
MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY
LIPSCHITZ DEGREES

YUN FAN AND LIANG YU

Abstract. Computably Lipschitz reducibilty (noted as ≤cl for short), namely
computations where the use on the oracle on argument x is x+c for some constant c,
was suggested as a measure of relative randomness. In this paper, we introduce the
definition of cl-maximal pair of c.e. reals. We prove that for any non-computable
∆0

2 real, there exists a c.e. real so that no c.e. real can cl-compute both of them.
Thus, each non-computable c.e. real is the half of a cl-maximal pair of c.e. reals.

1. Introduction

In randomness and incomputability we have two fundamental measures: plain
complexity C and prefix-free complexity K. When we look at reals, especially c.e.
reals under notions of relative randomness, we would like to understand C and K as
“reducibilities”. For instance, where for E = K or C, we have α ≤E β iff E(α ¹ n) ≤
E(β ¹ n) + O(1).

There are a number of natural reducibilities which imply ≤C and ≤K reducibilities.
One is Solovay reducibility [9], which is a powerful tool in studying relative random-
ness of c.e. reals. But Solovay reducibility presents various shortcomings outside this
class [6]. Another reducibility, strong weak truth table reducibility, was suggested
by Downey, Hirschfeldt and LaForte [7, 6] as an alternative for Solovay reducibility.
This reducibility has appeared in the literature with various names, e.g. computably
Lipschitz reducibility (due to a characterization of it in terms of effective Lipschtz
functions) [2] and linear reducibility [4] . We here adopt the terminology in [2] and
note it as ≤cl for short.

Definition 1.1. Given two reals α and β in the unit, α ≤cl β if there is a Turing
functional Γ and a constant c such that α = Γβ and the use of Γ on any argument x
is bounded by x + c. The Turing functionals which have their use restricted in such
a way are called cl-functionals.

To make the technical details of the proofs slightly simpler, we often work an even
restrictive reducibility than computable Lipschitz: identity bounded Turing reducibil-
ity (ibT or ≤ibT for short) is a computable Lipschitz reduction for which the constant
c is 0. This reducibility was introduced by Soare in connection with applications of
computability theory to differential geometry (see [11, 3]).

The first author is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638). Both
authors are supported by NSFC(10701041) and Research Fund for the Doctoral Program of Higher
Education (20070284043).

1

2 YUN FAN AND LIANG YU

The main justification for ≤cl as a measure of relative randomness is the following
proposition.

Proposition 1.2 (Downey,Hischfeldt and Lafort [6]). If α ≤cl β are c.e. reals, then
for all n, K(α ¹ n) ≤ K(β ¹ n) + O(1).

Having defined cl-reducibility we can consider the structure of the induced degrees.
The cl-degrees are the equivalence classes under cl-reducibility. Notice that they
either contain only random reals or only non-random reals. Since cl-reducibility is a
strengthening of weak truth table reducibility, the structure of cl-degrees is interesting
from the computation complexity.

The structure of cl-degrees of c.e. reals presents some difficulties, which is neither
a lower semi-lattice, nor an upper semi-lattice [6]. The lack of join operator of cl-
degrees of c.e. reals was first proven directly by Downey, LaForte,and Hirschfeldt [7],
but follows from the next theorem given by Yu and Ding[12].

Theorem 1.3 (Yu and Ding [12]). There is no cl-complete c.e. real.

Actually, Yu and Ding proved something stronger:

Corollary 1.4. There are two c.e.reals α and β so that no c.e.real γ satisfies α ≤cl γ
and β ≤cl γ.

Moreover, real α in Corollary 1.4 can be restricted as a c.e. set by Fan [8]. Discussed
with Ambos-spies and Merkle, we introduce the definition of cl-maximal pair of c.e.
reals.

Definition 1.5. A pair (α, β) of c.e. reals is a cl-maximal pair of c.e. reals if no
c.e. real γ can cl-compute both of them.

By this definition, Corollary 1.4 can be expressed as follows: there exists a cl-
maximal pair of c.e. reals. Moreover, the half of a cl-maximal pair can be a c.e. set
[8]. In [5], Barmpalias, Downey and Greenberg characterized array computability by
cl-maximal pairs of c.e. reals.

Proposition 1.6 (Barmpalias, Downey and Greenberg[5]). A c.e. degree a is array
non-computable iff there is a cl-maximal pair of c.e. reals in a.

In this paper we investigate cl-maximal pairs of c.e. reals. Trivially, no computable
real is a half of a cl-maximal pair of c.e. reals. Is there a non-computable c.e. real
which is not half of any cl-maximal pair of c.e. reals? We give a negative answer.

Theorem 1.7. Given a non-computable ∆0
2 real α, there is a c.e. real β so that no

c.e. real can cl-compute both of them. So every c.e. real is the half of a cl-maximal
pair of c.e. reals.

We present some applications of Theorem 1.7 to the Kolmogorov complexity theory.

Corollary 1.8. There is a c.e. real β so that limnK(β ¹ n)−n = +∞ and limnK(β ¹
n)−K(n) < +∞.

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES 3

Proof. Recall the result by Stephan (see [6]) that for any c.e. reals α and β, limnK(α ¹
n) − K(β ¹ n) = +∞ implies α ≤cl β. Let α be a non-computable K-trivial real,
choose a c.e. real β as described by Theorem 1.7. Since α is K-trivial and α 6≤cl β, we
have limnK(β ¹ n)−K(n) < +∞ by Stephan’s result. Moreover, limnK(β ¹ n)−n =
+∞, since every c.e. random real γ has the property that limn K(γ ¹ n)− n = +∞.

¤
Corollary 1.9. There is a c.e. real β for which if γ ≥cl β is a c.e. real, then
limnK(γ ¹ n)−K(n) < +∞.

Proof. Let α and β be the reals in Corollary 1.8. Suppose that γ ≥cl β is a c.e. real,
then γ 6≥cl α. By Stephan’s result again, limnK(γ ¹ n)−K(n) < +∞. ¤

Note that Corollary 1.9 can be viewed as a strength of the main result in [2] and a
“localization” of Hirschfeldt’s result that there is a real which is not cl-reducible to
any complex real.

We assume some background on computability theory and some knowledge of stan-
dard conventions, most of which can be found in Soare [10]; knowledge of algorithmic
randomness is also helpful. Notations about the binary expansion of reals are useful.

Notation 1.10. The digits on the right of the decimal point in the binary expansion
are numbered as 1, 2, 3, · · · from left to right. The digits on the left of the decimal
point are numbered as 0,−1,−2, · · · . “The digits lower (higher) than b” is written as
“≥ (≤) b”, and “the digits between h and l (where h < l)” is written as an interval “
[h, l]”. Symbol bk is a string with k consecutive numbers b, where b ∈ {0, 1}. Symbol
A denotes a set of numbers for which the lowest (rightmost) non-zero digit is digit 1,
i.e. the binary expansion of such number is b−i · · · b0.b1 (b−i 6= 0, i ∈ N).

2. The Proof idea of Theorem 1.7

Given a non-computable ∆0
2 real α, we want to construct a c.e. real β in stages so

that for all cl-functionals Φe, Ψe and c.e. reals γe:

Re : α 6= Φγe
e ∨ β 6= Ψγe

e ,

where the use of both functionals is (bounded by) x + e (e ∈ ω).
We describe an ibT -game amongst α, β and γ in stages as follows: (1) During the

stages of the game, real γ increases; (2) If α or β changes at stage t + 1 and b is the
leftmost change position in both of them, then γ increases in such a way that some
γ-digit at a position ≤ b changes.

Following this game, real γ ibT -computes α and β simultaneously. We say γ follows
the least effort strategy to ibT -compute α and β, if let γt+1 = γt ¹ (b + 1) + 2−b.

The cl-game amongst α, β and γ can be deduced similarly. We say, γ follows the
least effort strategy to cl-compute α and β if at each stage γ increases by the least
amount which can rectify the cl-functionals holding its computations of α, β.

Now we recall the proof idea of Corollary 1.4, which is helpful to prove Theorem 1.7.
In Corollary 1.4, it suffices to define c.e. reals α and β such that for all cl-functionals
Φe, Ψe and c.e. reals γe:

Re : α 6= Φγe
e ∨ β 6= Ψγe

e ,

4 YUN FAN AND LIANG YU

where the use of both functionals is (bounded by) x + e (e ∈ ω).
To construct α, β in Corollary 1.4, the following lemmas are the key points.

Lemma 2.1 (Yu and Ding [12]). Let n ∈ N+, We define an ibT -procedure to increase
α, β in (0, n] in stages as follows: if stage t is odd, let αt+1 = αt + 2−n; if stage t is
even, let βt+1 = βt + 2−n. Real γ takes the least strategy to ibT -compute α, β. Then
γ ends up with n until α(i) = β(i) = 1 for all i ∈ (0, n].

We say an ibT -procedure satisfying the property in Lemma 2.1 is a Pn-procedure.
Number “n” in symbol Pn means that this ibT -procedure increases γ to n.

Lemma 2.2 (Yu and Ding [12]). In the cl-game amongst α, β and γ, where γ has
to follow instructions of the type “change a digit at position ≤ b”, the least effort
strategy is the best strategy for γ. In other words, if a different strategy produces γ′

then at each stage s of the game γs ≤ γ′s.

Listing all requirements of Corollary 1.4 effectively, we assign disjoint intervals for
distinct Re-requirements. Fix Re, assume that every stronger requirement than it has
been assigned an attack interval. Choose n larger than these attack intervals, and
set l = n+2n+e. Interval [n, l] is the attack interval of Re. A stage t is expansionary
for requirement Re if the reductions α = Φγe

e and β = Ψγe
e are longer than its attack

interval at stage t. Reals α and β in Corollary 1.4 are defined as follows: at stage
t + 1, if Re is the strongest requirement with stage t as an expansionary stage, then
let αt+1 = αt + 2−l or βt+1 = βt + 2−l alternatively as in the P2n+e-procedure. So
requirement Re is met. Otherwise, γe ≥ 2n+e × 2−n−e = 1 by Lemma 2.1 and lemma
2.2, which is contrary to the fact that γe < 1. There is no interaction between all
Re-requirements and so we meet them without injury. For more details, see [12, 1].

The difference between Re and Re is that real α is given in Re-requirements but
in Re-requirements real α is defined in stages. Now we prove Theorem 1.7 through
revising the proof idea of Corollary 1.4. Fix requirement Re, we hope to assign an
attack interval Ie to Re and define the expansionary stage for Re as for Re. Then we
design a procedure to decide how to change the digits in interval Ie of β after the
expansionary stages for Re appear. When this procedure ends, real γ that takes the
least effort strategy to cl-compute α, β is not less than 1. So requirement Re is met
by Lemma 2.2.

So how to assign interval Ie and define such procedure to increase β are two prob-
lems we faced. If interval Ie of Re starts from n, this procedure corresponds to an
ibT -procedure, which increases β so that real γ that follows the least strategy to
ibT -compute α and β should not be less than 2n+e. Based on the fact that real α
is non-computable, we could construct such ibT -procedure in section 4. Since the
given real α is out of control, during the stages of this ibT -procedure, we follow the
changes of α to decide when and which digit of real β to change. Thus interval Ie

of Re, the space in which this ibT -procedure performs, can not be fixed in advanced.
So how to give an attack interval to Re is different from the attack interval for Re of
Corollary 1.4. Interval Ie of Re is extended effectively as we build this procedure in
stages. Meanwhile, the expansionary stage t for Re should be revised as follows: the
reductions α = Φγe

e and β = Ψγe
e are longer than its current attack interval at stage

t.

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES 5

Listing all requirements of Theorem 1.7 effectively, we assign disjoint intervals
for distinct Re-requirements. Since each attack interval follows from the changes of
real α, if interval Ie of requirement Re is extended, we have to assign a new attack
interval to the weaker requirement than it. Therefore the attack interval of an Re-
requirement changes not only because of its corresponding procedure, but also some
stronger requirement than it. Thus to accommodate all requirements simultaneously,
we initialize each Re-requirement occasionally, but finitely often. So the whole con-
struction of β takes a genuine finite injury method. We show the proof details of
Theorem 1.7 in section 5.

Lemma 2.2 is also the crucial fact to Theorem 1.7. The following lemma was shown
to construct Yu-Ding procedure in [12, 1], which is also in some sense at the heart of
our procedures.

Lemma 2.3 (Passing through lemma). Suppose that in some cl-game (e.g. like the
above) γ has to follow instructions of the type “change a digit at a position ≤ b”.
Although γ0 = 0, some γ′ plays the same game while starting with γ′0 = σ for a finite
binary expansion σ. If the strategies of γ, γ′ are the same (i.e. the least effort strategy
described above) and the sequence of instructions only ever demand change at digits
> |σ| then at every stage s, γ′s = γs + σ.

3. The Pn,k-procedure

In this section, we present the Pn,k-procedure, which is more stricter than the Pn-
procedure by Yu and Ding [12]. More important is that the construction idea of the
Pn,k-procedure helps us to construct the procedure to define β in Theorem 1.7 in next
section. The Pn,k-procedure depends on inputs n and k. It is defined as follows.

Definition 3.1. Let n ∈ A ∩ [1, +∞) and k ∈ N+. An ibT -procedure to define α, β
and γ is a Pn,k-procedure if the changes of α, β and γ meet the following statements:

(1) At stage 0, α0 = β0 = γ0 = 0;
(2) Reals α and β increase in stages;
(3) Real γ follows the least effort strategy to ibT -compute α, β at every stage;
(4) At every stage, α ¹ k = 0 and each α-digit change occurs at most once;
(5) Real β = 2−1 and real γ = n when this procedure ends.

For symbol Pn,k, number “n” means that how large real γ is when this procedure
ends; number “k” means that during this procedure, the digits in interval (0, k) of α
are equal to 0.

Let ln,k be the largest number changed in α and β of this ibT -procedure, we say
(0, ln,k] is the attack interval of the Pn,k-procedure.

Notice that if we substitute a P2n+e,n-procedure for the P2n+e-procedure to construct
α, β in Corollary 1.4, then (α, β) is a cl-maximal pair of c.e. reals but α corresponds
to a c.e. set [8].

We define a Pn,k-procedure by induction on n. Firstly, we construct a P1,k-
procedure for any k ∈ N+ as the foundation.

Procedure 3.2. Suppose that α0 = β0 = γ0 = 0 and fix k ∈ N+, an ibT -procedure of
α, β and γ is defined in stages as follows.

6 YUN FAN AND LIANG YU

(1) Real γ follows the least effort strategy to ibT -compute α, β at every stage;
(2) At stage j, let βj(j + 1) = 1 for j = 1, · · · , k− 1. At stage k, let αk(k) = 1. At

stage k + 1, let βk+1 = 2−1. End this procedure.

Procedure 3.2 depends on input k. If k = 4, we follow Procedure 3.2 to show the
changes of α, β and γ in stages in Table 1. So Procedure 3.2 is a P1,4-procedure.

Table 1

stage 1 stage 2 stage 3 stage 4 stage 5
α 0.0000 0.0000 0.0000 0.0001 0.0001
β 0.0100 0.0110 0.0111 0.0111 0.1000
γ 0.0100 0.0110 0.0111 0.1000 1.0000

Lemma 3.3. Procedure 3.2 is a P1,k-procedure. So the attack interval of this P1,k-
procedure is (0, k], i.e., l1,k = k.

Proof. By Lemma 2.3, “let βj(j + 1) = 1” adds 2−(j+1) to γj−1. So γk−1 = 2−2 +
· · · + 2−k = 0.01k−1. At stage k, “let αk(k) = 1 ” adds 2−k to γk−1. Then γk =
2−2 + · · · + 2−k + 2−k = 2−1 = 0.1. Finally, at stage k + 1, “let β = 2−1 ” adds 2−1

to γk, which increases γk+1 = 1.
No digit of α ¹ k changes till stage k + 1 when Procedure 3.2 ends. So we have

α ¹ k = 0. Procedure 3.2 ends at stage k + 1 and it meets the definition of a
P1,k-procedure. ¤

If a Pn,k-procedure is defined, we can apply it in some interval with the length of
ln,k as follows.

Lemma 3.4 (Transformation lemma). Given stage s, and h ∈ N. Suppose that
number k is larger than any non-zero digit in αs, the digits > h of βs and γs are
equal to 0.

(1) If αj(b) or βj(b) changes in a Pn,k-procedure at stage j ∈ N+, then let αs+j(h+
b) = αj(b) or βs+j(h + b) = βj(b);

(2) Real γ follows the least strategy to ibT -compute α and β at every stage.
(3) When this Pn,k-procedure ends, stop changing α, β, and γ.
This process is called that a Pn,k-procedure is performed in interval (h, h+ ln,k] from

stage s. Then α ¹ k = αs ¹ k, β = βs + 2−h−1 and γ = γs + n · 2−h when it ends.
Moreover, the digits > (h + 1) of β and γ are equal to 0 when this Pn,k-procedure
ends.

Proof. Number k is larger than any non-zero digit of αs, and only digit > h + k of α
change occurs during we perform a Pn,k-procedure. So α ¹ k = αs ¹ k when this Pn,k-
procedure ends. Since digits > h of βs and γs are equal to 0, we have β = βs +2−h−1,
γ = γs + n · 2−h by Lemma 2.3 when this Pn,k-procedure ends.

¤
Now we construct a Pn+0.1,k-procedure by induction on the finite Pn,j-procedures

for j ∈ N+.

Procedure 3.5. Suppose that the Pn,j-procedures for any j ∈ N+ have been defined.

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES 7

Fix k ∈ N+ and α0 = β0 = γ0 = 0, an ibT -procedure of α, β and γ is defined in
stages as follows.

(1) Real γ follows the least effort strategy to ibT -compute α, β at every stage.
(2) During the stages, we perform a Pn,kn-procedure in interval (hn, hn + ln,kn] from

the stage when hn and kn are set.
Stage t = 0. Let hn = 1 and kn = max{2, k}.
Stage t + 1. If γt ≥ n − 0.1 and digits in [2, k] of γt are equal to 1, then let

αt+1(k) = 1. If γt = n, let βt+1 = 2−1 and end the whole procedure.
Otherwise, if this Pn,kn-procedure ends, increase hn by a quantity of 1, set kn not

less than any digit mentioned before in α and β; if not, keep on performing this
Pn,kn-procedure in interval (hn, hn + ln,kn].

Procedure 3.5 depends on inputs n and k. Marks hn and kn are reset at the same
time. Note that “perform a Pn,kn-procedure in interval (hn, hn+ln,kn]” relies on them.
We follow Procedure 3.5 for n = 1, k = 4 to give a P1.1,4-procedure as an example in
stages in Table 2.

Table 2

α
β
γ

0.00001
0.01000
0.10000

0.0000101
0.0110000
0.1100000

0.000010101
0.011100000
0.111000000

0.00001010101
0.01111000000
0.11110000000

0.00011010101
0.01111000000
1.00000000000

0.00011101
0.10000000
1.10000000

P1,4

(1, 5]
P1,5

(2, 7]
P1,6

(3, 9] (4, 11]
P1,7

stage s + 1 stage s + 2

Given n = 1, k = 4, let hj
1 (kj

1) be the jth-set h1 (k1) for j = 1, 2, 3, 4. We set
h1

1 = 1 and k1
1 = max{2, k} = 4 at stage 0 , then perform a P1,k1

1
(P1,4)-procedure in

(h1
1, h

1
1 + l1,k1

1
] = (1, 1 + l1,4] = (1, 5]. When this P1,4-procedure ends, we reset h1, k1,

then h2
1 = 2 and k2

1 = 5. Then we perform a P1,k2
1

(P1,5)-procedure in (h2
1, h

2
1 + l1,k2

1
] =

(2, 2 + l1,5] = (2, 7]. Following Procedure 3.5, (h3
1, k

3
1) = (3, 6) and (h4

1, k
4
1) = (4, 7).

So we perform a P1,kj
1
-procedure in (hj

1, h
j
1 + l1,kj

1
] successively. When the P1,k4

1
(P1,7)-

procedure ends at stage t, then γt > 0.1 and the digits in [2, 4] of γt are equal to 1.
Hence, let αt+1(4) = 1, then γt+1 = 1; let βt+2 = 2−1, then γt+2 = 1.1. Since number
kj

1 is not less than k = 4, we have α ¹ 4 = 0. For n = 1, k = 4, Procedure 3.5 satisfies
the definition of a P1.1,4-procedure, which is built on the finite P1,kj

1
-procedures for

j = 1, 2, 3, 4.
We show that Procedure 3.5 is a Pn+0.1,k-procedure.

Lemma 3.6. (1) Let hj
n (kj

n) be the jth-set hn (kn) for j ∈ N+. If the Pn,kj
n
-procedure

in (hj
n, h

j
n + ln,kj

n
] ends at stage tjn, then γtjn

= n · (1 − 2−j) and the digits > hj+1
n of

βtjn
and γtjn

are equal to 0.

(2) Procedure 3.5 is a Pn+0.1,k-procedure.

Proof. (1) We prove this property by induction on j. By the construction, hj
n =

j, hj+1
n = hj

n + 1 and k1
n = max{2, k}.

It is proved for h1
n, k

1
n by Lemma 3.4 for s = 0, h = h1

n, k = k1
n.

8 YUN FAN AND LIANG YU

Suppose that this property is satisfied for j > 1. When a Pn,kj+1
n

-procedure is

performed in interval (hj+1
n , hj+1

n + ln,kj+1
n

], it meets the assumption of Lemma 3.4 for

s = tjn, h = hj+1
n , k = kj+1

n . Thus we have

βtj+1
n

= βtjn
+ 2−(hj+1

n +1) = βtjn
+ 2−hj+2

n

γtj+1
n

= n · (1− 2−j) + n · 2−hj+1
n = n · (1− 2−j) + n · 2−(j+1) = n · (1− 2−(j+1))

Meanwhile, the digits > hj+2
n of βtj+1

n
and γtj+1

n
are equal to 0.

(2) If γt ≥ n − 0.1 and the digits in [2, k] of γt are equal to 1, “let αt+1(k) = 1”
increases γt+1 = n; “ let βt+2 = 2−1” increases γt+2 = n + 0.1. So it suffices to prove
the existence of such t.

Assume that number n has the binary expansion b−i · · · b0.b1(b−i 6= 0). Then we
have

γti+k+1
n

= n · (1− 2−(i+k+1)) = n− 0.0kb−i · · · b0b1

= n− 0.1 + 0.1− 0.0kb−i · · · b0b1

= n− 0.1 + 0.01k−1 + (0.0k−11− 0.0kb−i · · · b0b1)

That is, γti+k+1
n

≥ n − 0.1 and each γti+k+1
n

-digit in [2, k] is equal to 1. So stage

ti+k+1
n is stage t we expected.
For kn ≥ k, we have αt+2 ¹ k = 0 by Lemma 3.4. So Procedure 3.5 is a Pn+0.1,k-

procedure.
¤

Therefore, by Procedure 3.2 and Procedure 3.5, there is a Pn,k-procedure for n ∈
A ∩ [1, +∞) and k ∈ N+.

4. The Pα
n,h,s-procedure

In this section, given a non-computable ∆0
2 real α and number n ∈ A ∩ [1, +∞),

we construct an ibT -procedure by induction to increase β, so that real γ that takes
least effort strategy to ibT -compute α and β is not less than n. For the given real α,
let {αs}s∈ω be its effective approximation.

Recall that in Procedure 3.5 this Pn+0.1,k-procedure is built on the finite Pn,kj
n
-

procedures, which are performed in (hj
n, h

j
n+ ln,kj

n
] for j = 1, · · · , i+k+1 successively.

The key points to realize this induction are: (1) for hj
n = j, a Pn,kj

n
-procedure increases

α and β with the digits > j (where real β ends up with 2−j−1) to add a quantity
of n · 2−j to γ; (2) these finite Pn,kj

n
-procedures could join together successively. Now

we revise this induction idea to accommodate the case that α is given. Generally we
hope that: (1) for h ∈ N+ there is a procedure to change the exact digits > h of β at
the exact stages (where real β ends up with 2−h−1) to add a quantity of n · 2−h to γ
as α changes; (2) these procedures could be defined successively as h increases.

For example, let n = 1, as real α changes, suppose that there is a procedure for
every h ∈ N+, which increases β with digits > h + 1 by 2−h−1 to add a quantity
of 1 · 2−h to γ. And these procedures are defined successively as h increases. Then
the quantity added to real γ could join together by Lemma 2.3. (Fix h, when real β
ends up with 2−h−1, the digits > (h + 1) of real γ are equal to 0.) So γ is equal to

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES 9

2−1 +2−2 + · · ·+2−h = 0.1h. Since real α is non-computable, there is a stage t so that
some αt ¹ h-digit changes. Otherwise, α ¹ h = αt ¹ h. That is, real α is computable,
which is a contradiction. Then at stage t, γt = 1; at stage t + 1, let βt+1 = 0.1 (for
βt ¹ 2 = 0), then γt+1 = 1.1. Based on a family of procedures to add 1 · 2−h to γ for
h ∈ N+, the purpose to increase real γ = 1.1 succeeds. So the induction from n = 1
to n = 1.1 is feasible for the given non-computable real α.

To make the technical details of the induction for the case α is given clearer, we
introduce the Pα

n,h,s-procedure.

Definition 4.1. Let h, s ∈ N, and n ∈ A ∩ [1, +∞). For the given non-computable
∆0

2 real α, fix αs, βs, γs, and suppose that the digits > h of βs and γs are equal to 0.
An ibT -procedure to define β and γ is a Pα

n,h,s-procedure if the changes of β and γ
meet the following statements after stage s:

(1) Real β increases with the digits > h in stages;
(2) Real γ follows the least effort strategy to ibT -compute α, β at every stage;
(3) Real β = βs + 2−h−1 and real γ ≥ γs + n · 2−h when this procedure ends;
(4) The digits > (h + 1) of β and γ are equal to 0 when this procedure ends.

Notice that since the digits > h of βs are equal to 0, and real β = βs + 2−h−1 when
this procedure ends, statement (4) in Definition 4.1 is trivial.

In Symbol Pα
n,h,s, real “α” is the given one; stage “s” means when we start this

procedure; numbers “n” and “h” together means that this procedure only changes
the digits > h of β to add n · 2−h to γs at least. Every Pα

n,h,s-procedure depends on
α, n, h, s.

Firstly, assume that α0 = β0 = γ0 = 0, if real α or the approximation of α is
different (see Table 3), then a Pα

1,1,0-procedure as follows is different.

Table 3

Case (i) stage 1 stage 2 stage 3 stage 4 stage 5 stage 6
α 0.0001000 0.0000010 0.0000011 0.0000001 0.0001001 0.0000011
β 0.0010000 0.0011000 0.0011100 0.0011110 0.0011111 0.0100000
γ 0.0010000 0.0011000 0.0011100 0.0011110 0.0100000 0.1000000

Case (ii) stage 1 stage 2 stage 3 stage 4 stage 5
α 0.0000010 0.0000111 0.0000010 0.0000111 0.1000000
β 0.0010000 0.0011000 0.0011100 0.0011110 0.0100000
γ 0.0010000 0.0011000 0.0011100 0.0100000 0.1000000

Subscript h is necessary since Transformation Lemma is inapplicable for when α is
given. Subscript s is necessary. For instance, if s = 0, when a Pα

n,h,0-procedure ends
depends on α, which is out of control. If the Pα

n,h,0-procedure ends at stage s′, to
realize the induction from n to n+0.1 we need to define a Pα

n,h+1,s′-procedure. So the
arbitration of s and h provides us not only to fulfill the induction but also to apply
the fitful procedure to produce a strategy for requirement Re in Theorem 1.7.

Let lαn,h,s be the largest digit mentioned in β when the Pα
n,h,s-procedure ends. Then

(h, lαn,h,s] is the attack interval of this Pα
n,h,s-procedure.

10 YUN FAN AND LIANG YU

Now our purpose is to prove the existence of the Pα
n,h,s-procedure for n ∈ A ∩

[1, +∞) and h, s ∈ N. At first, we define the Pα
1,h,s-procedures as the foundation for

this induction.

Procedure 4.2. Given a non-computable ∆0
2 real α, and h, s ∈ N. Fix αs, βs, γs,

the digits > h of βs and γs are equal to 0. An ibT -procedure of β and γ is defined in
stages as follows:

(1) Real γ follows the least effort strategy to ibT -compute α, β at every stage;
(2) At stage s+j, let βs+j(h+j+1) = 1 for j = 1, 2, · · · , till stage t that the highest

changing αt-digit b is higher than the changing βt-digit. Finally, let βt+1 = βs+2−h−1.
End this procedure.

We give an example in Table 4 to explain this procedure. Fix stage s, and set
h = 2, αs = 0.0001001, βs = 0.1, γs = 0.1. If real α changes in the following cases,
then let β and γ change in stages according to Procedure 4.2.

Table 4

Case (i) stage s stage s + 1 stage s + 2 stage s + 3 stage s + 4 stage s + 5
α 0.0001001 0.0001111 0.0000010 0.0000011 0.0001000 0.0001011
β 0.1000000 0.1001000 0.1001100 0.1001110 0.1001111 0.1010000
γ 0.1000000 0.1001000 0.1001100 0.1001110 0.1010000 0.1100000

Case (ii) stage s stage s + 1 stage s + 2 stage s + 3 stage s + 4
α 0.0001001 0.0001000 0.0000001 0.0000100 0.1000000
β 0.1000000 0.1001000 0.1001100 0.1001110 0.1010000
γ 0.1000000 0.1001000 0.1001100 0.1010000 1.0000000

In Case (i), γs+5 = γs + 1 · 2−2; in Case (ii), γs+4 > γs + 1 · 2−2. So this is a
Pα

1,2,s-procedure. From this example, the change of α may increase γ > γs + 2−2.

This is the reason why in a Pα
n,h,s-procedure real γ ends up with ≥ γs + n · 2−h.

Lemma 4.3. Procedure 4.2 is a Pα
1,h,s-procedure. Moreover, the digits > (h + 1) of β

and γ are equal to 0 when Procedure 4.2 ends.

Proof. During the stages of Procedure 4.2, only the digits ≥ h + 1 of β changes.
When β ends up with βs + 2−h−1, the digits > h + 1 of β and γ are equal to 0. If no
αt-digit b exists, for γs+j = γs + 0.0h+11j we have α ¹ (h+ j + 2) = αs+j ¹ (h+ j + 2).
That is, real α is computable, which is a contradiction. Thus stage t exists. And if
b ≥ (h + 1), γt = γs + 2−h−1; if b < (h + 1), γt = γs ¹ (b + 1) + 2−b > γs + 2−h−1.
Hence γt+1 ≥ γs + 2−h. So Procedure 4.2 is a Pα

1,h,s-procedure. ¤
Next we give an example to get a Pα

1.1,h,0-procedure from the finite Pα
1,h1,s1

-procedures
for h1, s1 ∈ N. Furthermore, it indicates us how to realize the induction from n to
n + 0.1.

Procedure 4.4. Given a non-computable ∆0
2 real α and h ∈ N, s = 0. Assume that

α0 = β0 = γ0 = 0, an ibT -procedure of β and γ is defined in stages as follows:
(1) Real γ follows the least effort strategy to ibT -compute α, β at every stage;

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES11

(2) During the stages, we define a Pα
1,h1,s1

-procedure as Procedure 4.2 for the given
h1 and s1 succesively.

Stage t = 0. Let s1 = 0 and h1 = h + 1.
Stage t + 1. If γt ≥ 2−h, let βt+1 = 2−h−1 and end the whole procedure.
Otherwise, if this Pα

1,h1,s1
-procedure ends at stage t + 1, then reset s1 = t + 1 and

increase h1 by a quantity of 1; if not, keep on defining this Pα
1,h1,s1

-procedure.

Note that different marks s1 and h1 correspond to a different P1,h1,k1-procedure.
Both of them are reset at the same time.

Lemma 4.5. (1) If there is no stage t that γt ≥ 2−h, then marks s1 and h1 can be
reset sufficiently often.

(2) Let sj
1 (hj

1) be the jth-set s1 (h1) for j ∈ N+, then γsj+1
1

≥ 2−h − 2−hj
1 and the

digits > hj+1
1 of βsj+1

1
and γsj+1

1
are equal to 0. Furthermore, if no stage t appears

that γt ≥ 2−h, then γsj+1
1

¹ (h + j + 1) = 0.0h1j.

(3) Procedure 4.4 ends up with γ ≥ 1.1× 2−h. So it is a Pα
1.1,h,0-procedure.

Proof. (1) Fix s1 and h1, it follows that s1 = 0 or s1 is the stage when Procedure 4.2
ends. Then βs1 = 0 or βs1 clears all digits > h1. So all digits > h1 of γs1 are equal to
0. It allows to perform Procedure 4.2 for this h1 and s1. By Lemma 4.3, both s1 and
h1 are reset when it ends.

(2) We prove the property by induction on j. Notice that the Pα
1,hj

1,sj
1

-procedure

ends at stage sj+1
1 . For h1

1 = h + 1 and hj+1
1 = hj

1 + 1, we have hj
1 = h + j.

If j = 1, then βs2
1

= 2−h1
1−1 by Procedure 4.2; γs2

1
≥ 2−h1

1 = 2−h − 2−h1
1 by Lemma

4.3. Moreover, the digits > (h1
1 + 1) = h2

1 of βs2
1

and γs2
1

are equal to 0.

If j > 1, suppose that βsj
1

and γsj
1

satisfies the property. Since the digits > hj
1 of

βsj
1

and γsj
1

are equal to 0, it allows us to perform Procedure 4.2 for hj
1 and sj

1. By

the construction of Procedure 4.2, βsj+1
1

= βsj
1
+ 2−hj

1−1. Since the digits > hj
1 of γsj

1

are equal to 0, by Lemma 2.3 γsj+1
1

≥ γsj
1
+ 2−hj

1 ≥ 2−h − 2−hj−1
1 + 2−hj

1 = 2−h − 2−hj
1 .

Moreover, digits > (hj
1 + 1) = hj+1

1 of βsj+1
1

and γsj+1
1

are equal to 0.

If there is no stage t so that γt ≥ 2−h, then γsj+1
1

∈ [2−h − 2−hj
1 , 2−h) = [2−h −

2−h−j, 2−h) = [0.0h1j, 0.0h−11). So γsj+1
1

¹ (h + j + 1) = 0.0h1j.

(3) Since γsj
1

¹ (h + j) = 0.0h1j−1, Interval (h, h + j) of γsj
1

¹ (h + j), the digits in

which are equal to 1, can be long enough as j increases. It follows that there is a
stage s′ ∈ (sj0

1 , sj0+1
1) for some j0 ∈ N+ so that αs′ ¹ (h + j0)-digit b change occurs.

Otherwise, α ¹ (h + j) = αsj
1

¹ (h + j) for any j, and so real α is computable (for

sj
1 is computable), which is a contradiction. As a result, γs′ ≥ γs′ ¹ (b + 1) + 2−b =

0.0h1j0−1 ¹ (b + 1) + 2−b ≥ 2−h.
Therefore there must be a stage t so that γt ≥ 2−h. Finally, “ let βt+1 = 2−h−1”

increases γt+1 ≥ 2−h + 2−h−1 = 1.1 · 2−h−1. Meanwhile, the digits > (h + 1) of βt+1

and γt+1 are equal to 0. So Procedure 4.4 is a Pα
1.1,h,0-procedure. ¤

12 YUN FAN AND LIANG YU

Generally, given n, h, s, a Pα
n+0.1,h,s-procedure would be built on the finite Pα

n,hj
n,sj

n
-

procedures. If n = 1, each Pα
1,hj

1,sj
1

-procedure can be given by procedure 4.2; if n > 1,

each Pα
n,hj

n,sj
n
-procedure should be constructed by induction.

The relationship between a Pα
n+0.1,h,s-procedure and the Pα

1,h′,s′-procedure follows
from the fact: let m ∈ A ∩ [1, n], each Pα

m+0.1,hm+0.1,sm+0.1
-procedure is built on the

finite Pα
m,hj

m,sj
m
-procedures, where hn+0.1 = h, sn+0.1 = s.

Procedure 4.6. Given a non-computable ∆0
2 real α, h, s ∈ N, and n ∈ A. Assume

that the digits > h of βs and γs are equal to 0, an ibT -procedure of β and γ is defined
in stages as follows:

(1) Real γ follows the least effort strategy to ibT -compute α, β at every stage;
(2) During the stages t > s, we define a Pα

1,h1,s1
-procedure as Procedure 4.2 for the

given h1 and s1.
Stage t = s. Let m ∈ A ∩ [1, n + 0.1], and set sm = s. And set hn+0.1 = h and

hm = hm+0.1 + 1 for m ∈ [1, n].
Stage t + 1. Choose the largest m ∈ [1, n + 0.1] so that γt ≥ γsm + (m− 0.1) · 2−hm,

let βt+1 = βt ¹ (hm + 2) + 2−hm−1. If m = n + 0.1, end the whole procedure. Or else,
for k ∈ A ∩ [1,m], reset sk = t + 1 and increase hk by a quantity of 1.

Otherwise, if no m ∈ [1, n+0.1] meets γt ≥ γsm +(m−0.1) ·2−hm, keep on defining
a Pα

1,h1,s1
-procedure as Procedure 4.2.

Note that marks sm and hm denote when and which β-digit change occurs. Both
of them are reset at the same time. We prove that Procedure 4.6 is a Pα

n+0.1,h,s-
procedure.

Lemma 4.7. (1) Fix sm+0.1, assume that sm is set for j times often before this sm+0.1

is reset. Let sj
m (hj

m) be the jth-set sm (hm) for j ∈ N+, then γsj+1
m

≥ γsm+0.1 + m ·
(2−hm+0.1 − 2−hj

m). Therefore Procedure 4.6 is a Pα
m,hj

m,sj
m
-procedure between stage sj

m

and stage sj+1
m .

(2) If mark sm is reset sufficiently often, then mark sm+0.1 would be reset.
(3) Mark sn+0.1 can be reset. So if the digits > h of βs and γs are equal to 0,

Procedure 4.6 is a Pα
n+0.1,h,s-procedure.

Proof. (1)We prove this property by induction on j.
Now we consider the case that j = 1. When mark sm+0.1 = s1

m = s, since h1
m =

hm+0.1 + 1 > h and the digits > h of βs are equal to 0, the digits > h1
m of βs1

m
and

γs1
m

are equal to 0. When mark sm+0.1 = s1
m 6= s, then mark sm+0.1 was reset before

because there is a stage t < sm+0.1 so that γt ≥ γsm′ + (m′ − 0.1) · 2−hm′ for some
m′ ∈ A ∩ [m + 0.1, n + 0.1]. Then the digits > (hm′ + 1) of βsm+0.1 are equal to 0 for
“βt+1 = βt ¹ (hm′ + 2) + 2−hm′−1”. Since mark h1

m = hm+0.1 + 1 ≥ hm′ + 1, the digits
> h1

m of βs1
m

are equal to 0.
By the construction mark hk is larger than h1

m from stage s1
m(= sm+0.1) to stage s2

m

for k ∈ A∩ [1,m). During these stages, real β experiences one of the following cases:
(1) let βsk

= βsk−1 ¹ (hk +2)+2−hk−1; (2) a digit > h1 of β changes during performing
Procedure 4.2. It follows that only the digits > (h1

m + 1) of β change during these

stages. So “ βs2
m

= βs2
m−1 ¹ (h1

m + 2) + 2−h1
m−1” equals “βs2

m
= βs1

m
+ 2−h1

m−1”.

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES13

Meanwhile, γs2
m

= γs2
m−1 ¹ (h1

m + 2) + 2−h1
m−1 ≥ γs1

m
+ (m − 0.1) · 2−h1

m + 2−h1
m−1 =

γsm+0.1 + m · 2−h1
m = γsm+0.1 + m · (2−hm+0.1 − 2−h1

m). Moreover, the digits > (h1
m + 1)

of βs2
m

and γs2
m

are equal to 0. Therefore Procedure 4.6 is a Pα
m,h1

m,s1
m
-procedure from

stage s1
m to stage s2

m.
Assume that this property is satisfied for j > 1. Since mark hk is larger than

hj
m before stage sj+1

m for k ∈ A ∩ [1,m), only the digits > (hj
m + 1) of β change

between stage sj
m and stage sj+1

m . So “ βsj+1
m

= βsj+1
m −1 ¹ (hj

m + 2) + 2−hj
m−1” equals

“βsj+1
m

= βsj
m

+ 2−hj
m−1”. Meanwhile, for hj

m = hj−1
m + 1, we get

γsj+1
m

= γsj+1
m −1 ¹ (hj

m + 2) + 2−hj
m−1 ≥ γsj

m
+ (m− 0.1) · 2−hj

m + 2−hj
m−1

≥ γsm+0.1 + m · (2−hm+0.1 − 2−hj−1
m) + (m− 0.1) · 2−hj

m + 2−hj
m−1

= γsm+0.1 + m · (2−hm+0.1 − 2−hj−1
m) + m · 2−hj

m

= γsm+0.1 + m · (2−hm+0.1 − 2−hj
m).

Moreover, the digits > (hj
m + 1) of βsj

m
and γsj

m
are equal to 0. Therefore Procedure

4.6 is a Pα
m,hj

m,sj
m
-procedure from stage sj

m to stage sj+1
m .

(2) If mark sm+0.1 is not reset, and assume that mark sj
m is reset for j times often.

Let m = b−i · · · b0.b1. If j > i + 2, then for hj
m = hm+0.1 + j, we get

γsj+1
m

≥ γsm+0.1 + m · (2−hm+0.1 − 2−hj
m) = γsm+0.1 + m · (2−hm+0.1 − 2−hm+0.1−j)

= γsm+0.1 + m · 2−hm+0.1 · (1− 2−j) = γsm+0.1 + 2−hm+0.1 · (m−m · 2−j)

= γsm+0.1 + 2−hm+0.1 · (m− 0.1 + 0.1−m · 2−j)

= γsm+0.1 + 2−hm+0.1 · (m− 0.1 + 0.01j−i−2 + (0.0j−i−21− 0.0j−i−1b−i · · · b0b1))

Since the digits > (hm+0.1 + 1) of γsm+0.1 are equal to 0, the digits in interval
(hm+0.1 + 1, hm+0.1 + j − i − 1) of γsj

m
are equal to 1. As j increases, this interval

will be long enough. Then there is a stage s′ ∈ (sj0
m, sj0+1

m) for some j0 ∈ N+ so that
αs′ ¹ (hm+0.1 +j− i−1)-digit b change occurs. It increases γs′ ≥ γsm+0.1 +m ·2−hm+0.1 .
Otherwise, α ¹ (hm+0.1 + j − i− 1) = αsj

m
¹ (hm+0.1 + j − i− 1) for any j, and so real

α is computable (for sj
m is computable), which is a contradiction. Therefore there is

a stage that sm+0.1 is reset.
(3) If no sm is reset for m > 1, then s1 would be reset sufficiently often by Procedure

4.2 and Lemma 4.3. The proof is the same as the one for Lemma 4.5 (1).
By induction, mark s1.1 can be reset sufficiently often. By (2), stage sn+0.1 can be

reset at some stage. By (1), Procedure 4.6 ends up with γ = γs + (n + 0.1) · 2−h, and
it is a Pα

n+0.1,h,s-procedure.
¤

14 YUN FAN AND LIANG YU

5. The proof details of Theorem 1.7

Given a non-computable ∆0
2 real α, it suffices to construct a c.e. real β in stages

such that for all cl-functionals Φe, Ψe and c.e. reals γe:

Re : α 6= Φγe
e ∨ β 6= Ψγe

e ,

where the use of both functionals is (bounded by) x + e. Assume an effective list
of all requirements, based on the following priority relation: Re < Ri iff e < i.

For every Re-requirement, we assign an attack interval Ie = [ne, le]. For the analysis
in section 2, this Ie is given by the effective approximation {Ie,t}t∈ω. That is, Ie =
lim

t
Ie,t = [lim

t
ne,t, lim

t
le,t] = [ne, le]. If at stage t the reductions α = Φγe

e and β = Ψγe
e

are longer than its current attack interval Ie,t, we say stage t is the expansionary
stage for Re. Then at stage t + 1, we say Re requires attention.

During the construction, if some requirement receives attention at stage t + 1,
then we initialize all weaker requirement than it. To accommodate all requirements
simultaneously, we would initialize Re occasionally, but finitely often. Meanwhile, we
assign number ne of interval Ie for Re-requirement finitely often. Assume that stage
se be the stage when requirement Re is initialized.

Construction 5.1. We give the construction in stages.
Stage t = 0. Let β0 = 0, I0,0 = [1, 2], s0 = 0.
Stage t + 1. Choose the least e ≤ t so that Re requires attention at stage t + 1.

We change βt+1 as the βt+1 in the Pα
2ne+e,ne,se

-procedure given by Procedure 4.6 except
that “ γt” is replaced by “ 2e · γe,t”. Then clear the digits larger than Ie,t, keep
se, ne unchanged. And set ne,t+1 = ne, le,t+1 = le,t + 1, i.e., the current interval
Ie,t+1 = [ne,t, le,t + 1]. We say Re receives attention at stage t + 1.

If i < e, then keep si unchanged, and let Ii,t+1 = Ii,t.
If e < i ≤ t, we say Ri is injured at stage s + 1 and initialize Ri as follows: let

si = t + 1, and choose ni larger than the attack intervals of all stronger requirements
than Ri. Recall that number h1

1 is the 1th-set mark h1 in a Pα
2ni+i,ni,si

-procedure by

Procedure 4.6, then set ni,t+1 = ni, li,t+1 = ni + h1
1, i.e., the current interval Ii,t+1 =

[ni, li,t+1].
If no Re requires attention at stage t + 1, end stage t + 1.

In the Pα
2ne+e,ne,se

-procedure given by Procedure 4.6, the possible changing digit of
β is not lower than the next lower digit of le,t when Re receives attention again. So
we expand Ie,t+1 = [ne,t, le,t + 1]. Since real β keeps increasing, the action “clear the
digits larger than Ie,t” is reasonable as Re receives attention.

Lemma 5.2. Fix e, requirement Re receives attention at most finitely often and is
eventually satisfied. Moreover, interval Ie is fixed as Re is satisfied.

Proof. Fix e and assume by induction that Lemma 5.2 holds for all i < e. Choose t
minimal so that no Ri, i < e, receives attention after stage t. Hence, requirement Re

is not initialized after stage t. By the construction, se = t. Then se and ne = ne,t

of interval Ie are unchanged forever. Since when an ibT -procedure, the Pα
2ne+e,ne,se

-
procedure given by Procedure 4.6, starts at stage se, the digits > ne of βse and

MAXIMAL PAIRS OF C.E. REALS IN THE COMPUTABLY LIPSCHITZ DEGREES15

γe,se ·2e should be equal to 0. But the digits > (ne + e) of γe,se may be not equal to 0.
Procedure 4.6 and Lemma 4.7 for 2ne+e, ne, se still work well since the digits > (ne+e)
of βe,se are equal to 0. (The quantity of (γe,se · 2e − γe,se · 2e ¹ (ne + 1)) is regarded
as the one that some Pα

m,hm,sm
-procedures in the Pα

2ne+e,ne,se
-procedure increase to

γe,se · 2e ¹ (ne + 1), m ∈ [A ∩ [1, 2ne+e], which has been realized in advance.) Then
by Lemma 4.7 and Lemma 2.2, requirement Re receives attention at most finitely
often and is eventually satisfied. Otherwise, when this Pα

2ne+e,ne,se
-procedure ends,

γe · 2e ≥ (γe,se · 2e ¹ (ne + 1) + 2ne+e) · 2−ne ≥ 2e, i.e., γe ≥ 1, which is a contradiction.
¤

References

[1] Andrew E.M. Lewis and George Barmpalias. Random reals and lipschitz continunity. Mathe-
matical Structures in Computer Science, 2006, 16(5).

[2] George Barmpalias; Andrew E.M. Lewis. A c.e. real that cannot be SW -computed by any Ω
number. Notre Dame J. Formal Logic 47 (2006), no. 2, 197–209.

[3] George Barmpalias and Andrew Lewis. The ibT degrees of c.e. sets are not dense. Annals of
Pure and Applied Logic Volume 16, issues 1-2,(2006).

[4] George Barmpalias and Andrew Lewis. Randomness and the linear degrees of computability.
Annals of Pure and Applied Logic 145(2007),252-257.

[5] George Barmpalias, Rod Downey and Noam Greenberg. Working with strong reducibilities
above totally ω-c.e. degrees. Transactions of the American Mathematical Society. In press.

[6] Rodney G. Downey, Denis Hirschfeldt. Randomness and reducibility. Springer-Verlag Mono-
graphs in Computer Science. In Preparation.

[7] Rodney G. Downey, Denis Hirschfeldt and G.LaForte, Randomness and reducibility, in Mathe-
matical Foundations of Computer Science 2001 (Sgall,Pultr,P. Kolman,eds.), Lecture Notes in
Computer Science 2136, Springer, 2001, 316C327. Final version in Journal of Computing and
System Sciences, 68(2004), 96-114.

[8] Yun Fan. There is an sw-cuppable strongly c.e. real. Lecture Notes of Compute Scinece, TAMC
2007.

[9] Solovay, R.. Draft of paper (or series of papers) on Chaitins work, unpublished notes. May,
1975, 215 pages.

[10] Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin, 1987.
[11] Robert I. Soare. Computability Thoery and Differential Geometry. the Bulletin of Symbolic

Logic, Volume 10, Issue 4 (2004), 457-486.
[12] Liang Yu and Decheng Ding. There is no SW -complete c.e. real. J. Symbolic Logic 69 (2004),

no. 4, 1163–1170.

Department of Mathematics, Southeast University, Nanjing, China
E-mail address: fanyun@seu.edu.cn

Institute of Mathematical Science, Nanjing University,Nanjing, China
E-mail address: yuliang.nju@gmail.com

