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Abstract. We show that Martin’s conjecture on Π1
1-functions uniformly ≤T -order

preserving on a cone implies Π1
1 Turing Determinacy over ZF + DC. In addition, it

is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π1
2n+1-

functions is equivalent over ZFC to Σ1
2n+2-Axiom of Determinacy. As a corollary,

the consistency of the conjecture for Π1
1-uniformly degree invariant functions implies

the consistency of the existence of a Woodin cardinal.

1. Introduction

A cone C of reals with base z is a set of the form {x|x ≥T z} where ≤T denotes
Turing reducibility. A function F : 2ω → 2ω is degree invariant on C if any two reals
x, y ≥T z of the same Turing degree satisfy F (x) ≡T F (y). The degree invariance is
uniform on C if there is a function t such that if x, y ≥T z, then Φx

i = y and Φy
j = x

implies Φ
F (x)
m = F (y) and Φ

F (y)
n = F (x), where t(i, j) = (m, n). F is increasing

on C if F (x) ≥T x for all x ≥ z. F is order preserving on C if z ≤T x ≤T y
implies F (z) ≤T F (x) ≤T F (y). If this order preservation is witnessed by a function

t : ω → ω, i.e., Φx
e = y ≥T z implies Φ

F (x)
t(e) = F (y), then it is uniform (note

that a uniformly order preserving function is necessarily uniformly degree invariant).
Finally, given functions F and G degree invariant on a cone, write F ≥M G if
F (x) ≥T G(x) on a cone. Donald A. Martin conjectured that, under the assumption
of ZF set theory plus the Axiom of Determinacy (AD) and Dependent Choice (DC),

(1) Every degree invariant function that is not increasing on a cone is a constant
on a cone, and

(2) ≤M prewellorders degree invariant functions which are increasing on a cone.
Furthermore, if the ≤M -rank of F is α, then F ′ has ≤M -rank α + 1, where
F ′(x) = (F (x))′, the Turing jump of F (x).

Slaman and Steel [6] proved (1) for functions which are uniformly degree invariant
on a cone and (2) for Borel functions which are increasing and order preserving. In
[7] Steel showed (2) for uniformly degree invariant functions and conjectured that
every function degree invariant on a cone is uniformly degree invariant on a cone.

While Martin [4] has shown that Borel determinacy is a theorem of ZF+DC (hence
conjectures (1) and (2) hold for ∆1

1 functions that are uniformly degree invariant),
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it is known that AD in the analytical hierarchy beyond ∆1
1 is a large cardinal ax-

iom. An analysis of the proof in [7] shows that conjecture (2) for uniformly degree
invariant Π1

2n+1 functions follows from ∆1
2n+2 Determinacy. Thus a natural ques-

tion for Martin’s Conjectures (1) and (2) is their set-theoretic strength for uniformly
degree invariant functions beyond ∆1

1 in the analytical hierarchy. There is also a re-
lated question concerning the more restrictive uniformly order preserving functions,
i.e. while (2) holds for such functions under AD according to Steel [7], the set-theoretic
strength of (2) for these functions has not been considered.

A set of reals is degree invariant if it is closed under Turing equivalence. Martin [3]
showed that under AD, every degree invariant set of reals either contains or is disjoint
from a cone. By Π1

2n+1-Turing Determinacy (Π1
2n+1-TD) we mean the assertion that

every Π1
2n+1 set of reals that is degree invariant either contains or is disjoint from a

cone. We show in this paper that Conjecture (2) for uniformly order preserving Π1
1

functions implies the existence of 0#. Relativizing the argument to arbitrary reals x
leads to the conclusion that x# exists for every x, so that by Harrington [1] the truth
of Conjecture (2) for Π1

1 uniformly order preserving functions implies Π1
1-TD. We also

show that in general, for n ≥ 0, Conjecture (2) for Π1
2n+1-uniformly degree invariant

functions implies Σ1
2n+2-TD, assuming Π1

2n+1-uniformization when n ≥ 1. In fact,
by this, Steel [7] and an unpublished work of W. H. Woodin, one concludes that
Martin’s conjecture (2) for Π1

2n+1-uniformly degree invarinat functions is equivalent
to Σ1

2n+2-AD.
We recall some facts and notations (see Sacks [5] which is used as the standard

reference in this paper). For each real x, ωx
1 denotes the least ordinal α for which

Lα[x] is admissible. Kleene constructed a Π1
1(x) complete set Ox with a Π1

1(x) well
founded relation <Ox on Ox. Ox is the hyperjump of x. The height of the ordering
<Ox on Ox is exactly ωx

1 . Furthermore, Kleene’s construction of Ox is uniform. In
other words, the relation {(x,Ox) | x ∈ 2ω} is Π1

1. A fact that will be used implicitly
is that given reals x and y, x is hyperarithmetic in y (written x ≤h y) if and only if
x is ∆1

1 in y, and this is in turn equivalent to x ∈ Lωy
1
[y]. We work under ZF + DC.

As we will only be concerned with Conjecture (2), it will be referred to as the ≤M

Conjecture from here on.

2. The ≤M Conjecture for Uniformly Order Preserving Π1
1 Functions

Let

F = {x | ∀α < ωx
1∀a ⊆ α(a ∈ Lωx

1
=⇒ a ∈ Lα+3[x])}.

F is a degree invariant Σ1
1 set introduced by H. Friedman [2]. We give a simpler proof

of the following result given as Lemma 7.17 in [2].

Lemma 2.1. F is cofinal in the Turing degrees.

Proof. For any real z, let

F(z) = {x⊕ z | ∀α < ωz
1∀a ⊆ α(a ∈ Lωz

1
=⇒ a ∈ Lα+3[x⊕ z])}



THE STRENGTH OF PROJECTIVE MARTIN CONJECTURE 3

be a degree invariant Σ1
1(z) set. Obviously F(z) is not empty. By the Gandy Basis

Theorem relativized to z, there is an x such that ωx⊕z
1 = ωz

1 and x⊕ z ∈ F(z). Then
x⊕ z ∈ F . �

The proof of the following lemma follows from Lemmas 7.20–7.22 in [2].

Lemma 2.2. If 0] does not exist, then F̄ = 2ω − F is cofinal in the Turing degrees.

For x a real and n ∈ ω, let x[n] be the real such that x[n](i) = x(〈n, i〉).

Theorem 2.3. If the ≤M Conjecture holds for Π1
1 uniformly order preserving func-

tions, then 0] exists.

Proof. If 0] does not exist, then by Lemmas 2.1 and 2.2, both F and F̄ are cofinal.
For a contradiction, we will define a Π1

1-function G that is uniformly order preserving

such that {x|G(x) = OOx} and {x|G(x) = OOOx

} are both cofinal in the Turing
degrees,

Let P (x, y) be an arithmetic predicate such that

x ∈ F̄ ⇔ ∀yP (x, y).

Claim 2.4. If x ≤T y are such that x ∈ F and y ∈ F̄ , then Ox ≤h y.

As y 6∈ F , there are α < ωy
1 and a ⊆ α with a ∈ Lωy

1
\Lα+3[y]. So a 6∈ Lα+3[x] and

ωx
1 ≤ α < ωy

1 . As x ≤T y, Ox ≤h y.
By Claim 2.4, if x ≤T y are such that x ∈ F and y ∈ F̄ , then OOx ≤T Oy.
Now define G(x) = y as follows:

(1) y[0] = 〈0〉ˆOOx ∧ x ∈ F̄ or y[0] = 〈1〉ˆOOOx

∧ ∃v ≤T y[0]¬P (x, v). Thus y[0]

gives a Π1
1 differentiation between x ∈ F̄ and x ∈ F ;

(2) y[1] = Ox,
(3) If Φx

e is partial then let y[e+2] = ∅,
(4) If Φx

e is total and equal to u, the following three cases differentiate in a Π1
1

way between u ∈ F and x ∈ F̄ , u, x ∈ F , and u ∈ F̄ for all u ≤T x:

(a) y[0](0) = 0 ∧ ∃v ≤T y[1]¬P (u, v) ∧ y[e+2] = 〈1〉ˆOΦy[1]

i where i is the least

index so that OOu
= OΦy[1]

i , or

(b) y[0](0) = 1 ∧ ∃v ≤T y[1]¬P (u, v) ∧ y[e+2] = 〈1〉ˆOOOu

, or
(c) ∀v ≤T y[1]P (u, v) ∧ y[e+2] = 〈0〉ˆOOu

.

G(x) is obviously Π1
1.

Claim 2.5. If x ∈ F then G(x) ≡T OOOx

.

Clearly x ∈ F implies OOOx

≤T G(x) and G(x)[0] ⊕G(x)[1] ≤T OOOx

.

Given e < ω, OOOx

can uniformly decide whether Φx
e is total. Suppose that Φx

e is
total. To calculate G(x)[e+2](n), one verifies clauses (4b, 4c) above. But the predicate

∀v ≤T y[1]P (u, v) is ∆1
1(O

x), hence recursive in OOOx

. Once this predicate is decided,

OOOx

may use recursive functions f and g, where u = Φw
e → OOu

= ΦOOOw

f(e) and

u = Φw
e → OOOu

= ΦOOOw

g(e) , to finish the calculation.
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Claim 2.6. If x ∈ F̄ then G(x) ≡T OOx
.

This is similar to the above claim, except for the final step calculating G(x)[e+2](n).
Now OOx

is able to decide whether (4a) or (4c) holds, as in the above claim. If (4c)
holds, the calculation is the same. If (4a) holds, then u ∈ F . By Claim 2.4, Ou ≤h x
and thus OOu ≤T Ox = G(x)[1]. So i exists. Moreover, the search for i is a procedure
uniformly Π1

1(O
x). Hence OOx

uniformly computes G(x)[e+2](n).
It follows from the above two claims that G is degree invariant. Moreover G

preserves ≤T by Claim 2.4.
To show that G is uniformly order preserving, let h be a recursive function such

that ∀x, y, e(x = Φy
e → Ox = ΦOy

h(e)). In addition, let s be recursive with

∀x, y, e, i(x = Φy
e → Φx

i = Φy
s(e,i)).

Suppose that x = Φy
e . Then

(1) G(x)[0] = G(y)[e+2],

(2) G(x)[1] = Φ
G(y)[1]

h(e) , and

(3) G(x)[i+2] = G(y)[s(e,i)+2].

Hence G is as desired. �

The above proof easily relativizes to any real x to guarantee the existence of x#.
Since Harrington [1] has shown that the existence of sharps implies Π1

1-TD, we have

Corollary 2.7. If the ≤M Conjecture holds for Π1
1 functions which are uniformly

order preserving, then Π1
1-TD is true.

3. The ≤M Conjecture for Π1
2n+1 Functions and Σ1

2n+2-TD

Lemma 3.1. Π1
2n+1-uniformization and ∆1

2n+2-TD imply Σ1
2n+2-TD for n ∈ ω.

Proof. Let A ∈ Σ1
2n+2 be degree invariant and ≤T -cofinal. Define

R(x, y) ⇔ x ≤T y ∧ y ∈ A.

So R(x, y) ∈ Σ1
2n+2. Note that Π1

2n+1-uniformization implies Σ1
2n+2-uniformization.

Let F ∈ Σ1
2n+2 uniformize R. F is actually a ∆1

2n+2 function.
Define

B = {u|∃x ≤T u, y ≡T u(F (x) = y)}.
Then B is ∆1

2n+2, degree invariant and ≤T -cofinal. Moreover B ⊆ A. By ∆1
2n+2-

TD, B contains a cone of Turing degrees. Hence so does A. �

Corollary 3.2. ∆1
2-TD implies Σ1

2-TD.

Proof. As Π1
1-uniformization is a theorem of ZFC, the corollary follows immediately

from Theorem 3.1. �

We prove the next result for the lightface version. The proof for the boldface
version follows with obvious changes.
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Theorem 3.3. Assume Π1
2n+1-uniformization. If the ≤M Conjecture holds for uni-

formly degree invariant Π1
2n+1 functions, then Σ1

2n+2-TD holds.

Proof. Let A ∈ ∆1
2n+2, and P, Q ∈ Π1

2n+1 are such that

x ∈ A ⇔ ∃yP (x, y) ⇔ ∀y¬Q(x, y).

Let R(x, y) ⇔ P (x, y) ∨Q(x, y). By Π1
2n+1-uniformization, let F ∈ Π1

2n+1 uniformize

R. Define J0(x) = z if and only if z[0] = F (x) and

∀e((Φx
e is total → z[e+1] = F (Φx

e)) ∧ (Φx
e is partial → z[e+1] = ∅)).

Obviously J0 ∈ Π1
2n+1 is total. Moreover J0 is uniformly order preserving. To see

this, let f be a recursive function such that

∀e, x0, x1(x0 = Φx1
e → ∀i(Φx1

f(e,i) ' Φx0
i )).

Suppose x0 = Φx1
e . Then (J0(x0))

[0] = (J0(x1))
[e] and (J0(x0))

[i+1] = (J0(x1))
[f(e,i)+1].

Thus J0(x0) may be effectively computed from J0(x1).

Let g be a recursive function such that x0 = Φx1
e → J0(x0) = Φ

J0(x1)
g(e) .

Define J(x) = x⊕ z0 ⊕ z1 if and only if z0 = J0(x) and

(P (x, z
[0]
0 ) ∧ z1 = ∅) ∨ (Q(x, z

[0]
0 ) ∧ z1 = 〈1〉ˆ(x⊕ z0)

′).

Note that J ∈ Π1
2n+1. We claim that J is uniformly degree invariant. To see this, let

h be a recursive function such that x0 = Φe(x1) → (x0 ⊕ J0(x0))
′ = Φ

(x1⊕J0(x1)′

h(e) . For

each e, let t(e) be the index of the procedure Ψ defined by:

(1) (Ψz)[0] = Φz[0]

e and (Ψz)[1] = Φz[1]

g(e), and

(2) if z[2](0) = 0 then (Ψz)[2] = ∅. Otherwise (Ψz)[2] = 〈1〉ˆΦw
h(e), where w is such

that 〈1〉ˆw = z[2].

If the ≤M Conjecture holds for uniformly degree invariant Π1
2n+1 functions, then

eventually J is either x 7→ x⊕ J0(x) or x 7→ x⊕ J0(x)⊕ (x⊕ J0(x))′. Hence A either
contains or avoids a cone of Turing degrees.

Thus we have ∆1
2n+2-TD. Σ1

2n+2-TD follows from Lemma 3.1. �

Corollary 3.4. Let n ≥ 0. The ≤M Conjecture for Π1
2n+1 uniformly degree invariant

functions is equivalent to Σ1
2n+2-AD.

Proof. An analysis of Theorem 1 in Steel [7] shows that Σ1
2n+2-AD (in fact ∆1

2n+2-AD)
implies the ≤M Conjecture for Π1

2n+1 uniformly degree invariant functions. We show
the converse by induction on n: First note that if n = 0, then Π1

1-uniformization is
the Kondo-Addison Theorem, so that by Theorem 3.3, Σ1

2-TD holds. Now assume by
induction that Σ1

2n-TD is true. Woodin (unpublished) has shown that over ZFC, for
k ≥ 1, Σ1

2k-TD is equivalent to Σ1
2k-AD, and Moschovakis [?] has shown (Chapter 6)

that Π1
2k+1-uniformization is a consequence of Σ1

2k-AD. Thus Π1
2n+1-uniformization

holds and so Theorem 3.3 yields Σ1
2n+2-TD, hence Σ1

2n+2-AD.
�

The following corollary gives the consistency strength of the ≤M Conjecture.
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Corollary 3.5. If it is consistent that the ≤M Conjecture holds for Π1
1-uniformly

degree invariant functions, then it is consistent that there is a Woodin cardinal.

Proof. The hypothesis and Theorem 3.3 imply that Π1
2-TD is consistent. Woodin has

shown that Π1
2-TD is equiconsistent with the existence of a Woodin cardinal. �

Remark. We do not know if the conclusion of Corollary 2.7 may be strengthened to
∆1

2-TD (hence ∆1
2-AD). If this is true, then by Steel [7] it will give a characterization

of the ≤M Conjecture for Π1
1 uniformly order preserving functions. In general, one

would like to understand better the role of order preserving functions in the study of
the ≤M Conjecture. For example, it is not clear if Corollary 3.4 applies to functions
which are order preserving.

References

[1] Leo Harrington. Analytic determinacy and 0]. J. Symbolic Logic, 43(4):685–693, 1978.
[2] Richard Mansfield and Galen Weitkamp. Recursive aspects of descriptive set theory, volume 11

of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, 1985. With a
chapter by Stephen Simpson.

[3] Donald A. Martin. The axiom of determinateness and reduction principles in the analytical
hierarchy. Bull. Amer. Math. Soc., 74:687–689, 1968.

[4] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363–371, 1975.
[5] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag,

Berlin, 1990.
[6] Theodore A. Slaman and John R. Steel. Definable functions on degrees. In Cabal Seminar 81–85,

volume 1333 of Lecture Notes in Math., pages 37–55. Springer, Berlin, 1988.
[7] John R. Steel. A classification of jump operators. J. Symbolic Logic, 47(2):347–358, 1982.

Department of Mathematics, Faculty of Science, National University of Singa-
pore, Lower Kent Ridge Road, Singapore 117543

E-mail address: chongct@math.nus.eud.sg, matww@nus.edu.sg

Institute of Mathematical Sciences, Nanjing University, Nanjing, Jiangsu Province
210093, P. R. of China

E-mail address: yuliang.nju@gmail.com


