ON MARTIN’S POINTED TREE THEOREM

RUPERT HOLZL, FRANK STEPHAN, AND LIANG YU

ABSTRACT. We investigate the reverse mathematics strength of Martin’s pointed
tree theorem (MPT) and its variation, weak Martin’s pointed tree theorem
(WMPT).

1. INTRODUCTION
In 1968, Martin [9] proved the following theorem.

Theorem 1.1 (Martin [9]). Assume that every game is determined. Then given
any set A Cw<¥, if A is cofinal, then there is a pointed tree [T] C A.

Theorem 1.1 builds a significant connection between descriptive set theory and
recursion theory. It has been a central goal in descriptive set theory to prove lower
bounds on the consistency strength of some descriptive set theory theorems (see,
for example, Harrington [4] or Koellner and Woodin [7]). Despite the seemingly
simple form of Theorem 1.1, its proof requires the existence of infinitely many
Woodin cardinals; which is far beyond the strength of ZF. One of the reasons for
the importance of Theorem 1.1 is that it was used by Slaman and Steel [17] as a
critical tool in their study of Martin’s conjecture, one of the central open problems
in recursion theory.

We study a natural version of Martin’s theorem and a variant, wMPT, before a
recursion theory background.

Definition 1.2. Martin’s pointed tree theorem, MPT, states that given a tree
T Cw<¥, if [T] is cofinal, then T has a pointed subtree.

Definition 1.3. Weak Martin’s pointed tree theorem, wMPT, states that given a
tree T C w<¥, if [T is cofinal, then T has a perfect subtree.

In this paper, we are mainly interested in the reverse mathematical strengths of
these statements.

Reverse mathematics is used to gauge the complexity of mathematical theorems
by determing precisely which axioms are needed to prove a given theorem. For
example, Martin and Steel [10] proved the conclusion of Theorem 1.1 under the
hypothesis that there are infinitely many Woodin cardinals. A typical question in
reverse mathematics would be whether this hypothesis is necessary for the proof of
a given statement; and in the case of Theorem 1.1 it indeed is, as shown by Koellner
and Woodin [7].
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When studying reverse mathematics before a recursion theory background one
often focuses on second order arithmetical theories. In other words one focuses on
the question of which theorems can be proven assuming only a certain subset of
second order arithmetical axioms. In this context, there exists a group of sets of
axioms, the so-called big five. These sets of axioms are distinguished from others in
that most “usual” mathematical theorems were proven to be equivalent to one of
these five. This is why most researchers in the area consider the big five systems to
be of central importance for the subject, and why they have received much attention.
In this paper, we use the big five to measure the strength of MPT and wMPT.

Based on Martin’s proof of Theorem 1.1, it seems that for a proof of MPT we
need A-DET. However, using results from [5] and [11], we show that over ACA,
we have that MPT is equivalent to ATRy. As a consequence, the question arises
whether we can prove the same equivalence over weaker axiom systems. We prove
that, over RCAy, MPT does not even imply WKLy. So MPT can be viewed as a
natural theorem incomparable with WKL and ACAg but “joining” ACAg to ATR.
However the question of whether the equivalence can be proven over WKL remains
open.

wMPT is obviously implied by MPT. It is also related to other classical results in
descriptive set theory. The perfect set theorem (PST) says that every uncountable
set has a perfect subtree. In the reverse mathematics setting PST corresponds to
RPST, the statement that every uncountable closed set has a perfect subset. A
natural analogue of wMPT in descriptive set theory is the statement that every
cofinal set has a perfect subset (CPST). It turns out (see Solovay [18] and Chong and
Yu [2]) that PST and CPST have the same consistency strength. Obviously RPST
also implies wMPT. Simpson [16] shows that, over ACAy, RPST is equivalent
to ATRy. However, we prove that wMPT is strictly weaker than ATRy (and
therefore than RPST) and incomparable with WKLy and ACAg. Hence we have
two mathematical statements which have the same consistency strength but different
reverse mathematics strength. Another interesting conclusion is that wMPT can be
viewed as a natural example of a theorem that is not equivalent to any of the big
five.

We also would like to point out the interesting technique used to prove Theorem
4.2, which states that, over WKLy, wMPT does not imply ACAg. It demonstrates
a natural application of algorithmic randomness theory to reverse mathematics.
In fact, in this article, the usage of genericity in all proofs could be replaced with
randomness; we keep the genericity because it simplifies the proofs. However,
the usage of randomness in the proof of Theorem 4.2 seems necessary since no
generic real can be hyperimmune-free. Actually, randomness theory usually provides
stronger results, though it requires more sophisticated proofs. For example, one
can use algorithmic randomness theory to prove Theorem 3.2 over WWKLy, — a
principle that is very close to WKL( and that essentially says that random reals
exist,.

We organize the paper as follows: In section 2 we review some background
knowledge; in section 3 we investigate MPT and wMPT over RCAy; in section 4 we
investigate them over WKLg; and in section 5 over ACAy.
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2. PRELIMINARIES

2.1. General notations. For every real x € w¥, let x be the Turing degree of .

If ® is a Turing functional, then we use ®*"[m] to denote the finite string
computed from oracle x at stage m with use n.

If x <t y via a total Turing functional, then we write x <i; y and say that x is
truth-table reducible to y.

We refer the reader to Lerman [8] and Odifreddi [14] for more recursion theoretical
background.

Given a tree T, we use [T] to denote the collection of the infinite paths through 7'
For a finite string o, let [o] denote the collection of reals extending o.

A set A is cofinal if for every real x there is some y € A so that y >1 x.

A pointed tree T is a perfect tree so that for every infinite path x € [T], T <t x.

A set D C 2¢ is dense if for every o there is some 7 € D so that 7 > o, i.e., T is
an extension of o.

A real g € 2¥ is arithmetically generic, if for every arithmetical dense set D C 2<%
there is some n so that either

e x[n¢€ D;or
e Vo(o=2xln—o¢gD,).

A real x is hyperimmune-free if every x-recursive function is dominated by a
recursive function. It is obvious that if z is hyperimmune-free and y <t z, then
y <u x. By Jockusch and Soare’s Hyperimmune-Free Basis Theorem [6], every
nonempty 119 subset of 2* contains a hyperimmune-free real.

We say that a > y if there is a real z <t x in 2* so that Ve(z(e) # ®¥(e)). There
is a nonempty II{ subset of 2 in which every real x has the property z > ). So by
the Hyperimmune-Free Basis Theorem there is a hyperimmune-free real z > ().

A partial function p : w — w is recursively bounded if there is a recursive function
f:w — w so that for every n, p(n) |— p(n) < f(n). The following result should be
well known.

Proposition 2.1 (Folklore). If z > 0, then for every partial recursive function
d : w — w which is recursively bounded, there is a total x-recursive function g
extending P.

Proof. Let a partial recursive function ® : w — w with a recursive bound f be given.
Define a partial recursive function ¥ : w? — 2 so that
1 o) l=m,
U(e,nm)) =4 0 k< fm)(k#mAd(n) |= k),
T otherwise.

By the s-m-n-Theorem, there is a recursive function h so that

\I](ea <TL, m>) = (I)h((n,m))(e)'
Let z <t x be in 2¢ so that Ve(z(e) # ®.(e)). Define g(n) = m if m is the least
number < f(n) so that z(h({n,m))) = 0 if any; otherwise let g(n) = 0. Obviously g
is a total x-recursive function extending W. O

Note that for every recursive tree T' C 2<% and real z > 0, if [T] is not empty,
then there must be some y <t x such that y € [T].

We need the following technical lemma to build a perfect tree by projection. Note
that for the purpose of this lemma a tree is a subset of w<% x w<“. The motivation
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is that we will later apply the lemma to game theoretic trees, for games with two
players making moves alternately. For a tree T of this form, we say that (o1,71)
extends (0g,79) if 01 extends op and 71 extends 79. Then it is also clear what it
means for such a T' to be perfect.

Lemma 2.2. Suppose that T C w<¥ x w<Y¥ is a perfect tree so that for every
(fo,90), (f1,91) € [T], if go = g1, then fo = f1. Then there is a perfect tree S1 <t T
so that for every infinite path g € [S1], there is some f so that (f,g) € [T).

Proof. Fix a tree T' as in the assumption. We T-recursively build a helper tree Sy
and the desired tree S stage by stage.

At stage 0, let (0,0) € Sp and 0 € S;.

We assume that at stage n, for every (o,7) € Sp, there are 79|71 extending 7 so
that there are og, 071 extending o so that (og, 1), (01,71) € T.

We claim that the assumption holds at stage 0. Since T is perfect, there must
exist two distinet paths (fo,90), (f1,91) € [T]. If we always have gg = ¢1 then,
by the assumption on T, fo must be equal to f;, which is a contradiction to the
fact that T is perfect. So fix gg, g1 and some n such that go(n) # ¢1(n). Write
To=goln+1l,m=gn+1,00=foln+1,and oy = fi[n+1

At stage n + 1, for every leaf (o, 7) € Sy, select (09, 70), (01, 71) € T as defined
above and put them into Sy. Also put 79,7 into S;. With the same argument as
above for stage 0 the assumption remains true at stage n + 1.

Now it is clear that S is a perfect tree. Suppose that g € [S1], then there
must be (09, 79) < (01,71) < ... constructed at stages 0, 1,..., respectively, so that
To <71 <+ <g. Let f=J;c, i Then (f,g) € [T]. Thus S is a required. O

2.2. Reverse mathematics. We refer to Simpson [16] for the background on
reverse mathematics. We recall that RCAg is the most basic axiom system for the
second order arithmetical theory. The axioms in the stronger system WKL state
that every infinite binary tree has an infinite path. The even stronger system ACA
includes all arithmetical comprehension axioms, and ATRq ensures that arithmetical
transfinite recursion is allowed. Together with II}-CAy, these systems form the
famous big five hierarchy.

Given a theory T and a proposition ¢, to show that T' I/ ¢, we will use model-
theoretical arguments. A model M for the second order arithmetical language
has the form (N, M,0,1,+, x, <), which is a two-sorted model. The first sort N
contains the natural numbers, and the second sort M the subsets of the natural
numbers, respectively, that exist in the model at hand. In this paper, we will always
have N = w and M C w¥, that is, we only focus on so-called w-models.

2.3. Game theory. We recall the basic game theoretical notions used in this article,
and refer to Moschovakis [12] for more details.

Given a set A C w*, we define an infinite game G 4 with perfect information
as follows: The game has two players labelled I and II. The game is played by
letting the players choose natural numbers alternately for w-many steps. Each game
generates a real x = (ng, mo, ..., N, Mj,...) € w* where n; and m; are the numbers
played by I and II, respectively, at their i-th move. If x € A, then I wins the game.
Otherwise, IT wins.

A strategy is a function h : w<% — w. For a set A C w* and the corresponding
game G 4, if h is I's strategy and II plays g, then as usual h * g denotes the outcome

w
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generated by h and g. If h is IT’s strategy and I plays f, then f *x h denotes the
outcome generated by h and f.

I has a winning strategy h for the game G 4 if for every g € w*, the real hx g € A.
IT has a winning strategy h for the game G 4 if for every f € w®, the real fxh & A.

A game G4 is determined if either I or IT has a winning strategy. Given a class
I C #(w¥), I-DET says that G4 is determined for every A € T

The following remarkable connection between game theory and recursion theorem
was established by Martin. Call a set A of reals Turing-invariant if for every x € A,
y =7 z implies y € A.

Theorem 2.3 (Martin [9]). Assume every set is determined. Then every set A of
reals that is Turing-invariant and cofinal contains an upper cone with respect to
Turing reducibility.

I'-TD says that if an A € " which is Turing-invariant is also cofinal, then it
contains an upper cone of Turing degrees.

The connection between game theory and reverse mathematics was initiated by
Blass and Steel.

Theorem 2.4 (Blass [1] and Steel [19]). Over RCAq, ATRq implies II{-DET.

2.4. Algorithmic randomness. In this article, the theory of algorithmic random-
ness will only serve as a tool. We refer the reader to Nies [13] and Downey and
Hirschfeldt [3] for details on the topic.

Given a Turing machine M, define its Kolmogorov complexity function as

Cr(o) = min{|7| | M(7) = o}

The universal Turing machine U induces an optimal Kolmogorov complexity function
up to a constant. That is, for every Turing machine M, there is a constant cp; so
that Vo (Cy (o) < Cp(0) + epr). Usually, U is fixed and the subscript omitted.

A real x € 2¥ is random if for every recursive function f: w — w with

Z 2_f(”) < 00,

necw
there is a constant ¢ so that for all n, C(x[n) > n — f(n) — c. In particular, if x
is random, then there exists a ¢ such that for all n, C(z[n) > § —c. There is a
nonempty 119 set that only contains random reals. So if # > (), then z computes a

random real.

3. OVER RCA,

Lemma 3.1. Suppose that T C w<% is a recursive tree so that there is a nonrecursive
infinite path x € [T] that is Turing-below some arithmetically generic real g € 2%.
Then T has a recursive perfect subtree.

Proof. Suppose that T is a recursive tree with a nonrecursive infinite path x € [T]
so that x = @9 for some arithmetical real g.

Let Dy = {0 | ®° ¢ T'}. Clearly, Dy is arithmetical. Since g is arithmetically
generic and ®9 € [T, there must be some ng so that for every o = g ng, o & Dy
and so @7 € T.

Let
D1 = {O’

o>=glng AN InVm > nV19 > oV = o: }
(@70 (m) | AT (m)]| — @™ (m) = &7 (m))
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Since g is arithmetically generic and ®9 is not recursive, there must be some n; > ng
so that for every o = g[ni, o € D;. So for every o > g [n; and n, there are 79 > o,
71 > 0 and m > n so that ®™(m) # &7 (m).

Now, by using this property of D1, it is routine to construct a recursive perfect
tree S C [g [ n1] so that the the set T} = {®7 | o € S} is also a recursive perfect
tree. By the property of ng, 73 C T. |

To construct a model satisfying MPT, we have to relativize Lemma 3.1 accord-
ingly.

Given a tree T C w<¥, areal z and an index i, let H/C;(z,T) be a z @ T-recursive
tree so that

[HIC;(2,T)] = {f@g ‘ g € [T] A Vn(f(n) is the least m }

with ®9"(n)[m] | A®Y(n) = z(n))

The idea of HK;(z,T) originates from Harrington and Kechris [5].

Obviously HK;(z,T) <t T @ z. Note that if ®/ is undefined or different from =z
then no path of the form f @ g can be contained in H/C;(z,T). As a consequence,
if z > T, then it holds for every f ® g € [HK;(z,T)] that g € [T] and g >1 z >
2@ T >1 HK;(2,T).

Theorem 3.2. Over RCAy, MPT does not imply WKLg.

Proof. Choose a sequence gg, g1, g2, - - - of elements of 2% such that gg is arithmeti-
cally generic and such that for all n, g,4+1 is arithmetically generic relative to
G0 PG DG Bgn Let M = (w,M,...), where M = {z | In(z <t Bi<ngi)}-
Obviously M = WKL, as WKLy would guarantee the existence of PA-complete
sets, but no such sets can exist in M.

Now assume we are given a tree T' that is cofinal in M. Then there must be
some x € [T] and some n so that T <1 go ® g1 D g2+ ® gn <7 2. Let j be an
index of the second reduction, that is, ®7 = go © g1 ® g2+ @ gn. On the other
hand there must exist some m > 0 so that <7 ®i<mngi- Note that ©, <i<m4ngs
is ®i<ngi-arithmetically generic. Then HK;(®i<ngi, T) is an @;<n,g;-recursive tree
such that

(1) for every f @ g € [HK;(®i<ngi,T)], g € [T] and g >1 ®i<ngi @ T >7
H’CJ(EBZSTLQ’H T)a and

(2) thereis an f @& g € [HK;(Bi<ngi, T)], for example f @ x for some f, so that
Bi<m+ngi 21 [ & g >1 Bi<ngi >1 HK;(Bi<ngi, T).

Note that ®p<i<mngi is [HK;(®i<ngi, T)]-arithmetically generic. Relativizing
Lemma 3.1 to &;<,g;, we apply it to [HI,(Bi<ngi, T)] to obtain a @;<,g;-recursive
perfect tree S C HK;(®i<ngi,T). By the property (1) of HK(®i<ngi, T), S is
pointed.

Note that it follows directly from the definition of HIC((.,.) that if fo ® g €
[HIC; (®i<ngi, T)] and f1 ® g € [HK;(®i<ngs, T)] then fo = fi. In particular this
is true for fo @ g and f1 @ g € S € HK,;(®i<ngi, T). Since S is a perfect tree, by
Lemma 2.2, there is an S-recursive perfect tree T} so that for every g € [T1], there
is some f so that f @ g € [S]. Note that Ty C T. Moreover, by property (1), for
every g € [T1], g >t S >1 T1. So Ty is a pointed subtree of T'. O

We prove that ACA( does not imply wMPT.
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Lemma 3.3. There is a recursive tree T so that [T] is countable and cofinal for
the arithmetical reals, that is, for every arithmetical real x there exists some y € [T
with y >7 x.

Proof. Tt is well known (see, for example, Sacks [15]) that there is a sequence of
uniformly recursive trees {7}, }necw so that for every n, [T,,] contains a unique real z,,
of Turing degree 0. Let T =, .. n"Tp,. O

Proposition 3.4. ACAq does not imply wMPT.

Proof. Let M = (w,M,...), where M = {z | 3In(z <p 0)}. Obviously,
M= ACAy. Let T be as in Lemma 3.3. Then T is cofinal in M. However,
T has no perfect subtree. Hence M = wMPT. ]

By Corollary 5.8, over RCAg, wMPT does not imply MPT.

necw

4. OVER WKL

Lemma 4.1. Suppose that T C 2<% is a recursive tree and that x € [T] is a real so
that there is some random real y <y x. Then for every real z > 0, there must be
some perfect tree S CT so that S < z.

Proof. Suppose that @, is a tt-reduction so that &% = y. Let ¢y be such that for
all n we have C(y[n) > 5 + co and let f be a recursive, increasing function such

that for all n it holds that ®Z'/™ In[f(n)] =y [n. Without loss of generality we
assume that f(n) > 2" for all n.
Let T7 C T be a recursive tree so that

[11] = {z € 2* | 2 € [T] AR (C(@ ™ a[f (n)]) = 5 — o)}

|3

Note that z € [T1].
Let g be a recursive function so that g(0) = 0 and for every n, g(n + 1) =
f(f(g(n)).
Claim. There is an ny so that for all n > ng and every o € T) N 290" with
[0] N [T1] # 0, there are two different ¢g, 0y € 29TV N T} extending o so that
[00] N [T1] # 0 and [o1] N [Ty] # 0.
Subproof. If not, then for every m there is an n > m and some oy € 290" N T} with
[00]N[T1] # 0, and a unique string o in g(n+1) extending o such that [o]N[T1] # 0.
Then we build a Turing machine M as follows: A pair (vq,7) is enumerated into M
if and only if
(1) v, €29 NTy and |7| = |f(g(n))]| for some n; and
(2) there is a unique string vy € 20(n+1) N T extending vy such that for every
vz € 290D N Ty extending vy with v # vy we have [v3] N [T1] = 0; and
(3) for the 1 above we have 7 = 219" D [g(n 4+ 1)).
Recall that f(n) > 2" for every n. So if M (o) = 7, then Cps(7) < log|7|. Hence
C(7) <log|7| + epr for some constant cpy.
Then for every m, there is an n > m and some z € [T7] such that

C(®F V| f(g(n))) < log f(g(n)) + car.
This contradicts the choice of T;. &

Now define a partial recursive function ¢: 2<% x w — 2<% as follows: For every
n, o € 290 and m < 29"*Y) let (0, m) be the m-th finite string 7 in 290*+1) for
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which we detect that [r] N [T1] = 0. By Proposition 2.1, there is a total z-recursive
function f extending .
For every o € 29(") | let

Sy ={r =0 |7e29F N\ {f(o,m) | m < 290rFD=9(n) _ 9}

Then the sequence {S,},ca<w is z-recursive.

By the Claim, for every n > ng and o € T N 29" with [o] N [T1] # 0,
(1> |So| > 2; and
(2) if 7 € S,, then [7] N [T1] # 0; and
(3) any two different strings in S, are incompatible.

Now, using these facts, it is easy to z-recursively construct a perfect tree

SCTyCT. O
Theorem 4.2. OQver WKLg, wMPT does not imply ACAy.

Proof. Let 1o = ) € 1 < 2 < ... be a sequence of hyperimmune-free reals. We
can see inductively that such a sequence exists, because we can at step n build an
Ty,_1-recursive tree P, such that all of its paths y have y > x,_1; we can then
apply the Hyperimmune-Free Basis Theorem relative to z,_1 to get x,.

Let M = (w,M,...) where M = {y | 3In (y <1 x,)}.

Obviously, M E WKL but M = ACA,.

Let T'C w<% be a tree that is cofinal in M. Let T} C 2<% so that o € T} if and
only if there is a 7 € T so that ¢ is of the form 07(®107™ .. 07(7D10...0. Then
for every {x |z € [T1|\[T]} =0 and {x |z € [T} \{x |z € [T1]} =0. So T} is
also cofinal in M. WKL implies that a Tj-random real y exists; since T} is cofinal,
there must be some x € [T7] with « >7 y in M. Since z is hyperimmune-free, in
fact y <4 . Fix a number n so that z, > T7. Applying Lemma 4.1 by relativizing
it to 17, there must be some x,-recursive perfect tree S; C T7. Then it is easy to
see that there must be some x,-recursive perfect tree S C T. Thus S € M. O

Note that by Corollary 5.8, over WKLy, wMPT does not imply MPT.
Question 4.3. Over WKL, does MPT imply ACAy?

5. OVER ACA,
The following lemma is easy.
Lemma 5.1. Over RCAy, if T is a pointed tree, then for every real x >1 T, there
is ay € [T] so that x =1 y.
Proof. As T is in particular perfect, we can choose a path y such that y encodes x by

branching in 7" according to the bits of x. Then © >y *®T >1 y >7 y&T >r xz. O

The following important theorem can be used to transfer results about %9 sets
to recursive trees.

Theorem 5.2 (Harrington and Kechris [5]). Over RCAg, for every X9 class A,
there is a recursive tree T so that {x | x € [T|} = {x | ® € A}. Moreover, the proof
can be relativized.

Recall the definition of I'-TD from page 5. Montalban and Shore proved the
following theorem by combining Theorem 5.2 with a number of classical recursion
theory results.
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Theorem 5.3 (Montalban and Shore [11]). Over ACAq, X3-TD implies ATRg.
Now we are ready to show that MPT implies ATR.
Proposition 5.4. Over ACAy, MPT implies ATR,.

Proof. By Theorem 5.3, it is sufficient to prove that MPT implies £3-TD.

We only prove the lightface version. Given any %9, cofinal, and Turing-invariant
set A, by Theorem 5.2, there is a recursive tree 7' so that {x | z € [T]} = {x | x € A}.
So [T is also cofinal. By MPT, [T] has a pointed subtree. By Lemma 5.1, for every
real z >1 T, there is a y € [T] so that © =1 y. So A contains an upper cone of
Turing degrees. O

Remark 5.5. Note that, over RCAg, X3-TD does not imply wMPT. This is because

RCA( has a model M that consists only of recursive reals. Then M satisfies £3-TD
vacuously, but it contains a recursive tree I’ consisting exactly of one recursive path.
Such a T is then vacuously cofinal, but not perfect. So M does not satisfy wMPT.

In the following theorem we will show that ATRg implies MPT. For this purpose,
let T C w<* be any tree and define the T-recursive tree HX(T') as follows.

PPN gETNh=©G"f®g)*PIA
[HA(T)] = {(2 fegen Vn (f(n) is the least m with '™ (n)[m] |) }

The idea for HIC(T) is again taken from Harrington and Kechris [5].
Theorem 5.6. ATRy implies MPT.

Proof. Given any cofinal tree T', HIC(T') is clearly also cofinal. By Theorem 2.4,
HK(T) is determined. It is well known (see Martin [9] or Montalbdn and Shore [11])
that if HAC(T) is cofinal, then IT cannot have a winning strategy. So I has a winning
strategy, say w. Let x € 2¥ be a real with z =1 w.
Let S be a w-recursive tree so that [S] = {w * (2 @ z) | z € 2*}. Then
(1) if (" fo®g)®(20®2) € [S]and (i” f1®g)® (21 ®x) € [S], then fo = f1 and
zo = z1. Together with Lemma 2.2 this implies that there is a w-recursive
perfect tree Ty C T.
(2) for every (i f @ g)® (z@®x) € [S], we have that g € [T] and g > z®x >7
w >7 S. This implies that T} is pointed.
Thus ATR( implies MPT. O

However, even over ACAy, wMPT is strictly weaker than ATRy.
Theorem 5.7. Over ACAy, wMPT does not imply ATRg.

Proof. Let gy € 2¥ be arithmetically generic and for every n let ¢g,4+1 € 2“ be
arithmetically generic relative to go® g1 g2 ® ... D gn. Let M = (w, M, ...), where
M = {z | In(z <1 (Di<ngi)™)}. Obviously M = ACAy, but M = ATR, as ()
is not in M.

Now let every tree T' C w<%, which is cofinal in M, be given. Then there must be
some real = € [T] and some n so that T' <t 0™ ©go D g1 Dga--- D gn <7 2 and x is
not arithmetical in go®g1B gz - - -Dgn. Fix j such that @7 = 0 BgoPgrBgs - BYn.
On the other hand, there is some m > 0 so that x <t 0™ & (®i<,n1ngi). Note
that @y <i<m4ngi 1S Plm+n) g (Pi<ngi)-arithmetically generic. Then HK(®i<ngi, T)
isad™a (Pi<ngi)-recursive tree so that
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(1) for every fdg € [H’Cj(@ifnghT)]v g€ [T] and g >1 m(n)@(@ifngi)@T >
HICj(@iSngia T)1 and

(2) thereis an f @ g € [HK;(Bi<ngs, T)), for example f @& x for some f, so that
O © (Bicimingi) =1 f O g >1 0 © (Dicngi) >1 HK; (®i<ngi, T).

Note that ®,<i<m+ng: is [HICj(@(") @ (Pi<ngi), T)]-arithmetically generic. Rela-
tivizing Lemma 3.1 to (") @ (@<, g;) together with the fact that z is not arithmetical
in @;<ng;, we apply it to [HK; (0™ & (®;<ng:), T)] and obtain that there exists a
plmtn) g (@i<ngi)-recursive perfect tree S € HK;(®i<ngi, T).

Note that fo ® g € S C [HK(®i<ng:,T)] and f1 @ g € S C [HK(®i<ngi, T)]
implies fo = f1. Using the fact that S is a perfect tree, by Lemma 2.2, there is a
P(m+7) @ (©;<ngi)-recursive perfect tree T; so that for every g € [Ty], there is some
f so that f @ g € [S]. Note that T3 C T. So T has a perfect subtree in M.

Thus M = wMPT. O

Corollary 5.8. Over ACAy, wMPT does not imply MPT.

We remark that by a method similar to the proof of Theorem 5.7 it can be shown
that, even over Ai-CAgy, wMPT does not imply ATRg.

The following picture illustrated the results we proved.

ATRy = ACAq + MPT

A\
/

ACA, PT

WKLy + wMPT

\
/

WKL wMPT

/
\

RCA,

FIGURE 1. All arrows represent strict implications.
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