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6 Calabi-Yau theorem

6.1 Calabi’s problem and Aubin-Yau, Calabi-Yau theorem

Recall that ΛnT 1,0X =: K−1
X is the anticanonical line bundle, and g induced an Hermitian

metric on K−1
X , with | ∂

∂z1
∧· · ·∧ ∂

∂zn
|2g := det(gi j̄), its curvature form is exactly −∂̄∂ log det(gi j̄).

So we get √
−1Θ(K−1

X , det g) = Ric(ωg),

and by Chern’s theorem,

[Ric(ωg)] = 2πc1(K−1
X ) =: 2πc1(X).

Calabi asked the following questions:

1. Given a Kähler metric g and a closed (1,1)-form η such that its cohomology class
in H2

dR(X) is [η] = 2πc1(X), can we find another Kähler metric g′ within the same
Kähler class [ωg] such that Ric(ωg′) = η?

2. When can we find a Kähler metric which is at the same time an Einstein metric? That
is, Ric(ωg) = λωg for a constant λ ∈ R. We call such a metric an Kähler-Einstein
metric.

Recall that by ∂∂̄-lemma, different Kähler metrics in the same Kähler class differ by√
−1∂∂̄ϕ for a R-valued function ϕ. So Calabi’s problems actually ask whether we can

find smooth function ϕ satisfying a specific equation.
Also recall that for a real (1, 1)-form η =

√
−1ηi j̄dzi ∧ dz̄ j, we say it is positive (write

η > 0 ), if the matrix (ηi j̄) is positive definite everywhere. And we say a real (1,1)-class
α ∈ H2

dR(X) is positive if we can find a closed η > 0 such that [η] = α.
First, observe that:

Lemma 6.1. If the compact Kähler manifold (X, J, g) is Einstein, then either c1(X) > 0 or
c1(X) < 0 or c1(X) = 0.

Also observe that the Ricci form is invariant under rescaling, so for the Kähler-Einstein
problem, we can assume λ = 1,−1 or 0.

The results we discuss in this chapter are:

Theorem 6.2 (Aubin-Yau). If X is compact Kähler manifold with c1(X) < 0, then there is
a unique Kähler metric g satisfying

Ric(ωg) = −ωg.
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Theorem 6.3 (Calabi-Yau theorem). If X is compact Kähler manifold with a given Kähler
metric g0, then given any closed (1, 1)-form η such that [η] = 2πc1(X), there is a unique
Kähler metric g with [ωg] = [ωg0] satisfying

Ric(ωg) = η.

In particular, if c1(X) = 0, then for any Kähler class α, there is a unique Ricci-flat Kähler
metric in the class α. A Ricci-flat Kähler metric is usually called a “Calabi-Yau metric”
in the literature.

However, when c1(X) > 0 (then we say “X is a Fano manifold” in honor of the Ital-
ian algebraic geometer Fano), in general we can not find Kähler-Einstein metrics, due to
various obstructions, like the vanishing of Futaki invariant and the reductiveness of the
automorphism group of X. The ultimate result is:

Theorem 6.4 (Chen-Donaldson-Sun, Tian). Let X be a compact Kähler manifold with
c1(X) > 0. Then X admits a Kähler-Einstein metric if and only if X is K-polystable.

I won’t explain the meaning of K-stability here. For the original definition, we refer the
readers to Tian’s 1997 Invent. Math. paper. The uniqueness problem of positive Kähler-
Einstein metrics is also very difficult, and first solved by Bando-Mabuchi. There is a recent
proof by B. Berndtsson, using ideas from complex Brunn-Minkowski inequalities.

Now we derive the equation and prove the uniqueness part.
For Aubin-Yau theorem, we start with a g0 such that its Kähler form ω ∈ −2πc1(X) =

−[Ric(ω)], so we can apply the ∂∂̄-lemma to get a smooth function h satisfying Ric(ω) +

ω =
√
−1∂∂̄h, and h is unique if we require

∫
X

ehωn =
∫

X
ωn. We want to find ϕ ∈ C2(M;R)

s.t. ωϕ := ω +
√
−1∂∂̄ϕ > 0 and Ric(ωϕ) + ωϕ = 0, i.e.,

0 = −∂i∂ j̄ log det(gp,q̄ + ϕpq̄) + gi j̄ + ϕi j̄ = −∂i∂ j̄

(
log

det(gp,q̄ + ϕpq̄)
det(gpq̄)

− h − ϕ
)
.

So we get the equation
(ω +

√
−1∂∂̄ϕ)n = eh+ϕωn. (6.1)

For Calabi-Yau theorem, we have a unique h satisfying Ric(ω) − η =
√
−1∂∂̄h and∫

X
ehωn =

∫
X
ωn. We want to find ϕ such that ωϕ > 0 and Ric(ωϕ) = η, i.e.

−∂i∂ j̄ log det(gp,q̄ + ϕpq̄) = −∂i∂ j̄ log det(gp,q̄) − hi j̄.

So the equation is
(ω +

√
−1∂∂̄ϕ)n = ehωn. (6.2)

Lemma 6.5 (Calabi). The solutions to (6.1) and (6.2) are both unique.
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Proof. If both ϕ1 and ϕ2 solve (6.1), set ψ := ϕ2 − ϕ1. Then ψ satisfies (ω1 +
√
−1∂∂̄ψ)n =

eψωn
1. At the maximum point of ψ, we have eψωn

1 ≤ ω
n
1, so ψ ≤ 0. Similarly, we get ψ ≥ 0,

hence ψ ≡ 0.
If both ϕ1 and ϕ2 solve (6.2), set ψ := ϕ2 − ϕ1. Then ψ satisfies an elliptic equation of

the form Lψ = 0, with L = Ai j̄(z, ∂2ϕ1, ∂
2ϕ2)∂i∂ j̄. Since ψ must achieve its maximum and

minimum somewhere, by strong maximum principle, ψ is a constant, and the correspond-
ing metrics are the same. �
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6.2 Proof of (Aubin-)Calabi-Yau theorem

We start with the Aubin-Yau theorem. The idea of proof is to use the so called “continuity
method”, introduced in the first half of 20th century by H. Weyl.

We introduce an extra parameter t into (6.1):

(ω +
√
−1∂∂̄ϕ)n = eth+ϕωn. (6.3)

Then we study the set S := {t ∈ I = [0, 1] | (6.3) is solvable in Ck,α(X)}. Obviously 0 ∈ S ,
since in this case ϕ ≡ 0 is a solution. Then we try to show S is both open and closed. By
connectness of I, we will get 1 ∈ S , i.e. (6.1) is solvable.

To show the openness, we shall use the implicit function theorem in Banach spaces.
We consider the operator Ψ : I ×Ck,α(X)→ Ck−2,α, where

Ψ(t, ϕ) := log
(ω +

√
−1∂∂̄ϕ)n

ωn − ϕ − th.

Then we have
DϕΨ(ψ) = g j̄i

ϕ∂i∂ j̄ψ − ψ = (∆ϕ − 1)ψ.

This is invertible by Fredholm alternative, since we can easily prove its injectivity, either
use maximum principle or integration by parts. So we get the openness of S .

To prove the closedness, we shall derive a priori estimates: if ti ∈ S with solution
ϕi ∈ Ck,α(X) and ti → t0 ∈ I, we need to show that ‖ϕi‖k,α ≤ C with a uniform constant C.
Then we can find a converging subsequence in Ck,α. If k ≥ 2, then we will get a solution
for t0 and S must be closed.

The C0 estimate of ϕ is rather direct: if

(ω +
√
−1∂∂̄ϕ)n = eth+ϕωn

and ϕ achieves its maximum at p ∈ X. Then

eth(p)+maxϕωn(p) ≤ ωn(p),

so ϕ ≤ ‖h‖∞. Similarly, we get ϕ ≥ −‖h‖∞, so ‖ϕ‖∞ ≤ ‖h‖∞. This is already known to
Calabi.

We shall not prove C1 estimate directly, (which is not simple, and first proved directly
by Blocki, more than 30 years later than Yau’s work) but use C2 estimates.

The C2 estimate is due independently to Aubin and Yau, with slightly different calcu-
lations.

We denote by ∆ := g j̄i∂i∂ j̄ and ∆ϕ := g j̄i
ϕ∂i∂ j̄. Since (gi j̄ +ϕi j̄) is positive definite, taking

trace with respect to ω, we have 0 < g j̄i(gi j̄ + ϕi j̄) =: trωωϕ = n + ∆ϕ. Now we compute
∆ϕtrωωϕ at a point p, using Kähler normal coordinates of g at p. Note that at this point,
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we have Ri j̄kl̄ = −∂i∂ j̄gkl̄, so we have

∆ϕtrωωϕ = g j̄i
ϕ∂i∂ j̄(gl̄kgϕ,kl̄) = g j̄i

ϕ∂i(gl̄k∂gϕ,kl̄

∂z̄ j
− gl̄pgq̄k∂gpq̄

∂z̄ j
gϕ,kl̄)

= g j̄i
ϕgl̄k∂

2gϕ,kl̄

∂zi∂z̄ j
+ g j̄i

ϕgl̄pgq̄kRi j̄pq̄gϕ,kl̄

= g j̄i
ϕgl̄k( − R(gϕ)i j̄kl̄ + gq̄p

ϕ ϕpl̄ j̄ϕkq̄i
)

+ g j̄i
ϕgl̄pgq̄kRi j̄pq̄gϕ,kl̄

= −trωRic(ωϕ) + g j̄i
ϕgl̄kgq̄p

ϕ ϕpl̄ j̄ϕkq̄i + g j̄i
ϕgl̄pgq̄kRi j̄pq̄gϕ,kl̄.

So we get

∆ϕ log trωωϕ = g j̄i
ϕ∂i

∂ j̄trωωϕ

trωωϕ

=
∆ϕtrωωϕ

trωωϕ

−
|∂trωωϕ|

2
ϕ

(trωωϕ)2

=
1

trωωϕ

(
− trωRic(ωϕ) + g j̄i

ϕgl̄pgq̄kRi j̄pq̄gϕ,kl̄

)
+

(trωωϕ)g j̄i
ϕgl̄kgq̄p

ϕ ϕpl̄ j̄ϕkq̄i − |∂trωωϕ|
2
ϕ

(trωωϕ)2 .

Claim: We always have (trωωϕ)g j̄i
ϕgl̄kgq̄p

ϕ ϕpl̄ j̄ϕkq̄i − |∂trωωϕ|
2
ϕ ≥ 0.

To see this, recall that we work under a Kähler normal coordinate system. By an extra
linear coordinate change, we can further assume that ϕi j̄ = λiδi j, with λi ∈ R and 1+λi > 0.
So at this point, we have gϕ,i j̄ = (1 + λi)δi j and g j̄i

ϕ =
δi j

1+λi
, and so trωωϕ =

∑
i(1 + λi), and

g j̄i
ϕgl̄kgq̄p

ϕ ϕpl̄ j̄ϕkq̄i =
∑

i,p,k
1

1+λi

1
1+λp
|ϕip̄k|

2. So we have

|∂trωωϕ|
2
ϕ =

∑
i

1
1 + λi

|∂i(gl̄kgϕ,kl̄)|
2 =

∑
i

1
1 + λi

|gl̄k∂igϕ,kl̄|
2

=
∑

i

1
1 + λi

|
∑

k

ϕkk̄i|
2 =

∑
i

1
1 + λi

|
∑

k

√
1 + λk

ϕkk̄i
√

1 + λk
|2

≤
∑

i

1
1 + λi

(∑
k

(1 + λk)
)(∑

p

|ϕpp̄i|
2

1 + λp

)
= (trωωϕ)

∑
i,p

1
1 + λi

|ϕpp̄i|
2

1 + λp

≤ (trωωϕ)
∑
i,p,k

1
1 + λi

1
1 + λp

|ϕkp̄i|
2.

Lemma 6.6. Let ω be a Kähler metric on a compact Kähler manifold X and ϕ ∈ C4(X;R)
satisfies ω +

√
−1∂∂̄ϕ > 0, then

∆ϕ log trωωϕ ≥
−trωRic(ωϕ)

trωωϕ

−Ctrωϕω. (6.4)
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Proof. By the above discussions, we have

∆ϕ log trωωϕ ≥
1

trωωϕ

(
− trωRic(ωϕ) + g j̄i

ϕgl̄pgq̄kRi j̄pq̄gϕ,kl̄

)
=
−trωRic(ωϕ)

trωωϕ

+
1

trωωϕ

∑
i,k

1 + λk

1 + λi
Riīkk̄

≥
−trωRic(ωϕ)

trωωϕ

+
infi,k Riīkk̄

trωωϕ

∑
i,k

1 + λk

1 + λi

=
−trωRic(ωϕ)

trωωϕ

+ inf
i,k

Riīkk̄trωϕω.

Since X is compact, we can find C > 0 such that infi,k Riīkk̄ ≥ −C. �

Note that we haven’t use the equation! So the above computation applies to other
situations.

Now we rewrite the equation (6.3) as

Ric(ωϕ) = Ric(ω) − t
√
−1∂∂̄h −

√
−1∂∂̄ϕ

= Ric(ω) − t
(
Ric(ω) + ω

)
−

(
ωϕ − ω

)
= (1 − t)

(
Ric(ω) + ω

)
− ωϕ.

So −trωRic(ωϕ) ≥ trωωϕ −C. So we conclude that

∆ϕ log trωωϕ ≥ 1 −C
( 1
trωωϕ

+ trωϕω
)
≥ 1 −C′trωϕω.

The last step used the fact 1
trωωϕ

= 1∑
i(1+λi)

≤ 1
1+λ1
≤ trωϕω.

On the other hand, we have

∆ϕϕ = trωϕ(ωϕ − ω) = n − trωϕω,

and so we get
∆ϕ

(
log trωωϕ − (C′ + 1)ϕ

)
≥ −C′′ + trωϕω.

At the maximum point of log trωωϕ − (C′ + 1)ϕ, we have trωϕω ≤ C′′. Use Kähler normal
coordinates at that point and assume gϕ is diagonal as before, we get 1

1+λi
≤ C′′ for each

i. By (6.3), we have Πi(1 + λi) = eth+ϕ ≤ C0, which implies 1 + λi ≤ C0(C′′)n−1. So
trωωϕ ≤ nC0(C′′)n−1. This implies at this point log trωωϕ− (C′+ 1)ϕ is uniformly bounded
from above (use |ϕ| ≤ ‖h‖C0). This in turn implies trωωϕ ≤ C for a uniform constant C.

Since we have L∞ control of ∆ϕ, using Lp theory for linear elliptic equations, we get
uniform control of C1-norm for ϕ.

Also a direct consequence of the ∆ϕ estimate is that there is a uniform constant C > 0
such that 1

Cω ≤ ωϕ ≤ Cω.
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After obtaining C2 estimates, there are two ways to get higher order estimates. The
original approach of Aubin and Yau used Calabi’s 3rd order estimates, and then use
Schauder estimates and then bootstrapping. Later, Evans and Krylov independently dis-
covered that the C2,α estimate follows directly from the C2 estimate. The basic idea is
that if we differentiate the equation in the tangent direction γ 2-times, we will get an el-
liptic equation for uγγ. The above estimate implies that we have uniform control for the
ellipticity constants. Then we can get Harnack inequality for uγγ by exploring the con-
cavity structure of the complex Monge-Ampère operator. One can find the proof for real
fully nonlinear equations in chapter 17 of Gilbarg-Trudinger’s book. The adaptation to the
complex Monge-Ampère equation has been carried out by Siu in his book [2].

After obtaining C2,α control of ϕ, we can differentiate the equation once, then the
coefficients have uniform Hölder norm, so we can use Schauder estimates and then boot-
strapping. This finishes the proof to Theorem 6.2.

Now we study the Calabi-Yau equation.

First, we need a continuity path for the equation (6.2):

(ω +
√
−1∂∂̄ϕ)n = eth+ctωn, (6.5)

where ct is a constant defined by
∫

X
eth+ctωn =

∫
X
ωn. Again let

S := {t ∈ I | (6.5) is solvable in Ck,α
0 },

where we define Ck,α
0 := {ϕ ∈ Ck,α(X) |

∫
X
ϕωn = 0}. When t = 0, ϕ ≡ 0 is the solution.

So S , ∅. To show S is open, we use the implicit function theorem. However, there
is additional difficulty caused by the change of ct, so we modify the function spaces in
Aubin-Yau’s theorem.

We define the affine subspace of Ck−2,α:

Ck−2,α
V := { f ∈ Ck,α(X) |

∫
X

e fωn =

∫
X
ωn}.

Then we define the operator Φ : Ck,α
0 → Ck−2,α

V ,

Φ(ϕ) :=
(ω +

√
−1∂∂̄ϕ)n

ωn .

The linearization at ϕt0 is DΦϕt0
: Ck,α

0 → Ck−2,α
0

DΦϕt0
(ψ) =

ωn
ϕt0

ωn ∆ϕt0
ψ.

This operator is invertible since ∆ϕt0
ψ = f is solvable if and only if

∫
X

fωn
ϕt0

= 0. This
proves the openness.
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For closedness, as before, we need to derive a priori estimates. Only the C0 estimate
is different, other parts are almost identical.

We will basically follow Yau’s original proof using Moser iteration. Later there are
other proofs, e.g. S. Kolodziej’s approach using pluripotential theory and Z. Blocki’s
proof using Alexandrov’s maximum principles. Our exposition follows [1].

Rewrite the equation as (ω +
√
−1∂∂̄ϕ)n = Fωn with F = eth+ct . Note that F has

uniform positive upper and lower bounds, independent of t. Set ψ := supX ϕ − ϕ + 1 ≥ 1.
Since

(F − 1)ωn = (ω +
√
−1∂∂̄ϕ)n − ωn =

√
−1∂∂̄ϕ ∧

n−1∑
j=0

ωn− j−1
ϕ ∧ ω j,

we multiply ψα+1 on both sides for some α ≥ 0, and integrate over X:∫
X
ψα+1(F − 1)ωn = (α + 1)

n−1∑
j=0

∫
X
ψα
√
−1∂ψ ∧ ∂̄ψ ∧ ωn− j−1

ϕ ∧ ω j

≥ (α + 1)
∫

X
ψα
√
−1∂ψ ∧ ∂̄ψ ∧ ωn−1

=
α + 1

(α2 + 1)2

∫
X

√
−1∂ψ

α
2 +1 ∧ ∂̄ψ

α
2 +1 ∧ ωn−1

=
α + 1

(α2 + 1)2 ‖∇ψ
α
2 +1‖2.

So we get

‖∇ψ
α
2 +1‖2 ≤ C1

(α2 + 1)2

α + 1

∫
X
ψα+1ωn,

where C1 depends only on ‖F‖L∞ .
On the other hand, we have Sobolev inequality

‖u‖2
L

2n
n−1
≤ C2(‖∇u‖2L2 + ‖u‖2L2).

We apply this to u := ψ
p
2 :

‖ψ‖
p
Lpβ ≤ C2(‖∇ψ

p
2 ‖2L2 + ‖ψ‖

p
Lp),

where β := n
n−1 > 1. Then we choose p = α + 2, to get

‖ψ‖Lpβ ≤
(
C3 p

) 1
p ‖ψ‖Lp , p ≥ 2.

Then we can iterate p → pβ → pβ2 → · · · → pβk → . . . . Using the fact that
limk→∞ ‖ψ‖Lpβk = ‖ψ‖L∞ , we conclude that once we have a uniform Lp bound for ψ for
some p ≥ 2, then we will have uniform L∞ estimate for ψ.
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To get this Lp bound, one can use, for example, the following result of G. Tian: Given
a Kähler form ω, we can find a positive number c > 0, depending only on the Kähler class,
such that we can find another uniform constant C > 0 such that∫

X
e−c(ϕ−supX ϕ)ωn ≤ C,

∀ϕ ∈ C∞(X;R) such that ω +
√
−1∂∂̄ϕ > 0. From this, we get uniform estimate of ‖ψ‖Lk

for any k ∈ N.
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