SOME NOTES ON RANKED STRUCTURES

LIANG YU

1. Inductive definitions and Δ_1^1 -boundedness

Let Γ be a map from 2^{ω} to 2^{ω} . Γ is *monotonic* if $X \subseteq Y$ implies $\Gamma(X) \subseteq \Gamma(Y)$. Γ is progress if $X \subset \Gamma(X)$ for all X.

If Γ is progress, we define Γ_{α} by recursion on α .

$$\Gamma_{0} = \emptyset. \ \Gamma_{\alpha+1} = \Gamma(\Gamma_{\alpha}) \cup \Gamma_{\alpha}.$$

$$\Gamma_{\beta} = \bigcup_{\beta < \alpha} \Gamma_{\alpha} \ (\beta \text{ is a limit}).$$

$$\Gamma_{\infty} = \bigcup_{\alpha} \Gamma_{\alpha}.$$

We use $|\Gamma|$ to denote the least ordinal α so that $\Gamma(\Gamma_{\alpha}) = \Gamma_{\alpha}$. Some facts about inductive definitions can be found in [4]. The following fact is obvious.

Fact 1.1. If Γ is monotonic and is progress, then $\Gamma(\Gamma_{|\gamma|}) = \bigcap_{\Gamma(X)=X} X$.

The following theorem is essentially due to Spector (For more details, see Section 8 III [4]).

Theorem 1.2 (Spector [5]). If Γ progress, then

- (1) if Γ is monotonic and Π_1^1 , then $|\Gamma| \leq \omega_1^{CK}$ and Γ_{∞} is Π_1^1 . (2) if Γ is Π_1^0 , then $|\Gamma| \leq \omega_1^{CK}$ and Γ_{∞} is Π_1^1 .

The following proposition can be found in [2] (Corollary 2.20 IV).

Proposition 1.3. If Γ is progress and Γ_{∞} is Δ_1^1 , then

- (1) if Γ is monotonic and Π_1^1 , then $|\Gamma| < \omega_1^{CK}$. (2) if Γ is Π_1^0 , then $|\Gamma| < \omega_1^{CK}$.

From (2) of Proposition 1.3, one can deduce all of the results related the height of ranked structures in [3] and [1]. We just give an example and leave the others as exercises.

A linear ordering $\mathcal{L} = (L, <_L)$ is scattered if the rantional linear ordering $\mathcal{Q} =$ $(Q, <_Q)$ cannot be embedded into \mathcal{L} . For the scattered linear ordering $\mathcal{L} = (L, <_L)$, we can define a Hausdorff rank on \mathcal{L} .

 $x \approx_0 y$ if x = y.

¹⁹⁹¹ Mathematics Subject Classification. 03D25.

LIANG YU

 $x \approx_{\alpha} y$ if there are finitely many elements $x_1, x_2, ..., x_n$ so that $\forall z (x <_L z <_L y) \implies \exists i < n(z \approx_{\beta} x_i)$ in case $\alpha = \beta + 1$.

 $x \approx_{\alpha} y$ if $x \approx_{\beta} y$ for some $\beta < \alpha$ in the case that α is a limit ordinal.

The Hausdorff rank of \mathcal{L} , $\operatorname{rk}_H(\mathcal{L})$, is the least α so that $x \approx_{\alpha} y$ for all $x, y \in L$. Note that a linear ordering \mathcal{L} is scattered if and only if $\operatorname{rk}_H(\mathcal{L})$ exists.

Montalbán proved the following theorem.

Theorem 1.4 (Montalbán [3]). If \mathcal{L} is hyerarithmetic scattered linear ordering, then $\operatorname{rk}_{H}(\mathcal{L}) < \omega_{1}^{\operatorname{CK}}$.

Proof. Without loss of generality, we assume $\mathcal{L} = (\omega, \leq_L)$ where \leq_L is Δ_1^1 and scattered.

Define $n \in \Gamma(X)$ if and only if either $n \in X$ or there is a number m < n for which there are only finitely many elements not in X and \leq_L -between m and n.

Intuitively, $\Gamma_{\alpha+1}$ picks out the least representative from each equivalence class \approx_{α} . Obviously Γ is Π_1^1 , progress and monotonic. Moreover, $\omega - \Gamma_{\infty}$ contains only one member. By (1) of Proposition 1.3, $|\Gamma| < \omega_1^{CK}$. So $\operatorname{rk}_H(\mathcal{L}) < \omega_1^{CK}$.

2. Σ_1^1 -boundedness on linear ordering

Theorem 2.1. If \mathcal{L} is a Σ_1^1 scattered linear ordering, then $\operatorname{rk}_H(\mathcal{L}) < \omega_1^{\operatorname{CK}}$.

Proof. The proof is based on Montalbán's proof of Theorem 1.4. Assume that $\mathcal{L} = (L, <_L)$ is Σ_1^1 and $\operatorname{rk}_H(\mathcal{L}) \ge \omega_1^{\operatorname{CK}}$. Take an arithmetical function f so that W_n codes a recursive non-empty linear ordering if and only if there is a number e so that f(e) = n where $\{W_n\}_n$ is an effective enumeration of r.e. binary relations. Then the set $\mathcal{W} = \{e | W_{f(e)} \text{ is well ordering}\}$ is Π_1^1 . Given a set $E \subseteq \omega \times \omega \times \omega$, we define an E-arithmetical relation \leq_E as following:

 $b \leq_E a$ iff there are numbers x, y so that $(b, x, y) \notin E$ and $(a, x, y) \in E$. Define a set \mathcal{E} so that $E \in \mathcal{E}$ if and only if $E \subseteq \omega \times \omega \times \omega$ and

- (1) \leq_E is a partial ordering.
- (2) For all a, the set $E_a = \{(x, y) | (a, x, y) \in E\}$ is an equivalence binary relation.
- (3) $\forall (a, x, y) ((a, x, y) \in E \implies x \in L \land y \in L).$
- (4) $\forall e \exists f \in \omega^{\omega} (e \in \mathcal{W} \implies f \text{ embeds } W_{f(e)} \text{ into } \leq_E).$
- (5) $\forall a \forall b \forall c \forall (x, y) \exists z (a >_E b >_E c \land (a, x, y) \in E \land (b, x, y) \notin E \implies ((x <_L z <_L y \lor y <_L z <_L x) \land (c, z, x) \notin E \land (c, z, y) \notin E \land (a, z, x) \in E)).$

(1)-(5) are Σ_1^1 . Thus \mathcal{E} is a Σ_1^1 set. Note that \mathcal{E} is non-empty since the set coding Hausdorff ranks of \mathcal{L} is in \mathcal{E} .

By Gandy's base theorem, there is a set $E \in \mathcal{E}$ so that $\omega_1^E = \omega_1^{CK}$.

By (4), each recursive well ordering can be embedded into \leq_E . But $\omega_1^E = \omega_1^{CK}$, \leq_E is not a well founded partial ordering. Hence there is a descending chain in \leq_E . In other words, there is a descending chain $\{a_i\}_i$ so that $a_{i+1} <_E a_i$ for all $i \in \omega$. The remaining thing is just simulating Montalbán's proof to construct a copy of \mathcal{Q} in \mathcal{L} . Readers having difficulty to fill in the details can refer to [3].

Remarks

(1) In (1) of Theorem 1.2, Π_1^1 -ness cannot be replaced with Σ_1^1 -ness. In (2), Π_1^0 -ness cannot be replaced with Π_2^0 -ness.

 $\mathbf{2}$

(2) Theorem 2.1 can be generalized. For example, the same method can be used to show that any scattered Σ_1^1 -upper-semilattice has a rank less or equal to ω_1^{CK} . But I have not found a sweeping theorem just like Theorem 1.2 to easily deduce all of the related results in the paper [1].

References

- [1] Noam Greenberg and Antonio Montalbán. Ranked structures and arithmetic transfinite recursion. to appear.
- [2] Peter G. Hinman. Recursion-theoretic hierarchies. Springer-Verlag, Berlin, 1978.
- [3] Antonio Montalbán. Up to equimorphism, hyperarithmetic is recursive. J. Symbolic Logic, 70(2):360–378, 2005.
- [4] Gerald E. Sacks. *Higher recursion theory*. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.
- [5] C. Spector. Hyperarithmetical quantifiers. Fund. Math., 48:313–320, 1959/1960.
- [6] Clifford Spector. Recursive well-orderings. J. Symb. Logic, 20:151–163, 1955.