
SOME NOTES ON RANKED STRUCTURES

LIANG YU

1. Inductive definitions and ∆1
1-boundedness

Let Γ be a map from 2ω to 2ω. Γ is monotonic if X ⊆ Y implies Γ(X) ⊆ Γ(Y ).
Γ is progress if X ⊆ Γ(X) for all X.
If Γ is progress, we define Γα by recursion on α.

Γ0 = ∅. Γα+1 = Γ(Γα) ∪ Γα.

Γβ =
⋃
β<α

Γα (β is a limit).

Γ∞ =
⋃
α

Γα.

We use |Γ| to denote the least ordinal α so that Γ(Γα) = Γα.
Some facts about inductive definitions can be found in [4].
The following fact is obvious.

Fact 1.1. If Γ is monotonic and is progress, then Γ(Γ|γ|) =
⋂

Γ(X)=X X.

The following theorem is essentially due to Spector (For more details, see Section
8 III [4]).

Theorem 1.2 (Spector [5]). If Γ progress, then

(1) if Γ is monotonic and Π1
1, then |Γ| ≤ ωCK

1 and Γ∞ is Π1
1.

(2) if Γ is Π0
1, then |Γ| ≤ ωCK

1 and Γ∞ is Π1
1.

The following proposition can be found in [2] (Corollary 2.20 IV).

Proposition 1.3. If Γ is progress and Γ∞ is ∆1
1, then

(1) if Γ is monotonic and Π1
1, then |Γ| < ωCK

1 .
(2) if Γ is Π0

1, then |Γ| < ωCK
1 .

From (2) of Proposition 1.3, one can deduce all of the results related the height
of ranked structures in [3] and [1]. We just give an example and leave the others as
exercises.

A linear ordering L = (L, <L) is scattered if the rantional linear ordering Q =
(Q, <Q) cannot be embedded into L. For the scattered linear ordering L = (L, <L),
we can define a Hausdorff rank on L.

x ≈0 y if x = y.
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x ≈α y if there are finitely many elements x1, x2, ..., xn so that ∀z(x <L z <L y =⇒
∃i < n(z ≈β xi)) in case α = β + 1.

x ≈α y if x ≈β y for some β < α in the case that α is a limit ordinal.
The Hausdorff rank of L, rkH(L), is the least α so that x ≈α y for all x, y ∈ L.

Note that a linear ordering L is scattered if and only if rkH(L) exists.
Montalbán proved the following theorem.

Theorem 1.4 (Montalbán [3]). If L is hyerarithmetic scattered linear ordering, then
rkH(L) < ωCK

1 .

Proof. Without loss of generality, we assume L = (ω,≤L) where ≤L is ∆1
1 and scat-

tered.
Define n ∈ Γ(X) if and only if either n ∈ X or there is a number m < n for which

there are only finitely many elements not in X and ≤L-between m and n.
Intuitively, Γα+1 picks out the least representative from each equivalence class ≈α.
Obviously Γ is Π1

1, progress and monotonic. Moreover, ω − Γ∞ contains only one
member. By (1) of Proposition 1.3, |Γ| < ωCK

1 . So rkH(L) < ωCK
1 . �

2. Σ1
1-boundedness on linear ordering

Theorem 2.1. If L is a Σ1
1 scattered linear ordering, then rkH(L) < ωCK

1 .

Proof. The proof is based on Montalbán’s proof of Theorem 1.4. Assume that L =
(L, <L) is Σ1

1 and rkH(L) ≥ ωCK
1 . Take an arithmetical function f so that Wn codes

a recursive non-empty linear ordering if and only if there is a number e so that
f(e) = n where {Wn}n is an effective enumeration of r.e. binary relations. Then the
set W = {e|Wf(e) is well ordering} is Π1

1. Given a set E ⊆ ω × ω × ω, we define an
E-arithmetical relation ≤E as following:

b ≤E a iff there are numbers x, y so that (b, x, y) 6∈ E and (a, x, y) ∈ E.
Define a set E so that E ∈ E if and only if E ⊆ ω × ω × ω and

(1) ≤E is a partial ordering.
(2) For all a, the set Ea = {(x, y)|(a, x, y) ∈ E} is an equivalence binary relation.
(3) ∀(a, x, y)((a, x, y) ∈ E =⇒ x ∈ L ∧ y ∈ L).
(4) ∀e∃f ∈ ωω(e ∈ W =⇒ f embeds Wf(e) into ≤E).
(5) ∀a∀b∀c∀(x, y)∃z(a >E b >E c∧ (a, x, y) ∈ E ∧ (b, x, y) 6∈ E =⇒ ((x <L z <L

y ∨ y <L z <L x) ∧ (c, z, x) 6∈ E ∧ (c, z, y) 6∈ E ∧ (a, z, x) ∈ E)).

(1)-(5) are Σ1
1. Thus E is a Σ1

1 set. Note that E is non-empty since the set coding
Hausdorff ranks of L is in E .

By Gandy’s base theorem, there is a set E ∈ E so that ωE
1 = ωCK

1 .
By (4), each recursive well ordering can be embedded into ≤E. But ωE

1 = ωCK
1 , ≤E

is not a well founded partial ordering. Hence there is a descending chain in ≤E. In
other words, there is a descending chain {ai}i so that ai+1 <E ai for all i ∈ ω. The
remaining thing is just simulating Montalbán’s proof to construct a copy of Q in L.
Readers having difficulty to fill in the details can refer to [3]. �

Remarks

(1) In (1) of Theorem 1.2, Π1
1-ness cannot be replaced with Σ1

1-ness. In (2), Π0
1-

ness cannot be replaced with Π0
2-ness.
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(2) Theorem 2.1 can be generalized. For example, the same method can be used
to show that any scattered Σ1

1-upper-semilattice has a rank less or equal to
ωCK

1 . But I have not found a sweeping theorem just like Theorem 1.2 to easily
deduce all of the related results in the paper [1].
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