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Abstract. We study the problem of existence of maximal chains in the Turing degrees.

We show that:

1. ZF + DC+“There exists no maximal chain in the Turing degrees” is equiconsistent

with ZFC+“There exists an inaccessible cardinal”;

2. For all a ∈ 2ω, (ω1)
L[a] = ω1 if and only if there exists a Π1

1[a] maximal chain in the

Turing degrees.

As a corollary, ZFC+“There exists an inaccessible cardinal” is equiconsistent with ZFC+

“There is no (bold face) Π
e

1
1 maximal chain of Turing degrees”.

§1. Introduction. A chain in the Turing degrees is a set of reals in which
any two distinct elements are Turing comparable but not equivalent. A maximal
chain is a chain which cannot be properly extended. An antichain of Turing
degrees, by contrast, is a set of reals in which any two distinct elements are Turing
incomparable. A maximal antichain is an antichain that cannot be properly
extended. In this paper, we study maximal chains in the Turing degrees. This is
a classical topic in recursion theory which may be traced back to Sacks [13], in
which he proved the existence of a minimal upper bound for any countable set
of Turing degrees. As a consequence, assuming the Axiom of Choice AC, there
is a maximal chain of order type ω1. Abraham and Shore [1] even constructed
an initial segment of the Turing degrees of order type ω1. All of these results
depend heavily on AC. We are interested in the following questions:

1. Is AC necessary to show that there exists a maximal chain? Can one
construct a maximal chain without AC?

2. Is there a definable, say Π
e

1
1, maximal chain?

For (1), we will prove in Section 2 that over ZF plus the Axiom of Dependent
Choice DC, “there is no maximal chain in the Turing degrees” is equiconsis-
tent with ZFC + “there exists an inaccessible cardinal”. This shows that the
existence of maximal chains is “decided” by one’s belief, over ZF + DC, in
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the existence of an inaccessible cardinal. Thus if one believes that there is no
large cardinal in L, then one would deduce the existence of a maximal chain
from ZF + DC. On the other hand, if there is no maximal chain then ω1 is
inaccessible in L (in fact in L[a] for any real a). For (2), the situation is more
complicated. It is not difficult to show, under ZF +DC, that there exists no Σ

e
1
1

maximal chain in the Turing degrees. This is the best result within ZF + DC.
By Martin and Solovay’s result [9], it is consistent with ZFC that every maximal
chain is Π

e
1
1. Is it consistent with ZFC that there exists a Π1

1 maximal chain?
We show (Theorem 3.5) that there is a Π1

1 maximal chain under the assumption
of (ω1)L = ω1.

We organize the paper as follows: In Section 2, we study the relation between
existence of maximal chains and large cardinals. In Section 3, we consider the
problem of the existence of definable maximal chains.

Notations. A tree T is a subset of 2<ω which is downward closed. Given a
tree T , a finite string σ is said to be a splitting node on T if both σa0 and σa1
are in T . The string σ is said to be an n-th splitting node on T if σ ∈ T is a
splitting node and there are n− 1-many splitting nodes that are initial segments
of σ. Let Tσ = {τ ∈ T |τ º σ ∨ τ ¹ σ} and T ¹ n = {σ ∈ T ||σ| ≤ n}. We use
[T ] to denote the set of reals {z|(∀n)(z ¹ n ∈ T )}. A perfect tree T is a tree in
which for each σ, there is a τ ∈ T so that τ º σ and τ is a splitting node. Define
the n-th level of T to be

Levn(T ) = {σ 6∈ Levn−1(T )|(∃τ)(τ ∈ T∧σ ¹ τ∧τ is an n-th slpitting node on T )}.
For notations and definitions not given here, see [4], [8], [6],[12] and [14].

Acknowledgement. We thank the referee for a careful reading of the man-
uscript and for suggestions that improved on the original results and led to
Theorem 3.5 and Corollary 3.6. We also thank Manuel Lerman, Richard Shore
and Yue Yang for helpful discussions.

§2. Chains and large cardinals. We use I to denote the statement “there
exists an inaccessible cardinal” and NMT to denote “there exists no maximal
chain in the Turing degrees”. In this section, we prove that ZF + DC + NMT
is equiconsistent with ZFC + I.

A set A of reals is said to be an antichain if for all x, y ∈ A, x 6= y implies x|T y.
The following result is essentially due to Sacks [13] which will play a critical role
in this and later sections.

Lemma 2.1. (ZF +DC) For each perfect tree T , there is a perfect tree S ⊆ T
so that [S] is an antichain.

Proposition 2.2. Assume Con(ZFC + I). Then Con(ZF + DC + NMT )
holds.



MAXIMAL CHAINS IN THE TURING DEGREES 3

Proof. By Solovay’s theorem [17], assuming Con(ZFC + I), ZF + DC is
consistent with the statement: “Every uncountable set contains a perfect subset”.

Now every maximal chain is uncountable and, by Lemma 2.1, does not contain
a perfect set. Hence ZF + DC is consistent with the statement “There is no
maximal chain in the Turing degrees”. a

Proposition 2.3. If Con(ZF + DC + NMT ), then Con(ZFC + I).

Proof. By Solovay’s result [16], it suffices to prove that

ZF + DC + NMT ` (∀x ∈ 2ω)(ωL[x]
1 < ω1).

To show this, assume that there is a real x so that ω
L[x]
1 = ω1. Then since

2ω ∩L[x] has a well-ordering in L[x] of order type ω
L[x]
1 , it is straightforward to

obtain a maximal chain A ⊆ L[x] ∩ 2ω in L[x] of size (ℵ1)L[x]. Since ω
L[x]
1 = ω1,

|A| = ℵ1. Let A = {zα}α<ω1 .
If A is not a maximal chain in V (the real world), then take a witness z 6∈ A

which is comparable with all of the reals in A. So there is an α < ω1 so that
z ≤T zα. Then z ∈ L[x] since A ⊆ L[x]. So A is not a maximal chain in L[x], a
contradiction. a

Note that the proofs above also show that ZFC + I is equiconsistent with
ZF + DC+“Every chain of the Turing degrees is countable”.

§3. The existence of definable maximal chains. In this section, we study
the existence of definable maximal chains of Turing degrees.

Proposition 3.1. (ZF + DC) There is no Σ
e

1
1 maximal chain in the Turing

degrees.

Proof. If A is a maximal Σ
e

1
1 chain in the Turing degrees, then A must have

a perfect subset since A is uncountable. By Lemma 2.1, A will then contain a
pair of T -incomparable reals, which contradicts the fact that A is chain. a

Assuming MA +¬CH + (ω1)L = ω1, by Martin-Solovay’s result that each set
of reals with size at most ℵ1 is Π

e
1
1 [9], one sees that each maximal chain in the

Turing degrees is a Π
e

1
1-set. The question then is whether there is a Π1

1 maximal
chain. We give a positive answer assuming (ω1)L = ω1.

Recall that a real x is a minimal cover of a countable set A of reals if (i) x is
an upper bound of every real in A, and (ii) no y <T x is an upper bound of A.
Sacks [13] showed that every countable collection of Turing degrees has a minimal
cover. The next lemma implies that a minimal cover exists with arbitrarily high
double jump.

Lemma 3.2. (ZF ) Assume A is a countable set of reals and x is a real. There
is a minimal cover z of A so that z′′ ≥T x.
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Proof. We fix an effective enumeration of partial recursive oracle functions
{Φe}e<ω.

Let {pn}n<ω be a recursive 1-1 enumeration of prime numbers. Allowing
ambiguity, we will also use pσ to denote the prime number which codes the
string σ. Given a recursive oracle function Φ, we use Φy = T to express the
following:

1. Φy is total;
2. (∀n)(Φy(n) =

∏
σ∈Levn(T ) pσ).

Define Ln(T ) to be the leftmost n + 1-th splitting node and Rn(T ) to be the
rightmost n + 1-th splitting node.

For each finite string σ∗, real x and perfect tree T ⊆ 2<ω with σ∗ ∈ T ,
define T (σ∗, x, T ) to be a perfect tree so that T (σ∗, x, T ) is the intersection of a
sequence of perfect trees Tn given as follows:

T0 = Tσ∗ .
Tn+1 = {τ |∃σ ∈ Levn(Tn)(τ ¹ σ)} ∪ Sn+1 ⊆ Tn where Sn+1 is defined as:

Case(1) : x(n) = 0. σ ∈ Sn+1 if and only if there exists τ ∈ Levn+1(Tn) so that
σ º τ and τ = L1(T ν

n ) for some ν which is an n-th splitting node of Tn.
Case(2) :x(n) = 1. σ ∈ Sn+1 if and only if there exists τ ∈ Levn+1(Tn) so that

σ º τ and τ = R1(T ν
n ) for some ν which is an n-th splitting node of Tn.

Define
T (σ∗, x, T ) =

⋂
n

Tn.

In other words, T (σ∗, x, T ) is a subtree which, roughly speaking, codes x(n) at
a 2n-th splitting node of T σ∗ . Note that T (σ∗, x, T )⊕T ≥T x. Moreover, suppose
for some recursive oracle function Φ, we have Φy = T for all y ∈ [T ]. Then
there is a recursive oracle function Ψ such that Ψy = x for all y ∈ T (σ∗, x, T ).
Furthermore, given an index of the oracle function Φ, an index of the oracle
function Ψ may be effectively obtained from σ∗. In other words, there is a
recursive function f such that Φy

f(σ∗) = x for all y ∈ [T (σ∗, x, T )]. Since Φy = T

for all y ∈ [T (σ∗, x, T )] ⊆ [T ] and x ⊕ T ≥T T (σ∗, x, T ), there is a recursive
function g so that Φy

g(σ∗) = T (σ∗, x, T ) for all y ∈ [T (σ∗, x, T )].
We give a sketch of the idea behind the construction of z. To obtain a minimal

cover of a countable set A = {xi}i<ω, one makes appropriate modifications of the
construction of a minimal degree (see [8]). To make the minimal degree relatively
high (i.e. to make it compute a given x through jumps), one needs to code the
indices of the perfect trees in the course of the construction ([15] is a good source
where this idea is made precise). Were the construction uniform, one could use
the Recursion Theorem to code the index of the next perfect tree being defined
during the step by step construction. This technique could be applied to code x
and xi into z for each i < ω. However, to achieve minimality, the construction
is non-uniform (one needs to decide whether the next tree will be an “e-splitting
tree” or a “full tree”, which in general is a “double jump” question). Although it
is highly non-uniform, the construction does become uniform once it is decided
which situation one is in (see Substep 3 of the construction below). This is the
reason for using z′′ to “get up” to x.

We now turn to the construction.
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Fix a real x and an enumeration {xi}i∈ω of A. Suppose the recursive oracle
functional Φ0 satisfies Φy

0 = 2<ω for all reals y. We construct a sequence of
perfect trees step by step. At step n, we construct a perfect tree Tn ≤T ⊕i<nxi

and a finite string σn so that Tn ¹ |σn| = {τ |τ ¹ σn}, |σn| > n and there is a
recursive oracle functional Φen

so that for each y ∈ [Tn], Φy
en

= Tn.

Construction
At step 0, define T0 = 2<ω and σ0 = ∅.
At step n + 1, there are three substeps:

Substep 1 (Coding x). For each k: If x(n) = 0, define σk
n+1,0 = R1(T

Lk(Tn)
n ); oth-

erwise, define σk
n+1,0 = L1(T

Rk(Tn)
n ). Define Tn+1,0,k = T

σk
n+1,0

n . Hence
there is a recursive oracle functional Φik

such that for each y ∈ Tn+1,0,k,
Φy

ik
= Tn+1,0,k. Note that the function k 7→ ik is recursive. It fol-

lows from the Recursion Theorem that there is a number k0 such that

Φy
ik0

= Φy
k0

for all y ∈ [T
σ

k0
n+1,0

n ]. Fix this k0 and define σ0
n+1 = σk0

n+1,0, and
Tn+1,0 = Tn+1,0,k0 .

Substep 2 (Coding xn). For each k: Define Tn+1,1,k = T (R1(T
Lk(Tn+1,0)
n+1,0 ), xn, Tn+1,0).

By the discussion above, there are recursive functions f, g so that Φy
f(k) =

xn and Φy
g(k) = Tn+1,1,k for all y ∈ [Tn+1,1,k]. By the Recursion Theorem,

there is a k1 such that Φy
k1

= Φy
g(k1)

= Tn+1,1,k1 for all y ∈ [Tn+1,1,k1 ].

Define σn+1,1 = R1(T
Lk1 (Tn+1,0)
n+1,0 ) and Tn+1,1 = Tn+1,1,k1 .

Substep 3 (Forcing a minimal cover). This is the only place where z′′ is used.
Case(1) : There exists σ ∈ Tn+1,1 and a number iσ so that for all m > iσ,

τ1, τ2 º σ, {τ1, τ2} ⊂ Tn+1,1 ∧Φτ1
n+1(m) ↓ ∧Φτ2

n+1(m) ↓ =⇒Φτ1
n+1(m) =

Φτ2
n+1(m). Choose the least such σ ∈ Tn+1,1 (in the sense of the coding

of strings). Define S = Tσ
n+1,1. For each k, define Sk = SR1(S

Lk(S)). By

the Recursion Theorem again, there is a k2 so that Φy
k2

= SR1(S
Lk2

(S)
)

for all y ∈ [SR1(S
Lk2

(S)
)]. Define σn+1 = R1(SLk2 (S)) and Tn+1 =

Sσn+1 .

Case(2) : Otherwise. For each k, define Sk = T
R1(T

Lk(Tn+1,1)
n+1,1 )

n+1,1 . Then we can
Sk-recursively find a sub-perfect tree Pk of Sk such that for all y ∈ [Pk],
Φy

n is total and for all τ0, τ1 ∈ Pk, if τ0|τ1, then there must be some i
so that for all reals z0 Â τ0 and z1 Â τ1, Φz0

n (i) ↓6= Φz1
n (i) ↓. By the

Recursion Theorem, there is a k2 such that Φy
k2

= Pk2 for all y ∈ [Pk2 ].

Let Tn+1 = Pk2 and σn+1 = R1(T
Lk2 (Tn+1,1)
n+1,1 ) ∈ Tn+1.

Let en+1 = k3. Then Φy
en+1

= Tn+1 for all y ∈ [Tn+1].
This completes the construction at step n + 1.
Note that by induction on n, Tn+1 ≤T ⊕i<n+1xi.

Finally, let z =
⋃

n σn.

By the usual arguments (see [8]), one can show that z is a minimal cover of A
since Tn+1 ≤T ⊕i<n+1xi for each n. We show that z′′ ≥T x. We prove this by
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using induction on n to show that x(n) may be z′′-uniformly computed. To do
this, we show that the index en is uniformly computed from z′′.

At step n + 1, by inductive hypothesis, we can z′′-recursively find en. By
the construction, we have Φy

en
= Tn for all y ∈ [Tn]. We can z-recursively

find an initial segment of z which is R1(T
Lk0 (Tn)
n ) or L1(T

Rk0 (Tn)
n ) for some k0.

In the first case, x(n) = 0. In the second case, x(n) = 1. Note that Φz
k0

is
the perfect tree in Substep 1 of the construction. We can z-recursively find k1

so that R1((Φz
k0

)Lk1 (Φz
k0

)) ¹ z. Then Φz
k1

= T (R1((Φz
k0

)Lk1 (Φz
k0

)), xn,Φz
k0

) =
Tn+1,1. We use z′′ to decide which case Φz

k1
is in. In case (1), we z′′-recursively

find the least σ ∈ Tn+1,1 with the required property. Let S = Tσ
n+1,1. Then

we z-recursively find the k2 so that Φz
k2

= SR1(S
Lk2

(S)
). So en+1 = k2 and

Tn+1 = SR1(S
Lk2

(S)
) = Φz

k2
. In Case (2), we z-recursively find the k2 so that

R1(T
Lk2 (Tn+1,1)
n+1,1 ) ¹ z. Then by the construction, en+1 = k2 and Tn+1 = Φz

k2
.

Thus z′′ ≥T x and the proof of Lemma 3.2 is complete. a

Remark. We conjecture that z′′ may be replaced by z′ in Lemma 3.2.

Corollary 3.3. (ZF +DC) Assume that A is a countable set of reals. There
is a real x so that for each y ≥T x, there is a minimal cover z of A so that
z′′ ≡T y.

Proof. Assume A is a countable set of reals. Fix an enumeration {xi}i of A.
The set

B = {y|(∃z)(z is a minimal cover of A ∧ z′′ ≡T y)}
= {y|(∃e)(∀i)(∀j)[(Φy

e is total ∧ (Φy
e)′′ ≡T y ∧ xi ≤T Φy

e ∧
(ΦΦy

e
j is total ∧ (∀k)(xk ≤T ΦΦy

e
j )=⇒Φy

e ≤T ΦΦy
e

j )]}
is a Borel set. By Lemma 3.2, for each real x, there is a real y ∈ B so that y ≥T x.
By Borel determinacy (Martin [10]), there is a real x so that {y|y ≥T x} ⊆ B. a

To show the main result, we first construct a Π1
1 maximal chain in the Turing

degrees under the assumption V = L.
The proof of the following lemma depends heavily on the results of Boolos and

Putnam [3]. Call a set E ⊆ ω × ω an arithmetical copy of a structure (S,∈) if
there is a 1-1 function f : S → ω so that for all x, y ∈ S, x ∈ y if and only if
(f(x), f(y)) ∈ E. In ([3]) it is proved that if (Lα+1 \ Lα) ∩ 2ω 6= ∅ then there
is an arithmetical copy Eα ∈ Lα+1 of (Lα,∈) so that any x ∈ (Lα+1 \ Lα) ∩ 2ω

is arithmetical in Eα (i.e. Eα is a master code for α in the sense of Jensen [7]).
Moreover, each z ∈ Lα∩2ω is one-one reducible to Eα. Since Eα ⊂ ω×ω, it may
be viewed as a real. Note that for each constructibly countable β, there is an
α > β such that (Lα+1 \Lα)∩2ω 6= ∅. We will be considering sets A ⊆ α×ω. It
will be convenient to identify A with an α-sequence {Aγ |γ < α} of reals, where
Aγ = {(γ, n)|(γ, n) ∈ A}.
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Theorem 3.4. Assume V = L. There is a Π1
1 maximal chain in the Turing

degrees of order type ω1.

Proof. By the Gandy-Spector theorem, a set A of reals is Π1
1 if and only if

there is a Σ0-formula ϕ such that

y ∈ A ⇔ (∃x ∈ Lωy
1
[y])(Lωy

1
[y] |= ϕ(x, y)),

where ωy
1 is the least ordinal α bigger than ω so that Lα[y] is admissible (see

Theorem 3.1 Chapter IV [2]).
Our proof combines Corollary 3.3 and van Engelen et al’s argument [5]. Based

on the paper [5], Miller [11] provided a general machinery to construct a Π1
1 set

satisfying some particular properties. However, the presentation is sketchy and
incomplete. We give a detailed argument here where it pertains to the theorem
at hand.

Assuming V = L, we define a function F on ω1 ×
⋃

α<ω1
P(α× ω) as follows:

For each α < ω1, A ⊆ α × ω, we define F (α, A) to be the real y such that
there exists a lexicographically least triple (β, E, e0) (where the ordering on the
second coordinate is <L) satisfying the following properties :

1. There is a function h ∈ Lβ which maps ω onto α, and (Lβ+1 \Lβ)∩2ω 6= ∅;
2. E ∈ Lβ+1 is an arithmetical copy of (Lβ ,∈) with the properties mentioned

before the statement of Theorem 3.4;
3. y is a minimal cover of the set of reals {xβ | β < α∧∀n(xβ(n) = A(β, n))};
4. y′′ ≡T E and finally
5. y = ΦE

e0
.

We show that F is a total function.
For each (α, A), we show that there exists a y such that F (α,A) = y. It

suffices to show that (β, E, e0) exists. Then by the fact that the lexicographical
order is a well ordering, there must be a least one and this will yield the y needed
to define F (α,A). Fix a real x for A as in Corollary 3.3, the base of a cone of
Turing degrees that are double jumps of minimal covers of A. Since V = L,
there is a β > α such that x ∈ Lβ , (Lβ+1 \ Lβ) ∩ 2ω 6= ∅ and there is a function
hα mapping ω onto α. By the discussion above, there is an arithmetical copy
E ⊆ ω×ω in Lβ+1 such that E >T x. By Corollary 3.3 and the choice of x, there
is a minimal cover y of A so that y′′ ≡T E and y = ΦE

e0
for some e0. Obviously,

Lβ+1 ∈ Lωy
1
[y]. By the absoluteness of <L, it is easy to see that F (α, A) is

defined. Note that F (α,A) depends essentially on A since A is a sequence of
reals of length α.

Moreover, for such A’s one can verify using the absoluteness of <L that there
is a Σ0 formula ϕ(α,A, z, y) such that

F (α,A) = y ⇔ L
ω

(A,y)
1

[A, y] |= ∃z∃h(ϕ(α,A, z, y)∧h is a function from ω onto α).

Thus we can perform transfinite induction on countable ordinals to construct
a maximal chain of Turing degrees of order type ω1. But care has to be exercised
here since in general sets constructed this way are Σ1 over Lω1 , i.e. Σ1

2 and not
necessarily Π1

1.
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Define G(α) = y if and only if

α < ωy
1 ∧ ∃f(f ∈ (2ω)α+1 ∧ f ∈ Lωy

1
[y] ∧ f(α) = y ∧

∀β(β < α =⇒ f(β) = F (β, {(γ, n)|n ∈ f(γ) ∧ γ < β}))).
Since Lωy

1
[y] is admissible, G is Σ1-definable. In other words, G(α) = y if and

only if there is a function f : α + 1 → 2ω with f ∈ Lωy
1
[y] such that

Lωy
1
[y] |= ((∃s)(∀β ≤ α)(∃z ∈ s)ϕ(β, {(γ, n)|n ∈ f(γ)∧γ < β}, z, f(β)))∧f(α) = y.

Define the range of G to be T . Then y ∈ T if and only if there exists an
ordinal α < ωy

1 and a function f : α + 1 → 2ω with f ∈ Lωy
1
[y] such that

Lωy
1
[y] |= ((∃s)(∀β ≤ α)(∃z ∈ s)ϕ(β, {(γ, n)|n ∈ f(γ)∧γ < β}, z, f(β)))∧f(α) = y.

So T is Π1
1.

All that remains is to show that G is a well-defined total function on ω1. This
can be done using the same argument as that for showing the recursion theorem
over admissible structures (see Barwise [2]). The only difficult part is to argue,
as was done earlier, that the function f defined above exists. We leave this to
the reader.

Thus T is a chain of order type ω1. To see that it is a maximal chain, let x
be a real which is T-comparable with all members of T . Select the least α such
that G(α) ≥T x. Then x ≥T G(β) for all β < α. Since G(α) is a minimal cover
of {G(β)|β < α}, we have G(α) ≡T x. Thus T is a Π1

1 maximal chain. a
We arrive at the following characterization:

Theorem 3.5. Assume ZF + DC. The following statements are equivalent:
1. (ω1)L = ω1;
2. There exists a Π1

1 maximal chain in the Turing degrees.
3. There exists a Π1

1 uncountable chain in the Turing degrees.

Proof. (1)=⇒ (2): Suppose (ω1)L = ω1. Fix the Π1
1 set T as in Theorem

3.4. Since the statement “T is a chain” is Π1
2 and L |= T is a chain, T is a

chain in the real world V . Since T is uncountable in L and (ω1)L = ω1, T is
uncountable. Thus if x is a real so that {x}∪T is a chain, then x <T y for some
y ∈ T so that x ∈ L. Since L |= T is a maximal chain, T is a maximal chain in
V .

(2)=⇒ (3): This is Obvious.
(3)=⇒ (1): Suppose T is a Π1

1 uncountable chain in the Turing degrees. By
Lemma 2.1, T is a thin set. Solovay [16] proved that if T is a thin Π1

1 set, then
T ⊆ L, and (T )L = T ∩ L = T . Thus T ⊂ L(ω1)L . Since T is uncountable,
(ω1)L = ω1. a

Now Theorem 3.5 may be relativized to any real a. To do this one first observes
that an analog of the Boolos-Putnam theorem [3] on arithmetic copies holds, so
that if Lα+1[a] \Lα[a] 6= ∅, then there is an Eα ∈ Lα+1[a]∩ 2ω×ω in which every
real in Lα+1[a] is a-arithmetical (i.e. arithmetical in Eα ⊕ a). This provides the
setting for establishing a relativized version of Theorem 3.4, namely if V = L[a],
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then there is a Π1
1[a] maximal chain in the Turing degrees of order type ω1. With

this, one derives a relativized version of Theorem 3.5, where ωL
1 is replaced by

ω
L[a]
1 , and Π1

1 by Π1
1[a]. This leads to the following corollary showing that bold

face Π1
1 maximal chains play a critical role in the existence problem of maximal

chains, and gives an answer to the second question posed at the beginning of
this paper.

Corollary 3.6. The following statements are equiconsistent:

(1) ZFC + I;
(2) ZF + DC + “There exists no Π

e
1
1maximal chain in the Turing degrees”.

(3) ZF + AC + “There exists no Π
e

1
1maximal chain in the Turing degrees”.

Proof. (1)=⇒ (2). Assume that ZFC+I is consistent. Then by Proposition
2.2, ZF + DC + “There exists no Π

e
1
1maximal chain in the Turing degrees” is

consistent.
(2)=⇒ (1). Assume that ZF + DC + “There exists no Π

e
1
1 maximal chain in

the Turing degrees” is consistent. By the observation above on relativizing The-
orem 3.5, the existence of a Π1

1[a] maximal chain of Turing degrees is equivalent
to ω

L[a]
1 = ω1. Thus if there is no Π

e
1
1 maximal chain in the Turing degrees, then

ω
L[a]
1 < ω1 for all reals a. This implies that ZFC + I is consistent.
(3)=⇒ (2). Obvious.
(1)=⇒ (3). Assume that ZFC + I is consistent. Then ZFC + “ω1 is inac-

cessible in L” is consistent (by Levy collapse). So there is a ZFC model M so
that

M |= ∀x ∈ 2ω(ωL[x]
1 < ω1).

By the relativized version of Theorem 3.5, there is no Π
e

1
1 maximal chain in the

Turing degrees in M. a
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