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2 A brief introduction to sheaf theory

2.1 Basic concepts in sheaf theory

Recall that a presheaf F of abelian groups over a topological space X is a rule assigning an
abelian group F (U) for each open set U ⊂ X, and for each pair V ⊂ U a homomorphism
rU

V : F (U)→ F (V) (called “restriction homomorphism”), satisfying rU
U = id and for any

W ⊂ V ⊂ U, we have rU
W = rV

W ◦ rU
V . An element of F (U) is usually called a “section” of

F over U. We also defined the stalk of F at a point p ∈ X to be

Fp := lim
−→

F (U),

where the direct limit is taken with respect to open sets p ∈ U. This is
⨿

U∋p F (U)/ ∼,
with s ∈ F (U) equivalent to t ∈ F (V) iff we can find another open set p ∈ W ⊂ U ∩ V
such that rU

W(s) = rV
W(t).

By a morphism f between two presheaves F and G over X, we mean for each U open,
we are given a homomorphism of abelian groups fU : F (U)→ G (U), such that whenever
we have open sets V ⊂ U, we have a commutative diagram:

F (U)
fU−−−−−→ G (U)

rU
V

y yρU
V

F (V) −−−−−→
fV

G (V).

Definition 2.1. A presheaf of abelian groups F over X is called a sheaf, if it satisfies the
following two properties:

(S1) Assume we have a family of open sets Ui ⊂ U, i ∈ Λ and ∪iUi = U. If s ∈ F (U)
satisfies rU

Ui
(s) = 0,∀i ∈ Λ, then s = 0.

(S2) Assume we have a family of open sets Ui ⊂ U, i ∈ Λ and ∪iUi = U. If we also have
a family of sections si ∈ F (Ui),∀i ∈ Λ, satisfying rUi

Ui∩U j
(si) = rU j

Ui∩U j
(si) whenever

Ui ∩ U j , ∅, then there is a section s ∈ F (U) such that rU
Ui

(s) = si,∀i ∈ Λ.

A morphism between two sheaves is just a morphism between presheaves.

Note that by (S1), the section in (S2) is also unique.

Example 2.2. Let X be a complex manifold, then OX is a sheaf of commutative rings over
X. We call it the “structure sheaf” of X.

We can also define other sheaves on X. For example, define E(U) := C∞(U;C), then it
is easy to see that E is a sheaf, called the “sheaf of smooth functions”. Similarly, we can
define the sheaf of continuous functions on X.

If E → X is a holomorphic vector bundle, then O(E)(U) defines a sheaf of abelian
groups. It can also be viewed as a sheaf of OX-modules.
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Example 2.3. For X = C, if we define Ob(U) to be the set of bounded holomorphic func-
tions on U ⊂ X, then Ob is a presheaf over C, but not a sheaf.

Example 2.4. Let G be a given abelian group, we define the constant presheaf over X to
be Gpre(U) := G for any non-empty open set U ⊂ X, and rU

V = id for any non-empty pair
V ⊂ U. Then it is in general not a sheaf.

Example 2.5. Let π : Y → X be a continuous surjective map between topological spaces.
We define the sheaf of continuous sections of π as follows: for any open U ⊂ X, define
Cπ(U) := {σ : U → Y | π ◦σ = idU}. Then it is a sheaf over X. This example is in fact very
general.

Proposition 2.6. For any presheaf F over X, there is a unique (up to isomorphism) sheaf
F + and a morphism θ : F → F + satisfying the following “universal property”: for any
sheaf G over X and any morphism of presheaves f : F → G , there is a unique morphism
of sheaves f + : F + → G such that f = f + ◦ θ.

If F is already a sheaf, then θ is an isomorphism. F + is called the “sheafification” of
F .

Outline of proof. I just outline one way of proof. From F , we define a topological space,
called the “étalé space” associated to F :

F̃ :=
⨿
p∈X

Fp.

We have a natural surjective projection map π : F̃ → X. The topology on F̃ is given as
follows: If s ∈ F (U), then we have a natural map s̃ : U → F̃ , sending p to the germ
of s at p, which is an element of Fp. Then we require {s̃(U)| s ∈ F (U),∀U} to be a
topological basis for F̃ .

Now we can use the construction of Example2.5 to get a sheaf F +. The morphism θ
is defined by θU : F (U)→ F +(U), θU(s) := s̃. �

Exercise: Check that we have the following concrete description of F +: a map s̃ : U →⨿
p∈U Fp is an element of F +(U) if and only if:

1. π ◦ s̃ = idU ;

2. For any p ∈ U, there is an open neighborhood p ∈ V ⊂ U and a s ∈ F (V) such that
for any q ∈ V , s̃(q) equals the germ of s at q.
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2.2 Sheaf cohomology (Čech’s theory)

Sheaf is a useful tool to describe the obstructions to solve global problems when we can
always solve a local one.

To illustrate this point, we come back to the Mittag-Leffler problem on a Riemann
surface M. Suppose we are given finitely many points p1, . . . , pm ∈ M, and for each pi we

are given a Laurant polynomial
∑ni

k=1
c(i)

k
zk . We can view this as an element of Mp/Op. We

want to find a meromorphic function on M whose poles are precisely those pi’s with the
given Laurant polynomial as its principal part at pi.

This problem is always solvable locally: we can find a locally finite open covering
U = {Ui| i ∈ Λ} of M such that each Ui contains at most one of the pi’s, and fi ∈M (Ui)
such that the only poles of fi are those of {pi} contained in Ui with principal part equals
the given Laurent polynomial. The problem is that we can not patch them together: if
Ui ∩ U j, there is no reason to have fi = f j. We have to define fi j := fi − f j and view
the totality of these fi j’s as the obstruction to solve the problem. Now by our choice of fi,
fi j ∈ O(Ui∩U j). Note that we have fi j+ f ji = 0 on Ui∩U j and whenever Ui∩U j∩Uk , ∅,
we have on Ui ∩U j ∩Uk: fi j + f jk + fki = 0. We call this the “cocycle” condition and { fi j}
is a “Čech cocycle” for the sheaf O with respect to the coverU.

When can we solve the Mittag-Leffler problem on M? We can solve it if we can mod-
ify the fi by a holomorphic function hi ∈ O(Ui) such that f̃i := fi − hi with patch together.
This means that fi j = hi − h j on Ui ∩ U j. We call a cocycle of the form {hi − h j} where
each hi is holomorphic a Čech coboundary. We get the conclusion that we can solve the
Mittag-Leffler problem if the Čech cocycle { fi j} is a coboundary.

This motivates the introduction of the following Čech cohomology of a sheaf F with
respect to a locally finite coverU of X: We first define the chain groups:

C0(U,F ) := Πi∈ΛF (Ui)

C1(U,F ) ⊂ Πi, j∈ΛF (Ui ∩ U j)
. . .

Cp(U,F ) ⊂ Πi0,i1,...,ip∈ΛF (Ui0 ∩ · · · ∩ Uip)
. . .

where {σi0,...,ip} is in Cp(U,F ) if and only if:

(1) Whenever ik = il for some k , l, we have σi0,...,ip = 0;

(2) For any permutation τ ∈ S p+1, we have σiτ(0),...,iτ(p) = (−1)τσi0,...,ip .

Note that we always define F (U) = {0} if U = ∅.
We define the coboundary operator δ : Cp(U,F )→ Cp+1(U,F ) to be:

(δσ)i0,...,ip+1 :=
p+1∑
j=0

(−1) jσi0,...,î j,...,ip+1
|Ui0∩···∩Uip+1

.
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Here we use . . . |... to denote the restriction homomorphism of F . It is direct to check that
δ ◦ δ = 0. So we have a chain complex

0→ C0(U,F )
δ−→ C1(U,F )

δ−→ . . .
δ−→ Cp(U,F )

δ−→ . . .

We can define
Z p(U,F ) = Kerδ ⊂ Cp(U,F ),

whose elements are called Čech p-cocycles. Also define

Bp(U,F ) = δCp−1(U,F ) ⊂ Zp(U,F ),

whose elements are called Čech p-coboundaries. Then we define the Čech cohomology of
F with respect toU:

Hp(U,F ) := Zp(U,F )/Bp(U,F ).

For example, an element of H0(U,F ) is given by a family of sections fi ∈ F (Ui)
such that δ{ fi} = 0. This means precisely

rUi
Ui∩U j

( fi) = rU j

Ui∩U j
( f j)

whenever Ui ∩ U j , ∅. By sheaf axiom (S2), we get a global section of F over X. So
H0(U,F ) is in fact independent ofU and we have a canonical isomorphism

H0(U,F ) � F (X).

When p = 1, { fi j} ∈ Cp(U,F ) is a cocycle if fi j + f ji = 0 and f jk − fik + fi j = fi j + f jk +

fki = 0. This is precisely the “cocycle condition” we met before. However, this time the
cohomology may depend on the cover.

Let V = {Vα}α∈Γ be a locally finite refinement of U. This means we have a map
τ : Γ → Λ (not unique) such that Vα ⊂ Uτ(α). Then we have a homomorphism ΦUV :
Hp(U,F )→ Hp(V,F ) induced by

{σi0,...,ip} 7→ {στ(α0),...,τ(αp)|Vα0∩···∩Vαp
}.

One can prove that ΦUV is in fact independent of the choice of the map τ. Then the coho-
mology of X with coefficients sheaf F is defined to be the direct limit:

Hp(X,F ) := lim
−→

Hp(U,F ) =
⨿
U

Hp(U,F )/ ∼

where two cohomology classes [{σi0,...,ip}] ∈ Hp(U,F ) and [{η j0,..., jp}] ∈ Hp(V,F ) are
equivalent if we can find a common refinementW ofU,V such that

ΦUW([{σi0,...,ip}]) = ΦVW([{η j0,..., jp}]).

Thus an element of Hp(X,F ) is an equivalent class of Čech cohomology classes, repre-
sented by an element of Hp(U,F ), for some cover U. But in many cases, in particu-
lar all the sheaves we use in this course, there exists sufficiently fine cover U such that
Hp(U,F ) � Hp(X,F ).
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2.3 Useful results for sheaf cohomology

We present two useful results for sheaf cohomology. In many cases, it is safe to know only
these results and forget the definition details.

Recall that a morphism f : F → G of sheaves over X induces for each point p ∈ X a
homomorphism of stalks: fp : Fp → Gp. We call a sequence of morphisms of sheaves an
“exact sequence” if the induced sequence on stalks is so for each pint p.

The first result saying that a short exact sequence for morphisms of sheaves gives rise
to a long exact sequence for sheaf cohomology:

Theorem 2.7. If we have a short exact sequence for sheaves of abelian groups over X

0→ F
f−→ G

g−→H → 0,

then we have a long exact sequence for cohomologies

0→ H0(X,F )→ H0(X,G )→ H0(X,H )→ H1(X,F )→ . . .

. . .→ Hp(X,H )→ Hp+1(X,F )→ Hp+1(X,G )→ . . .

We won’t prove this, but will explain the meaning of this theorem.
For the given short exact sequence, we always get an exact sequence

0→ F (X)→ G (X)→H (X),

(Exercise: Show that for any open set U, the sequence 0 → F (U) → G (U) → H (U)
is always exact.)but the last homomorphism is in general not surjective. Let’s explain
why. Given an element σ ∈ H (X), we’d like to know whether we can find η ∈ G (X)

such that gX(η) = σ. But we already know that 0 → Fp
fp−→ Gp

gp−→ Hp → 0 is exact,
so we can always find a germ ηp ∈ Gp such that gp(ηp) = σp. This actually means that
we can find a cover U = {Ui} of X and a sequence ηi ∈ G (Ui) such that gUi(ηi) = σ|Ui .
If all the ηi j := η j − ηi = 0 on Ui ∩ U j, then we can patch these ηi’s together, then we
finish the problem. We’d like to modify ηi. Note that since gUi∩U j(ηi j) = 0, we can find
µi j ∈ F (Ui∩U j) such that fUi∩U j(µi j) = ηi j. By the injectivity of f , we in fact get a cocycle
{µi j} ∈ C1(U,F ). So we get a homomorphism H (X) → H1(X,F ). It is fairly easy to
check that if σ goes to 0 in H1(X,F ), then we can modify ηi properly (on a refinement of
U ) such that they patch together to get an element of G (X).

A corollary of Theorem2.7 is the following “abstract de Rham theorem”:

Theorem 2.8. Suppose we have an exact sequence of the form:

0→ F → S0 → S1 → · · · → Sr → . . .

where each Sr satisfies Hp(X,Sr) = 0,∀p ≥ 1. (This is called an “acyclic resolution of
F”.) Then H∗(X,F ) is isomorphic to the cohomology of the chain complex

0→ S0(X)→ S1(X)→ · · · → Sr(X)→ . . .

i.e., H∗(X,F ) � H∗(Γ(X,S ∗)).
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Proof. We break the sheaf sequence into a sequence of short exact sequences for p ≥ 1:
0 → Kp−1 → Sp−1 → Kp → 0, where Kp = Ker(Sp → Sp+1) = Im(Sp−1 → Sp).
Note that K0 � F . By the above theorem and the assumption for Sp, we have an exact
sequence

0→ Kp−1(X)→ Sp−1(X)→ Kp(X)→ H1(X,Kp−1)→ 0.

Also note that Kp(X) � Ker(Sp(X)→ Sp+1(X)), so we get

H1(X,Kp−1) � Ker(Sp(X)→ Sp+1(X))/Im(Sp−1(X)→ Kp(X)) = Hp(Γ(X,S ∗)).

We need to prove H1(X,Kp−1) � Hp(X,F ) = Hp(X,K0). For this, we only need to
show for 2 ≤ r ≤ p

Hr−1(X,Kp−r+1) � Hr(X,Kp−r).

But this again follows from the segment of long exact sequence:

· · · → Hr−1(X,Sp−r)→ Hr−1(X,Kp−r+1)→ Hr(X,Kp−r)→ Hr(X,Sp−r)→ . . . .

�

When can we get an acyclic resolution? In particular, how can we find a lot of sheaves
Sr such that Hp(X,Sr) = 0,∀p ≥ 1?

Definition 2.9. A sheaf F over X is called a “fine sheaf”, if for any locally finite open
coverU = {Ui}, we can find a family of morphisms ηi : F → F such that:

(1) For each i, ηi(p) : Fp → Fp equals 0 for p outside a compact set Wi ⊂ Ui;

(2)
∑

i ηi = idF .

It is obvious that in case we can use a smooth function to multiply the sections of F ,
then a usual partition of unity will make F a fine sheaf.

Proposition 2.10. If F is a fine sheaf, then Hp(X,F ) = 0,∀p ≥ 1.

Proof. For any p-cocycle {σi0,...,ip} ∈ Cp(U,F ) for a locally finite cover U = {Ui}i∈Λ.
Let ηi be the above morphisms in the definition. We define a p − 1 cochain {ψi0,...,ip−1} as
follows:

ψi0,...,ip−1 :=
∑

i

ηi(σi,i0,...,ip−1).

Then (using the fact that δ{σ...} = 0)

(δψ)i0,...,ip =

p∑
j=0

(−1) jψi0,...,î j,...,ip

=
∑

j

∑
i

(−1) jηi(σi,i0,...,î j,...,ip
)

=
∑

i

ηi(σi0,...,ip) = σi0,...,ip .

�
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2.4 Applications of sheaf cohomology

Cohomology of constant sheaf
Let G be a given abelian group, we can define the constant sheaf G over X by G(U) =

{locally constant maps U → G}, then we usually denote Hp(X,G) by Hp(X,G). One can
show that when X is a manifold, this is isomorphic to the singular cohomology or simpli-
cial cohomology. But we won’t prove this. For the isomorphism to simplicial cohomology
when G = Z, one can read Chapter 0 of Griffiths-Harris.

Picard group
Recall that when X is a complex manifold, then a holomorphic line bundle can be de-

scribed by a family of “transition functions” fi j ∈ O∗(Ui ∩ U j), satisfying the “cocycle”
condition. So any holomorphic line bundle L determines an element of H1(X,O∗). And
on the other hand, given an element of H1(U,O∗), we can construct a holomorphic line
bundle. In fact, one can show that [{ fi j}] ∈ H1(U,O∗) and [{hαβ}] ∈ H1(V,O∗) determines
isomorphic line bundles if and only if they define the same class in H1(X,O∗). So we can
in fact identify H1(X,O∗) with the Picard group of X.

de Rham and Dolbeault theorem
We use the de Rham resolution of C:

0→ C→ A 0 d−→ A 1 d−→ . . .
d−→ A 2n → 0

to get de Rham isomorphism:

Hp(X,C) � Hp
dR(X,C), p = 0, . . . , 2n.

The reason for this to be a resolution is Poincaré’s Lemma.
Similarly, we have a Dolbeault-Grothendieck Lemma, which says that a ∂̄-closed form

is locally ∂̄-exact. So we get a fine resolution for any 0 ≤ p ≤ n:

0→ Ωp → A p,0 ∂̄−→ A p,1 ∂̄−→ . . .
∂̄−→ A p,n → 0,

so we get
Hq(X,Ωp) � Hp,q

∂̄
(X).

Also for a holomorphic vector bundle E, we have

Hq(X,Ωp(E)) � Hp,q
∂̄

(X, E).

Divisor and line bundle
We define the sheaf of meromorphic functions M on X, where X is a compact complex

manifold, to be the sheafification of the presheaf U 7→ quotient field of O(U). We define
M ∗ to be the sheaf of meromorphic functions that are not identically 0, and let O∗ be
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the subsheaf of M ∗, consisting of no-where vanishing holomorphic functions. The short
exact sequence

1→ O∗ →M ∗ →M ∗/O∗ → 1

gives us a long exact sequence, starting with

{1} → C∗ →M ∗(X)→M ∗/O∗(X)→ H1(X,O∗)→ . . . .

The global section of M ∗/O∗(X) can be equivalently described as a finite formal sum∑
i aiDi, where ai ∈ Z and Di is codimension 1 irreducible analytic hypersurface of X.

This is called a “divisor”. We define the groups of divisor classes by

Div(X) :=
(
M ∗/O∗(X)

)
/M ∗(X).

Two divisors are called linearly equivalent, if their difference is a divisor of a global mero-
morphic function.

The map M ∗/O∗(X)→ H1(X,O∗) is given as follows: locally we can cover X by {Ui}
such that an element of M ∗/O∗(X) is given by fi ∈ M ∗(Ui). Then gi j := fi/ f j defines a
class in H1(X,O∗).

First Chern class
A very useful exact sequence is the following

0→ Z→ O
exp(2π

√
−1·)

−−−−−−−−→ O∗ → 1.

We get the exact sequence

· · · → H1(X,O∗)
c1−→ H2(X,Z)→ . . . .

We call c1 : H1(X,O∗) → H2(X,Z) the “first Chern class” map. We shall use differential
forms to give another characterization of Chern classes in the next chapter.
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