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Abstract. We study randomness notions given by higher recursion theory, es-
tablishing the relationships Π1

1-randomness ⊂ Π1
1-Martin-Löf randomness ⊂ ∆1

1-
randomness = ∆1

1-Martin-Löf randomness. We characterize the set of reals that
are low for ∆1

1 randomness as precisely those that are ∆1
1 -traceable. We prove that

there is a perfect set of such reals.

1. Introduction

The study of algorithmic randomness has been focused almost exclusively in recent
years on the arithmetical hierarchy, and with considerable success. In particular, n-
randomness and weak n-randomness were investigated for n < ω. (Recall here that
a real in 2ω is n-random if it is not in the intersection of any nested uniformly Σ0

n

sequence (Vn)n∈ω of sets of reals so that µ(Vn) ≤ 2−n. A real is weakly n-random if it
is not in any Π0

n null set of reals.) Nevertheless, the conceptualization of algorithmic
randomness may be approached from a different plane. If one accepts the view that a
real is random if it does not satisfy any “reasonable” set of properties of measure zero,
then it makes sense to study randomness relative to a naturally defined notion, and
investigate the mathematical properties of reals that are random in the given context.
There are two ways of doing this: The first is to study algorithmic n-randomness by
varying the notion of the underlying measure (recent work of Reimann and Slaman
(unpublished) points to a significant link between being n-random and the measure
that determines randomness), while the second is to retain the classical notion of
Lebesgue measure and raise the logical complexity of the sets of reals being considered
in the investigation of randomness. In this paper we adopt the second approach and
consider randomness within the realm of second order arithmetic. In the spirit of
higher recursion theory, we call this the theory of higher randomness.

From the point of view of higher recursion theory, a natural extension of the notion
of recursive enumerability for subsets of ω in second order arithmetic is Π1

1 definability.
An extensive theory has been developed by Kleene, Spector, Gandy, Sacks and others
(cf. Sacks [16] for a thorough treatment of the subject). Martin-Löf [10] was the first
to study randomness in the setting of higher recursion theory, when he showed that
the intersection of a sequence of hyperarithmetical sets of reals of measure one forms
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a nonempty Σ1
1 set. For almost 40 years this remained the only contribution to the

subject of higher randomness, with the marginal exception of Sacks [16] (Chapter
IV, Exercise 2.5). He defined what we call in this paper Π1

1 and ∆1
1 random reals,

namely those reals avoiding Π1
1 and ∆1

1 null sets, respectively. The recent work of
Hjorth and Nies [5] may be regarded as the first systematic study of randomness via
effective descriptive set theory. In this paper we follow this direction, by examining
various notions we consider to be central to any reasonable theory of randomness. We
study them in the setting of higher recursion theory. The motivation is to understand
how the choice of a mathematical definability setting determines the key properties
of random reals within the structure. We first investigate the analogs of various
naturally defined, competing and inequivalent notions of randomness in first order
theory. We show that under some circumstances, their analogs are equivalent in
second order arithmetic. For instance, a real x is ∆1

1 random if and only if it is ∆1
1

random in the sense of Martin-Löf tests. In the case when ωx
1 = ωCK

1 , the equivalence
extends to x being Π1

1 random and being Π1
1 random in the sense of Martin-Löf

(Theorem 3.3 and Corollary 3.5; see §3 for the definitions). In general, however, the
last two notions do not coincide (Theorem 3.12). In §4 we study an analog of the
notion of a real of hyperimmune-free degree, being ∆1

1 dominated. We show that
the set of ∆1

1-dominated reals has measure 1, and that every Π1
1-random real is ∆1

1-
dominated (Theorem 4.2 and Corollary 4.3). In §5 we study the class of ∆1

1 and
Π1

1 traceable sets as analogs of recursive and r.e. traceable reals. It turns out that
these two classes are identical, of size the continuum (Theorem 5.4), and properly
contained in the class of ∆1

1 dominated reals. This is used to study the class of low
for ∆1

1 random reals where it is proved in §6 Theorem 6.2 that a real is low for ∆1
1

random if and only if it is ∆1
1 traceable. We end the paper with further comments on

higher randomness, one result on low for Π1
1-randomness, and some open problems.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory such
as that presented in Sacks [16]. Fix a standard Π0

2 set H ⊆ ω×2ω×2ω so that for all
x and n ∈ O, there is a unique real y satisfying H(n, x, y). Moreover, if ωx

1 = ωCK
1 ,

then each real z ≤h x is Turing reducible to some y so that H(n, x, y) holds for some
n ∈ O. Roughly speaking, y is the |n|-th Turing jump of x. These y’s are called Hx

sets and denoted by Hx
n ’s.

We use the Cantor pairing function, the bijection p : ω2 → ω given by p(n, s) =
(n+s)2+3n+s

2
, and write 〈n, s〉 = p(n, s).

The following results will be used in later sections.

Theorem 2.1 (Gandy). If A ⊂ 2ω is a nonempty Σ1
1 set, then there is a real x ∈ A

so that Ox ≤h O.

Theorem 2.2 (Spector [17] and Gandy [4]). A ⊂ 2ω is Π1
1 if and only if there is an

arithmetical predicate P (x, y) such that

y ∈ A↔ ∃x ≤h yP (x, y).
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Theorem 2.3 (Sacks[15]). If x is non-hyperarithmetical, then µ({y|y ≥h x}) = 0.

Theorem 2.4 (Sacks [16]). The set {x|x ≥h O} is Π1
1. Moreover, x ≥h O if and

only if ωx
1 > ωCK

1 .

A consequence of the last two theorems above is that the set {x|ωx
1 > ωCK

1 } is a
Π1

1 null set.

The ramified analytical hierarchy was introduced by Kleene, and applied by Fef-
ferman [2] and Cohen [1] to study forcing, a tool that turns out to be powerful in the
investigation of higher randomness theory. We recall some basic facts here following
Sacks [16] whose notations we mostly follow, as given below:

The ramified analytic hierarchy language L(ωCK
1 , ẋ) contains the following symbols:

(1) Number variables: j, k,m, n, ...;
(2) Numerals: 0,1,2,...;
(3) Constant: ẋ;
(4) Ranked set variables: xα, yα, ... where α < ωCK

1 ;
(5) Unranked set variables: x, y, ...;
(6) Others symbols include: +, · (times), ′ (successor) and ∈.

Formulas are built in the usual way. A formula ϕ is ranked if all of its set variables
are ranked. Due to its complexity, the language is not codable in a recursive set but
rather in the countable admissible set LωCK

1
.

To code the language in a uniform way, we fix a Π1
1 path O1 through O (by [3]

such a path exists). Then a ranked set variable xα is coded by the number (2, n)
where n ∈ O1 and |n| = α. Other symbols and formulas are coded recursively.
With such a coding, the set of Gödel number of formulas is Π1

1. Moreover, the set of
Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique
notation for α in O1. Hence there is a recursive function f so that Wf(n) is the set of
Gödel numbers of the ranked formula of rank less than |n| when n ∈ O1 ({We}e is,
as usual, an effective enumeration of r.e. sets).

One now defines a structure A(ωCK
1 , x), where x is a real, analogous to the way

Gödel’s L is defined, by induction on the recursive ordinals. Only at successor stages
are new sets defined in the structure. The reals constructed at a successor stage
are arithmetically definable by the reals constructed at earlier stages. The details
may be found in [16]. We define A(ωCK

1 , x) |= ϕ for a formula ϕ of L(ωCK
1 , ẋ) by

allowing the unranked set variables to range over A(ωCK
1 , x), while the symbol xα will

be interpreted as the reals built before stage α. In fact, the domain of A(ωCK
1 , x) is

the set {y|y ≤h x} if and only if ωx
1 = ωCK

1 (see [16]).
A sentence ϕ of L(ωCK

1 , ẋ) is said to be Σ1
1 if it is ranked, or of the form ∃x1, ...,∃xnψ

for some formula ψ with no unranked set variables bounded by a quantifier.
We have the following result which is a model-theoretic version of the Gandy-

Spector Theorem.

Theorem 2.5 (Sacks [16]). The set {(nϕ, x)|ϕ ∈ Σ1
1 ∧ A(ωCK

1 , x) |= ϕ} is Π1
1, where

nϕ is the Gödel number of ϕ. Moreover, for each Π1
1 set A ⊆ 2ω, there is a formula

ϕ ∈ Σ1
1 so that
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(1) A(ωCK
1 , x) |= ϕ =⇒ x ∈ A;

(2) if ωx
1 = ωCK

1 , then x ∈ A⇔ A(ωCK
1 , x) |= ϕ.

Note that if ϕ is ranked, then both the sets {x|A(ωCK
1 , x) |= ϕ} (the Gödel number

of ϕ is omitted) and {x|A(ωCK
1 , x) |= ¬ϕ} are Π1

1 and so ∆1
1. Moreover, if A ⊆ 2ω

is ∆1
1, then there is a ranked formula ϕ so that x ∈ A ⇔ A(ωCK

1 , x) |= ϕ (see Sacks
[16]).

Theorem 2.6 (Sacks [15]). The set {(nϕ, p)|µ({x|A(ωCK
1 , x) |= ϕ}) > p ∧ ϕ ∈ Σ1

1 ∧
p is a rational number} is Π1

1 where nϕ is the Gödel number of ϕ.

Theorem 2.7 (Sacks [15]). There is a recursive function f : ω ×Q → ω so that for
all n which is Gödel number of a ranked formula

(1) f(n, p) is Gödel number of a ranked formula;
(2) The set {x|A(ωCK

1 , x) |= ϕf(n,p)} ⊇ {x|A(ωCK
1 , x) |= ϕn} is open;

(3) µ({x|A(ωCK
1 , x) |= ϕf(n,p)} − {x|A(ωCK

1 , x) |= ϕn}) < p.

Theorem 2.8 (Sacks [15] and Tanaka [19]). If A is a Π1
1 set of positive measure,

then A contains a hyperarithmetical real.

3. Defining higher randomness notions

A sequence of open sets {Un}n∈ω is a Martin-Löf test (ML-test) if µ(Un) ≤ 2−n

for all n. Given a class of sets of reals Γ (e.g. Π1
1 or ∆1

1), {Un}n∈ω is a Γ-ML test if
{(n, σ)|σ ∈ 2<ω ∧ [σ] ∈ Un} ∈ Γ.

Definition 3.1. Given a class of sets of reals Γ,

(1) A real x is Γ random if no Γ null set contains x.
(2) A real x is Γ-ML-random if x 6∈

⋂
n∈ω Un for any Γ ML-test {Un}n.

In this paper, we focus on ∆1
1-ML, ∆1

1, Π1
1-ML and Π1

1-randomness. First we show
that ∆1

1-randomness and ∆1
1 ML randomness coincide. For this we need a lemma

which will be used later. In effect it says that at the hyperarithmetical level, recursive
randomness and Schnorr randomness are the same.

Lemma 3.2. Let A be a ∆1
1 null set. Then A ⊆

⋂
Un for some ∆1

1-ML test {Un}n∈ω

such that, in addition, µ(Un) = 2−n for each n.

Proof. If A is a ∆1
1-null set, then by Theorem 2.7 there is a recursive sequence of

∆1
1 open sets Un for which µ(Un) < 2−n and A ⊆ Un for all n. So {Un}n∈ω is a

∆1
1-ML-test.
It now suffices to show that the ∆1

1-ML test {Un}n∈ω can be improved to a ∆1
1-ML

test {Ûn}n∈ω such that Un ⊆ Ûn and µ(Ûn) = 2−n for each n. For this, it clearly
suffices to show that for each ∆1

1 open set S ⊆ 2ω and each rational q ≥ µ(S) one can

effectively obtain a ∆1
1 open set Ŝ such that S ⊆ Ŝ ⊆ 2ω and µ(Ŝ) = q. Recall the

isometry F between the conull subset of Cantor space 2ω consisting of the coinfinite
sets and the interval I = [0, 1)R: for a coinfinite set z ⊆ ω, let

F (z) =
∑
i∈z

2−i−1.



HIGHER RANDOMNESS NOTIONS AND THEIR LOWNESS PROPERTIES 5

Note that under F , the product measure µ turns into Lebesgue measure, and the
lexicographical ordering <L becomes the usual ordering of real numbers. The function
f : I → I given by f(x) = µ([0, x)∪F (S)) is continuous, non-decreasing and f(0) ≤ q
while f(x) ≥ x for each x ∈ I. Thus there is a least r such that f(r) = q. Since
f ∈ ∆1

1 and the left cut of r is {s ∈ Q|f(s) < q}, the real number r is ∆1
1, so F (z) = r

for some hyperarithmetical coinfinite z ⊆ ω. Now the open set Ŝ = {y|y <L z} ∪ S
is as desired. �

Theorem 3.3. The following are equivalent for a real x.

(i) x is ∆1
1-random

(ii) x is ∆1
1-ML random

Proof. (i) ⇒ (ii): If {Ûn}n∈ω is a ∆1
1-ML-test, then V =

⋂
n∈ω Ûn is a ∆1

1-null set. So
x 6∈ V .

(ii) ⇒ (i): This is an immediate consequence of the previous lemma.
�

Hjorth and Nies [5] gave a direct proof of the following result, which may also
be obtained as a special case of the more general result [7, Theorem 1A-2]. We
give yet another proof via the ramified analytical hierarchy, in order to extract more
information about the set.

Theorem 3.4 (Kechris [7]; Hjorth and Nies [5]). There is a largest null Π1
1-set.

Proof. Define

P = {(n, x)|n is the Gödel number of a ranked formula

∧ A(ωCK
1 , x) � ϕn(ẋ) ∧ µ({x|A(ωCK

1 , x) � ¬ϕn(ẋ)}) ≥ 1)}

and

Qn = {x|(n, x) ∈ P}.
Define

Q =
⋃
n∈ω

Qn ∪ {x|ωx
1 > ωCK

1 }.

By Theorem 2.6, the sequence {Qn}n∈ω is a Π1
1-sequence of ∆1

1 sets. Q is Π1
1. More-

over, µ(Qn) = 0 for all n ∈ ω. Since µ({x|ωCK
1 = ωx

1}) = 1, µ(Q) = 0.
If A is a Π1

1 null set, then, by Theorem 2.5, there is a ranked formula ϕ ∈ Σ1
1 so

that if ωx
1 = ωCK

1 , then x ∈ A ⇔ A(ωCK
1 , x) |= ∃yϕ(ẋ, y). So if ωx

1 = ωCK
1 , then

x ∈ A⇔ A(ωCK
1 , x) |= ∃yαϕ(ẋ, yα) for some α < ωCK

1 . Since the set {x|ωx
1 > ωCK

1 } is
null, it is easy to see that A ⊆ Q.

Thus Q is a largest null Π1
1 set. �

Corollary 3.5. Suppose ωx
1 = ωCK

1 . Then x is ∆1
1-random if and only if x is Π1

1-
ML-random, and this is equivalent to x being Π1

1-random.
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Proof. Clearly Π1
1-randomness implies Π1

1-ML-randomness. By Theorem 3.3, it suf-
fices to show that if x is ∆1

1-random and ωx
1 = ωCK

1 , then x is Π1
1-random. Assume

ωx
1 = ωCK

1 . If x is ∆1
1-random, then x 6∈ Qn for all n. So x 6∈ Q. Hence x is

Π1
1-random. �

In contrast to Theorem 3.4, we have the following.

Proposition 3.6. There is no largest null Σ1
1-set.

Proof. Suppose A is the largest null Σ1
1-set. Then by the Tanaka-Sacks Theorem 2.8,

there is a ∆1
1 real x 6∈ A. X = {x} is ∆1

1 and X ∩ A = ∅, a contradiction. �

By Theorem 2.4 and the proof of Theorem 3.4, we have the following result.

Proposition 3.7 (Hjorth and Nies [5]). If x is Π1
1-random, then ωx

1 = ωCK
1 .

Together with Corollary 3.5, the Π1
1 random reals are precisely the ∆1

1 random reals
x that also satisfy ωx

1 = ωCK
1 .

By the Gandy Basis Theorem 2.1, there is a Π1
1-random real x with Ox ≤h O.

Theorem 3.8 (Hjorth and Nies [5]). Given any real x, there is a Π1
1-ML-random

real y ≥h x.

Combining Theorem 3.8 and Proposition 3.7, we have the following consequence.

Corollary 3.9 (Hjorth and Nies [5]). There is a Π1
1-ML-random real that is not

Π1
1-random.

We now separate ∆1
1 randomness from Π1

1-ML randomness, which is needed for
the proof of Theorem 3.12 below. If one views the randomness notions as opera-
tors mapping oracles to classes, the separation can be obtained as a consequence
of Theorem 5.4, Theorem 6.2, and the result of Hjorth and Nies [5] that every low
for Π1

1-ML random real is hyperarithmetical. We now obtain the separation for the
plain randomness notions. Recall that in [5] a Π1

1-version of prefix free Kolmogorov
complexity was introduced, denoted by K. It was shown that a Theorem analogous
to Schnorr’s Theorem holds, namely: z is Π1

1-ML random if and only if there is a
b ∈ ω such that for each n, K(z � n) ≥ n − b. So the following result implies the
separation:

Theorem 3.10. Let h be a nondecreasing ∆1
1 function such that limn h(n) = ∞.

Then there is a ∆1
1 random real z such that ∀∞n K(z � n | n) ≤ h(n).

Here, K(σ | n) is the complexity of σ given n. A number n is encoded in some
effective way by a string (say the binary expansion). Then K(σ) ≤ K(σ | n)+2 log n
(up to constants), so if we let h(n) = log n then we obtain K(z � n) ≤ 3 log n.

First we need some preliminaries. A function f : 2<ω → R+∪{0} is hyperarithmeti-
cal if there is a hyperarithmetical approximation function g : 2<ω × ω → Q+ ∪ {0}
such that for each σ and n, we have |f(σ) − g(σ, n)| ≤ 2−n. A hyperarithmetical
martingale is a hyperarithmetical function M : 2<ω → R+ ∪ {0} that satisfies for
every σ ∈ 2<ω the martingale equality M(σ0) +M(σ1) = 2M(σ). For a martingale
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M and a real z, let M(z) = supnM(z � n). We say that the martingale M suc-
ceeds on z if the capital it reaches along z is unbounded, that is, M(z) = ∞. Let
S(M) = {z|M succeeds on z}.

Of course, S(M) is a ∆1
1 null set for any hyperarithmetical martingale M . Here is

the converse. This equivalence is an effectivization of Ville’s theorem.

Lemma 3.11. Let A be a ∆1
1 null set. Then there is a hyperarithmetical martingale

MA such that A ⊆ S(M).

Proof. By Lemma 3.2 there is a ∆1
1 ML test {Un}n∈ω such that µ(Un) = 2−n and

A ⊆ Un for all n. Let Mn(σ) = µ(Un ∩ [σ])2|σ|. Then Mn is a hyperarithmetical
martingale, uniformly in n, and Mn(z) = 1 if z ∈ Un. Moreover, the start capital
Mn(∅) is 2−n. Now let M(σ) =

∑
nMn(σ), then M is as required. �

The proof of Theorem 3.10 is a straightforward adaptation of the proof of a corre-
sponding theorem for the case of recursively random reals, see for instance [13, Thm
5.33]. We build a real z of slowly growing initial segment complexity (in the sense
above) on which no Q-valued hyperarithmetical martingale L succeeds. The martin-
gale MA is not necessarily Q-valued, but by adaptation of a standard argument due
to Schnorr (see [13, Prop. 5.24]), for each hyperarithmetical martingale M there is a

Q-valued hyperarithmetical martingale M̂ such that M̂(σ) ≥M(σ) for each σ.

In the following theorem we summarize the implications between the various ran-
domness notions.

Theorem 3.12. ∆1
1(O)-randomness ⇒ Π1

1-randomness ⇒ Π1
1-ML randomness ⇒

∆1
1-randomness ⇔ ∆1

1-ML randomness, and none of the implications may be reversed.

Proof. ∆1
1(O)-randomness ⇒ Π1

1-randomness: Fix an O-recursive well ordering <R

on ω of order type ωCK
1 . Then

ωx
1 > ωCK

1 ⇐⇒
∃S ⊆ ω×ω∃f ∈ ωω(S ≤T x∧∀n∃m(f(m) = n)∧∀n∀m(S(n,m) ⇐⇒ f(n) <R f(m))).

So the set {x|ωx
1 > ωCK

1 } is Σ1
1(O). By Theorem 2.4, {x|ωx

1 > ωCK
1 } is ∆1

1(O).
Note that the sequence {Qn}n∈ω is a Π1

1-sequence, and so is an O-recursive sequence
of ∆1

1(O) sets. So Q =
⋃

n∈ω Qn ∪ {x|ωx
1 > ωCK

1 } is a null ∆1
1(O) set. Hence ∆1

1(O)-
randomness ⇒ Π1

1-randomness. By the Gandy Basis Theorem 2.1, there is a Π1
1

random real x ≤h O. Now x cannot be ∆1
1(O)-random. Thus the implication cannot

be reversed.

Π1
1-randomness ⇒ Π1

1-ML randomness: It is clear that Π1
1-randomness ⊆ Π1

1-ML
randomness. By Theorem 3.8, there exists a Π1

1-ML random real x ≥h O. x cannot
be Π1

1-random.

Obviously Π1
1-ML randomness ⇒ ∆1

1-randomness. It follows from the Theorem
3.10 that the implication cannot be reversed.

Finally, ∆1
1-randomness ⇔ ∆1

1-ML-randomness is a consequence of Theorem 3.3.
�
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The reader may wonder why we do not study Σ1
1-randomness. In fact this is

done implicitly—the following proposition says that Σ1
1-randomness coincides with

∆1
1-randomness.

Proposition 3.13. If A is Π1
1 and µ(A) = 1, then there is a ∆1

1 conull set B ⊆ A.

Proof. Suppose A is a Π1
1-set for which µ(A) = 1. Then, by Theorem 2.5, there is a

ranked formula ϕ(ẋ, y) so that for all n ∈ O1, An ⊆ A, where An = {x|A(ωCK
1 , x) �

∃y|n|ϕ(ẋ, y|n|)}). Since the set {x|ωx
1 > ωCK

1 } is null and An ⊆ Am for all n <o m
in O1, by Theorem 2.5, µ(A) = µ(

⋃
n∈O1

An). Define R(k, n) if and only if µ(An) >

1−2−k. By Theorem 2.6, R is a Π1
1 relation. By the Π1

1 Uniformitarian Theorem (see
[12]), there is a Π1

1 function f : ω → ω uniformizing R. Since µ(A) = 1, f is a total
function. So f is ∆1

1. Hence the range S of f is ∆1
1. Then there must a recursive

ordinal α so that |n| < α for all n ∈ S (otherwise, O1 would be ∆1
1). Fix the notation

n ∈ O1 so that |n| = α. Define B = An. Then µ(B) = 1 and B ⊆ A. �

4. ∆1
1-dominated reals

A real x is hyperimmune-free if every function Turing reducible to x is dominated
by a recursive function. The following may be viewed as an analog in the setting of
effective descriptive set theory:

Definition 4.1. A real x is ∆1
1-dominated if for all functions f : ω → ω with f ≤h x,

there is a hyperarithmetic function g so that g(n) > f(n) for all n (written as g > f).

Theorem 4.2. µ({x|x is ∆1
1-dominated}) = 1.

Proof. We prove that for any rational number p, the measure of

{x|x is ∆1
1-dominated}

is not less than p. We apply a fusion argument to achieve this.
Firstly we show that for any number e, rational r, notation n ∈ O and ∆1

1 set A
for which p+ r < µ(A), there is a hyperarithmetic function f so that

µ({x|x ∈ A ∧ ΦHx
n

e is total =⇒ ΦHx
n

e < f}) > p+
r

2
.

Since the set {(x, i,m)|ΦHx
n

e (i) ↓ =⇒ Φ
Hx

n
e (i) < m} is ∆1

1, there is a ranked formula

ϕ(ẋ, i,m) so that A(ωCK
1 , x) |= ϕ(ẋ, i,m) if and only if Φ

Hx
n

e (i) < m. Since A is ∆1
1,

by Theorem 2.6, the set

C = {(i,m, k)| ∧ µ({x|x ∈ A ∧ (ΦHx
n

e (i) ↓ =⇒ ΦHx
n

e (i) < m)}) > µ(A)− r

2k+2
}

is ∆1
1. Note that for each k, there is a number m so that (k,m, k) ∈ C. So there is a

∆1
1 total function f so that for all k, (k, f(k), k) ∈ C. Define

Bk = {x|x ∈ A ∧ (ΦHx
n

e (k) ↓ =⇒ ΦHx
n

e (k) < f(k))}.
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Then the set {(k, x)|x ∈ Bk} is ∆1
1. Moreover, for every k, Bk ⊆ A and µ(Bk) >

µ(A)− r
2k+2 . So the set B =

⋂
k Bk is ∆1

1 and

µ(B) ≥ µ(A)−
∑
k≥0

µ(A−Bk) ≥ p+ r −
∑
k≥0

r

2k+2
= p+

r

2
.

Moreover, for every x ∈ B, if Φ
Hx

n
e is total, then Φ

Hx
n

e < f . Thus we may construct
an ω-sequence of ∆1

1 sets {B〈e,n〉}e∈ω∧n∈O so that for all e ∈ ω and n ∈ O,

(1) If 〈e, n〉 > 〈e′, n′〉, then B〈e,n〉 ⊆ B〈e′,n′〉;
(2) µ(B〈e,n〉) > p.

Define D =
⋂

e∈ω∧n∈O B
〈e,n〉. Then D ⊆ {x|x is ∆1

1-dominated} and µ(D) ≥ p.
Moreover, each real in D is ∆1

1-dominated. �

Corollary 4.3. Each Π1
1-random real is ∆1

1-dominated.

Proof. By the proof of Theorem 4.2, for each e ∈ ω and n ∈ O, the set Ae,n =

{x|∃f ∈ ∆1
1(Φ

Hx
n

e is total =⇒ Φ
Hx

n
e < f)} has measure 1. Note that Ae,n is Π1

1. So,
by Proposition 3.13, if x is ∆1

1-random, then x 6∈ Ae,n. Now if x is Π1
1-random, then,

by Proposition 3.7, ωCK
1 = ωx

1 . So if g ≤h x, then g = Φ
Hx

n
e for some e, n. Thus each

Π1
1-random is ∆1

1-dominated. �

Note that Π1
1-randomness cannot be improved to ∆1

1-randomness in Corollary 4.3
since there exists a ∆1

1 random real x ≥h O (see [5]) but {x|x is ∆1
1-dominated } ⊂

{x|ωx
1 = ωCK

1 } by the following proposition.

Proposition 4.4. {x|x is ∆1
1-dominated } ⊂ {x|ωx

1 = ωCK
1 }.

Proof. If ωx
1 > ωCK

1 , then x ≥h O. Since there is an O-arithmetical enumeration of
∆1

1 functions {fn}n∈ω, there is a ∆1
1(x) enumeration. Define g(n) = fn(n) + 1. Then

g ≤h x. So x is not ∆1
1-dominated. Thus {x|x is ∆1

1-dominated } ⊆ {x|ωx
1 = ωCK

1 }.
To see that the relation is proper, we apply Cohen forcing developed in [16]. The

forcing conditions are elements of 2<ω. A real is said to be generic if each Σ1
1-

sentence or its negation is forced by a finite initial segment of x. So generic reals
form a comeager set. Feferman (see [2] or [16]) proved that A(ωCK

1 , x) satisfies ∆1
1-

comprehension for any generic real x. So ωx
1 = ωCK

1 (see [16]). We claim that no
generic real can be ∆1

1-dominated.
Given a real x, define gx(n) = mn if mn is the n-th bit of x so that x(mn) = 1. So

there is a recursive oracle function Φx = gx for all x. Hence there is a ranked (and
so Σ1

1) formula ϕ defining gx, i.e. gx(n) = m⇔ A(ωCK
1 , x) |= ϕ(ẋ, n,m). For any ∆1

1

function f , there is a ranked formula ψf defining f , i.e. f(n) = m ⇔ A(ωCK
1 , x) |=

ψf (n,m). So if A(ωCK
1 , x) |= ∀n(f(n) > gẋ(n)), then there is a finite string p ≺ x so

that p  ∀n(f(n) > gẋ(n)). This is impossible since one can easily find a condition q
stronger then p so that q  ∃n(f(n) < gẋ(n)).

Thus {x|x is ∆1
1-dominated } ⊂ {x|ωx

1 = ωCK
1 }. �

One might conjecture that ∆1
1-dominated reals form a basis for Σ1

1 sets. This is
however false.
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Proposition 4.5. There is a nonempty Σ1
1 A ⊆ 2ω which does not contain any

∆1
1-dominated real.

Proof. As in the proof of Proposition 4.4, there is a recursive oracle function x 7→ Φx

so that the set A = {x|∀f ∈ ∆1
1(f 6≥ Φx)} is non-empty. By Theorem 2.2 (the

Spector-Gandy Theorem), A is a nonempty Σ1
1 set. �

5. ∆1
1-traceable reals

Next we consider the notions analogous to being r.e. traceable and recursively
traceable in first order randomness theory, both of which are studied in [20, 9] (see
for instance [9, Section 2.2] for the formal definition). The corresponding notions are
called Π1

1 traceability and ∆1
1 traceability respectively. We shall show that they are

in fact equivalent.

Definition 5.1. (i) Let h : ω → ω be a nondecreasing unbounded function that is
hyperarithmetical. A Π1

1- trace/∆1
1-trace with bound h is a uniformly Π1

1/uniformly
∆1

1 sequence (Te)e∈ω such that |Te| ≤ h(e) for each e.
(ii) A ⊆ ω is Π1

1-traceable/∆1
1-traceable if there is h ∈ ∆1

1 such that, for each
f ≤h A, there is a Π1

1-trace/∆1
1 -trace with bound h such that, for each e,

f(e) ∈ Te.

Note that, if (Te)e∈ω is a uniformly ∆1
1 sequence of finite sets, then there is g ∈ ∆1

1

such that for each e, Dg(e) = Te (where Dn is the nth finite set according to some
recursive ordering). Thus

g(e) = µn ∀u [u ∈ Dn ↔ u ∈ Te].

In this formulation, the definition of ∆1
1 traceability is very close to that of recursive

traceability. It is not difficult to see that every ∆1
1-traceable real is ∆1

1-dominated.
Also notice that the choice of a bound as a witness for traceability is immaterial:

Proposition 5.2 (Terwijn and Zambella [20]). Let A be a real that is ∆1
1 traceable

with bound h. Then for any monotone and unbounded ∆1
1 function h′, A is ∆1

1

traceable with bound h′. The same holds for Π1
1 traceability.

The class of r.e. traceable sets is strictly larger than the class of recursively traceable
sets, since the former contains nonrecursive r.e. sets [9]. In contrast, we have the
following equivalence:

Proposition 5.3. If x is Π1
1-traceable, then x is ∆1

1-traceable.

Proof. We first claim that ωx
1 = ωCK

1 . Otherwise x ≥h O. So it is sufficient to show
that O is not Π1

1 traceable. Since each Π1
1 set is many-one reducible to O [14, 5.4 I],

there is a uniformly O-recursive list (T e)e∈ω of all Π1
1-traces for the bound h(e) = e.

Define f ≤h O by

f(e) = µn [n 6∈ T e
e ],

then f does not have a Π1
1 trace.
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To complete the proof, given f ≤h x, there is a Π1
1 trace (Te)e∈ω such that f(e) ∈ Te

for each e. Then there is a recursive function h : ω2 → ω so that k ∈ Te if and only
if h(k, e) ∈ O. Define a Π1

1(x)-relation R ⊆ ω ×O by

(e, n) ∈ R⇔ h(e, f(e)) ∈ On,

where On = {m ∈ O||m| < |n|}, a ∆1
1 set. Note that for each e, there is a notation

n ∈ O so that (e, n) ∈ R. By the Kreisel Uniformization Theorem, there is a total
Π1

1(x) (and so ∆1
1(x)) function g uniformizing R. Hence the range S = {n|∃e[g(e) =

n]} of g is a ∆1
1(x) set. Since ωx

1 = ωCK
1 , there exists a notation n0 ∈ O so that

S ⊆ On0 (otherwise the well-founded relation “i <o j” would be ∆1
1(x)). Define a set

T̂e ⊆ Te as follows:

k ∈ T̂e ⇔ h(k, e) ∈ On0 .

By the definition of n0, f(e) ∈ T̂e for all e ∈ ω. Note that the relation n ∈ T̂e is

∆1
1. Hence (T̂e)e∈ω is a ∆1

1-trace for f . So f is ∆1
1-traceable. �

Theorem 5.4. There are 2ℵ0-many ∆1
1-traceable reals.

Proof. We apply Sacks forcing to show this (see [16]). The forcing conditions are
perfect trees coded by ∆1

1 reals. A real x is Sacks generic if for each Σ1
1 sentence

ϕ, there is a condition T so that x ∈ T and T  ϕ or T  ¬ϕ. Sacks proved that
the set {(T, nϕ)|ϕ ∈ Σ1

1 ∧ T  ϕ} is Π1
1. We claim that each Sacks generic real is

∆1
1-traceable. Thus there are 2ℵ0-many ∆1

1-traceable reals.
Suppose x is a Sacks generic real. Since x has minimal hyperdegree (see [16]),

ωCK
1 = ωx

1 . So if f ≤h x, then there is a number e and a notation n ∈ O so that

Φ
Hx

n
e = f . Since the set A = {(y, n, i, j)|ΦHy

n
e (i) = j} is ∆1

1, there exists a ranked

formula defining A. Since Φ
Hx

n
e is total, by the definition of Sacks genericity, there is

a condition T  “Φ
Hẋ

n
e is total”. We show that for each condition S ⊆ T , there is a

condition Q ⊆ S so that Q  “∃f(f ∈ ∆1
1 ∧ ∀i(Φ

Hẋ
n

e (i) ∈ Df(i) ∧ |Df(i)| ≤ 2i+1))”.

Then, by the definition of forcing, there is a ∆1
1 function f so that for all i, Φ

Hx
n

e (i) ∈
Df(i) ∧ |Df(i)| ≤ 2i+1.

Since T  “Φ
Hẋ

n
e is total”, S  “Φ

Hẋ
n

e is total”.
Case (1). There is a condition R ⊆ S so that for all i, j0, j1, for all conditions

P0, P1 ⊆ R, P0  Φ
Hẋ

n
e (i) = j0 and P1  Φ

Hẋ
n

e (i) = j1 implies j0 = j1. Then we define

f(i) = j if and only if there exists a condition P ⊆ R so that P  Φ
Hẋ

n
e (i) = j. Then

f is a total Π1
1-function and hence ∆1

1. This implies that R  f = Φ
Hẋ

n
e .

Case (2). Otherwise. Define a relationR(P, σ, i, j0, j1, Q0, Q1) if and only if i ≥ |σ|,
j0 6= j1, Q0 ∩ Q1 = ∅ and Qk ⊆ P ∧ Qk  Φ

Hẋ
n

e (i) = jk for k ≤ 1. Obviously R is
a Π1

1 relation. By Kreisel’s Uniformization Theorem, there is a partial Π1
1 function

F : 2ω × 2<ω → (ω)3 × (2ω)2 so that R(P, σ, i, j0, j1, Q0, Q1) for some i, j0, j1, Q0, Q1

if and only if R(P, σ, F (P, σ)). Without loss of generality, we assume that if P 

Φ
Hẋ

n
e (i) = ji then for all k ≤ i, P  Φ

Hẋ
n

e (k) = jk for some jk. We do an induction on
ω. During the construction, we will define a Π1

1 sequence of conditions {Pσ}σ∈2<ω .
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Step 0, define P∅ = S.
Step n+1, for each σ ∈ 2n, define Pσa0 = Q0, Pσa1 = Q1 if F (Pσ, σ) = (i, j0, j1, Q0, Q1).

Define G(σ) = Pσ. Then G is a total Π1
1 and so ∆1

1 function.
Note that for each σ, G(σa0)∩G(σa1) = ∅ and if σ � τ then G(σ) ⊇ G(τ). Define

Q =
⋂
n

⋃
σ∈2n

G(σ).

Then Q is a ∆1
1 perfect set.

Define a function g :
⋃

i∈ω i × 2i+1 → ω so that g(i, σ) = k if σ ∈ 2i+1 and

G(σ)  Φ
Hẋ

n
e (i) = k. Hence g is a total Π1

1 and therefore ∆1
1 function. Define f(i) = j

if j is the least number such that Dj = {g(i, σ)|σ ∈ 2i+1}. Then f is a ∆1
1 function

and |Df(i)| ≤ 2i+1 for all i. Since for all i, Q ⊆
⋃

σ∈2n G(σ), it is easy to see that

Q  Φ
Hẋ

n
e (i) ∈ Df(i).

So x is ∆1
1-traceable. �

6. Lowness for ∆1
1-randomness

Definition 6.1. Given a relativizable class of reals C (for instance, C is the class of
random reals), a real x is low for C if C = Cx.

For a randomness notion C, we have Cx ⊆ C, and usually one would expect Cx to
be a proper subset of C. Thus being low for C means to be computationally weak, in
the sense that the extra computational power of x does not help to recognize more
reals as nonrandom.

It is shown in [5] that x is low for Π1
1-ML randomness if and only if x is hyperarith-

metical. The main result of this section is that a real is low for ∆1
1-randomness if and

only if it is ∆1
1 traceable. This corresponds to the main result in [9] that a real A is

low for Schnorr randomness if and only if it is recursively traceable. That result was
an extension of the theorem in [20] that A is low for Schnorr tests if and only if it
is recursively traceable. The equivalence of (i) and (ii) in the theorem below reveals
this parallel phenomenon in the realm of effective descriptive set theory.

For D ⊂ 2<ω we let [D]� denote the open set
⋃
{[σ]|σ ∈ D}. We often identify

an open set with the corresponding set of strings closed under extension. We let Se

be the eth finite subset of 2<ω under a suitable effective enumeration. Thus Se is a
finite set of strings, and [Se]

� =
⋃

σ∈Se
[σ] is then the clopen set coded by e ∈ ω.

Theorem 6.2. The following are equivalent for a real x.

(i) x is ∆1
1 traceable (or equivalently, Π1

1 traceable).
(ii) Each ∆1

1(x) null set is contained in a ∆1
1 null set.

(iii) x is low for ∆1
1 randomness.

(iv) Each Π1
1-ML random set is ∆1

1(x) random.

Proof. (i) → (ii): Assume that x is ∆1
1 traceable. Let S be a ∆1

1(x) null set. By
Lemma 3.2 relativized to x, S ⊆

⋂
Un for a ∆1

1(x)-ML test {Un}n∈ω such that µ(Un) =



HIGHER RANDOMNESS NOTIONS AND THEIR LOWNESS PROPERTIES 13

2−n for each n. There is a function f ≤h x such that [Sf(〈n,s〉)]
� =: Un,s satisfies

Un,s ⊆ Un,s+1, Un =
⋃

s∈ω Un,s, and, moreover, µ(Un,s) > 2−n(1− 2−s).
Let T = (Te)e∈ω be a ∆1

1 trace of f . By Proposition 5.2, we may choose T such
that in addition |Te| ≤ e for each e > 0.

We now define a subtrace T̂ of T , i.e., T̂〈n,s〉 ⊆ T〈n,s〉 for each n, s. The objective

is to define open sets Vn via T̂ (in a way to be specified) small enough to give us
a ∆1

1- null set V =
⋂

n Vn, yet large enough as to keep all “relevant” reals out of

T〈n,s〉 − T̂〈n,s〉, so that
⋂

n∈ω Un ⊆ V.

Let T̂〈n,s〉 be the set of e ∈ T〈n,s〉 such that 2−n(1 − 2−s) ≤ µ([Se]
�) ≤ 2−n and

[Se]
� ⊇ [Sd]

� for some d ∈ T̂〈n,s−1〉 (where T̂〈n,−1〉 = ω). Note that f(〈n, s〉) ∈ T̂〈n,s〉.
Let

Vn =
⋃ {

[Se]
�|e ∈ T̂〈n,s〉, s ∈ ω

}
.

Then µ(Vn) ≤ 2−n|T̂〈n,0〉| +
∑

s∈ω 2−s2−n|T̂〈n,s〉|. Since |T̂〈n,s〉| ≤ |T〈n,s〉| ≤ 〈n, s〉
for 〈n, s〉 6= 0, and 〈n, s〉 has only polynomial growth in n and s, it is clear that

limn

∑
s∈ω 2−s2−n|T̂〈n,s〉| = 0, and hence limn µ(Vn) = 0. Then V =

⋂
n Vn is a ∆1

1-null
set and

⋂
Un ⊆ V.

(ii) ⇒ (iii) and (iii) ⇒ (iv) are immediate.
(iv) ⇒ (i): In [9, Lemma 4.7], it is shown that, if each ML-random set is Schnorr

random relative to x, then x is r.e. traceable. With merely notational changes, the
proof works in the present situation. First some preliminaries. Recall that K(σ)
denotes the Π1

1 version of prefix free Kolmogorov complexity. For b ∈ ω − {0}, let
Rb = [{σ ∈ 2<ω| K(σ) ≤ |σ| − b}]. In [5, Theorem 3.9] it is shown that (Rb)b∈ω is
a universal test for Π1

1-ML randomness. Thus, by our hypothesis in (iv), we have
C ⊆

⋂
bRb for each ∆1

1(x) null set C.
For k, l ∈ ω define the clopen set

Bk,l =
⋃ {

[τ1k]|τ ∈ 2<ω, |τ | = l
}
,

where 1k is a string of 1’s of length k. Note that µ(Bk,l) = 2−k for all l.

Given σ ∈ 2<ω and a measurable set C ⊆ 2ω, let µσ(C) = µ(C∩[σ])
µ[σ]

. For an open set

W let

W |σ =
⋃
{[τ ]|τ ∈ 2<ω, [στ ] ⊆ W} .

Now to find a trace for a given function g ≤h x, define the ∆1
1(x)-ML test U g by

stipulating that

U g
n =

⋃
k>n

Bk,g(k).

Hence by assumption
⋂

n U
g
n ⊆

⋂
b∈ω Rb. Thus V = R3 contains

⋂
n U

g
n and µ(V ) < 1

4
.

We may assume throughout that g(k) ≥ k for every k because from a trace for g(k)+k
one can obtain a trace for g with the same bound. By [9, Lemma 4.4], there exist
σ and n such that µσ(U g

n − V ) = 0 and µσ(V ) < 1/4. As U g
0 ⊇ U g

1 ⊇ · · · , we can
choose σ and n with the additional property n ≥ |σ|. Hence for each k > n, we have
g(k) ≥ k > n ≥ |σ| and hence g(k) ≥ |σ|.
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Let Ṽ = V |σ, let g̃(k) = max{0, g(k)− |σ|}, and

Tk =
{
l|µ(Bk,l − Ṽ ) < 2−(l+3)

}
.

Note that for each l ∈ ω, if l ≥ |σ| then Bk,l|σ = Bk,l−|σ|. So since g(k) ≥ |σ|,

U g
n|σ =

⋃
k>n

Bk,g(k)|σ =
⋃
k>n

Bk,g(k)−|σ| = U g̃
n,

and we obtain µ(U g̃
n − Ṽ ) = µσ(U g

n − V ) = 0. Hence g̃(k) ∈ Tk for all k > n.
Since Ṽ is a Π1

1 open set, it is evident that T is a Π1
1 set of integers. A trace for g

is obtained as follows:

Gk =

{
{l + |σ||l ∈ Tk} if k > n;

{g(k)} if k ≤ n.

We now show that G is a trace for g, i.e. for all k ∈ ω, g(k) ∈ Gk. If k ≤ n then
this holds by definition of Gk. Thus assume k > n. Then g(k) > k > n > |σ|, so
g̃(k) = g(k)− |σ| so g(k) = g̃(k) + |σ|. As k > n, g̃(k) ∈ Tk and hence g(k) ∈ Gk.

Clearly G is Π1
1; so it remains to show that |Gk| is hyperarithmetically bounded,

independently of g. As |Gk| = |Tk| for k > n and |Gk| = 1 for k ≤ n, this is a
consequence of Lemma 4.8 of [9], reproduced below: �

Lemma 6.3 ([9]). If Ṽ is a measurable set with µ(Ṽ ) < 1
4
, and Tk = {l|µ(Bk,l− Ṽ ) <

2−(l+3)}, then for k ≥ 1, |Tk| < 2kk.

Corollary 6.4. There exists a ∆1
1-dominated real which is not ∆1

1-traceable.

Proof. By Theorem 4.2, ∆1
1-dominated reals form a measure 1 set but, by Theorem

6.2, the set of ∆1
1-traceable reals form a null set, being disjoint from the set of ∆1

1-
random reals. �

7. Concluding remarks

A real x is said to be Π1
1-random cuppable, or random cuppable for short, if x⊕y ≥h

O for all Π1
1-random real y. It is known [5] that if x is low for Π1

1-randomness then
ωCK

1 = ωx
1 . Harrington, Nies and Slaman have obtained a further result on low for

Π1
1 randomness. We include a proof of this result here.

Theorem 7.1 (with Harrington and Slaman). A real x is low for Π1
1-randomness if

and only if x is low for ∆1
1-randomness and not random cuppable.

Proof. For the direction from left to right, suppose x is low for Π1
1-randomness, that

is, each Π1
1 random real is Π1

1(x) random. Since x 6≥h O, the Π1
1(x) set {y|y⊕x ≥h O}

is null, by relativizing Theorems 2.3 and 2.4. Thus x is not random cuppable. To see
that x is low for ∆1

1-randomness, suppose for a contradiction that y is a ∆1
1-random

real that is not ∆1
1(x)-random. Thus there is a ∆1

1(x)-null set A containing y. By the
main result in Martin-Löf [10], the null set B =

⋃
{C ⊂ 2ω|µ(C) = 0 ∧ C is ∆1

1} is
Π1

1. Since y ∈ A−B, A−B is a nonempty Σ1
1(x) set. By the Gandy Basis Theorem
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2.1 relative to x, there is a real z ∈ A − B so that ωz⊕x
1 = ωx

1 = ωCK
1 . Then z is

∆1
1-random but not ∆1

1(x)-random, so by Corollary 3.5 and its relativization to x, z
is Π1

1-random but not Π1
1(x)-random, a contradiction.

For the other direction, suppose x is low for ∆1
1-randomness and not random cup-

pable. Then x 6≥h O. Suppose z is a Π1
1 random real. By the proof of Theorem 3.4

relative to x, the largest Π1
1(x) null set Q(x) is a union of countably many ∆1

1(x)
null sets Qn(x) and the Π1

1(x) null set {y|y ⊕ x ≥h O}. Since x is low for ∆1
1-

randomness, z 6∈
⋃

nQn(x). Since x is non-Π1
1-random cuppable, z⊕ x 6≥h O. So z is

Π1
1(x)-random. �

The following question remains open:

Question 7.2. Is there a real x that is low for Π1
1-randomness but not hyperarith-

metical?

Reimann and Slaman have shown that if x is not 1-random for any continuous
measure, then x is hyperarithmetical. In an analogy, one can ask:

Question 7.3. Is there a characterization of a real x that is not Π1
1-ML or ∆1

1 random
for any continuous measure?

One may also study higher genericity theory as has been done for classical genericity
theory ([21] and [18]). The third author has proved that lowness for Π1

1-genericity
is the same as being hyperarithmetical and there exists a non-hyperarithmetical real
that is low for ∆1

1-genericity.

The results of the previous sections show that several of the key notions of ran-
domness, demonstrably different in first order theory, coalesce into equivalent ones
in effective descriptive set theory. Thus finer distinctions are revealed only at the
arithmetic level. It is tempting to venture beyond Π1

1 and ∆1
1 and explore the land-

scape of definable randomness in the analytical hierarchy. However, this will lead us
very quickly to statements undecidable in ZFC. Assuming projective determinacy
(PD), Kechris [6] has proved several measure and category-theoretic results in the
analytical hierarchy in parallel with results for the Π1

1 case in [15].1 We believe that
most of the results proved in the previous sections remain valid upon replacing Π1

1

with Π1
2n+1 or Σ1

2n under PD. However it seems that PD is not a correct tool to use
for analyzing the analytical sets since it provides limited recursion-theoretic informa-
tion. For example, PD does not give a ramified analytical hierarchy with properties
similar to what one has for Π1

1 sets. Instead, some deep results in inner model theory
are necessary for this. Inner model theory (say Q-theory [8]) has been applied by
some to study descriptive set theory in order to obtain powerful characterizations
of analytical sets (under large cardinal assumptions, see [8])2. The results are of
recursion-theoretic interest, and this area is worth further investigation.

1Since one may apply PD to obtain some dynamic properties of Π1
2n+1 and Σ1

2n-sets, such as
scales (see [11]).

2We thank W. Hugh Woodin for pointing this out to us.
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