is called an “analytic subvari-
ety”, if it is locally the common zeroes of finitely many holomorphic functions, i.e. ∀p ∈ A,
there is an open set U ⊂ X and f1, . . . , fk ∈ O(U) such that A ∩ U = {z ∈ U | f1(z) = · · · =

fk(z) = 0}.
An analytic subvariety A is called a “hypersurface” if it is locally the zero locus of a

holomorphic function.

Note that a complex submanifold is an analytic subvariety, we just choose U to be the
domain of the adapted chart and fi to be zk+1, . . . , zn.

Let A ⊂ X be an analytic subvariety. p ∈ A is called a “regular point”, if we can find
open U ⊂ X and f1, . . . , fk ∈ O(U) such that A ∩ U = {z ∈ U | f1(z) = · · · = fk(z) = 0} and

rank
∂( f1, . . . , fk)
∂(z1, . . . , zn)

(p) = k.
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In this case, A is locally near p a complex submanifold of dimension n − k: without loss
of generality, assume

det
∂( f1, . . . , fk)
∂(z1, . . . , zk)

(p) , 0,

then we can choose a new compatible coordinate system ( f1, . . . , fk, zk+1, . . . , zn). This is
an adapted chart for A near p.

The locus of regular points of A is denoted by Areg. Its complement in A is called the
“singular locus”, and its elements are called “singular points of A”.

Chow’s theorem says that any complex analytic subvariety of CPn is projective alge-
braic, i.e., the common zeroes of finitely many homogeneous polynomials.

To end this section, we say something about the existence of complex structures on a
given differential manifold. A complex manifold is an even dimensional orientable differ-
ential manifold. However, for a given even dimensional oriented manifold, it is not always
clear whether or not we can make it a complex manifold. There are topological obstruc-
tions to “almost complex structure”, this can rule out all even dimensional spheres except
S 2 and S 6. We already knew S 2 is a complex manifold. But the S 6 case is still open.
In this view, we give an example of complex structures on product of odd dimensional
spheres:

Example 1.8 (Calabi-Eckman). We can make S 2p+1 × S 2q+1 into a complex manifold. The
idea is that we can write

S 2p+1 = {z ∈ Cp+1|

p∑
i=0

|zi|
2 = 1}, S 2q+1 = {z ∈ Cq+1|

q∑
j=0

|z j|
2 = 1},

and we have the Hopf fibration maps:

πp : S 2p+1 → CPp, πq : S 2q+1 → CPq,

each with fiber S 1. So if we consider the map π = (πp, πq) : S 2p+1 × S 2q+1 → CPp × CPq,
then we can view S 2p+1 × S 2q+1 as a fiber bundle on CPp × CPq, which is a complex
manifold, with fiber S 1 × S 1 = T 2, which can also be made a complex manifold.

To be precise, fix a τ ∈ C with Imτ > 0. We donote by Tτ the complex torus C/ < 1, τ >.
Consider the open sets:

Uk j := {(z, z′) ∈ S 2p+1 × S 2q+1| zkz′j , 0},

and the map hk j : Uk j → C
p+q × Tτ given by

hk j(z, z′) = (
z0

zk
, . . . ,

ẑk

zk
, . . . ,

zp

zk
,

z′0
z′j
, . . . ,

ẑ′j
z′j
, . . . ,

z′q
z′j
, tk j),

where tk j := 1
2π
√
−1

(log zk + τ log z′j) mod < 1, τ >. Exercise: check that these charts
makes S 2p+1 × S 2q+1 a complex manifold.
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A direct application of the maximum principle gives:

Theorem 1.9. Any holomorphic function on a compact connected complex manifold should
be a constant.

Let M be a complex submanifolds of Cn. Since the restriction of complex coordinate
functions of Cn to M are holomorphic functions on M, we get:

Corollary 1.10. There are no compact complex submanifolds of Cn of positive dimension.

Remark 1.11. Those non-compact complex manifolds which admit proper holomorphic
embeddings into CN for some large N are precisely “Stein manifolds” in complex analysis
(Remmert’s theorem).

The triumph of this short course is Kodaira’s “projective embedding theorem”, char-
acterizing those compact complex manfolds which admit holomorphic embeddings into
CPN for some large N, i.e., projective algebraic manifolds.
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1.2 Vector bundles

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of
vector spaces, varying holomorphically.

Definition 1.12. A holomorphic vector bundle of rank r over a n-dimensional complex
manifold X is a complex manifold E of dimension n + r, together with a holomorphic
surjective map π : E → X satisfying:

1. (Fiberwise linear) Each fiber Ep := π−1(p) has the structure of r-dimensional vector
space over C;

2. (Locally trivial) There is an open cover of X, U = {Ui}i∈Λ such that each π−1(Ui)
is biholomorphic to Ui × C

r via ϕi : π−1(Ui) → Ui × C
r, and Ep ↪→ π−1(Ui) →

Ui × C
r is a linear isomorphism onto {p} × Cr for any p ∈ Ui. ϕi is called a “local

trivialization”.

In this case, whenever Ui ∩U j , ∅, we have a holomorphic map, called the “transition
map”, ψi j : Ui∩U j → GL(r,C) (viewed as an open subset of Cr2

) such that ϕi ◦ϕ
−1
j (z, v) =

(z, ψi j(z)v). These families of transition maps satisfies the “cocycle condition”:

(1) ψi jψ ji = Ir on Ui ∩ U j;

(2) Whenever Ui ∩ U j ∩ Uk , ∅, we have ψi jψ jkψki = Ir on Ui ∩ U j ∩ Uk.

The name “cocycle” is no coincidence. In fact we will see later that {ψi j} above is indeed
a cocycle in Čech’s approach to sheaf cohomology theory.

Remark 1.13. On the other hand, if we are given a set of holomorphic transition maps
ψi j : Ui∩U j → GL(r,C) satisfying the cocycle condition, we can construct a holomorphic
vector bundle by setting E =

∐
i∈Λ(Ui × C

r)/ ∼, where (z, v) ∼ (z′,w) for (z, v) ∈ Ui × C
r

and (z′,w) ∈ U j × C
r if and only if z = z′ and v = ψi j(z)w. We leave the detail as an

exercise.

A holomorphic vector bundle of rank 1 is usually called a “holomorphic line bundle”.

Definition 1.14 (holomorphic section). Let π : E → X be a holomorphic vector bundle
over X. Let U ⊂ X be an open set. A holomorphic section of E over U is a holomorphic
map s : U → E such that π◦ s = idU , i.e., s(p) ∈ Ep for any p ∈ U. The set of holomorphic
sections over U is usually denoted by Γ(U,O(E)) or O(E)(U).

One of the fundamental problem for the theory of vector bundles is the construction of
global holomorphic sections of a given bundle. An important tool is the L2-method for the
∂̄-equation. One can find the basics from Hörmander’s book. It is interesting that whether
or not we can solve the equation depends on the geometry, in particular, the curvature of
the bundle.
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Definition 1.15 (bundle map). Let πE : E → X and πF : F → X are holomorphic vector
bundles of ranks r and s respectively. A bundle map from E to F is a holomorphic map
f : E → F such that f maps Ep to Fp for any p ∈ X and f |Ep : Ep → Fp is linear. When a
bundle map has an inverse bundle map, we will say that these two bundles are isomorphic.

Another fundamental problem is the classification problem. One important tool is the
theory of characteristic classes that we shall discuss later. Also the set of isomorphic
classes of holomorphic vector bundles over a given complex manifold has rich structures
and is an important invariant for the complex manifold.

Example 1.16 (trivial bundle). X × Cr with π1 : X × Cr → X is a holomorphic vector
bundle over X, called the “trivial bundle” over X, denoted by Cr.

Example 1.17 (holomorphic tangent bundle). Let X be a complex manifold of dimension
n. We shall now construct its “holomorphic tangent bundle” T X as follows:

Let p ∈ X, we first define the ring

OX,p := lim
−→

OX(U),

where the direct limit is taken with respect to open sets p ∈ U. For persons not familiar
with direct limit, this is

∐
U3p OX(U)/ ∼, with f ∈ OX(U) equivalent to g ∈ OX(V) iff we

can find another open set p ∈ W ⊂ U ∩ V such that f |W = g|W . As an exercise, we can see
that OX,p is isomorphic to the ring of convergent power series C{z1, . . . , zn}. An element of
OX,p is called a “germ of holomorphic function” at p.

A tangent vector at p is a derivation v : OX,p → C, i.e., a C-linear map satisfying the
Leibniz rule

v( f g) = v( f )g(p) + f (p)v(g).

The set of tangent vectors at p is easily seen to be a C-vector space. We call it the (holo-
morphic) tangent space of X at p, denoted by TpX.

If ϕ : Ui → C
n is a holomorphic coordinate chart with ϕi = (z1, . . . , zn). Then we can

define ∂
∂zi
|p ∈ TpX to be

∂

∂zi
|p( f ) :=

∂( f ◦ ϕ−1
i )

∂zi
(ϕi(p)).

Then one can show that { ∂
∂zi
|p}

n
i=1 is a basis of TpX.

Let T X :=
∐

p∈X TpX, and define π : T X → X in the obvious way. We can make it
a holomorphic vector bundle of rank n over X as follows: Let (Ui, ϕi) be a holomorphic
chart. Then we can define the local trivialization ϕ̃i : π−1(Ui)→ Ui × C

n to be

ϕ̃i(q,
∑

i

ai
∂

∂zi
|q) := (q, a1, . . . , an).

This gives a complex structure on T X and at the same time gives a local trivialization of
T X over Ui.

A holomorphic section of T X over U is called a “holomorphic vector field” on U.
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Example 1.18 (holomorphic cotangent bundle). Any f ∈ OX,p defines a linear functional
on TpX by v 7→ v( f ). We call this d f |p ∈ (TpX)∗ =: T ∗pX. T ∗pX is called the (holomorphic)
cotangent space of X at p. It is easy to see that if (Ui, ϕi) is a holomorphic chart, then
{dzi|p}

n
i=1 is the basis of T ∗pX dual to { ∂

∂zi
|p}

n
i=1.

We can similarly give T ∗X :=
∐

p∈X T ∗pX a holomorphic bundle structure, called the
“(holomorphic) cotangent bundle” of X. We leave this as an exercise.

A holomorphic section of T ∗X over U is called a “holomorphic 1-form” on U.

In this course, holomorphic line bundles play very important roles. Let π : L → X be
a holomorphic line bundle and {Ui}i∈Λ an open cover by trivialization neighborhoods, and
ϕi : π−1(Ui) → Ui × C the trivialization map. Since GL(1,C) = C∗, now the transition
maps ψi j become non-vanishing holomorphic functions on Ui ∩ U j. Let s ∈ Γ(X,O(L)),
then ϕi ◦ s|Ui : Ui → Ui × C could be represented by a holomorphic function fi ∈ O(Ui),
such that ϕi ◦ s|Ui(p) = (p, fi(p)). When Ui ∩U j , ∅, since s|Ui = s|U j on Ui ∩U j, we have
for any p ∈ Ui ∩ U j:

(p, fi(p)) = ϕi(s(p))

= (ϕi ◦ ϕ
−1
j ) ◦ ϕ j(s(p))

= (ϕi ◦ ϕ
−1
j )(p, f j(p))

= (p, ψi j(p) f j(p)).

So we have fi = ψi j f j on Ui ∩ U j. On the other hand, it is direct to check that given a
family of holomorphic functions fi ∈ O(Ui), satisfying fi = ψi j f j on Ui ∩ U j, then there
corresponds a unique s ∈ Γ(X,O(L)).

Example 1.19 (Universal line bundle over CPn). 1 We define a holomorphic line bundle
U → CPn as follows: As a set,

U = {([z], v) ∈ CPn × Cn+1| v ∈ [z]},

where we view [z] as the 1-dimensional subspace of Cn+1 determined by z. As one can
check easily, we can write

U = {([z], v) ∈ CPn × Cn+1| viz j − z jzi = 0,∀i, j = 0, . . . , n}.

From this, it is easy to see that U is a complex submanifold of CPn × Cn+1, and hence a
complex manifold. The projection onto its first component CPn is clearly a holomorphic
map, with fiber the 1-dimensional linear subspace of Cn+1 generated by (z0, . . . , zn).

For local triviality, we use the holomorphic charts {(Ui, ϕi)}ni=0 defined before. On
π−1(Ui), each v ∈ U[z] can be uniquely write as t · ( z0

zi
, . . . , 1, . . . , zn

zi
), so we define

ϕ̃i([z0, . . . , zn], t · (
z0

zi
, . . . , 1, . . . ,

zn

zi
)) = ([z0, . . . , zn], t) ∈ Ui × C.

This is easily seen to be a biholomorphic map.
It is easy to write down the transition functions: ψi j([z]) = zi

z j
.

1Also called the “tautological bundle”

9



Construct new bundles from old ones: The usual constructions in linear algebra all have
counterparts in the category of vector bundles over X.

Direct sum
Let E, F be vector bundles over X of rank r and s respectively. Then their direct sum

is a vector bundle of rank r + s with fiber Ep ⊕ Fp. To describe it, it suffices to write down
the transition maps: if {Ui}i∈Λ is a common trivializing covering of X for E and F. The
transition maps are ψi j and ηi j respectively, then the transition maps for E⊕F are precisely
diag(ψi j, ηi j) with values in GL(r + s,C).

Tensor product
Let E, F be vector bundles over X of rank r and s respectively. Then their tensor prod-

uct is a vector bundle of rank rs with fiber Ep⊗Fp. In applications, we only use the tensor
product of a line bundle L with a general vector bundle E. In this case, if the transition
maps for E and L with respect to a common trivializing covering are ψi j and ηi j, then the
transition maps of E ⊗ L are ηi jψi j.

Hom(E, F)
Let E, F be vector bundles over X of rank r and s respectively. Then Hom(E, F) is a

vector bundle of rank rs with fiber Hom(Ep, Fp), the space of linear maps from Ep to Fp.
In particular, we define the dual of E to be E∗ := Hom(E,C), whose fiber over p is exactly
the dual space of Ep, (Ep)∗.

When L → X is a holomorphic line bundle, we can easily describe L∗ in terms of
transition functions: if the transition functions of L are ψi j, then the transition functions of
L∗ are ψ−1

i j . For this reason, we usually also write L−1 for L∗.

Exercise: Prove that the bundle Hom(E, F) is isomorphic to E∗ ⊗ F.

Example 1.20. Let U → CPn be the universal bundle, its dual is usually denoted by H, we
call it the “hyperplane line bundle”. 2 Another common notation for H is O(1). We also
write the Hk, or O(k), short for the k-times tensor product of H, Hk := H⊗k = H ⊗ · · · ⊗H,
and O(−k) := H−k := U⊗k.

We now study the holomorphic sections of Hk for k > 0. Let s ∈ Γ(CPn,O(Hk)), we
know that s can be represented by a family of holomorphic functions fα ∈ O(Uα), where
Uα = {[z] ∈ CPn| zα , 0}. These fα’s satisfy the condition

fα([z]) =
( zβ
zα

)k
fβ([z])

on Uα ∩ Uβ.

2The reason for this name should be clear after we find out what are the zero locus of its holomorphic
sections.
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Pulling back to Cn+1 \ {0}, we can view zk
α fα([z]) as a homogeneous function of degree

k on Cn+1 \ {zα = 0}, which is also holomorphic. Now the above compatibility condition
means that these zα fα([z])’s could be “glued” together to form a holomorphic function
on Cn+1 \ {0}, homogeneous of degree k. By Hartogs extension theorem ??, this function
extends to a holomorphic function F(z0, . . . , zn) ∈ O(Cn+1). We necessarily have F(0) = 0
by homogeneity and continuity. From this we easily conclude that F is a homogeneous
polynomial of degree k.

On the other hand, it is easy to see that any homogeneous polynomial of degree k in
C[z0, . . . , zn] determines uniquely a holomorphic section of Hk. So we have

dimC Γ(CPn,O(Hk)) =

(
n + k

n

)
.

Exercise: Prove that when k < 0, Γ(CPn,O(Hk)) = {0}.

Definition 1.21. The isomorphic classes of holomorphic line bundles over X is called the
“Picard group” of X, denoted by Pic(X).

Pic(X) is indeed a group: we define [Li] · [L2] := [L1 ⊗ L2], then C is the identity
element and [L]−1 is just [L∗].

For CPn, we have Pic(CPn) � Z, and any holomorphic line bundle is isomorphic to
O(k) for some k ∈ Z. However, this is rather deep, and we can not prove it here. One can
find a proof in Chapter 1 of [1].

Wedge product
Let E be vector bundles over X of rank r, for k ∈ N and k ≤ r, the degree k wedge

product of E is a vector bundle ΛkE with fiber ΛkEp at p. The highest degree wedge
product ΛrE is also called the “determinant line bundle” of E, since its transition functions
are precisely detψi j.

Ωp(X) := ΛpT ∗X is the bundle of holomorphic p-forms.

Pull back via holomorphic map
Let E → X be a holomorphic vector bundle of rank r, f : Y → X be a holomorphic

map between complex manifolds, then we can define a “pull back” holomorphic vector
f ∗E over Y . In fact, we can simply define the total space of f ∗E to be

f ∗E := {(y, (x, v)) ∈ Y × E| x = f (y)},

and p : f ∗E → Y is just the projection to its first component.
We can also describe f ∗E via transition maps: if {Ui}i∈Λ is a trivializing covering of

X for E with transition maps ψi j : Ui ∩ U j → GL(r,C), and we choose an open covering
{Vα}α∈I such that f (Vα) ⊂ Ui for some i ∈ Λ. We fix a map τ : I → Λ such that
f (Vα) ⊂ Uτ(α). Then the transition maps for f ∗E with respect to {Vα}α∈I are just f ∗ψτ(α)τ(β) =

ψτ(α)τ(β) ◦ f : Vα ∩ Vβ → GL(r,C).
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1.3 Almost complex manifolds

The definition of a n-dimensional differential manifold is similar to that of complex man-
ifolds. Just replace every Cn by Rn and every “holomorphic” by “smooth” or C∞. Similar
for differential vector bundles over a differential manifold. A differential manifold is called
orientable, if we can find a coordinate covering such that whenever two coordinate charts
intersect, the Jacobian determinant of the coordinate transform is positive.

Lemma 1.22. A n-dimensional complex manifold X is also a 2n-dimensional orientable
differential manifold.

This follows from the computation we did before in the proof of Theorem ??. Here if
we have a holomorphic coordinate chart (U, ϕ) with ϕ = (zi, . . . , zn), then the correspond-
ing chart to define the oriented differential structure is (x1, . . . , xn, y1, . . . , yn).

For p ∈ X, we can define a real tangent vector at p and the corresponding real tangent
space at p, TRp X. In terms of coordinate chart ϕ = (z1, . . . , zn), we have

TRp X = R <
∂

∂xi
,
∂

∂yi
>n

i=1 .

We can give
∐

p∈X TRp X a structure of R-vector bundle of rank 2n, called the “real tangent
bundle” of X, and denoted by TRX. Similarly, we can define the real cotangent bundle
T ∗RX.

There are two ways to get from this our previous holomorphic tangent and cotangent
bundles.

Recall that any real vector space V of dimension 2n can be regarded as C-vector space
of dimension n once we know what does it mean to multiply

√
−1 to an element of V .

This is equivalent to giving a R-linear map J : V → V such that J2 := J ◦ J = −id. We call
such a J a “complex structure” on V . In this case, V can be regarded as a C-vector space
by defining

(α +
√
−1β)v := αv + βJv, ∀α, β ∈ R,∀v ∈ V.

Definition 1.23. Let M be a real orientable differential manifold of dimension 2n. An
almost complex structure on M is a bundle map J : T M → T M satisfying J2 = −id.

Note that a complex manifold X has a natural almost complex structure: just define

J
∂

∂xi
=

∂

∂yi
, J

∂

∂yi
= −

∂

∂xi
.

If an almost complex structure is induced from a complex structure as above, we will
call it “integrable”.

Example 1.24. For S 2, we can define J : TS 2 → TS 2 as follows: we identify TxS 2 with
the subspace of R3:

TxS 2 � {y ∈ R3| x · y = 0}.
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Then we define Jx : TxS 2 → TxS 2 by

Jx(y) := x × y.

On can check that this is an integrable almost complex structure, induced by the complex
structure of S 2 � CP1.

Example 1.25. For S 6, we have a similar almost complex structure given by “wedge
product” in R7. Note that the wedge product in R3 can be defined as the product of purely
imaginary quaternions. To define this wedge product in R7, we shall use Cayley’s theory
of octonions.

We write H � R4 the space of quaternions q = a + bi + cj + dk with a, b, c, d ∈ R,
satisfying i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, and ki = −ik = j.
Then this multiplication is still associative but not commutative. For q ∈ H, we define
q̄ := a − bi − cj − dk, then |q|2 = qq̄.

Now we define the space of octonians, O � R8, as O := {x = (q1, q2)| q1, q2 ∈ H}. The
multiplication is defined by

(q1, q2)(q′1, q
′
2) := (q1q′1 − q̄′2q2, q′2q1 + q2q̄′1).

And we also define x̄ := (q̄1,−q2). Then we still have xx̄ = x · x = |x|2, here the · means the
usual inner product in R8. Note that this multiplication is even not associative.

We identify R7 as the space of purely imaginary octonians. If x, x′ ∈ R7, we define
x × x′ as the imaginary part of xx′. Then one can check that xx = −|x|2, x × x′ = −x′ × x,
and (x × x′) · x′′ = x · (x′ × x′′).

From this, one can define an almost complex structure on S 6 ⊂ R7 in a similar way as
S 2: identify TxS 6 with {y ∈ R7| x · y = 0}, then define

Jx(y) := x × y.

Remark 1.26. For spheres of even dimension 2n, it is known (Borel-Serre) that there
are no almost complex structures unless n = 1, 3. A modern proof of this fact using
characteristic classes can be found in P. May’s book on algebraic topology. It is generally
believed that there are no integrable almost complex structures on S 6, however S.T. Yau
has a different conjecture saying that one can make S 6 into a complex manifold. This is
still open.

Now given J : TRX → TRX, we can view TRX as a C-vector bundle. One can check
that, when X is a complex manifold, (TRX, J) is isomorphic to the holomorphic tangent
bundle T X as C-vector bundles. This is the first approach.

The second approach also uses J. Let again V be a real vector space with complex
structure J. But now we simply complexify V to get

VC := V ⊗R C.
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We also extend J C-linearly to VC, again J2 = −id.
There is a direct sum decomposition of VC = V1,0 ⊕ V0,1, which are

√
−1 and −

√
−1

eigenspaces of J respectively. In fact we have a very precise description of V1,0 and V0,1:

V1,0 = {v −
√
−1Jv| v ∈ V}, V0,1 = {v +

√
−1Jv| v ∈ V}.

It is direct to check that they are both C-linear subspaces of VC and V0,1 = V1,0.
Now apply this to (TRX, J) for a manifold with an almost complex structure: define

the complexified tangent bundle to be

TCX := TRX ⊗R C

and we have the decomposition

TCX = T 1,0X ⊕ T 0,1X,

which are the
√
−1 and −

√
−1 eigenspaces of J, respectively. When J is integrable, T 1,0X

is locally generated by { ∂
∂zi
}ni=1, so we can again identify it with our previous holomorphic

vector bundle T X.
We define T ∗1,0X to be the subspace of T ∗CX := T ∗RX⊗RC that annihilates T 0,1X. And

similarly define T ∗0,1X. Then

T ∗CX = T ∗1,0X ⊕ T ∗0,1X.

When J is integrable, T ∗1,0X is locally generated by {dzi}1≤i≤n and T ∗0,1X is generated
by {dz̄i}1≤i≤n. We define the vector bundle Λp,qT ∗X, the bundle of (p, q)-forms to be the
sub-bundle of Λp+qT ∗CX, generated by ΛpT ∗1,0X and ΛqT ∗0,1X. Then we have

ΛkT ∗CX =

k⊕
p=0

Λp,k−pT ∗X,

and we denote the projection map of Λp+qT ∗CX onto Λp,qT ∗X by Πp,q. The set of smooth
sections of Λp,qT ∗X over an open set U is denoted by Ap,q(U), while the set of smooth
sections of ΛkT ∗CX is denoted by Ak(U).

When J is integrable, a smooth section of Λp,qT ∗X over a coordinate open set U is of
the forms ∑

1≤i1<···<ip≤n,1≤ j1<···< jq≤n

ai1...ip, j̄1... j̄qdzi1 ∧ · · · ∧ dzip ∧ dz̄ j1 ∧ · · · ∧ dz̄ jq ,

where ai1...ip, j̄1... j̄q ∈ C∞(U;C).
The exterior differential operator d extends C-linearly to d : Ak(U) → Ak+1(U). We

define the operators
∂ := Πp+1,q ◦ d : Ap,q(U)→ Ap+1,q(U),
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and
∂̄ := Πp,q+1 ◦ d : Ap,q(U)→ Ap,q+1(U).

When J is integrable, then for η =
∑
|I|=p,|J|=q aI J̄dzI ∧ dz̄J ∈ Ap,q(U), we have

dη =
∑
I,J

daI J̄ ∧ dzI ∧ dz̄J

=
∑
I,J

∂aI J̄ ∧ dzI ∧ dz̄J +
∑
I,J

∂̄aI J̄ ∧ dzI ∧ dz̄J ∈ Ap+1,q(U) ⊕ Ap,q+1(U).

So we always have d = ∂ + ∂̄. Conversely, we have:

Theorem 1.27 (Newlander-Nirenberg). An almost complex structure is integrable if and
only if d = ∂ + ∂̄ (equivalently, [T 1,0X,T 1,0X] ⊂ T 1,0X) for any Ap,q(U).

Besides the original proof of Newlander-Nirenberg, there is another proof by J.J. Kohn
based on techniques for solving the “∂̄-equation”, which can be found in Hörmander’s
book.

15



1.4 De Rham cohomology and Dolbeault cohomology

In the following, we always assume the almost complex structure J is integrable, i.e., X is
a complex manifold.

Now d = ∂+ ∂̄. Since we always have d2 = 0, a fact first noticed by Poincaré, we have

0 = ∂2 + ∂̄2 + (∂∂̄ + ∂̄∂),

acting on Ap,q(X). Comparing types, we get

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

We can define from these identities several differential cochain complexes:
The de Rham complex

0→ A0(X)
d
−→ A1(X)

d
−→ . . .

d
−→ A2n(X)→ 0

We define the de Rham cohomology (with coefficient C)

Hk
dR(X,C) := Ker

(
Ak(X)

d
−→ Ak+1(X)

)
/dAk−1(X).

The Dolbeault complex

0→ Ap,0(X)
∂̄
−→ Ap,1(X)

∂̄
−→ . . .

∂̄
−→ Ap,n(X)→ 0.

We define the Dolbeault cohomology

Hp,q
∂̄

(X) := Ker
(
Ap,q(X)

∂̄
−→ Ap,q+1(X)

)
/∂̄Ap,q−1(X).

The holomorphic de Rham complex

0→ Ω0(X)
d=∂
−−→ Ω1(X)

d=∂
−−→ . . .

d=∂
−−→ Ωn(X)→ 0

We define the holomorphic de Rham cohomology

Hk
dR(X, hol) := Ker

(
Ωk(X)

d
−→ Ωk+1(X)

)
/dΩk−1(X).

The relation between these cohomology theories, as well as computational tools will
be discussed when we finish sheaf cohomology theory and Hodge theorem.
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