
ON THE DEFINABLE IDEAL GENERATED BY NONBOUNDING
C.E. DEGREES

YUE YANG AND LIANG YU

Abstract. Let [NB]1 denote the ideal generated by nonbounding c.e. degrees and
NCup the ideal of noncuppable c.e. degrees. We show that both [NB]1 ∩ NCup and
the ideal generated by nonbounding and noncuppable degrees are new, in the sense
that they are different from M, [NB]1 and NCup — the only three known definable
ideals so far.

1. Introduction

This paper is part of the study of definable subsets in the structure of computably
enumerable degrees R. One of the most significant results is that all jump classes
except the low degrees are definable, by Nies, Shore and Slaman [5], [6]. This was
done in the mid 1990s. However, even until 2000, no nontrivial definable ideals are
known except M and NCup. Recall that two noncomputable c.e. degrees a and b
form a minimal pair if a∧b = 0; M is the set of all cappable c.e. degrees i.e., the halves
of minimal pairs; a c.e. degree a is noncuppable if for all incomplete c.e. degree b,
a∨b is incomplete; and NCup is the set of all noncuppable c.e. degrees. The problem
was raised in 1999 Boulder’s meeting by Shore (Question 2.8 [7]): Are there other
definable ideals? Furthermore, Shore asked (Question 2.9 [7]): If B is a (particular)
definable subset of R is there a way to define the ideal generated by B? Recently,
Nies [4] proved the following powerful result:

Theorem 1.1. Let B be a definable subset of R. Then the ideal generated by B is
definable in R.

Theorem 1.1 produces many definable ideals, the concern then shifts to whether
or not they are new. For example, let us say a c.e. degree t is a diamond top if

(∃x,y 6= 0)[x ∨ y = t and x ∧ y = 0].

Consider the ideal DT which is generated by of all diamond tops.

Proposition 1.2. The ideal DT coincides with the ideal M.

Proof. Clearly, every diamond top, being a join of a minimal pair, is in M. On the
other hand, every degree x in M is below a diamond top t which is the join of x and
its companion. �
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By studying the nonbounding degrees, Nies [4] obtained a new definable ideal [NB]1
. We say a c.e. degree b nonbounding if it does not bound any minimal pairs. It is
known that the set of all nonbounding degrees does not form an ideal (see, for exam-
ple, Ambos-Spies and Soare [1]). Let [NB]1 be the ideal generated by the nonbounding
degrees. By Theorem 1.1, [NB]1 is definable. Since every nonbounding degree is cap-
pable and M is an ideal, we know that [NB]1 is a subset of M. Furthermore, Nies
showed that [NB]1 coincides with neither M nor NCup:

Theorem 1.3 (Nies). (1) There is a cappable degree which is not in [NB]1 . Thus
[NB]1 is properly contained in M.

(2) There is a cuppable degree in [NB]1 . Thus [NB]1 is not a subset of NCup.
(3) There is a c.e. degree which is both noncuppable and nonbounding. Thus the

intersection of NCup and [NB]1 is not empty.

It is natural to ask the following question so that we have more precise information
about the ideals:

Question 1.4. Is NCup a subset of [NB]1 ?

In the first part of the paper, we give a negative answer of the question.

Theorem 1.5. There exists a noncuppable c.e. degree a, which is not in [NB]1 .

Once we know that the two ideals NCup and [NB]1 are not containing each other,
it is natural to look at the ideal I generated by both noncuppable and nonbounding
degrees.

Theorem 1.6. There exists a cappable c.e. degree a which is not in I.

Thus we obtain two new definable ideals: the intersection of NCup and [NB]1 and
the ideal I.

We organise the paper as follows. Section 2 and 3 are devoted to the proof of
Theorem 1.5 and Theorem 1.6 respectively. In each section, we have subsections
for requirements and strategies; formal proof; and verification. When we explain
the strategies, we will deal with special case such as the degree generated by two
elements, instead of n elements. We believe that the explanation of this special case
illustrates the main ideas, which might be obscured by the complicated indexing in
the general setting. Once the idea is understood, we give the construction for the
general case.

Notation and terminology are standard and generally follow Soare [8]. The basic
knowledge of tree constructions in computability theory is assumed. We use capital
Greek letters such as Φ to denote Turing functionals, and the corresponding lower
case letter ϕ(A; x) to denote the use function for Φ(A; x). If the Turing functional Φ
applies to the join of two sets X and Y , we will write Φ(XY ) instead of Φ(X ⊕ Y ).
During the course of a construction, whenever we define a parameter as fresh, we
mean that it is defined as the least natural number which is greater than any number
mentioned so far. We assume that the priority tree grows upwards.

2. The Proof of Theorem 1.5

Fix a complete c.e. set K0. Our target is to build a c.e. set A such that:
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(1) A is noncuppable; and
(2) for any c.e. sets B1, B2, . . . , Bn, if A ≤T B1 ⊕ B2 ⊕ · · · ⊕ Bn, then one of

the Bk’s (1 ≤ k ≤ n) bounds a minimal pair. In other words, either A 6≤T

B1 ⊕B2 ⊕ · · · ⊕Bn, or there is a minimal pair Xk and Yk below Bk for some
k : 1 ≤ k ≤ n.

We now look at each individual requirement. For notational simplicity, we work
on the special case n = 2 until we give the full construction. The strategies for a
requirement O described below often corresponds to the α-version of O, where α is
a node on the priority tree labelled O.

2.1. Description of noncuppable strategies. We follow the strategies used by Li,
Slaman and Yang [3]. The noncuppable requirements guarantee that for all c.e. set
W , A⊕W is complete implies that W is complete. Fix an effective enumeration of
Turing functionals Γe (e ∈ ω). For each pair of natural numbers e1 and e2, we build a
Turing functional ∆e such that if Γe1(AWe2) = D, then ∆e(We2) = K0, where e is the
code e = 〈e1, e2〉 and D is an auxiliary set built by us. For simplicity, we would like
to view K0 as a subset of D, so that any number enumerated into K0 is enumerated
into D automatically. Thus let us assume that K0 (D, respectively) is a subset of
even (odd, respectively) numbers and K is the (disjoint) union of K0 and D. The
noncuppable requirements Ne are as follows.

• Ne: If Γe1(AWe2) = K, then ∆e(We2) = K0.

From now on, when we define the value ∆e(We2 ; p), we always assume that p is an
even number; we may assume that if q is an odd number, then ∆e(We2 ; q) = 0 with
empty use. We also assume that the candidates targeting D are chosen from odd
numbers.

We have subrequirements Me,p (p is an even natural number) working for Ne, each
Me,p is responsible for defining ∆e(We2 ; p).

• Me,p: If Γe1(AWe2) = K, then ∆e(We2 ; p) is defined and equal to Γe1(AWe2 ; p).

Let α be a node labelled Ne. The strategy for α works as follows. We omit the
index e during the discussion if there is no confusion. Define the length of agreement
function l(α, s) between Γ(AW ) and K as usual. We define current stage s to be α-
expansionary stages if l(α, s) is longer than any l(α, t) where t < s is an α-accessible
stage. α has two possible outcomes: ∞ for infinitely many α-expansionary stages;
and 0 for finitely many ones.

About the outcome ∞, α has substrategies Me,p. Each Me,p is responsible for
defining ∆(W : p). To make the definition of ∆ consistent, the nodes to the right must
follow the definition of nodes to the left; and whenever we access a node α, we must
make all ∆(W ; p) defined at some nodes to the right of α undefined (see more details
in [3]). The strategy for Me,p works as follows. We first check if the use γ(AW ; p)
has changed since the stage at which it was accessible for the last time. If yes, then
Me,p has outcome ∞, because it indicates that Γ(AW ; p) is partial; otherwise, we
select a number (called a flip point) d not yet in D, delay the definition of ∆(W ; p)
until Γ(AW ; d) is defined; then define ∆(W ; p) = Γ(AW ; p) with use γ(AW ; d) and
restrain A up to γ(AW ; d). When we need to make ∆(W ; p) undefined, we put d into
D and wait for a stage at which W changes below γ(AW ; d). Under the assumption
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that Γ(AW ; d) = D(d), W must change below γ(AW ; d). Since γ(AW ; d) = δ(W ; p),
∆(W ; p) becomes undefined.

The implementation of forcing ∆(W ; p) to be undefined goes as follows. Suppose τ
is a node above αˆ∞ which has outcomes o1 <L o2. If there are ∆(W ; p)’s which have
been defined by some nodes extending τˆo2, then we delay τ to have outcome o1. We
will refer this situation as “α stops τ having outcome o1”. Before we declare that τ
is accessible, we must force W to change so that those ∆(W ; p)’s become undefined.
We act as follows: Pick the smallest p such that ∆(W ; p) is defined at some node
extending τˆo2, let d be the flip point for p. Put d into D and set up a link (α, τ).
Wait for the next α-expansionary stage t > s. At stage t, we travel the link to τ and
α will not stop τ having outcome o1.

If there are more than one N -requirements below τ , then we have to deal with
them one by one. For example, assume N0 and N1 are the only two N -requirements
which are assigned to α0 and α1 respectively such that

α0ˆ∞ ⊆ α1ˆ∞ ⊆ τ.

Then we deal with N1 by putting the corresponding flip point d1 into D and setting
up a link (α1, τ). At the next α1-expansionary stage, we travel the link to τ and
cancel the link (α1, τ). Next we deal with N0 by putting its flip point d0 into D and
setting up a new link (α0, τ). As long as the link exists, N1 is bypassed so that we do
not define more ∆1 axioms for N1. At the next α0-expansionary, we travel through
the link (α0, τ) to τ and τ can be accessible now.

2.2. Description of bounding strategies. Fix effective enumerations of c.e. sets
Be (e ∈ ω) and effective enumerations of Turing functionals Φe, Ψe and Θe (e ∈ ω).
Our job is to show that either A 6≤T Be1 ⊕Be2 or there is a minimal pair Xek

and Yek

below Bek
for some k ∈ {1, 2}. Fix k. Recall the typical strategies of constructing a

minimal pair Xek
and Yek

.

• P k
e,2i: Xek

6= Ψi; and

• P k
e,2i+1: Yek

6= Ψi;

• T k
e,i: If Θi(Xek

) = Θi(Yek
) = f and f is total, then f is computable.

We split the bounding requirement into Re, Se,i and Te,i as follows.

• Re: If A = Φe0(Be1Be2) where e = 〈e0, e1, e2〉, then there are c.e. sets Xek
and

Yek
≤T Bek

(k = 1, 2) such that one pair of X and Y form a minimal pair.

The (α-th version of) strategy for Re is as follows. Let B denote Be1 ⊕ Be2 . We
first test if Φe0(B) = A by measuring the length of agreement l(α, s) between Φe0(B)
and A, where

l(α, s) = µy(Φe0(B; y) 6= A(y)[s]).

We define α-expansionary stages as in the noncuppable strategies. α has two possible
outcomes: ∞ for infinitely many α-expansionary stages and 0 for finitely ones. At
node α we also build the sets Xek

and Yek
computable from Bek

by permitting method.
The candidates targeting Xek

and Yek
will be chosen at some nodes β working for α,

but the control is at α.
Above the node αˆ∞, we will satisfy subrequirements Se,i and T k

e,i.
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• Se,i: P 1
e,i1

is satisfied or P 2
e,i2

is satisfied where i = 〈i1, i2〉.
• T k

e,i: Same as in the minimal pair requirement where k = 1, 2.

From now until the end of this section, we reserve the letters α, β and γ to denote
the nodes on the priority tree labelled Re and its subrequirements Se,i and T k

e,i re-
spectively. If no confusion, we drop the index e in the discussion. In particular, we
write X1 instead of Xe1 , etc.

Consider a node β labelled Se,i. We have to deal with a pair of positive strategies
P 1

e,i1
and P 2

e,i2
. For example, let us work on the pair X1 6= Ψi1 and X2 6= Ψi2 .

Each individual P -strategy is done by Friedberg-Muchnik diagonalization. To cope
with permitting, we need to do some set up. Pick a fresh number a, in particular,
a 6∈ A. This a remains fixed, unless β is initialised. Wait for a stage at which
Φe0(B; a) ↓= 0. Pick witnesses vk > ϕ(B; a), k = 1, 2. vk will be the diagonalization
candidate targeting Xk. When β is accessible for the next time, we check if ϕ(B; a)
has moved, if yes, then we start over, we use ∞ to denote this outcome. If ∞ is the
true outcome, then Φe0(B) is partial, we have a global win for Re. Let us assume
that ϕ(B; a) is eventually fixed. Whenever β is accessible, we check if Ψik(vk) ↓= 0
for both k = 1 and k = 2. If Ψik(vk) never converges to 0 for some k = 1, 2, then we
have an easy win for Se,i. We use 1 to denote this outcome. Otherwise, suppose that
at some stage t > s we find that Ψik(vk) ↓= 0 for both k = 1 and k = 2, then we put
a into A and set up a link of the form (α, β). We wait for a B-change below ϕ(B; a).
If there is no such a change, then Φ(B) 6= A, thus we get a global win for R (α will
have outcome 0 forever). Suppose there is such a change in B = Be1 ⊕ Be2 . If Be1

changes below the use ϕ(B; a), then v1 is permitted by Be1 , we enumerate v1 into
X1. Otherwise, that is, Be1 does not change below the use ϕ(B; a), then Be2 must
change, we put v2 into X2. In both cases we let β have outcome 0 and we cancel all
other witnesses at β.

The outcomes at a node β labelled Se,i are (from left to right): ∞ < 0 < 1.
The purpose of link is to make sure the Xk and Yk are computable from Bek

. The
main worry is that some number v located at β, which has passed B’s permission
but the node β is never accessible again. The link allow us to reach β at the next
α-expansionary stage. The fate of v will be determined without any delay. Of course,
if there are no more α-expansionary stages, then we do not need to build Xk or Yk.

We now look at the substrategy T k
e,i at node γ. Without loss of generality, let us

assume that k = 1. We follow the typical minimal pair construction. Let l(Θ, γ)
measure the length of agreement between Θi(X1) and Θi(Y1). At any stage, we will
preserve at least one side of the computation up to l(Θ, γ). At γ-expansionary stages,
we allow numbers to enter either X1 or Y1 but not both. At non-γ-expansionary
stages, γ imposes a finite restraint on all nodes above or to the right of γ. γ has two
outcomes: ∞ and 0.

Before we give the formal proof for the general case, let us look at the potential
conflict.

The main concern is about the coordination between clearing ∆ procedure and
the permitting. The permitting should not be delayed by the noncuppable strategy
which wishes to clear the ∆’s.
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Observe that when we travel the link from R to S, the action is to put a number
v into X. This will not injure any noncuppable requirement. Recall that the only
reason to clear ∆ is to prevent numbers entering A. In other words, as long as we
do not put numbers into A, the noncuppable strategy will not be injured. Thus, the
action at S has no conflict with M , thus we can execute the S-strategy at β without
delay. This is different from the first visit of β, when we had not set up the link. At
that time, we must clear all the axioms of ∆ to the right before we allow S to put a
number a into A.

Secondly, there is no crossing of links. The reason is when we want to set up a link
(α, β) between R and S, α is not covered at that moment. The same holds for link
(α, τ) between N and M .

2.3. The Proof. To avoid the possible confusions of notations, we restate the bound-
ing requirements in the general setting.

First, fix a computable bijection 〈e1, . . . , en〉 7→ e from ω<ω to ω. Fix effective
enumerations of c.e. sets Be (e ∈ ω) and Turing functionals Φe, Ψe and Θe (e ∈ ω).
The bounding requirements and subrequirements Re, Se,i and Te,i are as follows.

• Re: If A = Φe0(Be1Be2 . . . Ben) where e = 〈e0, e1, . . . , en〉, then there are
c.e. sets Xek

and Yek
≤T Bek

(1 ≤ k ≤ n) such that at least one pair of Xek

and Yek
form a minimal pair.

The building of minimal pair is done by subrequirements Se,i and T k
e,i:

• Se,i: P k
e,i is satisfied for some 1 ≤ k ≤ n where e = 〈e1, e2, . . . , en〉 and P k

e,i is
the positive requirement of the noncomputability of Xek

and Yek
.

– P k
e,2i: Xek

6= Ψi, and

– P k
e,2i+1: Yek

6= Ψi.

• T k
e,i: If Θi(Xek

) = Θi(Yek
) = f and f is total, then f is computable.

We now describe the priority tree T . Fix a computable priority list of the re-
quirements and subrequirements such that the subrequirements Me,p (or Se,i, T k

e,i

respectively) appear after Ne, (Re, respectively). We label T inductively in the usual
manner. We label each node on T with a requirement or a subrequirement. The root
node on T is labelled R0. Suppose that τ is a node on T . If τ is labelled Se,i then τ
has three outgoing edges labelled ∞, 0, 1 from left to right; otherwise, that is, if τ is
labelled Ne, Me,p, Re or T k

e,i, then τ has two outgoing edges labelled ∞ and 0, with
∞ to the left of 0.

We say that a requirement Ne is satisfied at τ if there is a node α ⊂ τ labelled
Ne such that either αˆ0 ⊆ τ or there is an η labelled with a subrequirement Me,p

working for Ne such that ηˆ∞ ⊆ τ . (Namely, we see a global win for Ne at η.) If Ne

is satisfied at τ then all its subrequirements are satisfied at τ .
We say that a requirement Re is satisfied at τ if there is a node α ⊂ τ labelled Re

such that either αˆ0 ⊆ τ or there is an η labelled with a subrequirement Se,i working
for Re such that ηˆ∞ ⊆ τ . Namely, we see a global win for Re at η. If Re is satisfied
at τ then all its subrequirements are satisfied at τ .



ON THE DEFINABLE IDEAL GENERATED BY NONBOUNDING C.E. DEGREES 7

Continuing the inductive definition of T , if all α ⊂ τ have been labelled, then τ is
labelled with the highest priority O such that O is either a requirement which never
appeared before or O is a unsatisfied new subrequirement.

2.4. Conventions and parameters. Let α be a node on T . We now list a collection
of parameters related to α, which will be used in the construction. Strictly speaking,
we should write q(α, s) for the value of parameter q at the beginning of stage s,
however, when there is no confusion, we will simply write q. We may also drop the
indices of the requirements.

(1) If α is labelled Ne, then no parameter is needed.
(2) If α is labelled Me,p, then it has a flip point d for ∆(W ; p).
(3) If α is labelled Re, then no parameter is needed.
(4) If α is labelled Se,i, then it has the following parameters

• a node σ below α labelled Re, for which it is working, we will call σ the
head of α;

• a number r which is the finite restraint imposed by the T -nodes which
are working for the same R and below or to the left of α. Although those
T -nodes may put different restraints rX

ek
or rY

e,k on different sets Xek
or

Ye,k. It does no harm if we take r to be the maximal of those small
restraints.

• a number a, called an agitator, which will be used to seek an permission
from B = Be1 ⊕Be2 ⊕ · · · ⊕Ben ;

• a set of n numbers vk > ϕB(a) where vk > r for every k with 1 ≤ k ≤ n.
(5) If α is labelled T k

e,i, then its environment contains its length of agreement l
and a finite restraint r to preserve l.

2.5. Construction. We now describe the stage by stage construction. At stage s,
we first specify a string TPs of length less than or equal to s, called the accessible
string, then act along the accessible string.

We define the accessible string inductively from the root. The root of the tree is
always accessible.

At the inductive step, suppose that the node α is accessible. If the length of α is
equal to s then we let α =TPs and go to the next stage.

Suppose that the length of α is less than s. Then we first determine the outcome o
of α. Before we declare that αˆo is accessible, we check if there is any N -requirement
below α which stops α having outcome o. If yes, then we stop defining the accessible
string, start the procedure below, referred as clearing ∆ for o at α and delay all
actions; otherwise, we let αˆo be accessible and take actions accordingly.

The procedure of clearing ∆ for o at α is as follows.
Given α and an outcome o. Ask if there is a pair of requirements Ne and Me,p,

such that

(1) Ne is assigned to some node β below α, and
(2) Me,p is a subrequirement for Ne, Me,p is assigned to some node τ to the right

of αˆo and at τ we have defined ∆e(W ; p).



8 YUE YANG AND LIANG YU

If yes, then let β0 be the longest such β, p0 be the smallest p for β0 and d0 be the
flip point for p0. Put d0 into D and set a link (β0, α). Initialise all nodes not labelled
M which are to the right of αˆo, that is, cancel all actions desired by these nodes;
cancel all parameters; cancel all restraint imposed by these nodes; and cancel all links
involving the node.

We now continue the definition of outcome of α and the next accessible node. We
consider the two cases based on whether or not there is a link starting from α.

Case 1. There is a link of the form (α, τ).

Subcase 1.1. α is labelled with an N -requirement.
Then the link (α, τ) must have been set when we clear ∆ for some outcome o at

τ . Check if the stage s is α-expansionary.

• If no, then let αˆ0 be accessible (Since 0 is the rightmost outcome of α, no
∆-clearing is needed).

• If yes, then go to τ and cancel the link (α, τ). Check if there is an N -
requirement which stops τ having outcome o.

– If yes, then repeat the procedure of clearing ∆ for o at τ ;
– otherwise, let τˆo be accessible and acts as described in the construction

below.

Subcase 1.2. α is labelled with an R-requirement, say Re.
Then τ must be labelled with an S-requirement, say Se,i. Check if the stage s is

α-expansionary.

• If no, then let αˆ0 be accessible (as discussed in Subcase 1.1, no ∆-clearing
is needed).

• If yes, then go to τ and cancel the link (α, τ). Now one of the Bek
(1 ≤ k ≤ n)

must have changed below ϕ(B; a) where B = Be1 ⊕ Be2 ⊕ · · · ⊕ Ben and a is
the agitator; and the witnesses vk (1 ≤ k ≤ n) are all available. Choose the
least k such that Bek

has changed below ϕ(B; a), enumerate vk into the set it
was targeting. Go to the next stage.

Case 2. There is no link of the form (α, τ).
Then we first decide the outcome o of α, then check if there is any N which stops

α having outcome o. If yes, then start the procedure of clearing ∆ for o as described
earlier; if no, take the actions described below.

We decide the outcome o and take the actions based on the label of α as follows.

(1) α is labelled Ne.
Check if s is an α-expansionary stage. If yes, then check if there is any

node stopping α having outcome ∞. If yes, then start the clear ∆ process;
if no, let o = ∞. Otherwise, that is, s is not an α-expansionary stage, check
if there is an α-expasionary stage v < s since αˆ∞ was visited for the last
time, at which α was stopped having outcome ∞. If yes, then let o = ∞,
otherwise let o = 0. No action is required since the jobs are distributed to the
subrequirements Me,p.

(2) α is labelled Me,p.
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Let d be the flip point for α (if d is undefined, then pick it fresh). If
Γe1(AWe2 ; d) is undefined, then go to next stage. Otherwise, check if γe1(AWe2 ; d)[s] 6=
γe1(AWe2 ; d)[t], where t is the stage at which α was accessible for the last time.
If yes, then o = ∞; otherwise o = 0.

Actions. We take action only when α has outcome 0. Check if ∆e(We2 ; p)
is defined at stage s.
• If yes, then do nothing;
• otherwise, define

∆e(We2 ; p) = Γe1(AWe2 ; p)

with use γe1(AWe2 ; d) and set a restraint on A of amount γe1(AWe2 ; d).
(3) α is labelled Re.

Check if s is α-expansionary. If yes, then let o = ∞; otherwise, let o = 0.
As in the N -requirement, no action is needed since the jobs are done by its
subrequirements.

(4) α is labelled Se,i. Without loss generality, let us assume that S consists of the
positive requirements of the form: Xek

6= Ψik for 1 ≤ k ≤ n. Let σ denote its
head.

First check if Se,i has been satisfied, that is, there was a stage t < s at
which we put a number vk into Xek

for some 1 ≤ k ≤ n.
• If yes, then let o = 0.
• Otherwise, let a be the agitator (if a is not defined, then choose it fresh).

Check if Φe0(B; a) is undefined or ϕe0(B; a)[s] 6= ϕe0(B; a)[t], where B =
Be1 ⊕Be2 ⊕ · · · ⊕Ben and t is the stage at which α was accessible for the
last time. If yes, then let o = ∞ and cancel the witnesses vk for every
k : 1 ≤ k ≤ n. Otherwise let vk be the witness targeting Xek

(if vk is
not defined or has been cancelled, then pick it fresh). Check if for all k
with 1 ≤ k ≤ n, Ψik(vk) ↓= 0[s]. If no, then let o = 1; if yes, starting
the process of clearing ∆ for the outcome 0. When the clearing process
is done, put a into A and set a link of the form (σ, α).

(5) α is labelled T k
e,i. Check if s is an α-expansionary stage. If yes, let o = ∞,

otherwise let o = 0.

At the end of the stage, we initialise all nodes to the right of TPs.
This finishes the construction.

2.6. Verification. We now verify that the construction works. We begin with the
lemma showing that the true path exists.

Lemma 2.1. For any e ∈ ω, there is a unique node α on T such that α is the leftmost
one of length e which is accessible (and not covered by any link) infinitely often.

Proof. We do an induction on e. Suppose true for e. Let α be the leftmost string of
length e which is accessible infinitely often. We need discuss the cases involving links,
as other cases are routine. Let s0 be the least stage after which α is never initialised.

First we show that we do not stop at α forever. Observe that we stop at α at stage
s only when α is accessible at s and we set up a link of the form (β, α) for some node
β and end the stage.
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At the stage t0 > s, when α is accessible again, the link is travelled hence get
cancelled.
Case 1. If the link was set because some N -requirement stops α having outcome o,
then the link can only transfer into another link (β′, α) for some β′ ⊂ β. Since there
are only finitely many such β′s, eventually α will be accessible and no link of the
form (β, α) exists.
Case 2. If α is labelled with an S-requirement, then at any stage t > t0 when α is
accessible again, it will have outcome 0.

Secondly, we argue that we do not skip any node. The concern is: When α is
accessible at some stage s > s0, we travel some link of the form (α, τ) to some node
τ , instead of having an outcome o. By construction, once a link is travelled, it gets
cancelled. Thus when α is accessible again, there will be no link of the form (α, τ),
we will access αˆo for some o.

This finishes the proof of Lemma 2.1. �

Let TP be the true path in T , that is, TP is the leftmost path which is accessible
infinitely often. By Lemma 2.1, TP exists.

We argue by induction along TP that every requirement is satisfied. We split the
proof into two lemmas.

Lemma 2.2. Let α be a node on TP and O be the label of α. Then

(a) Suppose that O is Ne. Then αˆ∞ ⊂ TP if and only if there are infinitely
many α-expansionary stages. Let β be node on TP labelled Me,p working for
α. Then the flip point d at β is eventually fixed. Moreover,
(a1) if βˆ0 ⊂ TP, then ∆e(We2 ; p) is defined;
(a2) if βˆ∞ ⊂ TP, then Γe1(AWe2 ; p) ↑.

(b) Suppose that O is Re. Then αˆ∞ ⊂ TP if and only if there are infinitely
many α-expansionary stages. Let β (γ respectively) be the node on TP labelled
Se,i (T k

e,i respectively) working for α. Also assume that e = 〈e0, e1, . . . , en〉,
B = Be1 ⊕ Be2 ⊕ · · · ⊕ Ben and S consists of the positive requirements of the
form: Xek

6= Ψik for 1 ≤ k ≤ n. Then
(b1) if βˆ∞ ⊂ TP then Φe0(B) 6= A, where B = Be1 ⊕ · · · ⊕Ben;
(b2) if βˆ1, or βˆ0 ⊂ TP, then Ψik 6= Xek

for some 1 ≤ k ≤ n.
(b3) γˆ∞ ⊂ TP if and only if there are infinitely many γ-expansionary stages.

Proof. We prove (a) and (b) by simultaneous induction. We begin with statement
(a).

Suppose that α is labelled Ne. If αˆ∞ ⊂ TP, then obviously there are infinitely
many α-expansionary stages. Suppose that αˆ0 ⊂ TP and s is the stage after which
no nodes to the left of αˆ0 are accessible. If there is an α-expansionary stage t
after s, then after clearing ∆ for the outcome ∞ at α, say at t′ > t, we still make
αˆ∞ accessible even if t′ is not α-expansionary. Thus at stage t′, αˆ∞ is accessible,
contradicting the choice of s. Hence there are only finitely many α-expansionary
stages.

Let β be the node on TP labelled Me,p working for α. As β only changes its flip
point when it is initialised, the flip point d at β is eventually fixed.
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We now prove statement (a1). Suppose that βˆ0 ⊂ TP. Let s be the stage at which
βˆ0 is accessible and after which no node to the left of βˆ0 is accessible. Then by
construction, either ∆e(We2 ; p) has been defined before s or we defined it at stage
s with use γe1(AWe2 ; d)[s]. As γe1(AWe2 ; d)[s] is fixed (otherwise, αˆ∞ would be
accessible), ∆e(We2 ; p) will never be injured after stage s, since its use will be of the
form γe1(AWe2 ; d

′) for some d′ < d. This establishes statement (a1). Statement (a2)
follows from the condition of β having outcome ∞.

We now prove statement (b). If there is no confusion, the index e is dropped.
The argument about Re is similar to the one about N in (a).
Suppose αˆ∞ ⊂ TP. Let β be the node on TP labelled Se,i as in the statement of

the theorem. Fix a stage s0 after which no node to the left of β is accessible and β
is never initialised. Thus the agitator a is fixed.

We begin with (b1). Suppose βˆ∞ ⊂ TP. By construction, β has outcome ∞ only
when ϕe0(B; a) moved. Thus, Φe0(B) is partial, hence not equal to A.

Next we consider (b2). Suppose βˆ0 ⊂ TP. Clearly we have Ψik(vk) = 0 and
vk ∈ Xek

at some stage for some k with 1 ≤ k ≤ n. Since these fact can never be
injured, we have Ψik(vk) 6= Xek

. Suppose βˆ1 ⊂ TP, then Ψik(vk) 6= 0 and vk 6∈ Xek

for some k with 1 ≤ k ≤ n. Again we have Ψik 6= Xek
.

Statement (b3) follows from the definition of γˆ∞ being accessible. �

Finally we show that all requirements are satisfied.

Lemma 2.3. For each e in ω the noncuppable requirement Ne and bounding require-
ment Re are satisfied.

Proof. First we argue that the requirements Ne are satisfied.
Suppose that there is a c.e. set We2 such that A ⊕We2 is complete. Since the set

D, which we built, is c.e., there is a Turing functional Γe1 such that Γe1(AWe2) = K.
Let e be the code of the pair 〈e1, e2〉 and α be the unique node labelled Ne on TP.
We show that ∆e(We2) is total and equal to K0.

Fix a stage s0, after which α never gets initialised. Clearly, since Γe1(AWe2) = K,
we know αˆ∞ is on TP. We consider two cases based on whether Ne has a global
Σ3-outcome.

Case 1. There is a node β on TP labelled Me,p working for α, such that βˆ∞ ⊂ TP.

Then by statement (a2) in Lemma 2.2, Γe2(AWe1 ; p) is undefined, contradicting to
Γe1(AWe2) = K. Thus case 1 is vacuous.

Case 2. For all nodes βp on TP labelled Me,p working for α, βpˆ0 ⊂ TP.

In this case, by statement (a1) in Lemma 2.2, the Turing functional ∆e(We2) is
total.

Fix a number p. We argue ∆e(We2 ; p) is equal to Γe1(AWe2 ; p). Let s be the
stage after which no node to the left of βp is accessible. As argued in the proof of
statement (a1), ∆e(We2 ; p) will not change after s. Let s− be the last stage before s
at which we define ∆e(We2 ; p), say at node β−. Then at stage s−, ∆e(We2 ; p)[s−] =
Γe1(AWe2 ; p)[s−]. After s−, no node to the left of β− is accessible, otherwise this ∆



12 YUE YANG AND LIANG YU

would be cleared. Therefore, the flip point d− at β− is fixed and the finite restraint
of amount γe1(AWe2 ; d

−)[s−] is permanent on A. By the assumption on s−, We2 will
not change below γe1(AWe2 ; d

−)[s−] after s−. Therefore

∆e(We2 ; p) = ∆e(We2 ; p)[s−]

= Γe1(AWe2 ; p)[s−]

= Γe1(AWe2 ; p).

Thus Ne is satisfied.
Let us consider the bounding requirements. Given any c.e. sets Bek

(1 ≤ k ≤ n)
and B = Be1 ⊕ · · · ⊕ Ben , suppose that A ≤T B and Φe0(B) = A. Consider the
requirement Re where e = 〈e0, e1, ..., en〉. Let α be the unique node on TP labelled
Re. Then by statement (b) in Lemma 2.2, αˆ∞ ⊂ TP. Furthermore, for any S-node
β ⊂ TP working for α, βˆ∞ 6⊂ TP (otherwise by (b1) in Lemma 2.2, Φe0(B) would
be partial).

We argue that for some k with 1 ≤ k ≤ n both Xek
and Yek

are not computable.
Suppose not, i.e., for all k with 1 ≤ k ≤ n, one of Xek

and Yek
is computable. Then for

all k such that 1 ≤ k ≤ n, there is ik such that P k
e,ik

is unsatisfied. Let i = 〈i1, . . . , in〉,
let β be the node labelled Se,i on true path. Since we have either βˆ0 or βˆ1 ⊂ TP,
by (b2) we have one of Xek

or Yek
is not computable, a contradiction.

We now show that T k
e,i is satisfied. Suppose that Θi(Xek

) = Θi(Yek
) = f and f is

total. We show that f is computable. Let γ be a node on TP labelled T k
e,i. By Lemma

2.2, γˆ∞ ⊂ TP. Let s0 be a stage after which γˆ∞ is never initialised. Fix z, we
compute f(z) as follows. Wait for the first stage s > s0 such that γˆ∞ is accessible
at stage s and l(γ; s) > z. We claim that f(z) = Θi(Xek

; z)[s]. It suffices to show
that for any t > s, one of Θi(Xek

; z)[t] and Θi(Yek
; z)[t] is equal to Θi(Xek

; z)[s].
Any node below or to the left of γˆ∞ cannot act; any node to the right of γˆ∞
will obey the finite restraint imposed by γ. The only worry is some S-node β above
γˆ∞ working for the same α and β wants to put a number, say v, into one side,
say Xek

. Thus v must be ready at an γ-expansionary stage at which we set a link
between β and α. Before the next α-expansionary stage, l(γ) remains unchanged. At
next α-expansionary stage, we only put v into Xek

and end the stage, thus Θi(Yk; z)
remains.

It remains to argue that Xek
and Yek

are both computable from Bek
. Without loss

of generality, we only prove Xek
≤T Bek

. Let s0 be the stage after which α labelled
Re is never initialised. Fix a number z. First notice that we can compute whether
or not z is chosen as a witness targeting Xek

: We just wait for a stage at which
some number z′ > z appeared in the construction; if by that stage z has not been
chosen as a witness, then z will never be, since we always choose witness fresh. If z
is not chosen as a witness targeting Xek

, then z will not be in Xek
. Without loss of

generality, let us assume that z is a witness chosen at some node β. Notice that if z
enters Xek

at stage s, then by construction we must pass stage a t at which we set
up the link (α, β), and then we travel the link at stage s.

To see if z ∈ Xek
from Bek

, we wait for the (least) stage t0 at which Bek,t0 � z =
Bek

� z, and let t1 be the first stage larger than t0 at which α is accessible. If there
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is no link of the form (α, β), then z ∈ Xek
if and only if z ∈ Xek,t1 . If there is a link,

then z ∈ Xek
if and only if z enters Xek

by the end of next α-expansionary stage.
This ends all verification. �

3. Proof of Theorem 1.6

Fix computable bijections 〈e0, . . . , en〉 7→ e from ω<ω to ω and a complete c.e. set
K. Let I be the ideal generated by noncuppable and nonbounding c.e. degrees. We
prove Theorem 1.6 by constructing a c.e. set A whose degree is cappable but not in
I.

To make A cappable, we build its companion degree C such that A and C form a
minimal pair. By absorbing the noncomputable requirement of A into the requirement
Re, we have the following typical minimal pair requirements:

• Qe: C 6= W e.
• Ne: If Ξe(A) = Ξe(C) is total, then Ξe(C) is computable.

Since NCup is an ideal, to ensure A not in I, it suffices to make A not below the
join of one noncuppable and finitely many nonbounding degrees:

• Re: If A = Φe0(De1⊕Be2⊕· · ·⊕Ben) where e = 〈e0, e1, . . . , en〉, then we build
c.e. sets Xek

and Yek
≤T Bek

(2 ≤ k ≤ n) such that either one pair of them
forms a minimal pair or De1 is cuppable.

3.1. Description of strategies. The strategies for Qe and Ne are the normal ones
for building minimal pairs. We concentrate on the strategy for R. For notation
simplicity, we use n = 2 for illustration, we also drop the index e if there is no
confusion.

Let α be a node labelled Re. We first measure the length of agreement between
Φ(DB) and A, and define the α-expansionary stage as usual. If the current stage is
α-expansionary, then we have outcome ∞, otherwise have outcome 0. Let us assume
that ∞ is the true outcome, otherwise it is trivial. We build c.e. sets X and Y such
that both are computable from B by permitting and have infimum 0 by the following
subrequirement Me,i.

• Me,i: If Θi(Xe) = Θi(Ye) is total, then Θi(Xe) is computable.

We also attempt to make both X and Y noncomputable; when the attempt fails we
will demonstrate that D is cuppable by building a functional Γe,i and a c.e. set Ee,i

such that Γe,i(DEe,i) = K and Ee,i is incomplete. Thus we have the subrequirement
Se,i for all i.

• Se,i: Pe,i is satisfied (via some positive action by some strategy Te,i,j working
for Se,i), or Γe,i(DEe,i) = K and for all j, Λj(Ee,i) 6= K, where Pe,i is the
noncomputable subrequirements for X and Y :

• Pe,2i: X 6= Ψi,
• Pe,2i+1: Y 6= Ψi.

Let β be a node labelled Se,i. We build the functional Γe,i and the c.e. set Ee,i at β.
To ensure the correctness of Γe,i(DEe,i) = K, whenever we see a (least) disagreement
Γe,i(DEe,i)(m) 6= K(m) at β, we put the use γ(m) into Ee,i to redefine Γ. β has two
outcome 0 for winning Pe,i; and ∞ for building Γ.
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Above βˆ∞, we have subrequirements Te,i,j for all j ∈ ω.

• Te,i,j: Either Pe,i is satisfied by default or Λj(Ee,i) 6= K.

To make Λj(Ee,i) 6= K, we measure l(s) which is the length of agreement between
Λj(Ee,i) and K at stage s. We try to lift the use γ(j) (hence all markers γ(m) for
m ≥ j) beyond λj(l). Whenever γ(j) is less than λ(l) (this will happen, for example,
when l gets increased), we try to force a D-change below γ(j). We will ensure that
if we do not win Pe,i, then D must change below γ(j). Thus the use γ(j) can be
lifted without putting numbers into E. In the end, if γ(j) still goes to infinity, then
we would have that Ee,i is computable and Λj(Ee,i) is total, consequently K would
be computable, which is a contradiction. The argument is similar to the one in the
proof of plus-cupping theorem by Fejer and Soare [2].

The strategy for Te,i,j acts in cycles. The action in each cycle m is as follows:

(1) Choose a fresh agitator a 6∈ A.
(2) Wait for a stage s at which Φe0(De1Be2 ; a) is defined.
(3) Assume that Pe,i is X 6= Ψi. Select a number v 6∈ X and v > ϕe0(De1Be2 ; a),

v will be the witness targeting X. Pick a fresh number z, which will be used
by the strategy for making D cuppable; more specifically, we try to move the
marker γ(z) beyond λj(l) where l is the length of agreement between Λj(Ee,i)
and K. Initially γ(z) > ϕ(DB; a). Wait for a stage s at which l is larger than
γe,i(De1Ee,i; z) + 1 and Ψi(v) ↓= 0. From now on, once ϕe0(DB; a) moves, we
start over by resetting v and z, putting γe,i(De1Ee,i; z) into Ee,i and back to
the beginning of this step.

(4) At stage s, put a into A and setup a link from Re to Te,i,j.
(5) At the next α-expansionary stage, we travel the link to T . If B has changed,

then we put v into X and Se,i will have outcome 1 forever; if D has changed,
then we close the cycle m.

We now analyse the outcomes:
Case 1: For some m, we stuck in the cycle m forever.

• If ϕ(DB; a) keeps moving, then Φe0(De1Be2 ; a) ↑, we have a global win for Re,
we use ∞ to denote this outcome.

• If we stuck at (3) forever waiting for either Ψi(v) ↓= 0 or the length of
agreement l gets beyond Γe,i(De1Ee,i; z), then we either win Se,i by default or
have Λj(Ee,i) 6= K. we use 0 for this outcome.

Case 2: For every m, we close the cycle m. We argue that the case is vacuous.
First notice that Ee,i will be computable: After we close the cycle m, Ee,i � γ(z) will

not change. Secondly, Λj(Ee,i) is total: In each cycle, the marker γ(z) was lifted over
at least one λj(Ee,i; x) for some new value x. Finally, the length of agreement between
Λj(Ee,i) and K goes to infinity. Thus, K is computable, which is a contradiction.

3.2. Construction. We restate the requirements Re in the general setting for the
sake of notations.

Let 〈e0, . . . , en〉 7→ e be a fixed computable bijection from ω<ω to ω. Fix effective
enumerations of c.e. sets De and Be (e ∈ ω) and Turing functionals Φe, Ψe, Θe and
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Λe (e ∈ ω). The requirements and subrequirements Re, Me,i, Se,i and Te,i,j are as
follows.

• Re: If A = Φe0(De1Be2 . . . Ben) where e = 〈e0, e1, . . . , en〉, then there are
c.e. sets Xek

and Yek
≤T Bek

(1 ≤ k ≤ n) such that for all i, the subrequire-
ments Mk

e,i and Se,i are satisfied.

• Mk
e,i: If Θi(Xek

) = Θi(Yek
) is total, then Θi(Xek

) is computable.

• Se,i: P k
e,ik

is satisfied for some 2 ≤ k ≤ n where i = 〈i2, ...in〉 and P k
e,i is the

noncomputable subrequirements for Xek
and Yek

:
– P k

e,2i: Xek
6= Ψi,

– P k
e,2i+1 Yek

6= Ψi;
or there is a c.e. set Ee,i and functional Γe,i such that Γe,i(De1Ee,i) = K and
for all j, the subrequirement Te,i,j is satisfies.

• Te,i,j: Λj(Ee,i) 6= K.

We now describe the priority tree T . Fix a computable priority list of the require-
ments and subrequirements such that the subrequirements appear after the main
ones. We label T inductively in the usual manner. The root node on T is labelled
Q0. Suppose that τ is a node on T . If τ is labelled Qe then τ has two outgoing edges
labelled 0 and 1; otherwise, that is, if τ is labelled Ne, Re, Mk

e,i, Se,i, or Te,i,j, then τ
has two outgoing edges labelled ∞ and 0, with ∞ to the left of 0.

We say that a requirement Re is satisfied at τ if there is a node α ⊂ τ labelled
Re such that either αˆ0 ⊆ τ or there is an η labelled with a subrequirement Te,i,j

working for Re such that ηˆ∞ ⊆ τ . Namely, we see a global win for Re at η. If Re

is satisfied at τ then all its subrequirements are satisfied at τ .
Continuing the inductive definition of T , if all α ⊂ τ have been labelled, then τ is

labelled with the highest priority O such that O is either a requirement which never
appeared before or O is a unsatisfied new subrequirement.

Let α be a node on T . We now list a collection of parameters related to α. We
may also drop the indices of the requirements, if there is no confusion.

(1) If α is labelled Qe, then it has a witness x targeting C.
(2) If α is labelled Ne, then it has its length of agreement l and a finite restraint

r to preserve l.
(3) If α is labelled Re, then no parameter is needed.
(4) If α is labelled Mk

e,i, then it has its length of agreement l and a finite restraint
r to preserve l.

(5) If α is labelled Se,i, then it has no parameters.
(6) If α is labelled Te,i,j, then it has the following parameters.

• a node σ labelled Re, for which it is working. we will call σ the head of
α.

• a number a, called an agitator, which will be used to seek an permission
from B = De1 ⊕Be2 ⊕ · · · ⊕Ben ;

• a number m indicating that we are in cycle m.
• a number r which is the finite restraint imposed by the M -nodes which

are working for the same R and below or to the left of α. Although those
M -nodes may put different restraints rX

ek
or rY

e,k on different sets Xek
or
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Ye,k. It does no harm if we take r to be the maximal of those small
restraints.

• a set of n− 1 numbers vk > ϕB(a) where vk > r for every 2 ≤ k ≤ n.
• a number z whose γ-use will be lifted beyond λj(l) where l is the length

of agreement between Λj(Ee,i) and K.

We now describe the stage by stage construction. At stage s, we first specify a
string TPs of length less than or equal to s, called the accessible string, then act
along the accessible string.

We define the accessible string inductively from the root. The root of the tree is
always accessible.

At the inductive step, suppose that the node α is accessible. If the length of α is
equal to s then we let α =TPs and go to the next stage. Also, we may declare that
we stop the stage, in the case when we put elements into one side of the minimal
pair.

Suppose that the length of α is less than s. Then we determine the outcome o of
α and let αˆo be accessible and take actions based on the label of α as follows.

(1) α is labelled Qe.
If there is a number x ∈ C ∩We, then let o = 1 and take no action.
Let x be the witness (if x is undefined, then pick it fresh), if x ∈ We,s, then

put x into C. Go to next stage. If x 6∈ We,s, then let o = 0.
(2) α is labelled Ne.

If s is a α-expansionary stage, then set r = 0 and let o = ∞; otherwise, set
r = t which is the stage when αˆ∞ was accessible for the last time and let
o = 0.

(3) α is labelled Re.
Case 1. There is a link of the form (α, τ).

Then τ must be labelled with a T -requirement, say Te,i,j. Check if the stage
s is α-expansionary.
• If no, then let αˆ0 be accessible.
• If yes, then go to τ and cancel the link (α, τ). Now τ must be in half way

of some cycle, say cycle m; declare that the cycle m is closed. Observe
that either De1 or one of the Bek

(2 ≤ k ≤ n) must have changed below
ϕ(B; a) where B = De1 ⊕ Be2 ⊕ · · · ⊕ Ben and a is the agitator; and the
witnesses vk (1 ≤ k ≤ n) are all available. If De1 has changed then do
nothing, let o = ∞; otherwise, that is one of the Bek

has changed, choose
the least such k enumerate vk into the set it was targeting. Go to the
next stage.

Case 2. There is no link of the form (α, τ).
Check if s is an α-expansionary stage. If yes, then let o = ∞; otherwise,

let o = 0.
(4) α is labelled Mk

e,i. Check if s is an α-expansionary stage. If yes, set r = 0 and
let o = ∞, otherwise set r = t which is the stage when αˆ∞ was accessible
for the last time and let o = 0.
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(5) α is labelled Se,i. Without loss generality, let us assume that S consists of the
positive requirements of the form: Xek

6= Ψik for 1 ≤ k ≤ n. Let σ denote its
head.

First check if Se,i has been satisfied, that is, there was a stage t < s at
which we put a number vk into Xek

for some 2 ≤ k ≤ n at some Te,i,j working
for Se,i.
• If yes, then let o = 0.
• Otherwise, check if there is x such that Γe,i(De1Ee,i; x) 6= K(x)[s]. If

yes, then choose the least one and put γe,i(De1Ee,i; x) into Ee,i. Redefine
Γe,i(De1Ee,i; y) = K(y)[s] for every y with x ≤ y ≤ s with fresh use. Let
o = ∞.

(6) α is labelled Te,i,j. Let t be the last stage at which α was accessible for the
last time since it was initialised.

If s is the first stage that α is accessible since the last time it was initialised,
or we closed a cycle m at stage t, then we open a new cycle m+1 by choosing
a fresh agitator a.

Otherwise, that is, we are in the middle of some cycle, say cycle m. Check
if Φe0(B; a) is undefined or ϕe0(B; a)[s] 6= ϕe0(B; a)[t], where B = De1⊕Be2⊕
· · · ⊕ Ben . If yes, then let o = ∞, cancel the witnesses vk for every k with
2 ≤ k ≤ n and put γe,i(De1Ee,i; z) into Ee,i. Otherwise, if the witness vk

(2 ≤ j ≤ k) and z have not been chosen, the select them fresh, in particular
vk 6∈ Xek

and vk > ϕe0(B; a); and since Γe,i(De1Ee,i; z) will be defined later,
γe,i(De1Ee,i; z) > ϕe0(B; a). (This is to guarantee that by putting a into A,
we would either see a permission of vk entering Xek

or can lift γ(z) to a new
position by the De1-change.)

Let l denote the length of agreement between Λj(Ee,i) and K, and λj(l) be
the use. If Ψik(vk) ↓= 0 for all 2 ≤ k ≤ n and γe,i(De1Ee,i; z) < λj(l), then
we put a into A, set up a link (σ, α), where σ is the head of α and go to the
next stage. Otherwise, let o = 0 and do nothing.

At the end of the stage, we initialise all nodes to the right of TPs.
This finishes the construction.

3.3. Verification. We now verify that the construction works.

Lemma 3.1. For any e ∈ ω, there is a unique node α on T such that α is the leftmost
one of length e which is accessible (and not covered by any link) infinitely often.

Proof. We do an induction on e. By a similar argument as in the proof of Lemma
2.1, the link will not give us any problem. The only worry is that: At a node labelled
Te,i,j, we may pass through all cycles, thus always stop the construction at Te,i,j. As
we shall see from the inductive argument in the next lemma, passing through all
cycles imply that K is computable, which is a contradiction. �

Let TP be the collection of all such α, which we call the true path in T .

Lemma 3.2. Let α be a node on TP and O be the label of α. Then

(a) Suppose that O is Qe. Then αˆ1 ⊂TP if and only if x 6∈ C and x ∈ We;
αˆ0 ⊂TP if and only if x ∈ C ∩We.
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(b) Suppose that O is Ne. Then αˆ∞ ⊂ TP if and only if there are infinitely
many α-expansionary stages.

(c) Suppose that O is Re. Then αˆ∞ ⊂ TP if and only if there are infinitely many
α-expansionary stages. Let β (δ, η respectively) be the node on TP labelled Se,i

(Te,i,j, Mk
e,i respectively) working for α. Also assume that e = 〈e0, e1, . . . , en〉,

B = De1 ⊕ Be2 ⊕ · · · ⊕ Ben and S consists of the positive requirements of the
form: Xek

6= Ψik for 2 ≤ k ≤ n. Then
(c1) if βˆ0 ⊂ TP then there is k with 2 ≤ k ≤ n such that Ψik 6= Xek

;
(c2) the parameter m at δ is eventually fixed, in other words, we will stay in

some cycle m forever; moreover if δˆ∞ ⊂ TP, then Φe0(B) 6= A; if δˆ0 ⊂
TP, then either Ψik 6= Xek

for some 2 ≤ k ≤ n or Λj(Ee,i) 6= K.
(c3) ηˆ∞ ⊂ TP if and only if there are infinitely many η-expansionary stages.

Proof. We prove by simultaneous induction. We only prove statement (c2), since
other parts follow from the construction easily.

Fix a stage s0 after which no node to the left of δ is accessible and δ is never
initialised. Thus the parameter z is fixed. Let s1 be a stage after which for all z′ < z,
γ(z′) stops moving; such s1 exists by induction.

Suppose we pass through cycle m for every m. When we close a cycle, Γe,i(De1Ee,i; z)
(denoted by Γ(z)) is undefined because of De1-change; when it gets redefined it be-
comes bigger. Therefore γ(z) goes to infinity. After stage s1, Ee,i � γ(z) never
changes, therefore Ee,i is computable. Furthermore when we close a cycle, the length
of agreement l between Λj(Ee,i) and K is increased, in particular, Λj(Ee,i � l is
defined, and γ(z) is lifted over its use, thus Λj(Ee,i) is total. Consequently K is com-
putable, a contradiction. Therefore, we will eventually stay in some cycle m; hence
the agitator a is eventually fixed. Clearly if δˆ∞ ⊂ TP, then ϕe0(B; a) keeps moving.
Thus, Φe0(B) is partial, hence not equal to A. Suppose δˆ0 ⊂ TP. Then we either
wait for Ψik(vk) = 0 for some 2 ≤ k ≤ n or wait for the length of agreement between
Λj(Ee,i) and K being larger than ϕ(B; a). Hence either we have Ψik(vk) 6= Xek

or
Λj(Ee,i) 6= K. �

Finally we show that all requirements are satisfied.

Lemma 3.3. For each e in ω requirement Qe, Ne and Re are satisfied.

Proof. We only argue that the requirements Re is satisfied, since the other two are
the same as the minimal pair argument.

Given any c.e. sets De1 and Bek
(2 ≤ k ≤ n) and B = De1⊕· · ·⊕Ben , suppose that

A ≤T B and Φe0(B) = A. Consider the requirement Re where e = 〈e0, e1, ..., en〉.
Let α be the unique node on TP labelled Re. Then by statement (b) in Lemma
2.2, αˆ∞ ⊂ TP. Furthermore, for any T -node δ ⊂ TP working for α, δˆ∞ 6⊂ TP
(otherwise Φe0(B) would be partial).

Suppose that for all k with 2 ≤ k ≤ n both Xek
and Yek

are computable. Say
the fact is realized by i = 〈i2, . . . , in〉. Thus the requirements Se,i and Te,i,j for all
j are never satisfied by winning the positive requirement P k

e,ik
. We argue that the

functional Γe,i built at β is total. Fix any number p, the marker γ(p) can only
be pushed by finitely many δ-nodes. We may ignore those located to the left or
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right of true path. For those located on true path, by Lemma 3.2, we will stay in
some fixed cycle, and δ must have outcome 0. Thus there is no movement of the
marker eventually. By construction, we always correct the value Γe,i(De1Ee,i)(p) to
be K(p), thus Γe,i(De1Ee,i) = K. By Lemma 3.2, Λj(Ee,i) 6= K for all j, hence Ee,i is
incomplete; in other words, De1 is cuppable.

The remaining part of the proof is the same as in Lemma 2.2.
This ends all verification. �
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