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5 Kodaira’s vanishing theorem and its applications

5.1 Kodaira vanishing theorem

Using Hodge theorem, we can prove an important cohomology vanishing theorem of Ko-
daira. To state the theorem, we recall the following positivity notions for real (1, 1)-forms
and for line bundles: We say a real (1, 1)-form ω is “positive” if locally it can be written
as ω =

√
−1

∑
i, j ai j̄dzi ∧ dz̄ j where (ai j̄) is positive definite everywhere. A line bundle L is

called “positive” if there exists an Hermitian metric h on L such that
√
−1Θ(h) is positive.

Theorem 5.1 (Kodaira-Nakano). If L → X is a positive holomorphic line bundle on a
compact Kähler manifold,1 then we have

Hq(X,Ωp(L)) = 0, for p + q > n.

In particular, Hq(X,O(KX ⊗ L)) = 0 for q > 0.

Proof. ( due to Akizuki-Nakano) We use ω :=
√
−1Θ(h) as our reference Kähler metric.

2 The Hodge theorem ensures that Hq(X,Ωp(L)) � H p,q(X, L). So we need to show that
when p + q > n each L-valued harmonic (p, q)-form must be zero.

We need the following lemma, whose proof is almost identical to the “un-twisted case”
we proved before:

Lemma 5.2. Let E be a holomorphic vector bundle over a compact Kähler manifold (X, ω)
with Hermitian metric h. Introduce the operator L : Ap,q(X, E)→ Ap+1,q+1(X, E) as before
and define Λ := L∗. If we denote the (1, 0) and (0, 1) components of the Chern connection
D by D′ and D′′(= ∂̄), then we have

[Λ, ∂̄] = −
√
−1D′∗, [Λ,D′] =

√
−1∂̄∗.

Assuming the lemma at present. Then the proof of Kodaira vanishing theorem essen-
tially follows from the comparison of two “Laplacians”, the so called “Bochner’s tech-
nique”:

∆∂̄,E − ∆D′,E = [
√
−1Θ(h),Λ],

where ∆D′,E := D′D′∗ + D′∗D′. The reason for this equality is:

−
√
−1∆D′,E = D′[Λ, ∂̄] + [Λ, ∂̄]D′

= D′Λ∂̄ − D′∂̄Λ + Λ∂̄D′ − ∂̄ΛD′,

1We can just assume X is compact complex manifold. Then if
√
−1Θ(h) > 0, then it is a Kähler form on

X and so X is in fact Kähler. Later, by Kodaira’s embedding theorem, X is in fact projective algebraic.
2In this case, [ω] = 2πc1(L). In general, if we have a compact Kähler manifold (X, J, g) such that

[ωg] = 2πc1(L) (or c1(L)) for some holomorphic line bundle L, then we call the triple (X, L, g) a “polarized
manifold”. L is called “the polarizing line bundle” or “the polarization”.
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while
√
−1∆∂̄,E = ∂̄[Λ,D′] + [Λ,D′]∂̄

= ∂̄ΛD′ − ∂̄D′Λ + ΛD′∂̄ − D′Λ∂̄.

So we get
√
−1∆∂̄,E −

√
−1∆D′,E = Λ(∂̄D′ + D′∂̄) − (∂̄D′ + D′∂̄)Λ.

Note that Θ(h) is of type (1, 1), we get D′D′ = 0, ∂̄∂̄ = 0, so

Θ(h) = D2 = (D′ + ∂̄)(D′ + ∂̄) = D′∂̄ + ∂̄D′.

So we get
∆∂̄,E − ∆D′,E = −

√
−1[Λ,Θ(h)] = [

√
−1Θ(h),Λ].

Now back to the proof of Kodaira’s vanishing theorem. We have
√
−1Θ(h) = ω, so

the above Bochner formula reduces to

∆∂̄ − ∆D′ = [L,Λ] = (p + q − n)id.

So if s ∈ H p,q(X, L) is not identically zero, then we have

(∆∂̄s − ∆D′ s, s) = (p + q − n)‖s‖2 > 0.

On the other hand,

(∆∂̄s − ∆D′ s, s) = −(∆D′ s, s) = −‖D′s‖2 − ‖D′∗s‖2 ≤ 0.

This is a contradiction. �

5.2 The embedding theorem

One important application of the Kodaira vanishing theorem is the following embedding
theorem of Kodaira:

Theorem 5.3. If a compact complex manifold X has a positive line bundle, then it is
projective algebraic.

The basic construction we shall use is the following: Let L→ X be a holomorphic line
bundle, such that H0(X,O(L)) , 0. Then we can take a basis of H0(X,O(L)), s0, . . . , sN ,
and define a “map” from X to CPN:

x 7→ [s0(x), . . . , sN(x)].
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This is defined using a local trivialization, so that we can identify each si as a locally
defined holomorphic function. This map is independent of the trivialization we choose,
but it is un-defined on the “base locus” of L: 3

Bs(L) := {x ∈ X | s(x) = 0, ∀s ∈ H0(X,O(L))}.

What Kodaira actually proved is the following: If L → X is a positive line bundle on
a compact complex manifold, then we can find a large integer m0 > 0 such that for all
m > m0:

1. L⊗m is “base point free”, i.e. Bs(L⊗m) = ∅;

2. Choose a basis of H0(X,O(L⊗m)), s0, . . . , sNm , then the “Kodaira map” ιLm : X →
CPNm defined by

x 7→ [s0(x), . . . , sNm(x)]

is a holomorphic embedding.

Definition 5.4. Let L→ X be a holomorphic line bundle on a compact complex manifold.

• If there is an integer m0 > 0 such that for all m > m0, L⊗m is base point free, then
we say L is semi-ample;

• If L is base point free and the Kodaira map ιL is a holomorphic embedding, then we
say L is very ample;

• If there is an integer m0 > 0 such that for all m > m0, L⊗m is very ample, then we
say L is ample.

A corollary of Kodaira’s theorem is that on a compact complex manifold, a holomor-
phic line bundle is ample if and only if it is positive.

In fact, if L is positive, then it is ample by Kodaira’s theorem. On the other hand, if L
is ample, we can find m ∈ N such that ιLm is a holomorphic embedding. Then the pulling
back of the hyperplane bundle is isomorphic to L⊗m, and the induced metric has positive
curvature. The corresponding metric on L also has positive curvature.

Outline of the proof of Kodaira embedding theorem: For simplicity, we only prove that
there is a sufficiently large m such that ιLm is an embedding. We need to prove the fol-
lowing 3 properties:

1. Prove that L⊗m is base point free when m large enough. We only need to show that
for any point p ∈ X, we can find a mp ∈ N such that for all m ≥ mp, we can find a
s ∈ H0(X,O(L⊗m)) such that s(p) , 0. That is, the linear map rp : H0(X,O(L⊗m))→
L⊗m

p is surjective.

3In fact, one can suitably extend the map to codimension one part of Bs(L).
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2. Prove that for m large, global sections of L⊗m separate points. For this, we need to
prove that for any two points p , q in X, the linear map rp,q : H0(X,O(L⊗m)) →
L⊗m

p ⊕ L⊗m
q is surjective for m sufficiently large.

3. Prove that for m large, ιLm is an immersion. That is, for any point p ∈ X, global
sections of L⊗m separate tangent directions at p. We only need to show the linear
map rp,p : H0(X,O(L⊗m))→ L⊗m

p ⊗
(
Op/m

2
p) is surjective for m sufficiently large.

Note that property 2 is stronger than property 1. So we only need to prove 2 and 3.
Also note that if we denote bymp the ideal sheaf of holomorphic germs vanishing at p and
mp,q the ideal sheaf of holomorphic germs vanishing at p and q, then what we need prove
is that

H0(X,O(L⊗m))→ H0(X,O(L⊗m) ⊗ O/mp,q)

and
H0(X,O(L⊗m))→ H0(X,O(L⊗m) ⊗ O/m2

p)

are both surjective when m is large enough.
For this, we use short exact sequences of sheaves:

0→ mp,q → O → O/mp,q → 0, 0→ m2
p → O → O/m2

p → 0.

Tensor with the locally free sheaf O(L⊗m), we get exact sequences

0→ O(L⊗m) ⊗mp,q → O(L⊗m)→ O(L⊗m) ⊗ O/mp,q → 0

and
0→ O(L⊗m) ⊗m2

p → O(L⊗m)→ O(L⊗m) ⊗ O/m2
p → 0.

The induced long exact sequences give us:

H0(X,O(L⊗m))→ H0(X,O(L⊗m) ⊗ O/mp,q)→ H1(X,O(L⊗m) ⊗mp,q)

and
H0(X,O(L⊗m))→ H0(X,O(L⊗m) ⊗ O/m2

p)→ H1(X,O(L⊗m) ⊗m2
p).

We need to prove the vanishing of H1(X,O(L⊗m) ⊗mp,q) and H1(X,O(L⊗m) ⊗m2
p).

Comparing with Kodaira’s vanishing theorem, we found that the main problem is that
mp,q and m2

p are not sheaves of germs of holomorphic line bundles. They are examples of
“coherent analytic sheaves”. This “generalized Kodaira vanishing theorem” for coherent
analytic sheaves is indeed true, but harder to prove. Kodaira’s method (as appeared in
Griffiths-Harris and Wells) is to replace X by its blown-up X̃ at p and q. Pulling everything
back to X̃ we can work purely with line bundles, and then Kodaira’s vanishing theorem
works. Then one need to show that vanishing upstairs implies vanishing downstairs.

Finally, since both property 2 and 3 are “open” properties, we can use a “finite covering
trick” to find a uniform m, independent of p, q ∈ X. �
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In short, the proof says that positivity of a line bundle L implies L⊗m has so many global
sections that they can separate points and tangent directions. Here we use Kodaira’s coho-
mology vanishing to prove the existence of global sections satisfying special properties.
This is typical when applying vanishing theorems. Also, to prove the existence of global
sections separating points and tangent directions, one can directly construct sections by
solving ∂̄-equations using Hörmander’s L2-method. It turns out that we also need a certain
type of Bochner type identity, and the positivity of the line bundle is also crucial.
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