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4 Hodge theorem

4.1 Hodge theorem on compact Riemannian manifolds

Let (Mm, g) be a compact oriented Riemannian manifold. Then we can define inner prod-
uct on the space of real differential forms: for ω, η ∈ Ap(M)

(ω, η) :=
∫

M
〈ω, η〉gdVg.

The idea of Hodge theorem is to represent a de Rham cohomology class by a “best” closed
form. Since we can define norm of a differential form, a natural idea is to find a closed
form of minimal norm within its cohomology class.

To be precise, start with a closed p-form η ∈ Ap(M), we want to minimize the func-
tional:

Φ(ξ) := ‖η + dξ‖2, ξ ∈ Ap−1(M).

We can solve this variational problem by considering the corresponding Euler-Lagrange
equation, which is an elliptic system.

Suppose η0 = η + dξ0 achieves the minimum of ‖η + dξ‖2, then for any ξ ∈ Ap−1(M),

‖η0 + tdξ‖2 = (η0 + tdξ, η0 + tdξ) = ‖η0‖
2 + 2t(η0, dξ) + t2‖dξ‖2

achieves its minimum at t = 0. This happens if and only if (η0, dξ) = 0 for any ξ ∈
Ap−1(M). We can define an operator d∗, the “formal adjoint” of d, such that (α, dβ) =

(d∗α, β) for any α ∈ Ap(M) and β ∈ Ap−1(M). Then (η0, dξ) = 0 for any ξ ∈ Ap−1(M) if
and only if (d∗η0, ξ) = 0 for any ξ ∈ Ap−1(M), which implies d∗η0 = 0.

Definition 4.1. Let (Mm, g) be a compact oriented Riemannian manifold. A smooth differ-
ential form ω ∈ Ap(M) is called a “harmonic p-form” if dω = 0, d∗ω = 0.

If we define the Laplacian operator to be ∆d : Ap(M)→ Ap(M), ∆d := dd∗ + d∗d, then
for any smooth p-form ω ∈ Ap(M), we have

(ω,∆dω) = (ω, dd∗ω) + (ω, d∗dω) = ‖d∗ω‖2 + ‖dω‖2.

So we conclude that ω ∈ Ap(M) is harmonic if and only if ∆dω = 0.

To write down a precise formula for d∗, we introduce Hodge’s “star”-operator: ∗ :
Ap(M)→ Am−p(M). Ifω1, . . . , ωm is an orthonormal basis of T ∗x M, such thatω1∧· · ·∧ωm =

dVg gives the positive orientation, then we define

∗ωi1 ∧ · · · ∧ ωip = δ
i1,...,ip, j1,..., jm−p

1,2,...,m ω j1 ∧ · · · ∧ ω jm−p .
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(Note that this implies ωi1 ∧ · · · ∧ωip ∧ ∗ωi1 ∧ · · · ∧ωip = ω1 ∧ · · · ∧ωm. ) Then we extend
∗ linearly. It is direct to check that this is well-defined.

Moreover, if α =
∑

i1<···<ip
ai1,...,ipωi1 ∧ · · · ∧ ωip , β =

∑
i1<···<ip

bi1,...,ipωi1 ∧ · · · ∧ ωip , we
have

α ∧ ∗β =
∑

k1<···<kp

∑
i1<···<ip

ak1,...,kpbi1,...,ipωk1 ∧ · · · ∧ ωkp ∧ ∗(ωi1 ∧ · · · ∧ ωip)

=
∑

i1<···<ip

ai1,...,ipbi1,...,ipωi1 ∧ · · · ∧ ωip ∧ ∗(ωi1 ∧ · · · ∧ ωip)

= 〈α, β〉gdVg = β ∧ ∗α.

From the definition, it is easy to check that ∗∗ = (−1)p(m−p) = (−1)pm+p on Ap(M).
Also, we have

〈∗α, ∗β〉gdVg = ∗α ∧ ∗ ∗ β = (−1)p(m−p) ∗ α ∧ β = β ∧ ∗α = 〈β, α〉gdVg = 〈α, β〉gdVg.

So ∗ is a point-wise isometry. Using ∗, we can also express d∗ as:

Lemma 4.2. We have d∗ = (−1)mp+m+1 ∗ d∗ on Ap(M).

Proof. Let α ∈ Ap(M), β ∈ Ap−1(M), then we have

(d∗α, β) = (α, dβ) =

∫
M
〈α, dβ〉gdVg =

∫
M

dβ ∧ ∗α

=

∫
M

d
(
β ∧ ∗α

)
+ (−1)pβ ∧ d(∗α)

=

∫
M

(−1)pβ ∧ (−1)(m−p+1)(p−1) ∗ ∗d(∗α)

= (−1)mp+m+1
∫

M
〈β, ∗d(∗α)〉gdVg

=
(
(−1)mp+m+1 ∗ d ∗ α, β

)
.

�

From this concrete formula, we have on Ap(M):

∆d = dd∗+d∗d = (−1)mp+m+1d∗d∗+(−1)m(p+1)+m+1∗d∗d = (−1)mp+m+1d∗d∗+(−1)mp+1∗d∗d.

We have

∆d∗ = (−1)m(m−p)+m+1d ∗ d ∗ ∗ + (−1)m(m−p)+1 ∗ d ∗ d ∗
= (−1)mp+1(−1)mp+pd ∗ d + (−1)mp+m+1 ∗ d ∗ d ∗
= (−1)p+1d ∗ d + (−1)mp+m+1 ∗ d ∗ d ∗ .
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And

∗∆d = (−1)mp+m+1 ∗ d ∗ d ∗ +(−1)mp+1 ∗ ∗d ∗ d
= (−1)mp+m+1 ∗ d ∗ d ∗ +(−1)mp+1+p(m−p)d ∗ d
= (−1)mp+m+1 ∗ d ∗ d ∗ +(−1)p+1d ∗ d.

So we get ∗∆d = ∆d ∗ . Similarly,

d∆d = (−1)mp+1d ∗ d ∗ d,

∆dd = (−1)m(p+1)+m+1d ∗ d ∗ d = (−1)mp+1d ∗ d ∗ d = d∆d.

Example 4.3. In case of (Rn, gEuc), we can define d∗ by the same formula, then we still
have (ξ, dη) = (d∗ξ, η) when one of them has compact support. Then we have

d∗
( ∑

1≤i1<···<ip≤m

fi1...ipdxi1 ∧ · · · ∧ dxip

)
= (−1)mp+m+1 ∗ d

( ∑
1≤i1<···<ip≤m

fi1...ip ∗ dxi1 ∧ · · · ∧ dxip

)
= (−1)mp+m+1 ∗

( ∑
1≤i1<···<ip≤m

∑
i∈{i1,...,ip}

∂ fi1...ip

∂xi
dxi ∧ ∗dxi1 ∧ · · · ∧ dxip

)
= (−1)mp+m+1

∑
1≤i1<···<ip≤m

p∑
k=1

∂ fi1...ip

∂xik
(−1)(p−1)(m−p)+k−1dxi1 ∧ · · · ∧

ˆdxik ∧ · · · ∧ dxip

=
∑

1≤i1<···<ip≤m

p∑
k=1

∂ fi1...ip

∂xik
(−1)kdxi1 ∧ · · · ∧

ˆdxik ∧ · · · ∧ dxip .

From this we get

dd∗
( ∑

1≤i1<···<ip≤m

fi1...ipdxi1 ∧ · · · ∧ dxip

)
= −

∑
1≤i1<···<ip≤m

p∑
k=1

∂2 fi1...ip

∂x2
ik

dxi1 ∧ · · · ∧ dxip

+
∑

1≤i1<···<ip≤m

p∑
k=1

∑
i<{i1,...,ip}

∂2 fi1...ip

∂xik∂xi
(−1)kdxi ∧ dxi1 ∧ · · · ∧

ˆdxik ∧ · · · ∧ dxip ,
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and

d∗d
( ∑

1≤i1<···<ip≤m

fi1...ipdxi1 ∧ · · · ∧ dxip

)
= d∗

( ∑
1≤i1<···<ip≤m

∑
i<{i1,...,ip}

∂ fi1...ip

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxip

)
= −

∑
1≤i1<···<ip≤m

∑
i<{i1,...,ip}

∂2 fi1...ip

∂x2
i

dxi1 ∧ · · · ∧ dxip

−
∑

1≤i1<···<ip≤m

∑
i<{i1,...,ip}

p∑
k=1

∂2 fi1...ip

∂xik∂xi
(−1)kdxi ∧ dxi1 ∧ · · · ∧

ˆdxik ∧ · · · ∧ dxip .

So we have

∆d

( ∑
1≤i1<···<ip≤m

fi1...ipdxi1 ∧ · · · ∧ dxip

)
= −

∑
1≤i1<···<ip≤m

(∑
i

∂2 fi1...ip

∂x2
i

)
dxi1 ∧ · · · ∧ dxip .

The main result is that harmonic forms exists in each cohomology class:

Theorem 4.4 (Hodge). Let (Mm, g) be a compact oriented Riemannian manifold. Then
each de Rham cohomology class has a unique harmonic representative, so we have a
linear isomorphism

H p(M) := {ω ∈ Ap(M)
∣∣∣ ∆dω = 0} � Hp

dR(M;R), p = 0, . . . ,m.

Moreover, H p(M) is always a finite dimensional vector space,1 and we have a linear
operator G : Ap(M) → Ap(M) such that for any ω ∈ Ap(M), if we denote its orthogonal
projection toH p(M) by ωh, then we have the decomposition:

ω = ωh + ∆dGω = ωh + d(d∗Gω) + d∗(dGω).

In fact, we have a orthogonal direct sum decomposition Ap(M) = H p(M) ⊕ Im d ⊕ Im d∗.

Remark 4.5. G is usually called the “Green operator”. It is constructed in the follow-
ing way: suppose the eigenvalues of ∆d on Ap(M) are 0 = λ0 < λ1 < λ2 < . . . . The
corresponding eigenspaces are H p(M) and E1, E2, . . . . Then we define G|H p(M) ≡ 0 and
G|Ei := 1

λi
idEi .

Proof of parts of the results: Uniqueness: Supposeω1 andω2 are both harmonic p-forms
and ω2 = ω1 + dη for some η ∈ Ap−1(M). Then

(dη, dη) = (ω2 − ω1, dη) =
(
d∗(ω2 − ω1), η

)
= 0.

1We can prove directly that Hp
dR(M;R) is a finite dimensional vector space via the Mayer-Vietoris argu-

ment as in Bott-Tu’s book.

5



So we necessarily have dη = 0 and ω2 = ω1.

H p(M), Im d, Im d∗ are orthogonal to each other: Let ωh ∈ H
p(M), ξ ∈ Ap+1(M), η ∈

Ap−1(M), then

(ωh, d∗ξ) = (dωh, ξ) = 0
(ωh, dη) = (d∗ωh, η) = 0

(d∗ξ, dη) = (ξ, ddη) = 0.

Rough idea about existence: One can show that ∆d is a 2nd order elliptic operator, and we
have a “basic estimate” of the form

‖ω‖2W1,2 ≤ C
(
∆dω + ω,ω

)
= C

(
‖ω‖2 + ‖dω‖2 + ‖d∗ω‖2

)
.

(For general elliptic operator, this kind of estimates still hold, known as “Gårding’s in-
equality”.) We consider the quadratic form on W1,2(M,ΛpT ∗M):

D(ξ, η) := (ξ, η) + (dξ, dη) + (d∗ξ, d∗η).

Gårding’s inequality implies thatD(ω) is an equivalent norm on W1,2(M,ΛpT ∗M). Given
η ∈ L2(M,ΛpT ∗M), ξ 7→ (ξ, η) is a bounded linear functional on Ap(M) ⊂ W1,2(M,ΛpT ∗M):

|(ξ, η)| ≤ ‖ξ‖ · ‖η‖ ≤ ‖η‖ · ‖ξ‖W1,2 ≤ C
√
D(ξ, ξ).

This extends to a bounded linear functional on W1,2(M,ΛpT ∗M), and we can use Riesz
representation theorem to get a unique ϕ ∈ W1,2(M,ΛpT ∗M) such that for all ξ ∈ Ap(M):

(ξ, η) = D(ξ, ϕ).

Using this to define a linear map T (η) := ϕ. It is a bounded linear operator from L2(M,ΛpT ∗M)
to W1,2(M,ΛpT ∗M). Its composition with the compact embedding W1,2 → L2 (also
denoted by T ) gives us a compact self-adjoint operator on L2(M,ΛpT ∗M). Intuitively,
T = (id + ∆d)−1.

By spectrum theorem and elliptic regularity, we have a Hilbert space direct sum de-
composition L2(M,ΛpT ∗M) = ⊕∞m=0Em, where each Em is a finite dimensional space of
smooth p-forms, satisfying Tϕ = ρmϕ,∀ϕ ∈ Em, with ρ0 = 1 > ρ1 > ρ2 . . . and ρm → 0.
Then E0 = H p(M) and for ϕ ∈ Em, we have ∆dϕ =

(
1
ρm
− 1

)
ϕ =: λmϕ, λm ↗ ∞. �
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4.2 The Hermitian case

Now let Xn be a n-dimensional compact complex manifold, with almost complex structure
J and Hermitian metric g. As before, we define ωg :=

√
−1

∑
i, j gi j̄dzi ∧ dz̄ j. It is a real

(1, 1)-form. A direct computation shows that we always have

dVg =
ωn

g

n!
.

In fact, we can choose coordinates around a given point p such that at p, { ∂
∂xi
, ∂
∂y j
}ni, j=1 is

an orthonormal basis with zi = xi +
√
−1yi the complex coordinate function. 2 Then

at p the left equals dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn while on the other hand, we have at p:
ωg =

√
−1
2

∑
i dzi ∧ dz̄i =

∑
i dxi ∧ dyi and hence

ωn
g

n! = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = dVg.

Exercise:Show that under local coordinates, we have

ωn
g

n!
= det(gi j̄)(

√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

In this case, we also extend Hodge’s star operator complex linearly to complex differ-
ential forms. Then we also have ∗∗ = (−1)p(2n−p) = (−1)p on Ap(X) and

α ∧ ∗β = 〈α, β〉CdVg.

On the space of smooth complex differential forms, the correct Hermitian inner product
should be

(α, β) :=
∫

X
α ∧ ∗β̄.

Lemma 4.6. The ∗ operator maps Ap,q(X) to An−q,n−p(X).

Proof. We compute at a given point x, and we choose complex coordinates such that
gi j̄(x) = 1

2δi j. Then dx1, dy1, . . . , dxn, dyn is a positively oriented orthonormal basis of
T ∗Rx X. For multi-index I = (µ1, . . . , µp), we shall write

dzI := dzµ1 ∧ · · · ∧ dzµp , dxI := dxµ1 ∧ · · · ∧ dxµp , . . .

Also for multi-index M, we define

wM := Πµ∈Mdzµ ∧ dz̄µ = (−2
√
−1)|M|Πµ∈Mdxµ ∧ dyµ.

A direct computation shows that for mutually disjoint increasing multi-indices A, B,M,
we have

∗(dzA ∧ dz̄B ∧ wM) = γ(a, b,m)dzA ∧ dz̄B ∧ wM′ ,

2What we need to do is to use a complex linear coordinate transformation such that gp( ∂
∂zi
|p,

∂
∂z̄ j
|p) = 1

2δi j.
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where a = |A|, b = |B|,m = |M|, M′ = (1, 2, , . . . , n) − (A ∪ B ∪ M), and γ(a, b,m) is a
non-vanishing constant. In fact, one can show that

γ(a, b,m) = (
√
−1)a−b(−1)

k(k+1)
2 +m(−2

√
−1)k−n,

where k = a + b + 2m is the total degree.
If we write p = a + m, q = b + m, then all (p, q)-form is locally a linear combination

of forms of the type dzA ∧ dz̄B ∧ wM. Since dzA ∧ dz̄B ∧ wM′ is a (a + m′, b + m′) =

(a+n−a−b−m, b+n−a−b−m) = (n−q, n− p)-form, we get ∗Ap,q(X) ⊂ An−q,n−p(X). �

As in the real case, we consider the Hermitian inner product on Ap,q(X), and define an
operator ∂̄∗ by

(ξ, ∂̄η) = (∂̄∗ξ, η), ∀ξ ∈ Ap,q(X), η ∈ Ap,q−1(X).

Then we get

(∂̄∗ξ, η) =

∫
X
∂̄∗ξ ∧ ∗η̄

= (ξ, ∂̄η) = (∂̄η, ξ) =

∫
X
∂̄η ∧ ∗ξ̄ =

∫
X
∂η̄ ∧ ∗ξ

=

∫
X
∂
(
η̄ ∧ ∗ξ

)
− (−1)p+q−1η̄ ∧ ∂(∗ξ) = (−1)p+q

∫
X
η̄ ∧ ∂(∗ξ)

= −

∫
X
∂(∗ξ) ∧ η̄ = −

∫
X
∗∂(∗ξ) ∧ ∗η̄.

So we get:

Lemma 4.7. On Ap,q(X), we always have ∂̄∗ = − ∗ ∂∗.

Exercise: Show that on the space of complex valued p-forms Ap(X), we have d∗ = −∗d∗.

We define the ∂̄-Laplacian ∆∂̄ : Ap,q(X)→ Ap,q(X) by

∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄.

We look for ∂̄-closed form of minimal norm within a given Dolbeault cohomology
class. Suppose ξ ∈ Ap,q(X) is such a ∂̄-closed form, then for any η ∈ Ap,q−1(X), the
quadratic function of t ∈ R:

‖ξ + t∂̄η‖2 = (ξ + t∂̄η, ξ + t∂̄η) = ‖ξ‖2 + 2tRe(ξ, ∂̄η) + t2‖∂̄η‖2

takes its minimum at t = 0. We get Re(ξ, ∂̄η) = 0 for all η ∈ Ap,q−1(X). Using ‖ξ +

t
√
−1∂̄η‖2 instead, we get Im(ξ, ∂̄η) = 0 for all η ∈ Ap,q−1(X). So we get (ξ, ∂̄η) =

(∂̄∗ξ, η) = 0 for all η ∈ Ap,q−1(X). This implies ∂̄∗ξ = 0.
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Definition 4.8. If ω ∈ Ap,q(X) satisfies ∂̄ω = 0 and ∂̄∗ω = 0 (equivalently, ∆∂̄ω = 0), then
ω is called a “∂̄-harmonic (p, q)-form”.

The counterpart of Hodge theorem for Dolbeault cohomology is the following:

Theorem 4.9 (Hodge). Let (Xn, J, g) be a compact Hermitian manifold. Then each Dol-
beault cohomology class has a unique ∂̄-harmonic representative, so we have a complex
linear isomorphism

H p,q(X) := {ω ∈ Ap,q(X)
∣∣∣ ∆∂̄ω = 0} � Hp,q

∂̄
(X), p, q = 0, . . . , n.

Moreover, H p,q(X) is always a finite dimensional complex vector space, and we have a
complex linear operator G : Ap,q(X)→ Ap,q(X) such that for any ω ∈ Ap,q(X), if we denote
its orthogonal projection toH p,q(X) by ωh, then we have the decomposition:

ω = ωh + ∆∂̄Gω = ωh + ∂̄(∂̄∗Gω) + ∂̄∗(∂̄Gω).

In fact, we have an orthogonal direct sum decomposition Ap,q(X) = H p,q(X)⊕Im ∂̄⊕Im ∂̄∗.

Generalization: Assume also that we have a holomorphic vector bundle E → X of rank
r, with Hermitian metric h. X is compact. We define an Hermitian inner product on
C∞(X,Λp,q(X) ⊗ E) by

(s, t) :=
∫

X
〈s, t〉g,hdVg,

where the pointwise Hermitian inner product 〈, 〉g,h is induced from the Hermitian metric
g on X and bundle metric h on E. We can define a ∂̄-operator on Ap,q(X, E), which we
shall write ∂̄E : Ap,q(X, E) → Ap,q+1(X, E). We can also define a formal adjoint operator
∂̄∗E : Ap,q(X, E)→ Ap,q−1(X, E) by requiring that

(s, ∂̄Et) = (∂̄∗E s, t), ∀s ∈ Ap,q(X, E), t ∈ Ap,q−1(X, E).

Then we define ∆∂̄E
:= ∂̄∗E∂̄E + ∂̄E∂̄

∗
E : Ap,q(X, E) → Ap,q(X, E), and H p,q(X, E) :=

Ker
(
∆∂̄E
|Ap,q(X,E)

)
. The elements ofH p,q(X, E) are called “E-valued harmonic (p, q)-forms”.

In this case, we also have:

Theorem 4.10. Let (Xn, J, g) be a compact Hermitian manifold. E → X be a holomor-
phic vector bundle of rank r, with Hermitian metric h. Then each cohomology class in
Hp,q
∂̄

(X, E) has a unique harmonic representative, so we have a complex linear isomor-
phism

H p,q(X, E) � Hp,q
∂̄

(X, E), p, q = 0, . . . , n.

Moreover,H p,q(X, E) is always a finite dimensional complex vector space, and we have a
complex linear operator GE : Ap,q(X, E) → Ap,q(X, E) such that for any ω ∈ Ap,q(X, E), if
we denote its orthogonal projection toH p,q(X, E) by ωh, then we have the decomposition:

ω = ωh + ∆∂̄E
GEω = ωh + ∂̄E(∂̄∗EGEω) + ∂̄∗E(∂̄EGEω).

In fact, we have an orthogonal direct sum decomposition Ap,q(X, E) = H p,q(X, E)⊕Im ∂̄E⊕

Im ∂̄∗E.
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4.3 Applications

Theorem 4.11 (Poincaré duality for de Rham cohomology). Let Mm be a compact ori-
ented differentiable manifold. Then

Hp
dR(M,R) � Hm−p

dR (M,R).

In particular, bp(M) = bm−p(M).

Proof. Since ∗ commutes with ∆d, and ∗∗ = ±1, we conclude that ∗ induces a linear iso-
morphism betweenH p(M) andHm−p(M). Then the result follows from Hodge theorem.

�

Theorem 4.12 (Kodaira-Serre duality). Let E → X be a holomorphic vector bundle over
a compact complex manifold X of complex dimension n. Then we have a conjugate-linear
isomorphism

σ : Hr(X,Ωp(E))
�
−→ Hn−r(X,Ωn−p(E∗)).

Proof. (Sketch) We introduce a conjugate-linear operator ∗̄E, constructing from ∗ : Ap,q →

An−q,n−p and the conjugate-linear isomorphism τ : E → E∗ via bundle metric h. To make
everything conjugate-linear, we also define ∗̄ : Ap,q(X)→ An−p,n−q(X) by ∗̄(η) := ∗η̄. Then
∗̄E : Ap,q(X, E)→ An−p,n−q(X, E∗) is defined by

∗̄E(η ⊗ s) := ∗̄(η) ⊗ τ(s).

Then we have ∂̄∗E = −∗̄E∗ ◦ ∂̄E∗ ◦ ∗̄E and hence ∗̄E∆∂̄E
= ∆∂̄E∗

∗̄E.
By Hodge theorem, we have

Hr(X,Ωp(E)) � Hp,r
∂̄

(X, E), Hn−r(X,Ωn−p(E∗)) � Hn−p,n−r
∂̄

(X, E∗).

Then ∗̄E induces a conjugate-linear map σ : Hr(X,Ωp(E)) → Hn−r(X,Ωn−p(E∗)), and the
Kodaira-Serre duality follows from the fact ∗̄E ◦ ∗̄E∗ = ±1. �
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4.4 The Kähler case

Now we assume (Xn, J, g) is a compact Kähler manifold. Then we will have a better
understanding of harmonic forms and Dolbeault cohomology. We shall begin by exploring
the relation between ∆d and ∆∂̄.

4.4.1 Hodge identities for Kähler metrics

We introduce some operators that will be useful in our discussion:

dc :=
√
−1(∂̄ − ∂).

Here my notation is the same as Wells, but differs from Griffiths-Harris by a factor 4π.
Then ddc =

√
−1(∂ + ∂̄)(∂̄ − ∂) = 2

√
−1∂∂̄. We define the “Lefschetz operator” L :

Ap,q(X)→ Ap+1,q+1(X) by:
L(η) := ωg ∧ η =: Lη.

Its adjoint will be denoted by Λ : Ap+1,q+1(X)→ Ap,q(X). We have

(ξ, Lη) = (Λξ, η), ∀ξ ∈ Ap+1,q+1(X), η ∈ Ap,q(X).

The basic equality in the Kähler case is:

Lemma 4.13. On Ap,q(X), we have [Λ, ∂] =
√
−1∂̄∗.

Given this, since L is a real operator, so is Λ, and we have

[Λ, ∂̄] = −
√
−1∂∗.

Combining these two identities, we further get

[Λ, d] = −dc∗, [Λ, dc] = d∗.

Proof of Lemma 4.13 . We first prove the identity in Cn. Let ω =
√
−1
2

∑
i dzi ∧ dz̄i be the

standard Kähler form on Cn. Let Ap,q
c (Cn) be the space of smooth (p, q)-forms on Cn with

compact support. Then L : Ap,q
c (Cn)→ Ap+1,q+1

c (Cn), Lη := ω ∧ η.
To derive a formula for Λ = L∗, we introduce operators ek, ēk by

ek(η) := dzk ∧ η, ēk(η) := dz̄k ∧ η.

Their adjoints are denoted by ik and īk respectively. Recall that ‖dzk‖
2 = ‖dx‖2 + ‖dy‖2 = 2,

so we conclude that ik = 2ι ∂
∂zk

, where ι ∂
∂zk

is the “interior product” operator, defined by

ι ∂
∂zk
η = η( ∂

∂zk
, ·, . . . , ·). Similarly, īk = 2ι ∂

∂z̄k
. It is easy to check that

ikek + ekik = 2, īkēk + ēk īk = 2.
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And for k , l,
ekil + ilek = 0, ēk īl + īlēk = 0.

We also define the degree-preserving linear maps ∂k, ∂̄k by

∂k

(∑
I,J

ηI J̄dzI ∧ dz̄J

)
:=

∑
I,J

ηI J̄

∂zk
dzI ∧ dz̄J,

∂̄k

(∑
I,J

ηI J̄dzI ∧ dz̄J

)
:=

∑
I,J

ηI J̄

∂z̄k
dzI ∧ dz̄J.

Note that ∂k and ∂̄k commute with ek, ēk and hence also ik, īk. Also an “integration by part”
trick gives us the relation ∂∗k = −∂̄k, ∂̄∗k = −∂k.

Now we can express all the operators we care by ek, ēk, ik, īk and ∂k, ∂̄k:

∂ =
∑

k

∂kek =
∑

k

ek∂k, ∂̄ =
∑

k

∂̄kēk =
∑

k

ēk∂̄k.

Taking adjoints, we get

∂∗ = −
∑

k

∂̄kik =
∑

k

ik∂̄k, ∂̄∗ = −
∑

k

∂k īk = −
∑

k

īk∂k.

Also

L =

√
−1
2

∑
k

ekēk, Λ = −

√
−1
2

∑
k

īkik.

So we can compute

Λ∂ = −

√
−1
2

∑
k,l

īkik∂lel = −

√
−1
2

∑
k,l

∂l īkikel

= −

√
−1
2

(∑
k

∂k īkikek +
∑
k,l

∂l īkikel

)
.

We compute the last two summands seperately.

−

√
−1
2

∑
k

∂k īkikek = −

√
−1
2

∑
k

∂k īk(2 − ekik)

= −
√
−1

∑
k

∂k īk −

√
−1
2

∑
k

∂kek īkik

=
√
−1∂̄∗ −

√
−1
2

∑
k

∂kek īkik,

12



and

−

√
−1
2

∑
k,l

∂l īkikel =

√
−1
2

∑
k,l

∂l īkelik = −

√
−1
2

∑
k,l

∂lel īkik.

So we get

Λ∂ =
√
−1∂̄∗ −

√
−1
2

∑
k

∂kek īkik −

√
−1
2

∑
k,l

∂lel īkik =
√
−1∂̄∗ + ∂Λ.

For the general compact Kähler case, one can use Kähler normal coordinates to reduce
the computations to our Cn case. The key point is that only first order derivatives are
involved. �

4.4.2 Hodge decomposition for compact Kähler manifolds

A direct consequence of Hodge identities is that ∆d commutes with both L and Λ: Since
ωg is closed, we have dL(η) = d(ωg ∧ η) = ωg ∧ dη, so [L, d] = 0. Taking adjoints, we get
[Λ, d∗] = 0. So using [Λ, d] = −dc∗, we get

Λ∆d = Λ(dd∗ + d∗d) = [Λ, d]d∗ + dΛd∗ + d∗Λd
= −dc∗d∗ + dd∗Λ + d∗[Λ, d] + d∗dΛ

= −dc∗d∗ − d∗dc∗ + ∆dΛ = ∆dΛ.

Taking adjoints, we also get [L,∆d] = 0.
Besides ∆d and ∆∂̄, we can similarly define ∆∂. For compact Kähler manifolds, we

have the following:

Proposition 4.14. In the Kähler case, we always have ∆∂̄ = ∆∂ = 1
2∆d.

Proof. Use d = ∂ + ∂̄ and d∗ = ∂∗ + ∂̄∗ to compute:

∆d = dd∗ + d∗d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)
= (∂∂∗ + ∂∗∂) + (∂̄∂̄∗ + ∂̄∗∂̄) + ∂∂̄∗ + ∂̄∂∗ + ∂∗∂̄ + ∂̄∗∂

= ∆∂ + ∆∂̄ + (∂∂̄∗ + ∂̄∗∂) + (∂̄∂∗ + ∂∗∂̄).

We need to prove:

• ∂∂̄∗ + ∂̄∗∂ = 0, ∂̄∂∗ + ∂∗∂̄ = 0 (these two identities are equivalent by conjugation);

• ∆∂ = ∆∂̄.
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To prove ∂∂̄∗ + ∂̄∗∂ = 0, we use the Hodge identity [Λ, ∂] =
√
−1∂̄∗:

√
−1(∂∂̄∗ + ∂̄∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂

= ∂Λ∂ − ∂2Λ + Λ∂2 − ∂Λ∂

= 0.

Now we compute ∆∂ and ∆∂̄ separately, both using Hodge identities:

−
√
−1∆∂ = ∂[Λ, ∂̄] + [Λ, ∂̄]∂

= ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂.

√
−1∆∂̄ = ∂̄[Λ, ∂] + [Λ, ∂]∂̄

= ∂̄Λ∂ − ∂̄∂Λ + Λ∂∂̄ − ∂Λ∂̄

= ∂̄Λ∂ + ∂∂̄Λ − Λ∂̄∂ − ∂Λ∂̄

=
√
−1∆∂.

From the above computations, we conclude that ∆d = ∆∂ + ∆∂̄ = 2∆∂ = 2∆∂̄. �

From this we conclude that ∆d : Ap,q(X)→ Ap,q(X), and

H
p+q
d (X,C) ∩ Ap,q(X) = H

p,q
∂̄

(X).

SinceH r
d(X,C) = ⊕p+q=r

(
H

p+q
d (X,C)∩Ap,q(X)

)
= ⊕p+q=rH

p,q
∂̄

(X). Also note thatH p,q
∂̄

(X) =

H
q,p
∂̄

(X). Applying Hodge theorem for compact Hermitian manifolds, we get:

Theorem 4.15 (Hodge decomposition for compact Kähler manifolds). Let (Xn, J, g) be a
compact Kähler manifold, then we have isomorphisms

Hr
dR(X,C) � ⊕p+q=rH

p,q
∂̄

(X) � ⊕p+q=rHq(X,Ωp), r = 0, 1, . . . , 2n,

and
Hp,q
∂̄

(X) � Hq,p
∂̄

(X).

In particular, we have
br =

∑
p+q=r

hp,q, hp,q = hq,p.

For example, we always have

H
p,0
∂̄

(X) = H0(X,Ωp),

since any (p, 0)-form is ∂̄∗-closed and it is ∂̄-closed if and only if it is holomorphic. Then
we conclude that any holomorphic p-form on a compact Kähler manifold is also d-closed
and even d-harmonic.

Exercise: Show that any holomorphic 1-form on a compact complex surface (not neces-
sarily Kähler) is always d-closed. (Kodaira)
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Corollary 4.16. The odd Betti number b2k+1 of a compact Kähler manifold Xn is always
even.

Proof. We have

b2k+1 =
∑

0≤p,q≤n,p+q=2k+1

hp,q

=
∑

p<q,p+q=2k+1

hp,q +
∑

p>q,p+q=2k+1

hp,q

=
∑

p<q,p+q=2k+1

hp,q +
∑

p>q,p+q=2k+1

hq,p

= 2
∑

p<q,p+q=2k+1

hp,q ≡ 0 mod 2.

�

As a concrete application, let’s compute the cohomologies of CPn: The topological
structure is rather simple: we have CPn = U0 ∪ {z0 = 0}, with U0 � C

n and {z0 = 0} �
CPn−1. So we can construct CPn in the following way: start with a point (a “0-cell”), glue
a C1 (a “2-cell”) to get CP1, then glue a C2 (a “4-cell”) to get CP2, . . . .... So the cellular
cohomologies of CPn are:

H2k+1(CPn,Z) = 0, H2k(CPn,Z) = Z, k = 0, . . . , n.

Now ωFS is a Kähler forms on CPn. Since ωk
FS = Lk1 and ∆dL = L∆d, each ωk

FS is
a harmonic (k, k)-form. So we conclude that hp,p ≥ 1, p = 0, . . . , n. On the other hand,
1 = b2p ≥ hp,p, we must have b2p = hp,p. Also, hp,q = 0 when p + q is odd. So the only
non-zero Dolbeault cohomologies of CPn are Hp,p

∂̄
(X) � C, p = 0, . . . , n. In particular,

there are no non-zero holomorphic forms on CPn.

For another application, we state the so called “∂∂̄-lemma”, which is very useful in
Kähler geometry:

Lemma 4.17. If η is any d-closed (p, q)-form on a compact Kähler manifold Xn, and η is
d- or ∂- or ∂̄-exact, then

η = ∂∂̄γ

for some (p − 1, q − 1)-form γ. When p = q and η is real, then we can take γ =
√
−1ξ for

a real (p − 1, q − 1)-form ξ.

Proof. Recall that in the Kähler case we have ∆d = 2∆∂ = 2∆∂̄, they share the same kernel:
harmonic forms. Since η is d- or ∂- or ∂̄-exact, its harmonic projection must be zero. So
we have

η = ∆∂̄G∂̄η = ∂̄∂̄∗G∂̄η.

15



Here we use the fact that ∂̄ commutes with G∂̄ and that dη = 0⇒ ∂̄η = 0.
Now we look at the form ∂̄∗G∂̄η, it is also orthogonal to harmonic forms. Also since

G∂ = G∂̄, we have ∂∂̄∗G∂̄η = −∂̄∗∂G∂η = −∂̄∗G∂∂η = 0. Then we can use Hodge decom-
position for ∆∂:

∂̄∗G∂̄η = ∆∂G∂∂̄
∗G∂̄η = ∂∂∗G∂∂̄

∗G∂̄η.

So we get
η = ∂̄∂∂∗G∂∂̄

∗G∂̄η = ∂∂̄
(
− ∂∗G∂∂̄

∗G∂̄η
)

= ∂∂̄
(
− ∂∗∂̄∗G2

∂̄
η
)
.

�

The most often used case is about (1, 1)-class. Let ω and ω̃ be two Kähler forms on X
such that [ω] = [ω̃] ∈ H2

dR(X). Then ω̃−ω is a d−exact form, so by the ∂∂̄-lemma, we can
find a smooth function ϕ ∈ C∞(X;R) such that

ω̃ = ω +
√
−1∂∂̄ϕ.

ϕ is unique up to a constant. On the other hand, if ϕ ∈ C∞(X;R) satisfies ω+
√
−1∂∂̄ϕ > 0,

then it defines a Kähler metric with the same Kähler class. So we conclude that the space
of Kähler metrics within the same cohomology class [ω] is isomorphic to

{ϕ ∈ C∞(X;R) | ω +
√
−1∂∂̄ϕ > 0}

/
R.

One of the most important problem in Kähler geometry is the existence of canonical met-
rics in a given Kähler class. Through the ∂∂̄-lemma, we can reduce the problem to a
(usually non-linear) partial differential equation for ϕ. This is the starting point of using
non-linear PDEs to solve problems in Kähler geometry.

Remark 4.18. If we further introduce the operator h : A∗(X) → A∗(X) by h =
∑2n

p=0(n −
p)Πp , then we will have

[Λ, L] = h, [h,Λ] = 2Λ, [h, L] = −2L.

Recall the 3-dimensional complex Lie algebra sl2, generated by

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

They satisfy
[H, X] = 2X, [H,Y] = −2Y, [X,Y] = H.

So H 7→ h, X 7→ Λ,Y 7→ L gives a representation of sl2 on H∗(X,C). Using elementary
representation theory, we can get a finer decomposition result, due to S. Lefschetz.
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