SOME NOTES ON RANKED STRUCTURES

LIANG YU

1. INDUCTIVE DEFINITIONS AND A]-BOUNDEDNESS

Let I' be a map from 2* to 2*. T" is monotonic if X C Y implies I'(X) C I'(Y).
I" is progress if X C I'(X) for all X.
If T is progress, we define I',, by recursion on a.

FO - @ Fa+1 - F(Fa) UFa
I's= U I, (B is a limit).

B<a
I, = U T,.

We use |I'| to denote the least ordinal « so that I'(I'y,) = T',,.
Some facts about inductive definitions can be found in [4].
The following fact is obvious.

Fact 1.1. If I is monotonic and is progress, then I'(I'y)) = (px)—x X-

The following theorem is essentially due to Spector (For more details, see Section
8 TII [4]).

Theorem 1.2 (Spector [5]). If " progress, then
(1) if T is monotonic and 11}, then |T'| < wK and T, is 1.
(2) if T is 19, then |T'| < wP and Ty is T11.

The following proposition can be found in [2] (Corollary 2.20 IV).

Proposition 1.3. If T is progress and Ty, is AL, then
(1) if T is monotonic and 11}, then |I'| < wPK,
(2) if T ds I19, then |T| < w&X.

From (2) of Proposition 1.3, one can deduce all of the results related the height
of ranked structures in [3] and [1]. We just give an example and leave the others as
exercises.

A linear ordering £ = (L, <) is scattered if the rantional linear ordering Q =
(@, <@) cannot be embedded into L. For the scattered linear ordering £ = (L, <p),
we can define a Hausdorff rank on L.

=gy if e =y.
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x ==, y if there are finitely many elements x4, zs, ..., T, so that Vz(z <, z <, y =
3i < n(z =g x;)) in case o = F + 1.

x ~, yif x =5y for some 3 < « in the case that o is a limit ordinal.

The Hausdorff rank of £, rky (L), is the least « so that = =, y for all x,y € L.
Note that a linear ordering L is scattered if and only if rky (L) exists.

Montalban proved the following theorem.

Theorem 1.4 (Montalban [3]). If L is hyerarithmetic scattered linear ordering, then
rky (L) < wPK.

Proof. Without loss of generality, we assume £ = (w, <p) where < is Al and scat-
tered.
Define n € I'(X) if and only if either n € X or there is a number m < n for which
there are only finitely many elements not in X and <;-between m and n.
Intuitively, I',41 picks out the least representative from each equivalence class =,,.
Obviously T is I}, progress and monotonic. Moreover, w — 'y, contains only one
member. By (1) of Proposition 1.3, |T'| < w¥¥. So rkg (L) < wfk. O

2. Y1-BOUNDEDNESS ON LINEAR ORDERING
Theorem 2.1. If L is a ¥} scattered linear ordering, then rky (L) < wt

Proof. The proof is based on Montalban’s proof of Theorem 1.4. Assume that £ =
(L,<z) is 31 and rky (L) > wPE. Take an arithmetical function f so that W, codes
a recursive non-empty linear ordering if and only if there is a number e so that
f(e) =n where {W,,}, is an effective enumeration of r.e. binary relations. Then the
set W = {e[Wy() is well ordering} is II}. Given a set E C w X w X w, we define an
FE-arithmetical relation <g as following:

b <g a iff there are numbers x,y so that (b,z,y) ¢ E and (a,z,y) € E.

Define a set £ so that £ € £ if and only if £ C w X w X w and

(1) <g is a partial ordering.

(2) For all a, the set E, = {(x,y)|(a,z,y) € E} is an equivalence binary relation.
(3) (axy)((am y)eE = xze€LAyel).
(4) Vedf c w¥(e € W = [ embeds Wy into <pg).
(5) VavVbVeY(x,y)3z(a >g b > cA(a,z,y) € EN(byz,y) € E = ((z < 2z <g
yVy<pz<px)Al(cz ) ¢E/\(c,z,y) ZEN (a,z,x) € F)).
(1)-(5) are X}. Thus € is a ¥} set. Note that £ is non-empty since the set coding
Hausdorff ranks of £ is in €.

By Gandy’s base theorem, there is a set £ € & so that wf = W,

By (4), each recursive well ordering can be embedded into <g. But wf = w¥ <y
is not a well founded partial ordering. Hence there is a descending chain in S g. In
other words, there is a descending chain {a;}; so that a;1; <g a; for all i € w. The
remaining thing is just simulating Montalban’s proof to construct a copy of Q in L.
Readers having difficulty to fill in the details can refer to [3]. O
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Remarks

(1) In (1) of Theorem 1.2, IT}-ness cannot be replaced with ¥{-ness. In (2), I19-
ness cannot be replaced with TI5-ness.
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(2) Theorem 2.1 can be generalized. For example, the same method can be used
to show that any scattered Yi-upper-semilattice has a rank less or equal to
wE. But I have not found a sweeping theorem just like Theorem 1.2 to easily
deduce all of the related results in the paper [1].
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