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Abstract. Notes for the last three lectures for a graduate course “Riemann Surfaces” at
Nanjing University.
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1. Hyperbolic geometry on a Riemann surface

Let M be a smooth oriented closed surface of genus g ≥ 2. The two basic facts we need are:
• Every conformal class of a Riemannian structure on M determines uniquely a complex
structure and hence making it into a Riemann surface. The Riemannian metric is called
a “conformal metric” on this Riemann surface.
• By uniformization theorem of Koebe-Poincaré, every complex structure determines
uniquely a conformal hyperbolic metric via the standard hyperbolic metric on the unit
disk D or the upper half plane H.

We explain briefly the uniqueness in the second fact: locally ds2 = λ|dz|2, then the Gauss
curvature is

K(λ) = −2

λ

∂2

∂z∂z̄
log λ.

If K(λ) = −1 and K(eρλ) = −1, where ρ is a globally defined function, then

∆λρ = 2(eρ − 1),

where ∆λ = 4
λ

∂2

∂z∂z̄
. Since M is closed, its maximum and minimum are both achieved. At its

maximum point, we have
0 ≥ ∆λρ = 2(eρmax − 1),

so ρmax ≤ 0. Similarly, at its minimum point, we have

0 ≤ ∆λρ = 2(eρmin − 1),

so ρmin ≥ 0. Together we get ρ ≡ 0.

By Gauss-Bonnet, if ds2
M is a conformal hyperbolic metric, then

−Area(M) =

∫
M

KMdVM = 2πχM = 2π(2− 2g),

so we conclude that Area(M) = 4π(g − 1).

Definition 1 (Teichmüller space). Let Diff0 be the group consists of diffeomorphisms on M
homotopic to idM . The the Teichmüller space of M is defined to be

Tg :=M−1/Diff0,

where an element φ ∈ Diff0 acts onM−1 by pulling back.
1
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At present, Tg is just a set, we shall later endow it with a “canonical" topology and making
it a differentiable manifold (even a complex analytic manifold).

2. Harmonic maps between Riemann surfaces with conformal metrics

Let (M,ds2
M) and (N, ds2

N) be two closed Riemann surfaces with conformal metrics. Locally,
we have

ds2
M = σ|dz|2, ds2

N = ρ|dw|2.
We define the energy density and the total energy of a smooth map u : M → N to be

e(u) :=
ρ(u(z))

σ(z)
(|uz|2 + |uz̄|2),

E(u) :=

∫
M

e(u)dVM =

∫
M

ρ(u(z))(|uz|2 + |uz̄|2)dxdy.

From this expression, it is easy to see that the total energy depends only on the complex
structure of M , but depends on the metric of the target manifold N .

Definition 2 (Definition and Lemma). The critical point of E(u) is called a harmonic map.
uM → N is harmonic if and only if

uzz̄ +
ρw
ρ
uzuz̄ = 0.

From the equation, it is easy to see that holomorphic and anti-holomorphic maps are har-
monic.

The key tool to use harmonic maps to study the Teichmüller space is the Hopf differential.

Definition 3. Let u : M → N be a smooth map, we define the Hopf differntial of u to be

Φu := ρ(u)uzūzdz
⊗2.

The motivation of introducing this Hopf differential is the following simple computation:

u∗ds2
N = ρ(u(z))(|uz|2 + |uz̄|2)|dz|2 + 2ReΦu.

So the Hopf differential is the obstruction of being conformal.

Lemma 1. If u is harmonic, then Φu is a holomorphic quadratic differential.

Proof. This is just simple computation:

∂z̄(ρ(u)uzūz) = (ρwuz̄ + ρw̄ūz̄)uzūz + ρuzz̄ūz + ρuzūzz̄ = 0.

The last equality is just plug the harmonic map equation and its conjugate in. �

In the following of this section, we shall derive some Bochner-type identities for the harmonic
map u. For this, we define

H := |∂u|2 :=
ρ(u(z))

σ(z)
|uz|2, L := |∂̄u|2 :=

ρ(u(z))

σ(z)
|uz̄|2.

Then obvious e(u) = H + L, and HL = |Φu|2. We also have J := H − L is essentially the
Jacobian of u, i.e

J =
u∗dVN
dVM

.

In particular ∫
M

J dVM =

∫
M

u∗dVN = deg(u)Area(N).

Proposition 1 (Bochner identity). If u : M → N is harmonic, then at the points where H
(resp. L) is positive, we have

∆M logH = −2KNJ + 2KM , ∆M logL = 2KNJ + 2KM .
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Proof. Just compute:

∆M logH =
4

σ

∂2

∂z∂z̄
[log ρ− log σ + log |uz|2]

= 2KM +
4

σ

∂

∂z

(ρw
ρ
uz̄ +

ρw̄
ρ
ūz̄ +

uzz̄
uz

+
ūz̄z̄
ūz̄

)
= 2KM +

4

σ

∂

∂z

(ρw̄
ρ
ūz̄ +

ūz̄z̄
ūz̄

)
= 2KM +

4

σ

(
(log ρ)ww̄|uz|2 + (log ρ)w̄w̄ūzūz̄ +

ρw̄
ρ
ūz̄z̄ +

∂

∂z̄

ūzz̄
ūz̄

)
= 2KM +

4

σ

(
(log ρ)ww̄|uz|2 + (log ρ)w̄w̄ūzūz̄ +

ρw̄
ρ
ūz̄z̄ +

∂

∂z̄
(−ρw̄

ρ
ūz)
)

= 2KM +
4

σ
(log ρ)ww̄(|uz|2 − |uz̄|2)

= 2KM − 2KNJ .

The computation for L is similar, we leave it as an exercise. �

Lemma 2. If u : M → N is harmonic, then either H vanishes identically, or H has only
isolated zero points and in this case we have a well-defined notion of vanishing order np for ∂u
at p ∈M . Similar conclusion holds for L.

Proof. Let h := uz be a local function. Then by harmonic map equation, we have

hz̄ = −ρw
ρ
uz̄h.

Let ζ(z) be a local function solving

∂z̄ζ =
ρw
ρ
uz̄,

then ∂z̄(he
ζ) = 0, so locally uz equals a holomorphic function times a nowhere vanishing

function, the vanishing order is well defined if it is not identically zero. �

Theorem 1 (Generalized Riemann-Hurwitz theorem). If u : M → N is harmonic and H is
not identically zero, then we have∑

p∈M,∂u(p)=0

np = − deg(u)(2gN − 2) + (2gM − 2).

Or equivalently,

χM = deg(u)χN − degBu,

where Bu is the branching divisor. Similar conclusion holds for L, we omit it.

Proof. Let p1, . . . , pk be all the zeros of ∂u, of order n1, . . . nk. For each pi, we choose a small
coordinate disk Bi,εsuch that under the coordinate map, zi(Bi,ε) = Dε, and that Bi,ε ∩Bj,ε = ∅.
Then we compute∫

M

(−2KNJ + 2KM)dVM = −2 deg(u)

∫
N

KNdVN + 2

∫
M

KMdVM

= −4π deg(u)χN + 4πχM .
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On the other hand, by Bochner identity∫
M

(−2KNJ + 2KM)dVM =

∫
M

∆M logHdVM

= lim
ε→0

∫
M\∪iBi,ε

∆M logHdVM

= − lim
ε→0

∑
i

∫
∂Bi,ε

ν · ∇M logHdS

= − lim
ε→0

∑
i

∫ 2π

0

ε∂r(logH(r, θ))|r=εdθ.

However, locally we have H = |z|2nig for a non-vanishing g, so

ε∂r(logH(r, θ))|r=ε = 2ni +O(ε).

So we get
−4π

∑
i

ni = −4π deg(u)χN + 4πχM .

This is precisely what we want. �

Using this, we have the following:

Theorem 2. If gM = gN > 1, KN < 0 and u : M → N is harmonic with deg(u) = 1, then u
is a diffeomorphism.

Proof. First, we can not have H ≡ 0, for otherwise J ≤ 0, we have deg(u) ≤ 0, which
contradicts the assumption deg(u) = 1. Then we can use the generalized Riemann-Hurwitz
theorem to conclude that

∑
p∈M,∂u(p)=0 np = 0, which means H > 0 everywhere.

Now we claim that J ≥ 0.
If not, then L > H > 0 some where, so log HL achieves its negative minimum at some point

p ∈M . Then at this point, by Bochner identity,

0 ≤ ∆M log
H
L

= −4KNJ .

Since KN < 0, we conclude that J (p) > 0, contradicts L(p) > H(p) > 0.
Now we have J ≥ 0, so log HL ≥ 0, and again by Bochner identity

∆M log
H
L

= −4KNJ = −4KNH(1− L
H

) ≤ C log
H
L
.

Here we use the elementary inequality e−t ≥ 1− t for any t. By Strong Maximum Principle, if
J = 0 somewhere, we will have log HL ≡ 0, so J ≡ 0, which implies deg(u) = 0. Contradiction!
So in fact J > 0 everywhere.

From this, we know that u is locally a diffeomorphism, so it is a covering map. Since
deg(u) = 1, it is in fact a diffeomorphism. �

3. Homeomorphism from Tg to QD(M,σ)

The logic is the following: We fix a complex structure with a conformal hyperbolic metric
(M,σ|dz|2), for any other hyperbolic metric (M,ρ|dw|2), the identity map is in general not
holomorphic. However, by Eells-Sampson, there is always a harmonic u homotopic to the
identity map, and this harmonic map is unique by a theorem of Hartman. By our previous
theorem, it is in fact a diffeomorphism. Also, it gives rise to a holomorphic quadratic differential
Φu ∈ QD(M,σ).

Theorem 3. Let ρ|dw|2 and ρ′|dw′|2 be two hyperbolic metrics on M , such that the harmonic
maps from (M,σ|dz|2), u, u′ induce the same Hopf differential, then u′ ◦ u−1 is an isometry
from ρ|dw|2 to ρ′|dw′|2.
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Proof. Since Φu = Φu′ , we have HL = H′L′. Combining with Bochner identity, we have

∆M log
H′

H
= 2(J ′ − J ) = (H′ −H)(1 +

L′

H
).

Suppose H′ > H somewhere, then at the maximum point of log H
′

H , we have

0 ≥ (H′ −H)(1 +
L′

H
),

so H′ ≤ H at this point, a contradiction! Switch H′ and H, we know that in fact H′ = H.
Since HL = H′L′, we also have L′ = L. From this, by our previous discussion for introducing
Hopf differential, we know that

u∗ds2
M = u′∗ds′2M .

Then it is direct to check that u′ ◦ u−1 is an isometry. �

From the above theorem, we know that the mapping from Tg to QD(M,σ) is an injection.

Theorem 4. The mapping sending the equivalent class of ρ|dw|2 to Φu is a bijection from Tg
to QD(σ).

Proof. We denote Φ the mapping. The above theorem shows that Φ is injective. We need to
show that it is surjective. That is, given Φ1 ∈ QD(σ), we want to find a hyperbolic metric
ρ1|dw0|2 and a harmonic map u1 such that Φu1 = Φ1.

We shall use the continuity method. Namely, we consider the ray Φt := tΦ1 in QD(σ). We
want to find a family of hyperbolic metrics ht and a family of associated harmonic maps ut.
We need to show that the subset of I = [0, 1] that such a ut and an ht exist is both open and
closed.

Suppose it is OK at time t, then we have ut : M → M w.r.t. metrics σ|dz|2 and ρt|dwt|2.
We get the corresponding functions H(t) and L(t) as before. Also, by definition,

(1) H(t)L(t) = t2|Φ1|2,

(2) (ρt|dwt|2) = tΦ1 + tΦ̄1 + σ(H(t) + L(t))|dz|2.
We also have

(3) ∆M logH(t) = −2 + 2(H(t)− L(t)).

By maximum principle, at the minimum point of H(t), we have

0 ≤ ∆M logH(t) = −2 + 2(minH(t)− L(t)),

which implies minH(t) ≥ 1. Formally we compute the derivative with respect to t to get

ḢL+HL̇ = 2t|Φ1|2

and

∆M
Ḣ
H

= 2(Ḣ − L̇)

=
2

H

(
HḢ + ḢL − 2t|Φ1|2

)
= 2

Ḣ
H

(
H +

t2|Φ1|2

H

)
− 4t
|Φ1|2

H
.

Again we apply the maximum principle to get

max
Ḣ
H
≤ 2t|Φ1|2

H2 + t2|Φ1|2
≤ max |Φ1|,

and

min
Ḣ
H
≥ 0.

So

0 ≤ Ḣ
H
≤ C.
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Now after these formal discussions, we come back to the real proof. Let E ⊂ [0, 1] be defined
as

E := {τ ∈ [0, 1]|∀t ≤ τ, (1) and (3) are simutanuously solvable}.
It is nonempty since 0 ∈ E. By implicit function theorem in Banach spaces, it is open. At the
same time, we know that H(t) and L(t) are differentiable with respect to t, so our previous
formal discussion is now rigorous. For the detail of openness, please read page 168 of [2].

The closedness part uses regularity theory for elliptic equations as well as our estimate of Ḣ.
We also refer the reader to [2].

The last thing we need is to find a hyperbolic metric and a harmonic map for each of the
H(t) and L(t). This is easy! The key is the formula (2). It is direct to check that

tΦ1 + tΦ̄1 + σ(H(t) + L(t))|dz|2

defines a hyperbolic metric and the identity map is the corresponding harmonic map. �

4. The Weil-Petersson metric on Tg

Please take a look at [1] Chapter 6 for a very good introduction to Weil-Petersson metrics
on Tg. For recent development, see the papers of Kefeng Liu, Xiaofeng Sun and Shing-Tung
Yau [3][4].

One can also use this harmonic map approach to compactify the Teichmüller space. This is
closely related to W. Thurston’s work. See, for example [6] and the original paper of Wolf [7].
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