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3 Differential geometry of vector bundles

3.1 Metrics, connections and curvatures

Definition 3.1. Let E → X be a complex vector bundle of rank r over a smooth manifold X.
A smooth Hermitian metric on E is an assignment of Hermitian inner products hp(·, ·) =<
·, · >p on each fiber Ep, such that if ξ, η are smooth sections of E over an open set U, then
h(ξ, η) ∈ C∞(U;C).

If U is a local triviliazation neighborhood of E via ϕU : π−1(U) → U × Cr, then we
can define r smooth sections of E over U:

eα(p) := ϕ−1
U (p, 0, . . . , 0, 1, 0 . . . , 0).

Then at any point p ∈ U, {eα(p)}rα=1 is a basis of Ep. We call {eα}rα=1 a local frame of E over
U. Note that when E is a holomorphic bundle and (U, ϕU) a holomorphic trivialization,
then these eα’s are also holomorphic sections, and we call it a holomorphic frame.

If ξ is a smooth section over U, then we can write in a unique way ξ = ξαeα, with
ξα ∈ C∞(U;C), α = 1, . . . , r. If we define the (positive definite) Hermitian matrix-valuded
smooth functions: hαβ̄ := h(eα, eβ), then we have

h(ξ, η) = h(ξαeα, ηβeβ) = hαβ̄ξαη̄β.

Sometimes, we also denote the matrix-valued smooth function (hαβ̄) by h. Hopefully this
will cause no confusion.

Notation: We shall denote the space of smooth sections of E over U by C∞(U; E).
When E is a holomorphic bundle, the set of holomorphic sections over U is denoted by
Γ(U; E) or O(E)(U).

Definition 3.2. A connection on a smooth rank r complex vector bundle over a manifold
X is a map D : C∞(X; E)→ C∞(X,T ∗CX ⊗ E) satisfying :

1. D is C-linear;

2. (Leibniz rule) D( f ξ) = d f ⊗ ξ + f Dξ, ∀ f ∈ C∞(X;C), ξ ∈ C∞(X; E).

If {eα} is a local frame, then we can define a family of local smooth 1-forms θβα ∈ A1(U)
satisfying:

Deα = θβα ⊗ eβ.

Sometimes we just write Deα = θ
β
αeβ for short. We call these {θβα} “connection one-forms”.

For ξ = ξαeα ∈ C∞(U; E), we then have

Dξ = D(ξαeα) = (dξα + ξβθαβ )eα.
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Convention: We always regard ξα as a column vector, and for θαβ we always regard the
upper index as line index and the lower index the column index.

So if we identify ξ with its coordinate representation with respect to the frame {eα},
then we can write Dξ = dξ + θξ, or D = d + θ. Physicists always use this way to represent
a connection.

We can extend the action of D to bundle-valued differential forms. We write Ak(X, E) :=
C∞(X; ΛkT ∗CX ⊗ E). Then we define D : Ak(X, E)→ Ak+1(X, E) by

D(ϕξ) := (dϕ)ξ + (−1)kϕ ∧ Dξ,

where ϕ is a C-valued k-form and ξ is a smooth section of E.

Definition 3.3. We define the curvature of D to be Θ := D2 : A0(X; E)→ A2(X, E).

If f is a smooth function and ξ ∈ A0(X, E), we have

Θ( f ξ) = D(d f ξ + f Dξ)

= d(d f )ξ − d f ∧ Dξ + d f ∧ Dξ + f D2ξ

= f Θ(ξ).

Locally if we define the 2-forms Θ
β
α by

Θ(eα) = Θβ
αeβ.

Then we have

Θ(ξ) = Θ(ξαeα)
= ξαΘ(eα)

= Θα
βξ

βeα.

From this, we conclude that Θ ∈ A2(X, End(E)).

We can also represent Θα
β in terms of θαβ :

Θβ
αeβ = D(Deα) = D(θγαeγ)

= dθγαeγ − θγα ∧ Deγ
= dθβαeβ − θγα ∧ θ

β
γeβ

= (dθβα + θβγ ∧ θ
γ
α)eβ.

So we get
Θα
β = dθαβ + θαγ ∧ θ

γ
β,
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or Θ = dθ+θ∧θ for short. Note that our sign convention is different from Griffiths-Harris,
since they regard the upper index as the column index.

We now study the change of connection forms and curvature forms under the change
of frames.

Suppose {ẽα} is another local frame on U, then we can write ẽα = aβαeβ, where (aβα) is a
GL(r,C)-valued smooth function on U. (When both frames are local holomorphic frames
of a holomorphic bundle, then (aβα) is a GL(r,C)-valued holomorphic function on U.) The
new connection forms and curvature forms are denoted by θ̃ and Θ̃. We have

θ̃γαẽγ = Dẽα = D(aβαeβ)

= daβαeβ + aβαθ
γ
βeγ

= (daβα + θβγa
γ
α)eβ.

On the other hand, the left equals
θ̃γαaβγeβ.

So we get
aθ̃ = da + θa,

or
θ̃ = a−1da + a−1θa. (3.1)

From this, we get

Θ̃ = dθ̃ + θ̃ ∧ θ̃

= d(a−1da + a−1θa) + (a−1da + a−1θa) ∧ (a−1da + a−1θa)

= −a−1da ∧ a−1da − a−1da ∧ a−1θa + a−1dθa − a−1θ ∧ da

+ a−1da ∧ a−1da + a−1da ∧ a−1θa + a−1θ ∧ da + a−1θ ∧ θa

= a−1(dθ + θ ∧ θ)a.

So we conclude
Θ̃ = a−1Θa. (3.2)

From this, we can construct a family of globally defined differential forms:

det
(
Ir +

√
−1

2π
Θ
)

:= 1 + c1(E,D) + · · · + cr(E,D),

where ck(E,D) ∈ A2k(X) is called the “k-th” Chern form of E associated to the connection
D.

In physicists’ language, a connection is a “field”, the curvature is the “strength” of the
field, and choosing a local frame is called “fixing the gauge”. The reason for these names
comes from H. Weyl’s work, rewriting Maxwell’s equations. The “vector potential” and
“scalar potential” together form the connection 1-form, and the curvature 2-form has 6
components, consisting the components of the electric field and the magnetic field.
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3.2 Chern connection on holomorphic vector bundles

In general, there is no “canonical connections” on a given vector bundle with a smooth
Hermitian metric. However, if the bundle is a holomorphic vector bundle, there is indeed
a canonical connection, called the “Chern connection”:

Theorem 3.4. On a given holomorphic vector bundle E with a smooth Hermitian metric
h, there is a unique connection D, called the “Chern connection” satisfying the following
two additional conditions:

1. (Compatibility with the metric) If ξ, η are two smooth sections, then we have

dh(ξ, η) = h(Dξ, η) + h(ξ,Dη).

2. (Compatibility with the complex structure) If ξ is a holomorphic section of E,
then Dξ is a E-valued (1, 0)-form.

Proof. We first prove the uniqueness part. Let {eα}rα=1 be a local holomorphic frame, and
the connection 1-form with respect to this frame is (θβα)1≤α,β≤r, satisfying Deα = θ

β
αeβ. By

the compatibility with complex structure, each θβα is a smooth (1, 0)-form. Now we use the
compatibility with metric to get

dhαβ̄ = h(Deα, eβ) + h(eα,Deβ)
= θγαhγβ̄ + θ̄

γ
βhαγ̄.

On the other hand, we have dhαβ̄ = ∂hαβ̄ + ∂̄hαβ̄. Comparing types, we get ∂h = θth, so
θt = ∂h · h−1. Denote h−1 = (hβ̄α), then we can rewrite this as

θβα = hν̄β∂hαν̄.

Also, since h̄t = h, the (0, 1)-part gives the same equation. This proves the uniqueness.
For existence, we simply set locally θβα := hν̄β∂hαν̄, and define for s = f αeα:

Ds := (d f α + f βθαβ )eα.

We need to check that this is globally well-defined. For this, if ẽα = aβαeβ is another
holomorphic frame on V with U ∩ V , ∅. Then a is a holomorphic matrix. We have
h̃ = athā, so we have θ̃ := (h̃t)−1∂h̃t = a−1∂a + a−1θa. Since s = f̃ αẽα = f αeα, we have
f̃ = a−1 f , so

ẽ(d f̃ + θ̃ f̃ ) = ea(−a−1daa−1 f + a−1d f + a−1∂aa−1 f + a−1θaa−1 f )
= e(d f + θ f ).

So D is globally defined. It is direct to check that D is compatible with both the metric
and the complex structure of the bundle. �

It is worth pointing out that the line bundle case is particularly simple: if e is a local
holomorphic frame and we set h = h(e, e) > 0. Then the connection 1-form is θ = h−1∂h =

∂ log h. Then the curvature is Θ = dθ + θ ∧ θ = dθ = d∂ log h = ∂̄∂ log h. It is already a
globally defined closed (1, 1)-form.
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3.3 Chern classes

We give a very elementary introduction to Chern-Weil theory in this section, following
Professor Weiping Zhang’s book [3].

We first define a trace map tr : Ak(X, EndE) → Ak(X). For a EndE-valued form
η ∈ Ak(X, EndE), the trace of η is the k-form tr(η) obtained by tracing out the EndE
factor. Locally, we can write η as a matrix of k-forms, and tr(η) is just the trace of this
matrix. Or equivalently, we can write η as

∑
i ωi ⊗ Ai with ωi a family of k-forms and Ai a

family of local sections of EndE, and then tr(η) =
∑

i tr(Ai)ωi.
Another tool we shall use is the (super)-commutator, defined by [ω ⊗ A, η ⊗ B] :=

(ω∧ η)⊗ [A, B], where ω, η are locally defined forms and A, B are local sections of EndE.
It is easy to see that

[ω ⊗ A, η ⊗ B] = ωA ∧ ηB − (−1)deg(ω)deg(η)ηB ∧ ωA.

The appearance of the extra factor (−1)deg(ω)deg(η) is the reason why sometimes it is called
a “super”-commutator. We sometimes extend the definition: we define for the connection
D and ω ⊗ A: [D, ω ⊗ A]s := D(ω ⊗ As) − (−1)deg(ω)ω ⊗ A ∧ Ds.

We state two useful lemmas, whose proofs are left as exercises.

Lemma 3.5. If D̃ is another connection on E, then D̃ − D ∈ A1(X, EndE).

Lemma 3.6. If P,Q are both EndE-valued differential forms, then tr[P,Q] = 0.

The first nontrivial lemma is:

Lemma 3.7 (Bianchi identity). We have [D,Θk] = 0, for any k ∈ N.

Proof. Simply note that Θ = D2, so [D,Θk] = [D,D2k] = 0. �

Exercise: Check that under local frames [D,Θ] = 0 means dΘ = [Θ, θ].
The next lemma is one of our key tool:

Lemma 3.8. For A ∈ Ak(X, EndE), we have

d tr(A) = tr[D, A].

Proof. First note that the left hand side is obviously independent of the connection. For
the right hand side, if we use another connection D̃, by Lemma3.5 and Lemma3.6, we have
tr[D̃, A] = tr[D̃ − D, A] + tr[D, A] = tr[D, A]. So the right hand side is also independent
of the connection.

So we can in fact choose a trivial connection locally to carry out the computation: Let
D0 = d be a trivial connection on E|U → U, then

[D0, A]s = D0(As) − (−1)deg(A)A ∧ D0s

= d(Aβ
α f α)eβ − (−1)deg(A)Aβ

α ∧ d f αeβ
= dAβ

α f αeβ.

Hence tr[D0, A] = d tr(A). �
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For any formal power series in one variable f (x) = a0 + a1x + . . . , we define f (Θ) :=
a0 + a1Θ + · · · + anΘ

n ∈ A∗(X).

Theorem 3.9 (Chern-Weil). For f as above, we have:

1. d tr f (Θ) = 0;

2. If D̃ is another connection with curvature Θ̃, there is a differential form η ∈ A∗(X)
such that tr f (Θ̃) − tr f (Θ) = dη.

So the cohomology class of tr f (Θ) is independent of the connection. We call it the “char-
acteristic class” of E associated to f , and tr f (Θ) the corresponding “characteristic form”
of E associated to f and D.

Example 3.10. Since det(Ir +
√
−1

2π Θ) = exp
(
tr log(Ir +

√
−1

2π Θ)
)
. So ci(E,D) ∈ A2i(X) are

all closed forms, whose cohomology classes are all independent of D. These are called
“Chern classes”. For example we have

c1(E,D) =

√
−1

2π
trΘ, c2(E,D) =

1
8π2

(
tr(Θ2) − (trΘ)2

)
.

Proof of Theorem 3.9: For the first conclusion, by Lemma3.8, we have

d tr f (Θ) = tr[D, f (Θ)]

=
∑

k

aktr[D,Θk] = 0,

where we used Lemma3.7 in the last step.
For the second one, we choose a family of connections Dt := tD̃ + (1 − t)D. Then

Ḋt :=
dDt

dt
= D̃ − D ∈ A1(X, EndE),

and
Θ̇t :=

dΘt

dt
=

dDt

dt
Dt + Dt

dDt

dt
= [Dt,

dDt

dt
] = [Dt, Ḋt].

So we have (by Lemma3.6, we can change the positions of Θ and Θ̇)

d
dt

tr f (Θt) = tr(Θ̇t f ′(Θt))

= tr([Dt, Ḋt] f ′(Θt))
Bianchi

= tr[Dt, Ḋt f ′(Θt)]

= d tr
(
Ḋt f ′(Θt)

)
.

So we conclude that tr f (Θ̃) − tr f (Θ) = d
∫ 1

0
tr
(
Ḋt f ′(Θt)

)
dt. �
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3.4 Hermitian metrics and Kähler metrics

Let X be a complex manifold of dimension n. We denote the canonical almost complex
structure by J. A Riemannian metric g on X is called “Hermitian”, if g is J-invariant, i.e.

g(Ju, Jv) = g(u, v), ∀u, v ∈ TRx X,∀x ∈ X.

As before, we extend g to TCX as a complex bilinear form. For simplicity, we also denote
this bilinear form by g. Then we have

g(T 1,0,T 1,0) = 0 = g(T 0,1,T 0,1)

and 〈Z,W〉 := g(Z, W̄) defines an Hermitian metric on the rank n holomorphic vector bun-
dle T 1,0X. Conversely, any Hermitian metric on T 1,0X determines uniquely a J-invariant
Riemannian metric on X.

For an Hermitian metric g on (X, J), we define the associated Kähler form ωg by

ωg(u, v) := g(Ju, v).

It is direct to check that ωg is a real 2-form on X.

Definition 3.11. An Hermitian metric g on X is called a Kähler metric, if dωg = 0. Its
cohomology class in H2

dR(X) is call the “Kähler class” of g. If a (compact) complex
manifold admits a Kähler metric, we call it a “Kähler manifold”.

Locally, if (z1, . . . , zn) is a holomorphic coordinate system, then g is determined by

gi j̄ := g(
∂

∂zi
,
∂

∂z̄ j
),

since gi j = gī j̄ = 0. Then we have

ωg =
√
−1gi j̄dzi ∧ dz̄ j,

where Einstein’s summation convention is always used. Now we have

0 = dωg =
√
−1dgi j̄dzi ∧ dz̄ j

=
√
−1

∂gi j̄

∂zk
dzk ∧ dzi ∧ dz̄ j −

√
−1

∂gi j̄

∂z̄l
dzi ∧ dz̄l ∧ dz̄ j

=
√
−1

∑
j

∑
k<i

(∂gi j̄

∂zk
−
∂gk j̄

∂zi

)
dzk ∧ dzi ∧ dz̄ j

+
√
−1

∑
i

∑
j<l

(∂gi j̄

∂z̄l
−
∂gil̄

∂z̄ j

)
dzi ∧ dz̄ j ∧ dz̄l.

So being Kähler mean that gi j̄ have the additional symmetries:

∂gi j̄

∂zk
=
∂gk j̄

∂zi
,

∂gi j̄

∂z̄l
=
∂gil̄

∂z̄ j
, ∀i, j, k, l.
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Example 3.12. The Euclidean metric g =
∑n

i=1(dxi ⊗ dxi + dyi ⊗ dyi) is a Kähler metric,
since we have

ωg =

√
−1
2

n∑
i=1

dzi ∧ dz̄i.

To give more examples, note that to define a Kähler metrics, it suffices to define its
associated Kähler form, since we have g(u, v) = g(Ju, Jv) = ωg(u, Jv). So sometimes we
will also say “Let ωg be a Kähler metric...”

Example 3.13. Let X = B(1) ⊂ Cn be the unit ball in Cn. We define a Kähler metric:

ωg :=
√
−1∂∂̄ log

1
1 − |z|2

.

This is called the “complex hyperbolic metric”.

Example 3.14. Let X = CPn with homogeneous coordinates [Z0, . . . ,Zn], we define a
Kähler metric:

ωg :=

√
−1

2π
∂∂̄ log(|Z0|

2 + · · · + |Zn|
2).

It is easy to check that this is well-defined. It is called the “Fubini-Study metric”.

Not every compact complex manifold is Kähler, since, for example, H2
dR(X) must be

non-trivial1. So Calabi-Eckman manifolds are never Kähler. However, we have the fol-
lowing:

Lemma 3.15. If X is Kähler and Y is a complex analytic submanifold of X, then Y is also
Kähler.

Proof. (Outline) Let g be a Kähler metric on X and ι : Y → X be the embedding map,
then ι∗g is a Kähler metric on Y and the associated Kähler form is just ι∗ωg. �

By this lemma, all projective algebraic manifolds are Kähler.

In Riemannian geometry, normal coordinates are very useful in tensor calculations.
The next lemma shows that being Kähler is both necessary and sufficient for the existence
of complex analogue of normal coordinates.

Lemma 3.16. For an Hermitian metric g on X, the follows two properties are equivalent:

(1) g is Kähler;

(2) For any point p ∈ X, there are local holomorphic coordinates (z1, . . . , zn) such that
zi(p) = 0, gi j̄(p) = δi j and dgi j̄(p) = 0.

1If not, ωg will be exact, so
∫

X ω
n
g = 0 by Stokes theorem. But this is impossible since

∫
X ω

n
g > 0.
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Proof. (2) =⇒ (1): For any given point p, we choose the coordinate in (2), then since first
order derivatives of gi j̄ at p vanish, we will have dωg(p) = 0. This implies dωg = 0, i.e., g
is Kähler.

(1) =⇒ (2): Suppose g is Kähler. Given any point p ∈ X, we can first choose local
holomorphic coordinates (w1, . . . ,wn) such that wi(p) = 0 and g( ∂

∂wi
, ∂
∂w̄ j

)(p) = δi j. We
want to find holomorphic coordinate transformation of the form wi = zi + 1

2ai jkz jzk with
ai jk = aik j such that

ωg =
√
−1(δi j + O(|z|2))dzi ∧ dz̄ j.

Direct computation shows that

ωg =
√
−1

(
δi j + gi j̄,k(0)wk + gi j̄,l̄(0)w̄l + O(|w|2)

)
dwi ∧ dw̄ j

=
√
−1

(
δi j + gi j̄,k(0)zk + gi j̄,l̄(0)z̄l + O(|z|2)

)
(dzi + aipqzpdzq) ∧ (dz̄ j + ā jstz̄sdz̄t)

=
√
−1

(
δi jdzi ∧ dz̄ j + āil jz̄ldzi ∧ dz̄ j + a jkizkdzi ∧ dz̄ j

+ (gi j̄,k(0)zk + gi j̄,l̄(0)z̄l)dzi ∧ dz̄ j + O(|z|2)
)
.

So the condition we need is a jki + gi j̄,k(0) = 0 and āil j + gi j̄,l̄(0) = 0. So we simply take

a jki := −
∂gi j̄

∂wk
(0).

The Kähler condition makes sure that this is well-defined. �

Remark 3.17. We shall call such a holomorphic coordinate system a “Kähler normal
coordinate system”.

Recall that for a connection ∇ on a vector bundle E, we can define the covariant deriva-
tive of a section s with respect to a tangent vector v ∈ TpX by setting ∇vs := ∇s(v). If eα is
a local frame of E, then we have ∇eα = ω

β
αeβ, and ∇veα = ω

β
α(v)eβ. Another good feature

of the Kähler condition is that if we complexify the usual Levi-Civita connection, we will
automatically get the Chern connection on T 1,0X.

Proposition 3.18. Let (X, J, g) be a Kähler manifold. Then the complexification of the
Levi-Civita connection restricts to the Chern connection on T 1,0X.

Proof. We also denote the complexified Levi-Civita connection by ∇. Recall that ∇ is
characterized as the only connection on TRX that is both torsion free and compatible with
g. For short, we write ∂i := ∂

∂zi
and ∂ j̄ := ∂

∂z̄ j
. By definition, we can assume ∇∂i∂ j := Γk

i j∂k +

Γk̄
i j∂k̄, ∇∂ī

∂ j := Γk
ī j
∂k + Γk̄

ī j
∂k̄. Since ∇ is a real operator, we also have ∇∂ī

∂ j̄ := Γk
i j∂k̄ + Γk̄

i j∂k,

∇∂i∂ j̄ := Γk
ī j
∂k̄ + Γk̄

ī j
∂k. Since ∇ is torsion free, we have Γk

i j = Γk
ji, Γk̄

i j = Γk̄
ji, and Γk

ī j
= Γk̄

j̄i
,

Γk̄
ī j

= Γk
j̄i
. Now we use the metric compatibility:

0 = ∂ig(∂k, ∂l) = g(∇∂i∂k, ∂l) + g(∂k,∇∂i∂l)

= Γ
q̄
ikglq̄ + Γ

q̄
ilgkq̄,
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Exchange i and k, we get 0 = Γ
q̄
kiglq̄ + Γ

q̄
klgiq̄, and hence Γ

q̄
klgiq̄ = Γ

q̄
ilgkq̄. So

Γ
q̄
ikglq̄ = Γ

q̄
lkgiq̄ = Γ

q̄
klgiq̄ = Γ

q̄
ilgkq̄.

This implies Γ
q̄
ikglq̄ = 0 and hence Γ

q̄
ik = 0. This means

∇∂i∂ j = Γk
i j∂k, ∇∂ī

∂ j̄ = Γk
i j∂k̄. (3.3)

On the other hand,

∂ig(∂k, ∂l̄) = g(∇∂i∂k, ∂l̄) + g(∂k,∇∂i∂l̄)

= Γ
p
ikgpl̄ + Γ

q̄
l̄i
gkq̄.

By Kähler condition, the last quantity also equals

∂kg(∂i, ∂l̄) = Γ
p
kigpl̄ + Γ

q̄
l̄k

giq̄,

so we get Γ
q̄
l̄k

giq̄ = Γ
q̄
l̄i
gkq̄. But the sum of these two quantity equals ∂l̄g(∂i, ∂k) = 0, we get

Γ
q̄
l̄i
gkq̄ = 0 and hence Γ

q̄
l̄i

= 0. This also implies Γ
q
īl

= 0. So we get

∇∂i∂ j̄ = 0 = ∇∂ j̄
∂i, (3.4)

and also
∂igkl̄ = Γ

p
ikgpl̄,

equivalently,

Γk
i j = gl̄k∂gil̄

∂z j
. (3.5)

This is precisely the formula for the Chern connection. �

For curvature, we also extend the curvature tensor C-linearly to the complexified tan-
gent bundle. Then this curvature tensor automatically satisfies the Bianchi identities. The
Kähler condition also implies that the curvature tensor has more symmetries, and hence
has much simpler formula. We leave this to later sections. Here we only add one warming
exercise:

Exercise: Let (E,∇) be a vector bundle with connection. We define for u, v ∈ Γ(T X)
and s ∈ Γ(E), R(u, v)s := (∇u∇v − ∇u∇v − ∇[u,v])s. Show that R(u, v)s = Ω(u, v)s, where
Ω ∈ Γ(Λ2T ∗X ⊗ End(E)) is the curvature form of ∇.

Let (X, J, g) be a Kähler manifold. We know from Proposition 3.18 that the connection
of g has very special properties. We now explore its implication for the curvature.

Lemma 3.19. For a Kähler manifold (X, J, g), we always have ∇J = 0.

11



Proof. For any given point p ∈ X, we compute using Kähler normal coordinates in Lemma
3.16. Now in complex coordinates, J has constant coefficients, this implies ∇J vanishes
at p. Since p is arbitrary, we have ∇J = 0. �

By definition, this implies that ∇(JX) = J∇X, so for the curvature R(X,Y) = ∇X∇Y −

∇Y∇X − ∇[X,Y], we have R(X,Y)JZ = JR(X,Y)Z. Also, by symmetry of curvature tensor,
we have

〈R(JX, JY)Z,W〉 = 〈R(Z,W)JX, JY〉 = 〈R(Z,W)X,Y〉 = 〈R(X,Y)Z,W〉.

Since W is arbitrary, we also have R(JX, JY)Z = R(X,Y)Z. Moreover, we have:

Proposition 3.20. We C-linearly extend the curvature tensor of the Kähler metric g, then
〈R(∂i, ∂ j)·, ·〉 = 0 = 〈R(∂ī, ∂ j̄)·, ·〉, and the only essentially non-trivial term is

Ri j̄kl̄ := 〈R(∂i, ∂ j̄)∂k, ∂l̄〉 = −
∂2gi j̄

∂zk∂z̄l
+ gq̄p∂giq̄

∂zk

∂gp j̄

∂z̄l
.

In particular, besides Bianchi identities, we have an extra symmetry: Ri j̄kl̄ = Ril̄k j̄ = Rk j̄il̄.
The Ricci curvature Rc is also J-invariant, and the 2-form Ric(ωg) := Rc(J·, ·) is called
the Ricci form, and we have Ric(ωg) =

√
−1Ri j̄dzi ∧ dz̄ j, with

Ri j̄ = Rc(∂i, ∂ j̄) = gl̄kRi j̄kl̄ = −
∂2

∂zi∂z̄ j
log det(gpq̄).

Proof. We compute by definition:

Ri j̄kl̄ = 〈(∇i∇ j̄ − ∇ j̄∇i)∂k, ∂l̄〉 = −〈∇ j̄(Γ
p
ik∂p), ∂l̄〉

= −∂ j̄Γ
p
ikgpl̄ = −∂ j̄(gq̄p∂gkq̄

∂zi
)gpl̄

= −gq̄p ∂
2gkq̄

∂zi∂z j̄
gpl̄ + gq̄sgt̄p∂gst̄

∂z j̄

∂gkq̄

∂zi
gpl̄

= −
∂2gkl̄

∂zi∂z j̄
+ gq̄s∂gsl̄

∂z j̄

∂gkq̄

∂zi
.

The first conclusion follows by Kähler metric’s special symmetry.
For Ricci curvature, we choose a local orthonormal frame {ei}

2n
i=1 to compute:

Rc(JX, JY) =

2n∑
i=1

〈R(JX, ei)ei, JY〉 =

2n∑
i=1

〈JR(JX, ei)ei, J2Y〉

= −

2n∑
i=1

〈R(JX, ei)Jei,Y〉 = −

2n∑
i=1

〈R(J2X, Jei)Jei,Y〉

=

2n∑
i=1

〈R(X, Jei)Jei,Y〉 = Rc(X,Y),
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since {Jei}
2n
i=1 is also an orthonormal frame. As the computation for ωg, we easily get the

formula
Ric(ωg) =

√
−1Ri j̄dzi ∧ dz̄ j.

Finally, we calculate Ri j̄: Choose a local orthonormal frame of the form {eα, Jeα}nα=1 at
one point, and write Zα := eα −

√
−1Jeα. Then we have

Ri j̄ = Rc(∂i, ∂ j̄) =
∑
α

〈R(∂i, eα)eα, ∂ j̄〉 +
∑
α

〈R(∂i, Jeα)Jeα, ∂ j̄〉

=
∑
α

〈R(∂i, eα)eα, ∂ j̄〉 +
√
−1

∑
α

〈R(∂i, Jeα)eα, ∂ j̄〉

=
∑
α

〈R(∂i, Z̄α)eα, ∂ j̄〉

=
1
2

∑
α

〈R(∂i, Z̄α)eα, ∂ j̄〉 −

√
−1
2

∑
α

〈R(∂i, Z̄α)Jeα, ∂ j̄〉

=
1
2

∑
α

〈R(∂i, Z̄α)Zα, ∂ j̄〉.

On the other hand, we have Zα = aµα∂µ and ∂µ = bαµZα, with aµαbβµ = δ
β
α, so at the given

point, we have
2δαβ = g(Zα, Z̄β) = aµαāνβgµν̄,

which implies that gβ̄α = 1
2 āβµaαµ , and so

Ri j̄ =
1
2

āναaµαRiν̄µ j̄ = gl̄kRil̄k j̄ = gl̄kRi j̄kl̄

= −gl̄k ∂
2gkl̄

∂zi∂z̄ j
+ gl̄kgq̄p∂gkq̄

∂zi

∂gpl̄

∂z̄ j
=

∂

∂zi

(
− gl̄k∂gkl̄

∂z̄ j

)
= −

∂2

∂zi∂z̄ j
log det(gpq̄).

�
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