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Abstract. A real x is ∆1
1-Kurtz random (Π1

1-Kurtz random) if it is in no closed
null ∆1

1 set (Π1
1 set). We show that there is a cone of Π1

1-Kurtz random hyperdegrees.
We characterize lowness for ∆1

1-Kurtz randomness as being ∆1
1-dominated and ∆1

1-
semi-traceable.

1. Introduction

Traditionally one uses tools from recursion theory to obtain mathematical notions cor-
responding to our intuitive idea of randomness for reals. However, already Martin-Löf
[10] suggested to use tools from higher recursion (or equivalently, effective descriptive
set theory) when he introduced the notion of ∆1

1-randomness. This approach was
pursued to greater depths by Hjorth and Nies [8] and Chong, Nies and Yu [1]. Hjorth
and Nies investigated a higher analog of the usual Martin-Löf randomness, and a
new notion with no direct analog in (lower) recursion theory: a real is Π1

1-random if
it avoids each null Π1

1 set. Chong, Nies and Yu [1] studied ∆1
1-randomness in more

detail, viewing it as a higher analog of both Schnorr and recursive randomness. By
now a classical result is the characterization of lowness for Schnorr randomness by
recursive traceability (see, for instance, Nies’ textbook [12]). Chong, Nies and Yu [1]
proved a higher analog of this result, characterizing lowness for ∆1

1 randomness by
∆1

1 traceability.
Our goal is to carry out similar investigations for higher analogs of Kurtz random-

ness [3]. A real x is Kurtz random if avoids each Π0
1 null class. This is quite a weak

notion of randomness: each weakly 1-generic set is Kurtz random, so for instance the
law of large numbers can fail badly.

It is essential for Kurtz randomness that the tests are closed null sets. For higher
analogs of Kurtz randomness one can require that these tests are closed and belong
to a more permissive class such as ∆1

1, Π1
1, or Σ1

1.
Restrictions on the computational complexity of a real have been used successfully

to analyze randomness notions. For instance, a Martin-Löf random real is weakly
2-random iff it forms a minimal pair with ∅′ (see [12]). We prove a result of that kind
in the present setting. Chong, Nies, and Yu [1] studied a property restricting the
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complexity of a real: being ∆1
1-dominated. This is the higher analog of being recur-

sively dominated (or of hyperimmune-free degree). We show that a ∆1
1-Kurtz random

∆1
1 dominated set is already Π1

1-random. Thus ∆1
1-Kurtz randomness is equivalent

to a proper randomness notion on a conull set. We also study the distribution of
higher Kurtz random reals in the hyperdegrees. For instance, there is a cone of Π1

1-
Kurtz random hyperdegrees. However, its base is very complex, having the largest
hyperdegree among all Σ1

2 reals.
Thereafter we turn to lowness for higher Kurtz randomness. Recursive traceability

of a real x is easily seen to be equivalent to the condition that for each function
f ≤T x there is a recursive function f̂ that agrees with f on at least one input in
each interval of the form [2n, 2n+1 − 1) (see [12, 8.2.21]). Following Kjos-Hanssen,
Merkle, and Stephan [?] one says that x is recursively semi-traceable (or infinitely

often traceable) if for each f ≤T x there is a recursive function f̂ that agrees with f on
infinitely many inputs. It is straightforward to define the higher analog of this notion,
∆1

1-semi-traceability. Our main result is that lowness for ∆1
1-Kurtz randomness is

equivalent to being ∆1
1-dominated and ∆1

1-semi-traceable. We also show using forcing
that being ∆1

1-dominated and ∆1
1-semi-traceable is strictly weaker than being ∆1

1-
traceable. Thus, lowness for ∆1

1 Kurtz randomness is strictly weaker than lowness
for ∆1

1-randomness.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as
presented, for instance, in Sacks [15]. See [12, Ch. 9] for a summary.

A real is an element in 2ω. Sometimes we write n ∈ x to mean x(n) = 1. Fix
a standard Π0

2 set H ⊆ ω × 2ω × 2ω so that for all x and n ∈ O, there is a unique
real y satisfying H(n, x, y). Moreover, if ωx1 = ωCK

1 , then each real z ≤h x is Turing
reducible to some y so that H(n, x, y) holds for some n ∈ O. Roughly speaking, y is
the |n|-th Turing jump of x. These y’s are called Hx sets and denoted by Hx

n . For
each n ∈ O, let On = {m ∈ O | |m| < |n|}. On is a ∆1

1 set.
We use the Cantor pairing function, the bijection p : ω2 → ω given by p(n, s) =

(n+s)2+3n+s
2

, and write 〈n, s〉 = p(n, s). For a finite string σ, [σ] = {x � σ | x ∈ 2ω}.
For an open set U , there is a presentation Û ⊆ 2<ω so that σ ∈ Û if and only if
[σ] ⊆ U . We sometimes identify U with Û . For a recursive functional Φ, we use Φσ[s]
to denote the computation state of Φσ at stage s. For a tree T , we use [T ] to denote
the set of infinite paths in T . Some times we identify a finite string σ ∈ ω<ω with a
natural number without confusion.

The following results will be used in later sections.

Theorem 2.1 (Gandy). If A ⊆ 2ω is a nonempty Σ1
1 set, then there is a real x ∈ A

so that Ox ≤h O.

Theorem 2.2 (Spector [16] and Gandy [6]). A ⊂ 2ω is Π1
1 if and only if there is an

arithmetical predicate P (x, y) such that

y ∈ A↔ ∃x ≤h yP (x, y).
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Theorem 2.3 (Sacks[13]). If x is non-hyperarithmetical, then µ({y|y ≥h x}) = 0.

Theorem 2.4 (Sacks [15]). The set {x|x ≥h O} is Π1
1. Moreover, x ≥h O if and

only if ωx1 > ωCK
1 .

A consequence of the last two theorems above is that the set {x | ωx1 > ωCK
1 } is a Π1

1

null set.
Given a class Γ, an element x ∈ ωω is called a Γ-singleton if {x} is a Γ set. Note

that if x ∈ ωω is a Π1
1-singleton, then too is x0 = {〈n,m〉 | x(n) = m} ≡T x. Hence

we do not distinguish Π1
1-singletons between Baire space and Cantor space.

A subset of 2ω is Π0
0 if it is clopen. We can define Π0

γ sets by a transfinite induction
for all countable γ. Every such set can be coded by a real (for more details see [15]).
Given a class Γ (for example, Γ = ∆1

1) of subsets of 2ω, a set A is Π0
γ(Γ) if A is Π0

γ

and can be coded by a real in Γ.
In the case γ = 1, every hyperarithmetic closed subset of reals is Π0

1(∆1
1). We also

have the following result with an easy proof.

Proposition 2.5. If A ⊆ 2ω is Σ1
1 and Π0

1, then A is Π0
1(Σ

1
1).

Proof. Let z = {σ | ∃x(x ∈ A ∧ x � σ)}. Then x ∈ A if and only if ∀n(x � n ∈ z).
So A is Π0

1(z). Obviously z is Σ1
1. �

Note that Proposition 2.5 fails if we replace Σ1
1 with Π1

1 since OO is a Π1
1 singleton

of hyperdegree greater than O.

The ramified analytical hierarchy was introduced by Kleene, and applied by Feffer-
man [4] and Cohen [2] to study forcing, a tool that turns out to be powerful in the
investigation of higher randomness theory. We recall some basic facts from Sacks [15]
whose notations we mostly follow:

The ramified analytic hierarchy language L(ωCK
1 , ẋ) contains the following symbols:

(1) Number variables: j, k,m, n, . . .;
(2) Numerals: 0, 1, 2, . . .;
(3) Constant: ẋ;
(4) Ranked set variables: xα, yα, . . . where α < ωCK

1 ;
(5) Unranked set variables: x, y, ldots;
(6) Others symbols include: +, · (times), ′ (successor) and ∈.

Formulas are built in the usual way. A formula ϕ is ranked if all of its set variables
are ranked. Due to its complexity, the language is not codable in a recursive set but
rather in the countable admissible set LωCK

1
.

To code the language in a uniform way, we fix a Π1
1 path O1 through O (by [5]

such a path exists). Then a ranked set variable xα is coded by the number (2, n)
where n ∈ O1 and |n| = α. Other symbols and formulas are coded recursively.
With such a coding, the set of Gödel number of formulas is Π1

1. Moreover, the set of
Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique
notation for α in O1. Hence there is a recursive function f so that Wf(n) is the set of
Gödel numbers of the ranked formula of rank less than |n| when n ∈ O1 ({We}e is,
as usual, an effective enumeration of r.e. sets).
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One now defines a structure A(ωCK
1 , x), where x is a real, analogous to the way

Gödel’s L is defined, by induction on the recursive ordinals. Only at successor stages
are new sets defined in the structure. The reals constructed at a successor stage
are arithmetically definable from the reals constructed at earlier stages. The details
may be found in [15]. We define A(ωCK

1 , x) |= ϕ for a formula ϕ of L(ωCK
1 , ẋ) by

allowing the unranked set variables to range over A(ωCK
1 , x), while the symbol xα will

be interpreted as the reals built before stage α. In fact, the domain of A(ωCK
1 , x) is

the set {y | y ≤h x} if and only if ωx1 = ωCK
1 (see [15]).

A sentence ϕ of L(ωCK
1 , ẋ) is said to be Σ1

1 if it is ranked, or of the form ∃x1, . . . ,∃xnψ
for some formula ψ with no unranked set variables bounded by a quantifier.

The following result is a model-theoretic version of the Gandy-Spector Theorem.

Theorem 2.6 (Sacks [15]). The set {(nϕ, x) | ϕ ∈ Σ1
1∧A(ωCK

1 , x) |= ϕ} is Π1
1, where

nϕ is the Gödel number of ϕ. Moreover, for each Π1
1 set A ⊆ 2ω, there is a formula

ϕ ∈ Σ1
1 so that

(1) A(ωCK
1 , x) |= ϕ =⇒ x ∈ A;

(2) if ωx1 = ωCK
1 , then A(ωCK

1 , x) |= ϕ⇐⇒ x ∈ A.
Note that if ϕ is ranked, then both the sets {x | A(ωCK

1 , x) |= ϕ} (the Gödel number
of ϕ is omitted) and {x | A(ωCK

1 , x) |= ¬ϕ} are Π1
1. So both sets are ∆1

1. Moreover,
if A ⊆ 2ω is ∆1

1, then there is a ranked formula ϕ so that x ∈ A ⇔ A(ωCK
1 , x) |= ϕ

(see Sacks [15]).

Theorem 2.7 (Sacks [13]). The set

{(nϕ, p) | µ({x | A(ωCK
1 , x) |= ϕ}) > p ∧ ϕ ∈ Σ1

1 ∧ p is a rational number}
is Π1

1 where nϕ is the Gödel number of ϕ.

Theorem 2.8 (Sacks [13]). There is a recursive function f : ω × ω → ω so that for
all n which is Gödel number of a ranked formula:

(1) f(n, p) is Gödel number of a ranked formula;
(2) the set {x | A(ωCK

1 , x) |= ϕf(n,p)} ⊇ {x | A(ωCK
1 , x) |= ϕn} is open; and

(3) µ({x | A(ωCK
1 , x) |= ϕf(n,p)} − {x | A(ωCK

1 , x) |= ϕn}) < 1
p
.

Theorem 2.9 (Sacks [13] and Tanaka [17]). If A is a Π1
1 set of positive measure,

then A contains a hyperarithmetical real.

We also remind the reader of the higher analog of ML-randomness first studied by
[8].

Definition 2.10. A Π1
1-ML-test is a sequence (Gm)m∈ω of open sets such that for

each m, we have µ(Gm) ≤ 2−m, and the relation {〈m,σ〉 | [σ] ⊆ Gm} is Π1
1. A real x

is Π1
1-ML-random if x 6∈ ∩mGm for each Π1

1-ML-test (Gm)m∈ω.

3. Higher Kurtz random reals and their distribution

Definition 3.1. Suppose we are given a point class Γ (i.e. a class of sets of reals).
A real x is Γ-Kurtz random if x 6∈ A for every closed null set A ∈ Γ. Further, x is
said to be Kurtz random (y-Kurtz random) if Γ = Π0

1 (Γ = Π0
1(y)).
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We focus on ∆1
1, Σ1

1 and Π1
1-Kurtz randomness. By the proof of Proposition 2.5, it is

not difficult to see that a real x is ∆1
1-Kurtz random if and only if x does not belong

to any Π0
1(∆

1
1) null set.

Theorem 3.2. Π1
1-Kurtz randomness ⊂ Σ1

1-Kurtz randomness = ∆1
1-Kurtz-random-

ness.

Proof. It is obvious that Π1
1-Kurtz randomness⊆ ∆1

1-Kurtz randomness and Σ1
1-Kurtz

randomness ⊆ ∆1
1-Kurtz randomness. It suffices to prove that Σ1

1-Kurtz randomness
= ∆1

1-Kurtz-randomness and Π1
1-Kurtz randomness ⊂ ∆1

1-Kurtz randomness.
Note that every Π1

1-ML-random is ∆1
1-Kurtz random and there is a Π1

1-ML-random
real x ≡h O (see [8] and [1]). But {x} is a Π1

1 closed set. So x is not Π1
1-Kurtz random.

Hence Π1
1-Kurtz randomness ⊂ ∆1

1-Kurtz randomness.
Suppose we are given a Π1

1 open set A of measure 1. Define

x = {σ ∈ 2<ω | ∀y(y � σ =⇒ y ∈ A)}.

Then x is a Π1
1 real coding A (i.e. y ∈ A if and only if there is a σ ∈ x for which

y � σ, or y ∈ [σ]). So there is a recursive function f : 2<ω → ω so that σ ∈ x if
and only if f(σ) ∈ O. Define a Π1

1 relation R ⊆ ω × ω so that (k, n) ∈ R if and
only if n ∈ O and µ(

⋃
{[σ] | ∃m ∈ On(f(σ) = m)}) > 1 − 1

k
. Obviously R is a Π1

1

relation which can be uniformized by a Π1
1 function f ∗ (see [11]). Since µ(A) = 1,

f ∗ is a total function. So the range of f ∗ is bounded by a notation n ∈ O. Define
B = {y | ∃σ(y � σ ∧ f(σ) ∈ On)}. Then B ⊆ A is a ∆1

1 open set with measure 1. So
every Π1

1 open conull set has a ∆1
1 open conull subset. Hence Σ1

1-Kurtz randomness
equals ∆1

1-Kurtz randomness. �

It should be pointed out that, by the proof of Theorem 3.2, not every Π1
1-ML-random

real is Π1
1-Kurtz random.

The following result clarifies the relationship between ∆1
1- and Π1

1-Kurtz randomness.

Proposition 3.3. If ωx1 = ωCK
1 , then x is Π1

1-Kurtz random if and only if x is ∆1
1-

Kurtz random.

Proof. Suppose that ωx1 = ωCK
1 and x is ∆1

1-Kurtz random. If A is a Π1
1 closed null set

so that x ∈ A, then by Theorem 2.6, there is a formula ϕ(z, y) whose only unranked
set variables are z and y so that the formula ∃zϕ(z, y) defines A. Since ωx1 = ωCK

1 ,
x ∈ B = {y | A(ωCK

1 , y) |= ∃zαϕ(zα, y)} ⊆ A for some recursive ordinal α. Define
T = {σ ∈ 2<ω | ∃y ∈ B(y � σ)}. Obviously B ⊆ [T ]. Since B is ∆1

1, [T ] is Σ1
1. Since

A is closed, B ⊆ A, and [T ] is the closure of B, we have [T ] ⊆ A. Hence since A is
null, so is [T ]. By the proof of Theorem 3.2, there is a ∆1

1 closed null set C ⊇ [T ].
Hence x ∈ C, a contradiction. �

From the proof of Theorem 3.2, one sees that every hyperdegree above O contains
a ∆1

1-Kurtz random real. But this fails for Π1
1-Kurtz randomness. We say that a

hyperdegree d is a base for a cone of Γ-Kurtz randoms if for every hyperarithmetic
degree h ≥ d, h contains a Γ-Kurtz random real.
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The hyperdegree of O is a base for a cone of ∆1
1-Kurtz randoms as proved in

Theorem 3.2. In Corollary 5.3 we will show that not every nonzero hyperdegree is a
base of a cone of ∆1

1-Kurtz randoms.
Is there a base for a cone of Π1

1-Kurtz randoms? If such a base b exists, then b
is not hyperarithmetically reducible to any Π1

1 singleton. Intuitively, this means that
such bases must be complex.

To obtain such a base we need a lemma.

Lemma 3.4. For any reals x and z ≥T x′, there is an x-Kurtz random real y ≡T z.

Proof. Fix an enumeration of the x-r.e. open sets {Ux
n}n∈ω.

We inductively define an increasing sequence of binary strings {σs}s<ω.

Stage 0. Let σ0 be the empty string.

Stage s+ 1. Let l0 = 0, l1 = |σs|, and ln+1 = 2ln for all n > 1. For every n > 1, let

An = {σ ∈ 2ln−1 | ∃m < n∀i∀j(lm ≤ i, j < lm+1 =⇒ σ(i) = σ(j))}.
Then

|An| ≤ 2 · 2ln−1 .

In other words,

µ(
⋃
{[σ] | σ � σs ∧ σ 6∈ An}) ≥ 2−l1 · (1− 2ln+1−ln+1).

Case(1): There is some m > l1 + 1 so that |{σ � σs | σ ∈ 2m ∧ [σ] ⊆ Ux
s }| > 2m−l1−1.

Let n = m + 1. Then ln+1 − 1 − ln > 2 and ln > m. So there must be some
σ ∈ 2ln−1 − An so that there is a τ � σ for which [τ ] ⊆ Ux

s and τ ∈ 2m.
Let σs+1 = σa(z(s))ln−1.

Case(2): Otherwise. Let σs+1 = σa
s (z(s))l1−1.

This finishes the construction at stage s+ 1.

Let y =
⋃
s σs.

Obviously the construction is recursive in z. So y ≤T z. Moreover, if Ux
n is of

measure 1, then Case (1) happens at the stage n+ 1. So y is x-Kurtz random.
Let l0 = 0, ln+1 = 2ln for all n ∈ ω. To compute z(n) from y, we y-recursively

find the n-th lm for which for all i, j with lm ≤ i < j < lm+1, y(i) = y(j). Then
z(n) = y(lm). �

Let Q ⊆ ω × 2ω be a universal Π1
1 set. In other words, Q is a Π1

1 set so that
every Π1

1 set is some Qn = {x | (n, x) ∈ Q}. By Theorem 2.2.3 in [9], the real
x0 = {n | µ(Qn) = 0} is Σ1

1. Let

c = {(n, σ) | n ∈ x0 ∧ ∃x((n, x) ∈ Q ∧ σ ≺ x)} ⊆ ω × 2<ω.

Then c can be viewed as a Σ1
2 real. Since every Π1

1 null closed set is Π0
1(c), every

c-Kurtz random real is Π1
1-Kurtz random.

Theorem 3.5. c is a base for a cone of Π1
1-Kurtz randoms.
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Proof. For every real y0 ≥h c, there is a real y1 ≡h y0 so that y1 ≥T c′, the Turing
jump of c. By Lemma 3.4, there is a real z ≡T y1 for which z is c-Kurtz random and
so Π1

1-Kurtz random. �

Recall that every Σ1
2 real is constructible (see e.g. the last chapter of Moschovakis

[11]). In the following we will determine the position of c within the constructible
hierarchy. A real is called constructible if it belongs to some level Lα of Gödel’s
hierarchy of constructible sets

L =
⋃
{Lβ : β is an ordinal}.

More generally, for each real x we have the hierarchy

L[x] =
⋃
{Lβ[x] : β is an ordinal}

of sets constructible from x.
Let

δ1
2 = sup{α : α is an ordinal isomorphic to a ∆1

2 wellordering of ω},
and

δ = min{α | L \ Lα contains no Π1
1 singleton}.

Proposition 3.6 (Forklore). δ = δ1
2.

Proof. If α < δ, then there is a Π1
1 singleton x ∈ Lδ \ Lα. Since x ∈ Lωx

1
and ωx1 is a

Π1
1(x) wellordering, it must be that α < ωx1 < δ1

2. So δ ≤ δ1
2.

If α < δ1
2, there is a ∆1

2 wellordering relation R ⊆ ω × ω of order type α. So there
are two recursive relations S, T ⊆ (ωω)2 × ω3 so that

R(n,m)⇔ ∃f∀g∃kS(f, g, n,m, k), and

¬R(n,m)⇔ ∃f∀g∃kT (f, g, n,m, k).

Define a Π1
1 set R0 = {(f, n,m) | ∀g∃kS(f, g, n,m, k)}. By the Gandy-Spector

Theorem 2.2, there is an arithmetical relation S ′ so that R0 = {(f, n,m) | ∃g ≤h
f(S ′(f, g, n,m))}. Recall that every nonempty Π1

1 set contains a Π1
1-singleton (Kondo-

Addison [15]). Then

R(n,m)⇔ ∃f ∈ Lδ∃g ∈ Lωf
1
[f ](S ′(f, g, n,m)).

In other words, R is Σ1-definable over Lδ. By the same method, the complement of
R is Σ1-definable over Lδ too. So R is ∆1-definable over Lδ. It is clear that Lδ is
admissible. So R ∈ Lδ. Hence α < δ. Thus δ1

2 = δ. �

Note that if x is a ∆1
2-real, then ωx1 is isomorphic to a ∆1

2 wellordering of ω. So

sup{ωx1 | x is a Π1
1-singleton} ≤ δ1

2.

Since x ∈ Lωx
1

for every Π1
1-singleton x,

sup{ωx1 | x is a Π1
1-singleton} ≥ δ = δ1

2.

Thus
sup{ωx1 | x is a Π1

1-singleton} = δ = δ1
2.

Since every Π1
1 singleton is recursive in c, we have c 6∈ Lδ12 and ωc

1 ≥ δ1
2.
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By the same argument as in Proposition 3.6, the reals lying in Lδ12 are exactly the

∆1
2 reals. So c is not ∆1

2. Moreover, since c is Σ1
2, it is Σ1 definable over Lδ12 . Hence

c ∈ Lδ12+1. In other words, for any real z, if ωz1 > ωc
1, then c ∈ Lωz

1
and so c ≤h z.

Then by [14], c ∈ Lωc
1
. Thus ωc

1 > δ1
2. Since actually all Σ1

2 reals lie in Lδ12+1. This
means that

c has the largest hyperdegree among all Σ1
2 reals.

4. ∆1
1-traceability and dominability

We begin with the characterization of Π1
1-randomness within ∆1

1-Kurtz randomness.

Definition 4.1. A real x is hyp-dominated if for all functions f : ω → ω with f ≤h x,
there is a hyperarithmetic function g so that g(n) > f(n) for all n.

Recall that a real is Π1
1-random if it does not belong to any Π1

1-null set. The following
result is a higher analog of the result that Kurtz randomness coincides with weak 2-
randomness for reals of hyperimmune-free degree.

Proposition 4.2. A real x is Π1
1-random if and only if x is hyp-dominated and

∆1
1-Kurtz random.

Proof. Every Π1
1-random real is ∆1

1-Kurtz random and also hyp-dominated (see [1]).
We prove the other direction.

Suppose x is hyp-dominated and ∆1
1-Kurtz random. We show that x is Π1

1-Martin-
Löf random. If not, then fix a universal Π1

1-Martin-Löf test {Un}n∈ω (see [8]). Then
there is a recursive function f : ω×2<ω → ω so that for any pair (n, σ), σ ∈ Un if and
only if f(n, σ) ∈ O. Since x is hyp-dominated, ωx1 = ωCK

1 (see [1]). Then we define a
Π1

1(x) relation R ⊆ ω × ω so that R(n,m) if and only if there is a σ so that m ∈ O,
f(n, σ) ∈ Om = {i ∈ O | |i| < |m|} and σ ≺ x. Then by the Π1

1-uniformization
relativized to x, there is a partial function p uniformizing R. Since x ∈

⋂
n Un, p is

a total function. Since ωx1 = ωCK
1 , there must be some m0 ∈ O so that p(n) ∈ Om0

for every n. Then define a ∆1
1-Martin-Löf test {Ûn}n∈ω so that σ ∈ Ûn if and only if

f(n, σ) ∈ Om0 . So x ∈
⋂
n Ûn. Let f̂(n) = min{l | ∃σ ∈ 2l(σ ∈ Ûn ∧ x ∈ [σ])} be a

∆1
1(x) function. Then there is a ∆1

1 function f dominating f̂ . Define Vn = {σ | σ ∈
2≤f(n) ∧ σ ∈ Ûn} for every n. Then P =

⋂
n Vn is a ∆1

1 closed set and x ∈ P . So x is
not ∆1

1-Kurtz random, a contradiction.
Since is Π1

1-Martin-Löf random and ωx1 = ωCK
1 , x is already Π1

1-random (see [1]). �

Next we proceed to traceability.

Definition 4.3. (i) Let h : ω → ω be a nondecreasing unbounded function that
is hyperarithmetical. A ∆1

1 trace with bound h is a uniformly ∆1
1 sequence

(Te)e∈ω such that |Te| ≤ h(e) for each e.
(ii) x ∈ 2ω is ∆1

1-traceable [1] if there is h ∈ ∆1
1 such that, for each f ≤h x, there

is a ∆1
1 trace with bound h such that, for each e, f(e) ∈ Te.

(iii) x ∈ 2ω is ∆1
1-semi-traceable if for each f ≤h x, there is a ∆1

1 function g so
that, for infinitely many n, f(n) = g(n). We say that g semi-traces f .

(iv) x ∈ 2ω is Π1
1-semi-traceable if for each f ≤h x, there is a partial Π1

1 function
p so that, for infinitely many n we have f(n) = p(n).
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Note that, if (Te)e∈ω is a uniformly ∆1
1 sequence of finite sets, then there is g ∈ ∆1

1

such that for each e, Dg(e) = Te (where Dn is the nth finite set according to some
recursive ordering). Thus

g(e) = µn ∀u [u ∈ Dn ↔ u ∈ Te].

In this formulation, the definition of ∆1
1 traceability is very close to that of recursive

traceability.
Also notice that the choice of a bound as a witness for traceability is immaterial:

Proposition 4.4 (As in Terwijn and Zambella [18]). Let A be a real that is ∆1
1

traceable with bound h. Then A is ∆1
1 traceable with bound h′ for any monotone and

unbounded ∆1
1 function h′.

Lemma 4.5. x is Π1
1-semi-traceable if and only if x is ∆1

1-semi-traceable.

Proof. It is not difficult to see that if x is Π1
1-semi-traceable, then ωx1 = ωCK

1 . For
otherwise, x ≥h O. So it suffices to show that O is not Π1

1-semi-traceable. Let {φi}i∈ω
be an effective enumeration of partial recursive functions. Define a function g ≤T O′
so that g(i) =

∑
j≤im

i
j + 1 where mi

j is the least number k so that pj(i, k) ∈ O; if

there is no such k, then mi
j = 0. Note that for any Π1

1 partial function p, there must
be some partial recursive function pj so that for every pair n,m, p(n) = m if and
only if pj(n,m) ∈ O. Then by the definition of g, for any i > j, g(k) 6= p(i). So g
cannot be traced by p.

Suppose that x is Π1
1-semi-traceable, ωx1 = ωCK

1 , and f ≤h x. Fix a Π1
1 partial

function p for f . Since p is a Π1
1 function, there must be some recursive injection h

so that p(n) = m⇔ h(n,m) ∈ O.
Let R(n,m) be a Π1

1(x) relation so that R(n,m) iff there exists m > k ≥ n for which
f(k) = p(k). Then some total function g uniformizes R such that g is Π1

1(x), and so
∆1

1(x). Thus, for every n, there is some m ∈ [g(n), g(g(n))) so that f(m) = p(m). Let
g′(0) = g(0), and g′(n+ 1) = g(g′(n)) for all n ∈ ω. Define a Π1

1(x) relation S(n,m)
so that S(n,m) if and only if m ∈ [g′(n), g′(n+ 1)) and p(m) = f(m). Uniformizing
S we obtain a ∆1

1(x) function g′′.
Define a ∆1

1(x) set by H = {h(m, k) | ∃n(g′′(n) = m∧f(m) = k)}. Since ωx1 = ωCK
1 ,

H ⊆ On for some n ∈ O. Since On is a ∆1
1 set, we can define a ∆1

1 function f̂ by:

f̂(i) = j if h(i, j) ∈ On; f̂(i) = 1, otherwise. Then there are infinitely many i so that

f(i) = f̂(i). �

Note that the ∆1
1-dominated reals form a measure 1 set [1] but the set of ∆1

1-semi-
traceable reals is null. Chong, Nies and Yu [1] constructed a non-hyperarithmetic
∆1

1-traceable real.

Proposition 4.6. Every ∆1
1-traceable real is ∆1

1-dominated and ∆1
1-semi-traceable.

Proof. Obviously every ∆1
1-traceable real is ∆1

1-dominated.
Suppose we are given a ∆1

1-traceable real x and ∆1
1(x) function f . Let g(n) =

〈f(2n), f(2n + 2), . . . , f(2n+1 − 1)〉 for all n ∈ ω. Then there is a ∆1
1 trace T for g so

that |Tn| ≤ n for all n.
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Then for all 2n + 1 ≤ m ≤ 2n+1, let f̂(m) = the (m − 2n)-th entry of the tuple

of the (m− 2n)-th element of Tn if there exists such an m; otherwise, let f̂(m) = 1.
It is not difficult to see that for every n there is at least one m ∈ [2n, 2n+1) so that

f(m) = f̂(m). �

From the proof above, one can see the following corollary.

Corollary 4.7. A real x is ∆1
1-traceable if and only if for every x-hyperarithmetic f̂ ,

there is a hyperarithmetic function f so that for every n, there is some m ∈ [2n, 2n+1)

so that f(m) = f̂(m).

The following proposition will be used in Theorem 4.13 to disprove the converse of
Proposition 4.6.

Proposition 4.8. For any real x, the following are equivalent.

(1) x is ∆1
1-semi-traceable and ∆1

1-dominated.
(2) For every function g ≤h x, there exist an increasing ∆1

1 function f and a ∆1
1

function F : ω → [ω]<ω with |F (n)| ≤ n so that for every n, there exists some
m ∈ [f(n), f(n+ 1)) with g(m) ∈ F (m).

Proof. (1) =⇒ (2): Immediate because 1 ≤ n.
(2) =⇒ (1). Suppose we are given a function ĝ ≤h x. Without loss of generality,

ĝ is nondecreasing. Let f and F be the corresponding ∆1
1 functions. Let j(n) =∑

i≤f(n+1)

∑
k∈F (i) k and note that j is a ∆1

1 function dominating ĝ.

To show that x is ∆1
1-traceable, suppose we are given a function ĝ ≤h x. Let h(n) =

〈g(2n + 1), g(2n + 2), . . . , g(2n+1 − 1)〉. Then by assumption there are corresponding
∆1

1 functions fh and Fh. For every n and m ∈ [2n, 2n+1), let g(m) = the (m − 2n)th

column of the (m−2n)th element in Fh(n) if such an m exists; let g(m) = 1 otherwise.
Then g is a ∆1

1 function semi-tracing ĝ. �

To separate ∆1
1-traceability from the conjunction of ∆1

1-semi-traceability and ∆1
1-do-

minability, we have to modify Sacks’ perfect set forcing.

Definition 4.9. (1) A ∆1
1 perfect tree T ⊆ 2<ω is fat at n if for every σ ∈ T with

|σ| ∈ [2n, 2n+1), we have σa0 ∈ T and σa1 ∈ T . Then we also say that n is a
fat number of T .

(2) A ∆1
1 perfect tree T ⊆ 2<ω is clumpy if there are infinitely many n so that T

is fat at n.
(3) Let F = (F ,⊆) be a partial order of which the domain F is the collection of

clumpy trees, ordered by inclusion.

Let ϕ be a sentence of L(ωCK
1 , ẋ). Then we can define the forcing relation, T 
 ϕ, as

done by Sacks in Section 4, IV [15].

(1) ϕ is ranked and ∀x ∈ T (A(ωCK
1 , x) |= ϕ), then T 
 ϕ.

(2) If ϕ(y) is unranked and T 
 ϕ(ψ(n)) for some ψ(n) of rank at most α, then
T 
 ∃yαϕ(yα).

(3) If T 
 ∃yαϕ(yα), then T 
 ∃yϕ(y).
(4) If ϕ(n) is unranked and T 
 ϕ(m) for some number m, then T 
 ∃nϕ(n).
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(5) If ϕ and ψ are unranked, T 
 ϕ and T 
 ψ, then T 
 ϕ ∧ ψ.
(6) If ϕ is unranked and ∀P (P ⊆ T =⇒ P 6
 ϕ), then T 
 ¬ϕ.

The following lemma can be deduced as done in [15].

Lemma 4.10. The relation T 
 ϕ, restricted to Σ1
1 formulas ϕ, is Π1

1.

Lemma 4.11. (1) Let {ϕi}i∈ω be a hyperarithmetic sequence of Σ1
1 sentences.

Suppose for every i and Q ⊆ T , there exists some R ⊆ Q so that R 
 ϕi.
Then there exists some Q ⊆ T so that for every i, Q 
 ϕi.

(2) ∀ϕ∀T∃Q ⊆ T (Q 
 ϕ ∨Q 
 ¬ϕ).

Proof. Using the notation P � n = {τ ∈ 2≤n | τ ∈ P}, define R by

R(R, i, σ, P )⇔ (σ ∈ R, P ⊆ R, P 
 ϕi, P � |σ| = {τ | τ ≺ σ},
and log |σ| − 1 is the ith fat number of R).

Note that R is a Π1
1 relation. Then R can be uniformized by a partial Π1

1 function
F : F × ω × 2<ω → F . Using F , a hyperarithmetic family {Pσ | σ ∈ 2<ω} can be
defined by recursion on σ.
P∅ = T.
If log |σ| − 1 is not a fat number of Pσ, then Pσa0, Pσa1 = Pσ.
Otherwise: If σ 6∈ Pσ, then Pσa0 = Pσa1 = ∅.

Otherwise: Pσa0 ∩ Pσa1 = ∅, Pσa0 ∪ Pσa1 ⊆ Pσ,
Pσa0 � |σ|, Pσa1 � |σ| = {τ | τ ≺ σ} and
Pσa0, Pσa1 
 ∧j≤iϕj where
i is the number so that log |σ| − 1 is the i-th fat number of T.

Let Q =
⋂
n

⋃
|σ|=n Pσ. Then Q ∈ F . It is routine to check that for every i, Q 
 ϕi.

The proof of (2) is the same as the proof of Lemma 4.4 IV [15]. �

We say that a real x is generic if it is the union of roots of trees in a generic filter;
equivalently, for each Σ1

1 sentence ϕ, there is a condition T such that x ∈ T and either
T 
 ϕ or T 
 ¬ϕ. One can check (Lemma 4.8, IV [15]) that for every Σ1

1-sentence ϕ,

A(ωCK
1 , x) |= ϕ⇔ ∃P (x ∈ P ∧ P 
 ϕ).

Lemma 4.12. If x is a generic real, then

(1) A(ωCK
1 , x) satisfies ∆1

1-comprehension. So ωx1 = ωCK
1 .

(2) x is ∆1
1-dominated and ∆1

1-semi-traceable.
(3) x is not ∆1

1-traceable.

Proof. (1). The proof of (1) is exactly same as the proof of Theorem 5.4 IV, [15].
(2). By Proposition 4.8, it suffices to show that for every function g ≤h x, there

are an increasing ∆1
1 function f and a ∆1

1 function F : ω → ω<ω with |F (n)| ≤ n so
that for every n, there exists some m ∈ [f(n), f(n+ 1)) so that g(m) ∈ F (m). Since
g ≤h x and ωx1 = ωCK

1 , there is a ranked formula ϕ so that for every n, g(n) = m if
and only if A(ωCK

1 , x) |= ϕ(n,m). So there is a condition S 
 ∀n∃!mϕ(n,m). Fix a
condition T ⊆ S. As in the proof of Lemma 4.11, we can build a hyperarithmetic
sequence of conditions {Pσ}σ∈2<ω so that

Pσai 
 ϕ(|σ|,mσai) for i ≤ 1
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if log |σ| − 1 is a fat number of Pσ and σ ∈ Pσ. Let Q be as defined in the proof
of Lemma 4.11. Let f be the ∆1

1 function such that f(0) = 0, and f(n + 1) is the
least number k > f(n) so that mσ is defined for some σ with f(n) < |σ| < k. Let
F (n) = {0} ∪ {mσ | |σ| = n}, and note that F is a ∆1

1 function. Then

Q 
 ∀n|F (n)| ≤ n ∧ ∀n∃m ∈ [f(n), f(n+ 1))∃i ∈ F (m)(ϕ(m, i)).

So

Q 
 ∃F∃f(∀n|F (n)| ≤ n ∧ ∀n∃m ∈ [f(n), f(n+ 1))∃i ∈ F (m)(ϕ(m, i))).

Since T is an arbitrary condition stronger than S, this means

S 
 ∃F∃f(∀n|F (n)| ≤ n ∧ ∀n∃m ∈ [f(n), f(n+ 1))∃i ∈ F (m)(ϕ(m, i))).

Since x ∈ S,

A(ωCK
1 , x) |= ∃F∃f(∀n|F (n)| ≤ n ∧ ∀n∃m ∈ [f(n), f(n+ 1))∃i ∈ F (m)(ϕ(m, i))).

So x is ∆1
1-dominated and ∆1

1-semi-traceable.
(3). Suppose f : ω → ω is a ∆1

1 function so that for every n, there is a number
m ∈ [2n, 2n+1) with f(m) = x(m). Then there is a ranked formula ϕ so that f(n) =
m⇔ A(ωCK

1 , x) |= ϕ(n,m). Moreover, A(ωCK
1 , x) |= ∀n∃m ∈ [2n, 2n+1)(ϕ(m,x(m))).

So there is a condition T 
 ∀n∃m ∈ [2n, 2n+1)(ϕ(m, ẋ(m))) and x ∈ T . Let n be a
number so that T is fat at n and σ ∈ 22n−1 be a finite string in T . Let µ be a finite
string so that µ(m) = 1 − f(m + 2n − 1). Define S = {σaµaτ | σaµaτ ∈ T} ⊆ T .
Then S 
 ∀m ∈ [2n, 2n+1)(¬ϕ(m,x(m))). But S is stronger than T , a contradiction.
By Corollary 4.7, x is not ∆1

1-traceable. �

We may now separate ∆1
1-traceability from the conjunction of ∆1

1-semi-traceability
and ∆1

1-dominability.

Theorem 4.13. There are 2ℵ0 many ∆1
1-dominated and ∆1

1-semi-traceable reals which
are not ∆1

1-traceable.

Proof. This is immediate from Lemma 4.12. Note that there are 2ℵ0 many generic
reals. �

5. Lowness for higher Kurtz randomness

Given a relativizable class of reals C (for instance, the class of random reals), we
call a real x low for C if C = Cx. We shall prove that lowness for ∆1

1-randomness is
different from lowness for ∆1

1-Kurtz randomness. A real x is low for ∆1
1-Kurtz tests

if every ∆1
1(x) open set with measure 1 has a ∆1

1 open subset of measure 1. Clearly,
lowness for ∆1

1-Kurtz tests implies lowness for ∆1
1-Kurtz randomness.

Theorem 5.1. If x is ∆1
1-dominated and ∆1

1-semi-traceable, then x is low for ∆1
1-

Kurtz tests.
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Proof. Suppose x is ∆1
1-dominated and ∆1

1-semi-traceable and U is a ∆1
1(x) open set

with measure 1. Then there is a real y ≤h x so that U is Σ0
1(y). Hence for some

Turing reduction Φ, if for all z we write U z for the domain of Φz, then we have
U = Uy.

Define a ∆1
1(x) function f̂ by: f̂(n) is the shortest string σ ≺ y so that µ(Uσ[σ]) >

1 − 2−n. By the assumptions of the Theorem, there are an increasing ∆1
1 function

g and a ∆1
1 function f so that for every n, there is an m ∈ [g(n), g(n + 1)) so that

f(m) = f̂(m). Without loss of generality, we can assume that µ(U f(m)[m]) > 1−2−m

for every m.
Define a ∆1

1 open set V so that σ ∈ V if and only if there exists some n so that
[σ] ⊆

⋂
g(n)≤m<g(n+1) U

f(m)[m]. By the property of f and g, V ⊆ Uy = U . But for
every n,

µ(
⋂

g(n)≤m<g(n+1)

U f(m)[m]) > 1−
∑

g(n)≤m<g(n+1)

2−m ≥ 1− 2−g(n)+1.

So

µ(V ) ≥ lim
n
µ

 ⋂
g(n)≤m<g(n+1)

U f(m)[m]

 = 1.

Hence x is low for ∆1
1-Kurtz tests. �

Corollary 5.2. Lowness for ∆1
1-randomness differs from lowness for ∆1

1-Kurtz ran-
domness.

Proof. By Theorem 4.13, there is a real x that is ∆1
1-dominated and ∆1

1-semi-traceable
but not ∆1

1-traceable. By Theorem 5.1, x is low for ∆1
1-Kurtz randomness. Chong,

Nies and Yu [1] proved that lowness for ∆1
1-randomness is the same as ∆1

1-traceability.
Thus x is not low for ∆1

1-randomness. �

Corollary 5.3. There is a non-zero hyperdegree below O which is not a base for a
cone of ∆1

1-Kurtz randoms.

Proof. Clearly there is a real x <h O which is ∆1
1-dominated and ∆1

1-semi-traceable.
Then the hyperdegree of x is not a base for a cone of ∆1

1-Kurtz randoms. �

Actually the converse of Theorem 5.1 is also true.

Lemma 5.4. If x is low for ∆1
1-Kurtz randomness, then x is ∆1

1-dominated.

Proof. Firstly we show that if x is low for ∆1
1-Kurtz tests, then x is ∆1

1-dominated.
Suppose f ≤h x is an increasing function. Let Sf = {z | ∀n(z(f(n)) = 0)}.

Obviously Sf is a ∆1
1(x) closed null set. So there is a ∆1

1 closed null set [T ] ⊇ Sf
where T ⊆ 2<ω is a ∆1

1 tree. Define

g(n) = min{m | |{σ ∈ 2m | σ ∈ T}|
2m

< 2−n}+ 1.

Since µ([T ]) = 0, g is a well defined ∆1
1 function. We claim that g dominates f .
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For every n, Sf(n) = {σ ∈ 2f(n) | ∀i ≤ n(σ(f(i)) = 0)} has cardinality 2f(n)−n. But
if g(n) ≤ f(n), then since S ⊆ [T ], we have

|Sf(n)| ≤ 2f(n)−g(n) · |{σ ∈ 2g(n) | σ ∈ T}| < 2f(n)−g(n) · 2g(n)−n = 2f(n)−n.

This is a contradiction. So x is ∆1
1-dominated.

Now suppose x is not ∆1
1-dominated witnessed by some f ≤h x. Then Sf is not

contained in any ∆1
1 closed null set. Actually, it is not difficult to see that for any σ

with [σ] ∩ Sf 6= ∅, [σ] ∩ Sf is not contained in any ∆1
1 closed null set (otherwise, as

proved above, one can show that f is dominated by some ∆1
1 function). Then, by an

induction, we can construct a ∆1
1-Kurtz random real z ∈ Sf as follows:

Fix an enumeration P0, P1, . . . of the ∆1
1 closed null sets.

At stage n + 1, we have constructed some z � ln so that [z] � ln ∩ Sf 6= ∅. Then
there is a τ � z � ln so that [τ ] ∩ Sf 6= ∅ but [τ ] ∩ Sf ∩ Pn = ∅. Fix such a τ , let
ln+1 = |τ | and z � ln+1 = τ .

Then z ∈ Sf is ∆1
1-Kurtz random.

So x is not low for ∆1
1-Kurtz randomness. �

Lemma 5.5. If x is low for ∆1
1-Kurtz randomness, then x is ∆1

1-semi-traceable.

Proof. The proof is analogous to that of the main result in [7].
Firstly we show that if x is low for ∆1

1-Kurtz tests, then x is ∆1
1-semi-traceable.

Suppose that x is low for ∆1
1-Kurtz tests and f ≤h x. Partition ω into finite

intervals Dm,k for 0 < k < m so that |Dm,k| = 2m−k−1. Moreover, if m < m′, then
maxDm,k < minDm′,k′ for any k < m and k′ < m′. Let nm = max{i | i ∈ Dm,k ∧ k <
m} for every m ∈ ω. Note that {nm}m∈ω is a recursive increasing sequence.

For every function h, let

P h = {x ∈ 2ω | ∀m(x(h � nm) = 0)}

be a closed null set. Obviously P f is a ∆1
1(x) closed null set. Then there is a ∆1

1

closed null set Q ⊇ P f . We define a ∆1
1 function g as follows.

For each k ∈ ω, let dk be the least number d so that

|{σ ∈ 2d | ∃x ∈ Q(x � σ)}| ≤ 2d−k−1.

Note that {dk}k∈ω is a ∆1
1 sequence. Define

Qk = {σ | σ ∈ 2dk ∧ ∃x ∈ Q(x � σ)}.

Then {Qk}k∈ω is a ∆1
1 sequence of clopen sets and |Qk| ≤ 2dk−k−1 for each k < dk.

Then Greenberg and Miller [7] constructed a finite tree S ⊆ ω<ω and a finite sequence
{Sm}k<m≤l for some l with the following properties:

(1) [S] = {h ∈ ωω | P h ⊆ [Qk]};
(2) Sm ⊆ S ∩ ωnm ;
(3) |Sm| ≤ 2m−k−1;
(4) every leaf of S extends some string in

⋃
k<m≤l Sm.
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Moreover, both the finite tree S and sequence {Sm}k<m≤l can be obtained uniformly
from Qk.

Now for each m with k < m ≤ l and σ ∈ Sm, we pick a distinct i ∈ Dm,k and
define g(i) = σ(i). For the other undefined i ∈ Dm,k, let g(i) = 0.

So g is a well-defined ∆1
1 function.

For each k, P f ⊆ Q ⊆ [Qk]. So f ∈ [S]. Hence there must be some i > nk so that
f(i) = g(i).

Thus x is ∆1
1-semi-traceable.

Now suppose x is not ∆1
1-semi-traceable as witnessed by f ≤h x. Then P f is not

contained in any ∆1
1 closed null set. It is shown in [7] that for any σ, assuming that

[σ] ∩ P f 6= ∅, [σ] ∩ P f is not contained in any ∆1
1 closed null set. Then by an easy

induction, one can construct a ∆1
1-Kurtz random real in P f .

So x is not low for ∆1
1-Kurtz randomness. �

So we have the following theorem.

Theorem 5.6. For any real x ∈ 2ω, the following are equivalent:

(1) x is low for ∆1
1-Kurtz tests;

(2) x is low for ∆1
1-Kurtz randomness;

(3) x is ∆1
1-dominated and ∆1

1-semi-traceable.

It is unknown whether there exists a nonhyperarithmetic real which is low for Π1
1-

Kurtz randomness. However, we can prove the following containment.

Proposition 5.7. If x is low for Π1
1-Kurtz randomness, then x is low for ∆1

1-Kurtz
randomness.

Proof. Assume that x is low for Π1
1-Kurtz randomness, y is ∆1

1-Kurtz random and
there is a ∆1

1(x) closed null set A with y ∈ A. By Theorem 2.7, the set

B =
⋃
{C | C is a ∆1

1 closed null set}

is a Π1
1 null set. So A−B is a Σ1

1(x)set. Since y is ∆1
1-Kurtz random, y 6∈ B. Hence

y ∈ A − B and so A − B is a Σ1
1(x) nonempty set. Thus there must be some real

z ∈ A − B with ωz1 = ωx1 = ωCK
1 . Since z 6∈ B, z is ∆1

1-Kurtz random. So by
Proposition 3.3, z is Π1

1-Kurtz random. This contradicts the fact that x is low for
Π1

1-Kurtz randomness. �
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