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Abstract. We study the strengths of various notions of higher randomness: (i)
strong Π1

1-ML-randomness is separated from Π1
1-ML-randomness; (ii) the hyperde-

grees of Π1
1-random reals are closed downwards (except for the trivial degree); (iii)

the reals z in NCRΠ1
1

are precisely those satisfying z ∈ Lωz
1
, and (iv) lowness for

∆1
1-randomness is strictly weaker than that for Π1

1-randomness.

1. Introduction

Randomness in the higher setting refers to the study of algorithmic randomness
properties of reals from the point of view of effective descriptive set theory. Until
recently, the study of algorithmic randomness has been focused on reals in the arith-
metical hierarchy. The only exception was a paper by Martin-Löf [12], in which he
showed the intersection of a sequence of ∆1

1-sets of reals to be Σ1
1 (Sacks [17] intro-

duced the notion of Π1
1 and ∆1

1-randomness in two exercises). The first systematic
study of higher randomness appeared in Hjorth and Nies [9] where the notion of Π1

1-
Martin-Löf randomness was defined and the key properties investigated. The paper
also studied the stronger notion of Π1

1-randomness and showed the existence of a
universal test for Π1

1-random reals. In Chong, Nies and Yu [2] the authors examined
the relative strengths of Π1

1-Martin-Löf randomness, Π1
1 and ∆1

1-randomness, as well
as their associated notions of lowness.

Effective descriptive set theory offers a natural and different platform for the study
of algorithmic randomness. Since the Gandy-Spector Theorem injects a new per-
spective to Π1

1-sets of natural numbers, viewing them as Σ1-definable subsets of LωCK
1

and therefore recursively enumerable (r.e.) in the larger universe, the tools of hyper-
arithmetic theory are readily available for the investigation of random reals in the
generalized setting. Just as arithmetical randomness has drawn new insights into the
structure of Turing degrees below 0(n) (for n < ω), the study of higher randomness
properties has enhanced our understanding of hyperdegrees and Π1

1-sets of reals, a
point which we hope results presented in this paper will convey.

We consider several basic notions of randomness (see the next section for the defi-
nitions). In [2] it was shown that Π1

1-Martin-Löf randomness, Π1
1 and ∆1

1-randomness
are equivalent for reals x if and only if ωx1 = ωCK

1 . In [13], Nies introduced another no-
tion called strong Π1

1-Martin- Löf randomness which is an analog of weak 2-randomness
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in the literature. We prove (Theorem 3.5) that every hyperdegree greater than or
equal to the hyperdegree of Kleene’s O contains a real that is Π1

1 but not strongly Π1
1-

Martin-Löf random, thus separating these two notions of randomness. In Theorem
4.4, we show that every nontrivial hyperdegree below the hyperdegree of a Π1

1-random
real contains a Π1

1-random real. Such a downward closure property is not shared by
weaker notions such as Π1

1-Martin-Löf randomness. In fact, every nontrivial real be-
low a Π1

1-random is Π1
1-random relative to a measure (Corollary 4.5), so that such

reals are still essentially random. This result is strengthened in Theorem 5.1: We
characterize the class NCRΠ1

1
of reals x which are not Π1

1-random relative to any
representation of a continuous measure to be precisely those which satisfy x ∈ Lωx1 .
Our final result (Theorem 6.5) separates the notion of low for ∆1

1-randomness from
that of low for Π1

1-randomness. To obtain this, we prove a general theorem about
hyperdegrees (Theorem 6.3) which states that any two uncountable Σ1

1-set of reals
generate the cone of hyperdegrees with base the hyperdegree of Kleene’s O. The
latter has its root in a result of Martin [11] that every uncountable ∆1

1-set of reals
contains a member of each hyperdegrees greater than or equal to the degree of O.
The paper concludes with a list of questions.

2. Preliminaries

We assume that the reader is familiar with hyperarithmetic theory and randomness
theory. For a general reference, refer to [5], [13], [17] or [3]. The notations adopted
are standard. Reals are denoted x, y, z, . . . A tree T is a subset of 2<ω or ω<ω. [T ]
denotes the set of infinite paths on T . By abuse of notation, we also write x ∈ T (or
x ∈ U) if the context is clear. We use k � n to express the fact that the number
k is “much bigger than” n. If λ is a measure on the Cantor space 2ω, and σ ∈ 2<ω,
denote λ(σ) to be the measure of λ on the basic open set {x | σ ≺ x}. We also let
[σ] denote the set of binary strings extending σ.

Definition 2.1. Given a measure λ on 2ω, a real λ̂ represents λ if for any σ ∈ 2<ω

and rational numbers p, q, 〈σ, p, q〉 ∈ λ̂⇔ p < λ(σ) < q.

Given a representation λ̂ of a measure λ, one may define the notion of a λ̂-Martin-
Löf test as usual. More details can be found in [14].

Definition 2.2. (i) A Π1
1-ML-test is a sequence {Um}m∈ω of uniformly Π1

1-open sets
such that ∀m(µ(Um) < 2−m). We say that x is Π1

1-ML random if x /∈
⋂
m Um for

every such collection {Um}, i.e. if x passes every Π1
1-ML test.

(ii) ([13, Problem 9.2.17]) {Um} is a Π1
1-generalized ML test if in (i) we have

limmµ(Um) = 0 instead. We say that x is strongly Π1
1-ML-random if x passes every

generalized Π1
1-ML-test.

Definition 2.2 (ii) is a generalization of the notion of weakly 2-randomness for reals,
when Π1

1 is replaced by r.e. (over Lω). One may refine Definition 2.2 (i) as follows.
A ∆1

1-ML-test is obtained when Π1
1 in the definition is replaced by ∆1

1. Indeed, if
{Un}n∈ω is a ∆1

1-ML-test, then there is a recursive ordinal α such that {Un}n∈ω is
uniformly ∅(α)-r.e. We call such a test a ∅(α)-ML-test. A real x is ∆1

1-ML-random if
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it passes every ∆1
1-ML-test. If x is not ∆1

1-ML-random, then there is an α < ωCK
1

and an ∅(α)-ML-test in which x fails. This fact will be used in Section 4.

Definition 2.3. (Hjorth and Nies in [9]) A real x is Π1
1-random if it does not belong

to any null Π1
1-set of reals.

Clearly
⋂
m∈ω Um is Π1

1 for any uniformly Π1
1-collection of Π1

1-open sets, so that Π1
1-

randomness implies strong Π1
1-ML-randomness. We say that a real x is ∆1

1-dominated
if every function hyperarithmetic in x is dominated by a hyperarithmetic function. As
usual, ωx1 is the least ordinal which is not an x-recursive ordinal, and Church-Kleene
ω1 is ω∅1 which is always denoted ωCK

1 . By a result in [2], we have the following
proposition.

Proposition 2.4 (Chong, Nies and Yu). If ωx1 = ωCK
1 , then x is Π1

1-ML-random if
and only if it is Π1

1-random. Moreover, each Π1
1-random real is ∆1

1-dominated.

The Gandy Basis Theorem plays an important role in our present study:

Theorem 2.5 (Gandy [7]). If A ⊆ 2ω is a nonempty Σ1
1-set, then there is an x ∈ A

such that ωx1 = ωCK
1 .

Let Lα be the Gödel constructibility hierarchy at level α. The following is a set-
theoretic characterization of Π1

1-sets.

Theorem 2.6 (Spector[19] , Gandy [8]). A set A ⊆ 2ω is Π1
1 if and only if there is

a Σ1-formula ϕ such that x ∈ A⇔ Lωx1 [x] |= ϕ.

We use ≤h to denote hyperarithmetic reduction. A(ωCK
1 , x) is the structure for the

ramified analytical hierarchy relative to x. For more details concerning the ramified
analytical hierarchy, see [17].

If T is a tree that is Π1(LωCK
1

)-definable, then there is an effective enumeration over

LωCK
1

of the nodes not in T . For any γ < ωCK
1 , let T [γ] be the ∆1-tree which is an

approximation of T at stage γ. Then T =
⋂
γ<ωCK

1
T [γ].

3. Strong Π1
1-ML-randomness

In Nies [13], Problem 9.2.17 asks

Question 3.1. Is strong Π1
1-ML-randomness equivalent to Π1

1-ML-randomness?

The question was motivated by the following consideration. In the standard ar-
gument separating weak 2-randomness from ML-randomness, one exploits the fact
that the rate of convergence of µ(Un) (the measure of Un) to 0 can be coded by the
“size of the space” available to Un, where {Un}n∈ω is a test designed to exhibit an
ML-random real that is not weakly 2-random. Such an approach is no longer possible
in the present setting, since Un is now enumerated in ωCK

1 , instead of ω, -many stages.
The following result leads to a negative solution.

Theorem 3.2. 1 If x is the leftmost path of a Σ1
1-closed set of reals, then x is not

strongly Π1
1-ML-random.

1 Bienvenu, Greenberg and Monin [1] have a shorter proof of this theorem.
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The proof is measure-theoretic. More than separating the two notions of random-
ness, a measure-theoretic proof extracts useful information about the distribution of
strong Π1

1-ML random reals in the hyperdegrees. We first give a criterion for a uni-
formly Π1

1-sequence of open sets to be a generalized Π1
1-Martin-Löf test. This lemma

will also be applied to show Theorem 3.5.

Lemma 3.3. Suppose that {Un}n∈ω is a uniformly Π1
1-sequence of open sets. If there

is a Σ1(LωCK
1

) enumeration {Ûn,γ}n<ω,γ<ωCK
1

of the sequence with two numbers k and

m ≥ 1 such that for every n, Un =
⋃
γ<ωCK

1
Ûn,γ and for every γ < ωCK

1 :

(a) Ûn+1,γ ⊆ Ûn,γ and each string in Ûn has length at least 2k·n,

(b) ∀σ ∈ 2k·n−m(µ(Ûn,γ ∩ [σ]) < 2−1+m−k·n), and

(c) For γ < ωCK
1 and any real z, if z ∈ Ûn,<γ \ Ûn,γ, where Ûn,<γ =

⋃
β<γ Ûn,β,

then z 6∈ Ûn,β for any β ≥ γ.

Then {Un}n∈ω is a generalized Π1
1-ML-test.

Proof. Note that by (c) the enumeration {Ûn,γ} of Un is not cumulative. Assume
µ(
⋂
n∈ω Un) > 0 for a contradiction. We will exhibit an infinite descending sequence

of ordinals {γn}n<ω. First of all, the assumption implies that there is a σ0 such that

µ(
⋂
n∈ω

Un ∩ [σ0]) > 2−|σ0| · (1− 2−3).

Moreover, we may assume that k divides |σ0|+m. Let n0 = |σ0|+m
k

. Then there is a
least γ0 < ωCK

1 such that

µ(Ûn0,≤γ0 ∩ [σ0]) >
7

8
· 2−|σ0|.

By (b),

µ((Ûn0,<γ0 \ Ûn,γ0) ∩ [σ0]) > 2−|σ0| · (1− 2−1 − 2−3) ≥ 3

8
· 2−|σ0|.

By (a) and (c),

µ(
⋂
n>n0

Ûn,<γ0 ∩ [σ0]) > (
7

8
− 5

8
) · 2−|σ0| =

1

4
· 2−|σ0|.

Hence there is a σ1 � σ0 such that

µ(
⋂
n>n0

Ûn,<γ0 ∩ [σ1]) >
7

8
· 2−|σ0|.

We may assume that k divides |σ1| + m and |σ1| � |σ0|. Let n1 = |σ1|+m
k
� n0.

Then there is a least γ1 < γ0 such that

µ(Ûn1,≤γ1 ∩ [σ1]) >
7

8
· 2−|σ1|.

Repeating the argument, we obtain an infinite descending sequence γ0 > γ1 > · · · ,
which is not possible. �
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Proof. (of Theorem 3.2).
Let T ⊆ 2<ω be a Σ1

1-tree. For any n < ω and γ < ωCK
1 , let

Ûn,γ = {σ | ∃z(z is the leftmost path in T [γ] ∧ σ � n+ 1 = z � n+ 1)}.

Define

Ûn,<γ =
⋃
β<γ

Ûn,β

and

Un =
⋃

γ<ωCK
1

Ûn,γ.

The following facts are immediate.

(1) For any n and γ < ωCK
1 , Ûn+1,γ ⊆ Ûn,γ and every string in Ûn has length at

least 2n;
(2) ∀σ ∈ 2n−1(µ(Ûn,γ ∩ [σ]) < 2−n);

(3) For any n, γ < ωCK
1 and real z, if z ∈ Ûn,<γ \ Ûn,γ, then z 6∈ Ûn,β for any

β ≥ γ.

Clearly {Un}n∈ω is uniformly Π1
1. By (1)—(3) and setting k = m = 1 in Lemma

3.3, i {Un}n∈ω is a generalized Π1
1-ML-test. Obviously x ∈

⋂
n∈ω Un. We conclude

that x is not strongly Π1
1-ML-random. �

Corollary 3.4. Π1
1-ML-randomness is strictly weaker than strong Π1

1-ML-randomness.

Proof. By a result in [9], there is a Σ1
1-tree T such that [T ] is uncountable and consists

entirely of Π1
1-ML-random reals. According to Theorem 3.2, the leftmost path in T

is not strongly Π1
1-ML-random. �

We give another application of Lemma 3.3. The theorem may be proved by com-
bining results in [1] and [9]. We give a direct proof here.

Theorem 3.5. For any real x ≥h O, there is a Π1
1-ML-random y ≡h x which is not

strongly Π1
1-ML-random.

Proof. Given a tree T , let T (T ) be the smallest subtree of T such that

• ∅ ∈ T (T ), and
• For σ ∈ T (T ), let Vσ = {ν | ν � σ ∧ |ν| = |σ|+ 2 ∧ [ν] ∩ T is infinite}. If τ is

the leftmost or rightmost string in Vσ, then τ ∈ T (T ).

Now let T ⊆ 2<ω be a Σ1
1-tree of positive measure so that [T ] consists entirely of

Π1
1-ML-random reals. Note that T has no isolated infinite paths.
For any γ < ωCK

1 , let

Ûn,γ =
⋃

σ∈T (T [γ])∧|σ|=2n

([σ] ∩ T (T [γ]).

Define

Ûn,<γ =
⋃
β<γ

Ûn,β
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and
Un =

⋃
γ<ωCK

1

Ûn,γ.

The following facts are immediate.

(1) For any n and γ < ωCK
1 , Ûn+1,γ ⊆ Ûn,γ and every string in Ûn,γ has length at

least 22n;
(2) ∀σ ∈ 22n−2(µ(Ûn,γ ∩ [σ]) < 2−2n−1);

(3) For any n, γ < ωCK
1 and real z, if z ∈ Ûn,<γ \ Ûn,γ, then z 6∈ Ûn,β for any

β ≥ γ.

By (1)—(3) and Lemma 3.3 by setting k = m = 2, {Un}n<ω is a generalized Π1
1-

ML-test. It is obvious that
⋂
n∈ω Un contains a perfect subset of [T ]. Furthermore,

O hyperarithmetically computes a perfect tree S with [S] ⊆
⋂
n∈ω Un so that no

path in S is strongly Π1
1-ML-random. Hence no path in S is Π1

1-random and by
Proposition 2.4, any y ∈ [S] satisfies ωy1 > ωCK

1 and so O ≤h y. Such a y exists in
every hyperdegree above the degree of O. Theorem 3.5 is proved. �

4. Hyperdegrees of Π1
1-random reals

While the hyperdegrees of ∆1
1-random reals cover the cone of hyperdegrees above

the hyperjump, it is not difficult to see that the situation is quite different outside
this cone:

Proposition 4.1. If x is ∆1
1-random and ωx1 = ωCK

1 , then there is a real y ≥h x with
ωy1 = ωCK

1 whose hyperdegree contains no ∆1
1-random real.

Proof. Suppose that x is ∆1
1-random and ωx1 = ωCK

1 . Let

H(x) = {y | y ≥T x ∧ ∃f ≤T y∀g ≤h x(g is dominated by f)}.
Then H(x) is Σ1

1(x). Since Ox ∈ H(x), H(x) is not empty. Relativizing Gandy’s
Basis Theorem 2.5 to x, there is a real y ∈ H(x) with ωy1 = ωx1 = ωCK

1 . Thus y is not
∆1

1-dominated and so by Proposition 2.4, no real z ≡h y is ∆1
1-random. �

By contrast, the hyperdegrees of Π1
1-random reals are downward closed.

Lemma 4.2. 2 If x is Π1
1-random and y ≤h x, then there is a recursive ordinal γ

such that y ≤T x⊕ ∅(γ).

Proof. Suppose that x is Π1
1-random and y ≤h x. Then ωx1 = ωCK

1 and there is a

formula ϕ(ẋ, n) with rank α0 < ω
ωCK

1
1 such that

n ∈ y ⇔ A(ωCK
1 , x) |= ϕ(x, n).

Recall that for a ranked sentence ψ, the relation “µ({z | A(ωCK
1 , z) |= ψ) > 0” is

Π1
1 (Theorem 1.3.IV of [17]). Hence by the admissibility of ωCK

1 , there is a recursive
ordinal β > α0 such that

Aα0 = {pψq | ψ has rank at most α0 ∧ µ({z | A(ωCK
1 , z) |= ψ}) > 0}

2The lemma was also proved by Bienvenu, Greenberg and Monin [1] independently.
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is recursive in ∅(β). Then there is a recursive α1 ≥ β such that for any natural number
i and formula ψ of rank at most β, there is a formula ψ′ of rank at most α1 such that
{z | A(ωCK

1 , z) |= ψ′} is a Π0
1(∅(α1))-subset of {z | A(ωCK

1 , z) |= ψ} and the difference
in measure between these two sets is less than 2−i.

Repeating this, we obtain a ∆1-definable ω-sequence of ordinals α0 < α1 < · · ·
in LωCK

1
whose supremum γ =

⋃
i<ω αi satisfies the following two properties: for any

β < γ,

(i) The set

Aβ = {pϕq | ϕ has rank at most β ∧ µ({z | A(ωCK
1 , z) |= ϕ}) > 0}

is recursive in ∅(γ); and
(ii) For any natural number i and formula ψ with rank at most β, there is a

formula ψ′ of rank less than γ such that for some β′ < γ, {z | A(ωCK
1 , z) |= ψ′}

is a Π0
1(∅(β′))-subset of {z | A(ωCK

1 , z) |= ψ} and the difference in measure
between these two sets is less than 2−i.

Note that by Π1
1-randomness, for any ranked formula ψ, if x ∈ Pψ = {z | A(ωCK

1 , z) |=
ψ}, then Pψ has positive measure.

By Proposition 2.4, x is ∆1
1-dominated and so there is a hyperarithmetic function

f : ω → ω such that for any n ∈ O with |n| < γ and any e for which ΦHn
e computes

a tree Te,n, if x 6∈ [Te,n], then x � f(〈e, n〉) 6∈ Te,n. This allows us to implement the
following construction.

Recursively in x⊕∅(γ)⊕f , first find a ψ0 with rank less than γ such that P0 = {z |
A(ωCK

1 , z) |= ψ0} contains x, has positive measure, and is a closed subset of either
{z | A(ωCK

1 , z) |= ϕ(z, 0)} or {z | A(ωCK
1 , z) |= ¬ϕ(z, 0)}. Since x is Π1

1-random, by
(ii), such a ψ0 exists. Note that x⊕∅(γ)⊕f is able to decide if x ∈ P0. In general, for
any n recursively in x⊕ ∅(γ) ⊕ f choose the formula ψn+1 with rank less than γ such
that Pn+1 = {z | A(ωCK

1 , z) |= ψn+1} contains x, has positive measure, and is a closed
subset of either Pn ∩ {z | A(ωCK

1 , z) |= ϕ(z, n)} or Pn ∩ {z | A(ωCK
1 , z) |= ¬ϕ(z, n)}.

Since x is Π1
1-random, by (ii) there is such a ψn+1.

Thus y ≤T x⊕∅(γ)⊕ f . Without loss of generality, we may assume that f ≤T ∅(γ).
Then y ≤T x⊕ ∅(γ). �

Corollary 4.3. For any Π1
1-random x and y ≤h x, there is a recursive ordinal

α, a function f ≤T ∅(α) and an oracle function Φ such that for every n, y(n) =

Φx⊕∅(α)�f(n)(n)[f(n)].

Proof. Suppose that x is Π1
1-random and y ≤h x. By Lemma 4.2, there is a recursive

ordinal γ and an oracle function Φ such that for every n, y(n) = Φx⊕∅(γ)(n). Let

g <h x such that for every n, y(n) = Φx⊕∅(γ)�g(n)(n)[g(n)]. Since x is ∆1
1-dominated,

there is a hyperarithmetic h such that for all n, h(n) > g(n). Hence there is a
recursive ordinal α ≥ γ such that h is many-one reducible to ∅(α). Then it is not
difficult to define an f ≤T ∅(α) and an oracle function Ψ such that for every n,
y(n) = Ψx⊕∅(α)�f(n)(n)[f(n)]. �

Theorem 4.4. If x is Π1
1-random and ∅ <h y ≤h x, then there is a Π1

1-random
z ≡h y.
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Proof. Suppose that x is Π1
1-random and y ≤h x is not hyperarithmetic. Then there

is a recursive ordinal α, a nondecreasing function f ≤T ∅(α) and an oracle function
Ψ such that limn→∞ f(n) =∞ and for every n,

y(n) = Ψx⊕∅(α)�f(n)(n)[f(n)].

We use a technique which is essentially due to Demuth [4]. For any u, τ ∈ 2<ω, let

C(u, τ) = {σ | σ ∈ 2f(|u|) ∧Ψσ⊕∅(α)�f(|u|)[f(|u|)] � |u| = τ}.

For strings τ and u, let τ <` u mean “τ is to the left of u”. Define ∅(α)-recursive
functions:

l(u) =
∑

τ∈2|u|∧τ<`u

(
∑

σ∈C(u,τ)

2−|σ|)

and

r(u) = l(u) +
∑

σ∈C(u,u)

2−|σ|.

One may view
∑

σ∈C(u,τ) 2−|σ| as a “measure” of τ , see Demuth [4]. For each n, let

ln = l(y � n), and rn = r(y � n).

Then ln ≤ ln+1 ≤ rn+1 ≤ rn for every n.
Since y is not hyperarithmetic, it is not difficult to see that limn→∞ rn = 0. Hence

there is a unique real

z =
⋂
n∈ω

(ln, rn).

Obviously z ≤T y ⊕ ∅(α).
For any n, ∅(α)-recursively find a string u such that z lies in the interval (l(u), r(u))

and |l(u) − r(u)| < 2−f(n)−n−2. Then u � n = y � n. So y ≤T z ⊕ ∅(α). And thus
z ≡h y. We claim that z is ∆1

1-random.
Suppose otherwise. Then there is a recursive ordinal β < ωCK

1 and a ∅(β)-ML-test
{Vn}n∈ω such that z ∈

⋂
n∈ω Vn. Let

V̂n = {u | ∃ν∃k(ν is the k-th string in Vn∧
∃p, q ∈ Q(l(u) ≤ p < q ≤ r(u) ∧ [p, q] ⊆ [ν] ∧ q − p > r(u)− 2−n−k−2)}.

Since z ∈ Vn, we have y ∈ V̂n for every n. Note that {V̂n}n∈ω is ∅(β+1+α)-r.e.
Let

Un = {σ | ∃τ ∈ V̂n(|σ| = f(|τ |) ∧ Φσ⊕∅(α)�f(|τ |)[f(|τ |)] � |τ | = |τ |)}.

Then {Un}n∈ω is ∅(β+1+α)-r.e and x ∈
⋂
n∈ω Un. Note that for every n,

µ(Un) ≤ µ(Vn) +
∑
k∈ω

2−n−k−2+1 < 2−n + 2−n = 2−n+1.

Then {Un+1}n∈ω is a ∅(β+1+α)-ML-test. So x is not a ∆1
1-random, a contradiction. �

The following is an immediate consequence of the proof of Theorem 4.4:



RANDOMNESS IN THE HIGHER SETTING 9

Corollary 4.5. For any Π1
1-random x, if ∅ <h y ≤h x, then y is Π1

1-random relative
to some measure λ.

We will prove a stronger version of this result in Theorem 5.1.

5. On NCRΠ1
1

This section is inspired by the work of Reimann and Slaman in [14] and [15], where
they investigated reals not Martin-Löf random relative to any continuous measure.
They prove that NCR1, the collection of such reals, is countable. In fact their proof
shows that for any recursive ordinal α, the collection NCRα of reals not ∅(α)-ML-
random relative to any continuous measure is countable. Hence a natural question
to ask is how far the countability property extends. We set an upper limit for this
by proving Theorem 5.1.

Given a representation λ̂ of a measure λ over 2ω, define a real x to be Π1
1-random

relative to λ̂ if it does not belong to a λ̂-null set which is Π1
1(λ̂). Define

NCRΠ1
1

= {x | x is not Π1
1-random relative to any

representation λ̂ of a continuous measure}.
Let C = {x ∈ 2ω | x ∈ Lωx1 }. It is known that C is the largest Π1

1-thin set.

Theorem 5.1. NCRΠ1
1

= C.
We decompose the proof of Theorem 5.1 into a sequence of lemmas.

Lemma 5.2. NCRΠ1
1

does not contain a perfect subset.

Proof. The proof is essentially due to Reimann and Slaman [14]. Suppose that there
is a perfect tree T ⊆ 2<ω such that every member of [T ] is NCRΠ1

1
. Define a measure

λ as follows:

λ(∅) = 1, and

λ([σai]) =

{
λ([σ]) If σa(1− i) 6∈ T ;

1
2
λ([σ]) Otherwise.

Then λ is a continuous measure so that λ([T ]) = 1. Thus [T ] must contain a

Π1
1-random relative to any representation λ̂ of λ. �

Lemma 5.3. NCRΠ1
1

is a thin Π1
1-set, and hence NCRΠ1

1
⊆ C.

Proof. By Lemma 5.2, NCRΠ1
1

does not contain a perfect subset.

Relative to any representation λ̂ of a continuous measure λ, we may perform the
same proofs as in [16] so that all the results remain valid upon replacing Lesbegue

measure µ by λ̂. Then the set {z | ωz⊕λ̂1 > ωλ̂1} is Π1
1(λ̂) and λ̂-null. Hence as in

[2], there is a Π1
1 set Q ⊆ (2ω)2 such that for each real λ̂ representing a continuous

measure, the set Qλ̂ = {y | (λ̂, y) ∈ Q} is the largest Π1
1(λ̂) λ̂-null set. Then, as in

Reimann and Slaman [15],

z ∈ NCRΠ1
1
⇔ ∀λ̂(λ̂ represents a continuous measure → z ∈ Qλ̂).
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Thus NCRΠ1
1

is Π1
1. �

Lemma 5.4. If x ∈ Lωx1 and z 6≥h x, then z ⊕ x ≥h Oz.

Proof. Suppose that x ∈ Lωx1 and z 6≥h x. Then ωz1 < ωx1 . So ωx⊕z1 > ωz1. Thus
z ⊕ x ≥h Oz. �

Lemma 5.5. If x ∈ C, then x ∈ NCRΠ1
1
.

Proof. Let λ be a continuous measure with representation λ̂. If x ≤h λ̂, then x

obviously is not Π1
1-random relative to λ̂. By Lemma 5.4, x ⊕ λ̂ ≥h Oλ̂. But {z |

z ⊕ λ̂ ≥ Oλ̂} is a Π1
1(λ̂) λ̂-null set. This implies that x is not Π1

1-random relative to

λ̂. �

6. Separating lowness for higher randomness notions

In [2], Chong, Nies and Yu investigated lowness properties for ∆1
1 and Π1

1-randomness.
It is unknown whether there is a nonhyperarithmetic real low for Π1

1-random. How-
ever, there is a characterization of reals which are low for Π1

1-randomness.

Proposition 6.1 (Harrington, Nies and Slaman [2]). Being low for Π1
1-randomness is

equivalent to being low for ∆1
1-randomness and not cuppable above O by a Π1

1-random.

We may apply Proposition 6.1 to separate lowness for ∆1
1-randomness from lowness

for Π1
1-randomness. Recall that given a class of sets of reals Γ, a real x is Γ-Kurtz

random if it does not belong to any Γ-closed null set.
In [10], Kjos-Hanssen, Nies, Stephan and Yu investigated lowness for ∆1

1-Kurtz
randomness and lowness for Π1

1-Kurtz randomness. They proved that lowness for Π1
1-

Kurtz randomness implies lowness for ∆1
1-randomness. We show that the implication

cannot be reversed.
In [20], Yu gave a new proof of the following theorem.

Theorem 6.2 (Martin [11] and Friedman). Every Σ1
1-tree T with uncountably many

infinite paths has a member of each hyperdegree ≥h O as a path.

We apply the technique introduced in [20] to prove the following result.

Theorem 6.3. Let A0 and A1 be uncountable Σ1
1-sets of reals. For any z ≥h O, there

are reals x0 ∈ A0 and x1 ∈ A1 such that x0 ⊕ x1 ≡h z.

Proof. Fix a real z ≥h O and two uncountable Σ1
1-sets A0 and A1. Then there are

two recursive trees T0, T1 ⊆ 2<ω × ω<ω such that for i ≤ 1, Ai = {x | ∃f∀n(x �
n, f � n) ∈ Ti}. We may assume that neither A0 nor A1 contains a hyperarithmetic
real. Let T2 ⊆ ω<ω be recursive so that [T2] is uncountable and does not contain a
hyperarithmetic infinite path. Let fO be the leftmost path in T2. Then fO ≡h O.

For any i ≤ 1 and (σ, τ) ∈ Ti, define

Ti(σ, τ) = {(σ′, τ ′) ∈ Ti | (σ′, τ ′) � (σ, τ) ∨ (σ′, τ ′) ≺ (σ, τ)}.
We say that a string σ∗ ∈ 2<ω is splitting over (σ, τ) for a tree T ⊆ 2<ω × ω<ω if

σ∗ � σ and for any j ≤ 1, Tσ∗aj(σ, τ) = {(σ′, τ ′) | σ′ � σ∗aj ∧ τ ′ � τ ∧ (σ′, τ ′) ∈ T}
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contains an infinite path. Node that σ∗ does not lie on T but some pair (σ∗, τ ′) does
and we call (σ∗, τ ′) a splitting node on T ,

For each i ≤ 1, we construct a sequence (σi,0, τi,0) ≺ (σi,1, τi,1) ≺ · · · in Ti and let
xi =

⋃
j σi,j. The idea is to apply a “mutual coding” technique so that x0 codes the

witness function (in the Σ1
1-definition) for x1 and x1 codes the witness function for

x0. For our purpose, we also assign x0 the additional responsibility of coding z as
well as fO. More precisely, for each s ∈ ω we use σ0,j to code z(s), fO(s) and τ1,s−1,
and use σ1,s to code τ0,s.

At stage 0, let (σi,0, τi,0) = (∅, ∅) for i ≤ 1. Without loss of generality, assume that
(∅, ∅) is a splitting node in both T0 and T1.

The construction at stage s+ 1 proceeds as follows:
Substage (i). First let σ∗ be the shortest splitting string over (σ9,s, τ0,s) for T0.

Thus T0,σ∗aj(σ0,s, τ0,s) contains an infinite path for j ≤ 1. Let σ∗0,s+1 be the leftmost

splitting string over (σ0,s, τ0,s) extending σ∗az(s) for T0. Thus z(s) is coded here.
Next we code τ1,s. Let n0

s+1 = |τ1,s| − |τ1,s−1|. Inductively, for any k ∈ [1, n0
s+1], let

σk0,s+1 be the left-most splitting string over (σ0,s, τ0,s) extending (σk−1
0,s+1)a1 for T0 so

that there are τ0,s(k + |τ0,s−1|)-many splitting strings over (σ0,s, τ0,s) for T0 between

σk−1
0,s+1 and σk0,s+1. Let σ

n0
s+1+1

0,s+1 be the leftmost splitting string extending (σ
n0
s+1

0,s+1)a1 over
(σ0,s, τ0,s) for T0 so that there are fO(s)-many splitting strings for T0 over (σ0,s, τ0,s)

between σ
n0
s+1

0,s+1 and σ
n0
s+1+1

0,s+1 . Thus fO(s) is coded here. For j ≤ 1, let σ
n0
s+1+1+j+1

0,s+1 be

the next splitting string T0 over (σ0,s, τ0,s) extending (σ
n0
s+1+1+j

0,s+1 )a1. This coding tells

us that the action at this stage for the “σ0 side” is completed. Define σ0,s+1 = σ
n0
s+1+3

0,s+1 .

Let τ0,s+1 ∈ ω|σ0,s+1| be the leftmost string such that the tree T0,(σ0,s+1,τ0,s+1) has an
infinite path.

Substage (ii). Let σ0
1,s+1 = σ1,s and n1

s+1 = |τ0,s+1| − |τ0,s|. Inductively, for any

k ∈ [1, n1
s+1], let σk1,s+1 be the leftmost splitting string over (σ1,s, τ1,s) extending

(σk−1
1,s+1)a1 for T1 so that there are τ0,s+1(k+|τ0,s|)-many splitting strings over (σ1,s, τ1,s)

between σk−1
1,s+1 and σk1,s+1. Hence τ0,s+1 is coded. For j ≤ 1, let σ

n1
s+1+j+1

1,s+1 be the next

splitting string over (σ1,s, τ1,s) for T1 extending (σ
n1
s+1+j

1,s+1 )a1. This coding tells us
that the action of coding τ0,s+1 at this stage for the ‘σ1 side” is completed. Define

σ1,s+1 = σ
n1
s+1+2

1,s+1 . Let τ1,s+1 ∈ ω|σ1,s+1| be the leftmost finite string such that the tree
T1,(σ1,s+1,τ1,s+1) has an infinite path. Thus we have coded τ0,s+1 into σ1,s+1.

This completes the construction at stage s+ 1.

Let xi =
⋃
s<ω σi,s for i ≤ 1. Obviously z ≥h x0 ⊕ x1.

Now we use x0 and x1 to decode the coding construction. The decoding method is
a finite injury method which is quite similar to that used in the new proof of Theorem
6.2. We construct a sequence of ordinals {αs}s<ω ∆1-definable in L

ω
x0⊕x1
1

[x0 ⊕ x1] so

that lims→ω αs = ωCK
1 , and use it as a parameter to decode the reals z and f0, thereby

concluding that x0 ⊕ x1 ≥h z.
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As in [20], we may fix a Σ1-enumeration {Ti[α]}i≤2,α<ωCK
1

over LωCK
1

such that for
i ≤ 1,

• Ti[0] = Ti
• Ti[α] ⊆ Ti[β] for ωCK

1 > α ≥ β
• Ti[ωCK

1 ] =
⋂
α<ωCK

1
Ti[α]

• Ti[ωCK
1 ] has no dead end nodes, and

• Ai = {x | ∃f∀n(x � n, f � n) ∈ Ti[ωCK
1 ]}.

Since [Ti] does not contain a hyperarithmetic infinite path, we have [Ti[ω
CK
1 ]] = [Ti]

for i ≤ 1. For each α < ωCK
1 , one may define similarly the notion of a string σ′ being

splitting over (σ, τ) for T [α].
We make the following observations:

(a) On the tree T2 of which fO is its leftmost path, the enumeration of strings to
the left of fO is Σ1(LωCK

1
). This implies that for each s, one may approximate

fO � s “from the left” (of fO) in a Σ1(LωCK
1

way on the tree T2. Furthermore, at
most only finitely many errors are made in the approximation, i.e. beginning
with initial guess set as 0 for fO(n), where n ≤ s, and increasing by 1 each
time a wrong guess is detected at stage α, one may let f ′O(α, n) be the value
of fO(n) at stage α. Then f ′O is non-decreasing on each n and changes value
only finitely many times.

(b) Using xi as oracle set, and letting fi be the leftmost witness path for xi (so
that for all n, (xi � n, fi � n) ∈ Ti, and no 〈xi, f〉 has this property if f is
“left of” fi), the set of strings to the left of fi is Σ1(LωCK

1
[xi]). Furthermore,

there is a Σ1(LωCK
1

[xi])-approximation of fi “from the left” such that for each

s, there are at most finitely many wrong guesses of fi(n), n ≤ s, to be made if
the approximation proceeds “from the left” as in (a). Thus one may define a
Σ1(LωCK

1
[xi])-function f ′i : ωCK

1 × ω → ω so that f ′i is non-decreasing for each

n and {α|f ′i(α + 1, n) 6= f ′i(α, n)} is finite.
(c) fi =

⋃
s τi,s.

Since for each i ≤ 1 and α < ωCK
1 , 〈xi, fi〉 is a path on Ti[α], one may use x0 ⊕ x1

to approximate the values of fO(n) and fi(n) by simulating the construction above
on Ti[α]. This is achieved by relativizing to x0 ⊕ x1 the algorithm described in the
construction of the sequences 〈σi,s, τi,s〉, i ≤ 1. Firstly, for (σ, τ) ∈ Ti[α] such that
σ ≺ xi, one may define the notion of xi � n being splitting over (σ, τ) for Ti[α] after
α steps of computation. Next let σi,s[α[ be the initial segments of xi (in ascending
order of length) so that σi,s+1[α] is splitting over (σi,s[α], τi,s[α]) for some τi,s[α] that
is an approximation of fi � s at stage α.

The algorithm we adopt proceeds as follows: For i = 0, σ0,0[α](|σ0,0[α]|) is a guess
of z(0). Then σ0,1[α](|σ0,1[α]|) = 1 to signify the end of coding z(0). Let s(1) be the
least s > 1 such that σ0,s[α](|σ0,s[α]|) = 1. Then the cardinality of {2, . . . , s(1)− 1},
i.e. s(1)− 3, is an approximation of f1(0) at stage α from the point of view of x0 via
the process of decoding. Let s(2) > s(1) be the least s such that σ0,s[α](|σ0,s[α]|) = 1.
Then s(2) − s(1) − 1 is an approximation of fO(0) at stage α according to x0. By
induction, one computes approximate values of f1(n) and fO(n) for each n at stage α
relative to x0. Similarly, using x1 as oracle, one computes an approximation of f0(n)
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at stage α. We say that the approximation of fO(n) (or f1 as the case may be) is
correct at stage α if it agrees with f ′O(α, n) (respectively f ′1(α, n)). Define correctness
for f0 similarly.

We now describe the construction of the sequence {αs}. Set α0 = 0. Suppose
αs < ωCK

1 is defined. Let γs+1 be the least γ > αs such that for some n ≤ s,
the approximation of one of fO(n), fi(n) is incorrect. Let ns+1 be the least such
n. If either fO(ns+1) or f1(ns+1) is found to be incorrectly approximated, then let
αs+1 be the least ordinal greater than γs+1 such that fO(ns+1) and f1(ns+1) are both
correct. This ordinal exists by the definition of the trees Ti[α] and the functions f ′O
and f ′1 defined earlier. If fO(ns+1) and f1(ns+1) are correctly approximated at stage
γs+1, then let αs+1 be the least ordinal greater than γs where f0(ns+1) is correctly
approximated.

Now αs < ωCK
1 for each s < ω, and is Σ1(LωCK

1
[x0 ⊕ x1]). Thus α∗ = sups αs <

ωx0⊕x1
1 . We make the following claim.

Claim. For each n, x0 ⊕ x1 computes fO(n) and fi(n) correctly.
Proof of Claim. It is sufficient to verify that for each n, x0⊕x1 computes the correct
approximation of fO(n) and fi(n) at all but finitely many s. First of all, as noted in
(a) and (b), each n may be found to have been incorrectly approximated only finitely
many times. Secondly, if for some least n, fi(n) is seen to be correctly approximated
at all sufficiently large s, and yet not equal to its actual value, then it implies that
〈xi, fi〉 is not the leftmost path on Ti, which is a contradiction. The argument for
fO(n) is similar and is omitted.

Thus over Lα∗ [x0⊕x1] one may decode the construction and correctly compute fO
and fi. Hence O ≡h fO ≤h x0 ⊕ x1. With this, we conclude that z ∈ Lα∗+1[x0 ⊕ x1]
so that z ≡h x0 ⊕ x1.

�

Let F be the collection of all finite subsets of ω. A real x is ∆1
1-traceable if for any

function f ≤h x, there is a ∆1
1-function g : ω → F such that for every n, |g(n)| = n

and f(n) ∈ g(n).

Lemma 6.4. There is an uncountable Σ1
1-set A in which every member is ∆1

1-
traceable.

Proof. This is precisely what was proved in Theorem 4.7 of [18]. �

By [2] and [10], each ∆1
1-traceable real is low for ∆1

1-randomness and hence low for
∆1

1-Kurtz randomness. By [9], the Π1
1-random reals form a Σ1

1-set. Then by Lemma
6.4 and Theorem 6.3, there is an x which is low for ∆1

1-randomness and x⊕ y ≡h O
for some Π1

1-random y. So y is a Π1
1(x)-singleton. We thus conclude:

Theorem 6.5. Lowness for ∆1
1-randomness does not imply lowness for Π1

1-randomness.
And lowness for ∆1

1-Kurtz-randomness does not imply lowness for Π1
1-Kurtz-randomness.

Remark. Theorem 6.3 may be used to answer Question 58 in [6] and Question 3 in
[18], whose solutions were announced by Friedman and Harrington but have remain
unpublished.
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We end this paper with two problems.

It is still unknown whether strong Π1
1-ML-randomness coincides with Π1

1-randomness.
To separate these two notions, one way is to investigate the Borel ranks of different
notions of randomness. Obviously the collection of Π1

1-ML-random reals is Π0
3 and it

can be shown that it is not Σ0
3 (see Part 2, [21]) . Moreover, it is not hard to see that

the collection of Π1
1-random reals is neither Σ0

2 nor Π0
2. Its exact Borel rank remains

unknown. We have the following conjecture.

Conjecture 6.6. The collection of Π1
1-random reals is not Π0

3.

Also the question whether lowness for Π1
1-randomness coincides with hyperarith-

meticity remains open. In view of Theorem 6.1, we have the following question.

Question 6.7. Is it true that for any nonhyperarithmetic x and uncountable Σ1
1-set

A ⊆ 2ω, there is a y ∈ A such that x⊕ y ≥h O?
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