Characterizing nonstandard randomness notions via Martin-Löf randomness

Liang Yu

Institute of Mathematica Science, Nanjing University

March 31, 2011
Three ideas

To be random, a real must

1. have fairly general property;
2. non-compressible;
3. non-predicable.
Three methods

Based on the ideas above, there are three methods to define randomness. They are:

1. measure theory argument;
2. Kolmogorov complexity;
3. martingale.
A Martin-Löf test is a uniformly c.e. sequence of open sets \(\{ U_n \}_{n \in \omega} \) so that \(\mu(U_n) < 2^{-n} \) for every \(n \).

A real \(x \) is **Martin-Löf random** if \(x \notin \bigcap_{n \in \omega} U_n \) for every Martin-Löf test \(\{ U_n \}_{n \in \omega} \).

There is a universal Martin-Löf test.
A Martin-Löf test is a uniformly c.e. sequence of open sets \(\{U_n\}_{n \in \omega} \) so that \(\mu(U_n) < 2^{-n} \) for every \(n \).

A real \(x \) is **Martin-Löf random** if \(x \notin \bigcap_{n \in \omega} U_n \) for every Martin-Löf test \(\{U_n\}_{n \in \omega} \).

There is a universal Martin-Löf test.
Algorithmic randomness

A Turing machine M is prefix free if for any finite strings $\sigma \prec \tau$, either $M(\sigma)$ or $M(\tau)$ is undefined. Given a prefix free Turing machine M, the Kolmogorov complexity of a finite string σ, $K_M(\sigma)$, is the length of the shortest input τ so that $\sigma = M(\tau)$. There is an optimal prefix free Turing machine U. A real x is algorithmic random if there is a constant c so that $\forall n (K_U(x \upharpoonright n) \geq n - c)$.
Algorithmic randomness

A Turing machine M is prefix free if for any finite strings $\sigma \prec \tau$, either $M(\sigma)$ or $M(\tau)$ is undefined. Given a prefix free Turing machine M, the Kolmogorov complexity of a finite string σ, $K_M(\sigma)$, is the length of the shortest input τ so that $\sigma = M(\tau)$. There is an optimal prefix free Turing machine U. A real x is algorithmic random if there is a constant c so that $\forall n(K_U(x \upharpoonright n) \geq n - c)$.
A martingale d is a function from $2^{<\omega}$ to $\mathbb{R}^+ \cup \{0\}$ so that for any σ, $d(\sigma) = \frac{d(\sigma^0)+d(\sigma^1)}{2}$.

A c.e. martingale d is a martingale d so that the set $\{(q,\sigma) \in \mathbb{Q} \mid q < d(\sigma)\}$ is a c.e. set.

A real x is random, then it cannot be predicated by any effective strategy. Or for any c.e. martingale d, $\lim_{n \to \infty} d(x \upharpoonright n) < \infty$.

There is an optimal c.e. martingale d.

\[\frac{d(\sigma^0)+d(\sigma^1)}{2}\]
A martingale \(d \) is a function from \(2^{<\omega} \) to \(\mathbb{R}^+ \cup \{0\} \) so that for any \(\sigma \), \(d(\sigma) = \frac{d(\sigma^0)+d(\sigma^1)}{2} \).

A c.e. martingale \(d \) is a martingale \(d \) so that the set \(\{(q,\sigma) \in Q \mid q < d(\sigma)\} \) is a c.e. set.

A real \(x \) is random, then it cannot be predicated by any effective strategy. Or for any c.e. martingale \(d \), \(\lim_{n \to \infty} d(x \upharpoonright n) < \infty \).

There is an optimal c.e. martingale \(d \).
Connecting these methods

Theorem (Schnorr)

For any real x, the following are equivalent:

1. for any Martin-Löf test $\{U_n\}_{n \in \omega}$, $x \notin \bigcap_n U_n$;
2. there is a constant c so that $\forall n (K(x \upharpoonright n) \geq n - c)$;
3. $\lim_{n \to \infty} d(x \upharpoonright n) < \infty$ for any c.e. martingale d.

Liang Yu

Characterizing nonstandard randomness notions via Martin-Löf randomness
Given two random reals, can we compare their randomness? Or how to measure randomness for a random real? A usual way is relativizing randomness notions. For example, a real x is Martin-Löf random relativized to some real z if x passes all the Martin-Löf tests relativized to z. We use $\text{ML}(z)$ to denote this.
Measure randomness

Given two random reals, can we compare their randomness? Or how to measure randomness for a random real? A usual way is relativizing randomness notions. For example, a real x is Martin-Löf random relativized to some real z if x passes all the Martin-Löf tests relativized to z. We use $ML(z)$ to denote this.
Measure randomness

Given two random reals, can we compare their randomness? Or how to measure randomness for a random real? A usual way is relativizing randomness notions. For example, a real x is Martin-Löf random relativized to some real z if x passes all the Martin-Löf tests relativized to z. We use $\text{ML}(z)$ to denote this.
Given two reals x and y, x is LR-reducible to y, writing to $x \leq_{LR} y$, if $\text{ML}(L) \subseteq \text{ML}(x)$.

LR-reduction is an arithmetical definable way to measure the power compressing randomness information.

Theorem (Kjors-Hassen, Miller and Solomon)

$x \leq_{LR} y$ if and only if $\exists c \forall n (K^y(n) \leq K^x(n) + c)$.

LR-reduction
LR-reduction

Given two reals x and y, x is LR-reducible to y, writing to $x \leq_{LR} y$, if $\text{ML}(L) \subseteq \text{ML}(x)$.

LR-reduction is an arithmetical definable way to measure the power compressing randomness information.

Theorem (Kjors-Hassen, Miller and Solomon)

$x \leq_{LR} y$ if and only if $\exists c \forall n \left(K^y(n) \leq K^x(n) + c \right)$.

Background

- On nonstandard randomness notions
- Two general methods to characterize nonstandard randomness notions
- The story of \emptyset'-Schnorr randomness
- Some remarks on other randomness notions
LR-reduction

Given two reals x and y, x is LR-reducible to y, writing to $x \leq_{LR} y$, if $ML(L) \subseteq ML(x)$.

LR-reduction is an arithmetical definable way to measure the power compressing randomness information.

Theorem (Kjors-Hassen, Miller and Solomon)

$x \leq_{LR} y$ if and only if $\exists c \forall n (K^y(n) \leq K^x(n) + c)$.
Characterizing nonstandard randomness notions via Martin-Löf randomness

Liang Yu

Background

What is randomness?

More about Martin-Löf randomness

Randomness notions stronger than Martin-Löf randomness

On nonstandard randomness notions

Two general methods to characterize nonstandard randomness notions

The story of \emptyset'-Schnorr randomness

Some remarks on other randomness notions

Nice properties of Martin-Löf randomness

Theorem (van-Lambalgen)

$x \oplus y$ is Martin-Löf random if and only if y is Martin-Löf random and x is Martin-Löf random relativized to y.

Let $x \geq_K y$ if there is a constant c so that

$$\forall n (K(x \upharpoonright n) \geq K(y \upharpoonright n) - c).$$

Theorem (Miller and Yu)

For any oracle $z \geq_T \emptyset'$, if $x \geq_K y$ and y is Martin-Löf random relativized to z, then x is already Martin-Löf random relativized to z.
Characterizing nonstandard randomness notions via Martin-Löf randomness

Liang Yu

Power vs Randomness

Theorem (Miller and Yu)

1. For any real \(z \), if \(x \leq_T y \) are both Martin-Löf random and \(y \) is Martin-Löf random relativized to \(z \), then so is \(x \);

2. If \(y \) is Martin-Löf random and \(x \geq_K y \), then \(x \leq_{LR} y \).

Theorem (Stephan)

If \(x \) is Martin-Löf random but not computing the halting problem, then \(x \) cannot compute a complete extension of Peano Axioms.

All these justify that more random means less power.
Given a universal prefix free Turing machine U, the Chaitin’s $\Omega = \sum_{\sigma} U(\sigma) \downarrow 2^{|\sigma|}$ is Martin-Löf random.

Theorem (Kučera; Gacs)

For any $z \geq_{\mathbf{T}} \emptyset'$, there is a Martin-Löf random real $x \equiv_{\mathbf{T}} z$.

Some flaws
Some flaws

Given a universal prefix free Turing machine U, the Chaitin's
$\Omega = \sum U(\sigma) \downarrow 2^{\|\sigma\|}$ is Martin-Löf random.

Theorem (Kučera; Gacs)

For any $z \geq_T \emptyset'$, there is a Martin-Löf random real $x \equiv_T z$.
A real x is weakly-2-random if for all generalized Martin-Löf test \(\{ U_n \}_{n \in \omega} \), $x \notin \bigcap_n U_n$.

A real x is \emptyset'-Schnorr-random if for all \emptyset'-Schnorr test \(\{ U_n \}_{n \in \omega} \), $x \notin \bigcap_n U_n$.

... All these randomness notions are called nonstandard randomness.
A real x is weakly-2-random if for all generalized Martin-Löf test \(\{ U_n \}_{n \in \omega} \), $x \notin \bigcap_n U_n$.

A real x is \emptyset'-Schnorr-random if for all \emptyset'-Schnorr test \(\{ U_n \}_{n \in \omega} \), $x \notin \bigcap_n U_n$.

...

All these randomness notions are called nonstandard randomness.
To be a reasonable randomness notion

Given a randomness notion R, $x \in R$ and $y \geq_K x$, then $y \in R$.
Can these nonstandard randomness notions be defined in terms of Martin-Löf randomness?
Given a nonstandard randomness notion R, we use $\mathcal{F}(R)$ to denote the collection of all the classes R's which have the property that for every real z, $z \in R$ if and only if for every real $x \in R$, $z \in \text{ML}(x)$.

Let $\Pi(R) = \bigcup_{R \in \mathcal{F}(R)} R$.

Note that $\Pi(R) \in \mathcal{F}(R)$.

\[\Pi(R) = \bigcup_{R \in \mathcal{F}(R)} R. \]
Definition

Given a nonstandard randomness notion R, we use $\mathcal{G}(R)$ to denote the collection of all the classes R’s which have the property that for every real z, $z \in R$ if and only if there exists some real $x \in R$, $z \in \text{ML}(x)$.

Let $\Sigma(R) = \bigcup_{R \in \mathcal{G}(R)} R$.

Note that $\Sigma(R) \in \mathcal{G}(R)$.

Σ-type
Connect the two types

Proposition

Suppose that both $\Sigma(R)$ and $\Pi(R)$ exist, then for any real x, $x \in \Sigma(R)$ if and only if for every real $y \in \Pi(R)$, $y \leq_{LR} x$.
If there is some $R \in \mathcal{F}(R)$ such that every $x \in R$ is Martin-Löf random, then we may obtain a Kolmogorov complexity characterization of R and conclude that R is K-upward closed.

Same for $\mathcal{G}(R)$
Two problems

1. Both $\Sigma(R)$ and $\Pi(R)$ seem are rather complicated, they do not appear to be second order arithmetical definable;

2. They may not exist at all.

$\Pi(W^2R, ML)$ does not exist.
Two problems

1. Both $\Sigma(R)$ and $\Pi(R)$ seem are rather complicated, they do not appear to be second order arithmetical definable;

2. They may not exist at all.

$\Pi(W2R, ML)$ does not exist.
Two problems

1. Both $\Sigma(R)$ and $\Pi(R)$ seem to be rather complicated, they do not appear to be second order arithmetical definable;

2. They may not exist at all.

$\Pi(W2R, ML)$ does not exist.
Low degrees

Let Low denote the collection of the class of reals x so that $x' \equiv_T \emptyset'$. So x does not add power for its relativized halting problem.
On $\mathcal{F}(\text{Sch}(\emptyset'))$

Theorem

$\text{Low} \in \mathcal{F}(\text{Sch}(\emptyset'))$.

Proof.

A typical finite injury argument.

So $\mathcal{F}(\text{Sch}(\emptyset'))$ is not empty. Hence $\Pi(\text{Sch}(\emptyset'))$ exists.
Theorem

\[\text{Low} \in \mathcal{F}(\text{Sch}(\emptyset')). \]

Proof.

A typical finite injury argument.

So \(\mathcal{F}(\text{Sch}(\emptyset')) \) is not empty. Hence \(\Pi(\text{Sch}(\emptyset')) \) exists.
Random reals in $\mathcal{F}(\text{Sch}(\emptyset'))$

Theorem

$$\text{Low} \cap \text{ML} \in \mathcal{F}(\text{Sch}(\emptyset')).$$

Proof.

This is proved by a coding-decoding argument. We use a Kučera-Gacs coding and effective forcing to do the code, then use a finite injury to decode the coding construction.

Thus there is a natural Kolmogorov complexity characterization for $\text{Sch}(\emptyset')$.

Liang Yu

Background

On nonstandard randomness notions

Two general methods to characterize nonstandard randomness notions

The story of \emptyset'-Schnorr randomness

Some remarks on other randomness notions

Π-type characterization

Σ-type characterization

randomness notions via Martin-Löf randomness

Liang Yu
Random reals in $\mathcal{F}(\text{Sch}(\emptyset'))$

Theorem

$\text{Low} \cap \text{ML} \in \mathcal{F}(\text{Sch}(\emptyset'))$.

Proof.

This is proved by a coding-decoding argument. We use a Kučera-Gacs coding and effective forcing to do the code, then use a finite injury to decode the coding construction.

Thus there is a natural Kolmogorov complexity characterization for $\text{Sch}(\emptyset')$.

Liang Yu
Let $\mathcal{B}_L = \{ y \mid \exists x (x \in \text{Low} \land y \leq_{LR} x) \}$.

Theorem

$\mathcal{B}_L = \Pi(Sch(\emptyset'))$.

Proof.

This is proved by a forcing argument.

Thus $\Pi(Sch(\emptyset'))$ is arithmetical definable.
On $\Pi(\text{Sch}(\emptyset'))$

Let $\mathcal{B}L = \{y \mid \exists x (x \in \text{Low} \land y \leq_{LR} x)\}$.

Theorem

$\mathcal{B}L = \Pi(\text{Sch}(\emptyset'))$.

Proof.

This is proved by a forcing argument.

Thus $\Pi(\text{Sch}(\emptyset'))$ is arithmetical definable.
Theorem

\[\Sigma(Sch(\emptyset')) \] exits.

Proof.

This is proved by the low random theorem and a generalized van-Lambalgen theorem due to Miyabe.

It can be shown that \[\Sigma(Sch(\emptyset')) \] is arithmetical definable by using a result due to Barmpalias, Miller and Nies.
Theorem

$\Sigma(Sch(\emptyset'))$ exits.

Proof.

This is proved by the low random theorem and a generalized van-Lambalgen theorem due to Miyabe.

It can be shown that $\Sigma(Sch(\emptyset'))$ is arithmetical definable by using a result due to Barmpalias, Miller and Nies.
We don’t know whether $\Sigma(W2R)$ exists.

For the other randomness notions...

randomness notions via Martin-Löf randomness

Liang Yu

Background
What is randomness?
More about Martin-Löf randomness
Randomness notions stronger than Martin-Löf randomness
On nonstandard randomness notions
To be a reasonable randomness notion
A uniform way to define nonstandard randomness notions
Two general methods to characterize nonstandard randomness notions

Some remarks on other randomness notions

Σ-type characterization
We don’t know whether $\Sigma(W2R)$ exists. For the other randomness notions...
We don’t know whether $\Sigma(W2R)$ exists.
For the other randomness notions...
Characterizing nonstandard randomness notions via Martin-Löf randomness

Liang Yu

Background

What is randomness?
More about Martin-Löf randomness
Randomness notions stronger than Martin-Löf randomness

On nonstandard randomness notions

To be a reasonable randomness notion
A uniform way to define nonstandard randomness notions

Two general methods to characterize nonstandard randomness notions

Π-type
Σ-type

Connecting both types

Kolmogorov complexity characterization

Two problems

The story of \(\emptyset' \)-Schnorr randomness

Some remarks on other randomness notions