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Abstract

A set A is a basis for Schnorr randomness if and only if it is Turing reducible to
a set R which is Schnorr random relative to A. One can define a basis for weak
1-genericity similarly. It is shown that A is a basis for Schnorr randomness if
and only if A is a basis for weak 1-genericity if and only if the halting problem
K is not Turing reducible to A. Furthermore, call a set A high for Schnorr
randomness versus Martin-Löf randomness if and only if every set which is
Schnorr random relative to A is also Martin-Löf random unrelativized. It is
shown that A is high for Schnorr randomness versus Martin-Löf randomness if
and only if K is Turing reducible to A. Other results concerning highness for
other pairs of randomness notions are also included.

1 Introduction

Kučera and Terwijn [12] showed that there is a nonrecursive setA such that the notions
of Martin-Löf randomness relative to A and Martin-Löf randomness unrelativized
coincide. As every set is Turing reducible to a Martin-Löf random set [5, 11], A is
also Turing reducible to a set which is Martin-Löf random relative to A. Later, this
notion was systematically studied [19, 20] and characterized [7].

These studies were carried out for various notions M. A set A is called a basis for
a relativizable property M if there is a set B ≥T A that has the property M relative
to A. For example, it is well known that every set is a basis for Kurtz randomness (see
Remark 1.4 below). Furthermore, no nonrecursive set A is a basis for 1-genericity,
since A is not Turing reducible to any set which is 1-generic relative to A. In the
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present work, the bases for the notions of Schnorr randomness and weak 1-genericity
are investigated. It is shown that in both cases, the bases are the natural class of sets
that are not Turing above the halting problem. This solves an open problem of Miller
and Nies for the case of Schnorr randomness [18, Question 5.2].

There are several notions of algorithmic randomness [2, 14, 16, 25, 26]. A set A
is Martin-Löf random if and only if there is no uniformly r.e. sequence of Σ0

1 classes
such that for every e, the eth class has measure at most 2−e and contains A [15]. A
set is Schnorr random if and only if “at most 2−e” is replaced by “exactly 2−e” in
the previous definition [25]. Alternatively, one can characterize these notions using
martingales, where a martingale mg is a function defined on finite binary strings such
that mg(σ0)+mg(σ1) = 2mg(σ) ≥ 0 for all σ. A martingale mg succeeds on A if and
only if for every c, there is an n such that mg(A(0)A(1) . . . A(n)) > c. A martingale
mg is recursive (r.e.) if and only if the set {(σ, q) : σ ∈ {0, 1}∗, q ∈ Q,mg(σ) > q} is
recursive (r.e.). One can characterize the Martin-Löf random sets as those on which
no r.e. martingale is successful. Similarly, a set is recursively random if and only
if no recursive martingale succeeds on this set. The martingale characterization of
Schnorr randomness is more involved and there are various versions. Among these,
the following is the most suitable for this paper. The notion of Kurtz randomness is
presented here as well.

Property 1.1. A set R is Schnorr random relative to A if for some A-recursive
function r there is no A-recursive martingale mg and no A-recursive bound function
f such that there are infinitely many n such that

mg(R(0)R(1) . . . R(f(n))) > r(n).

A set R is Kurtz random relative to A if for some A-recursive function r there is no
A-recursive martingale mg and no A-recursive bound function f such that

mg(R(0)R(1) . . . R(f(n))) > r(n)

for all n.

Furthermore, a set is called “weakly 2-random” [20] or “strongly random” [24] if and
only if it is Martin-Löf random and forms a minimal pair with the halting problem.

Genericity notions [8, 22, 23] are complementary to randomness notions. One
considers extension functions of certain types such that the generic set either meets
some extension or strongly avoids all of them. For instance, a set G is 1-generic if and
only if for every partial recursive extension function f : {0, 1}∗ → {0, 1}∗, either there
are n and m such that G(n)G(n+ 1) . . . G(m) = f(G(0)G(1) . . . G(n− 1)) (“G meets
f”) or f(G(0)G(1) . . . G(n− 1)) is undefined for almost all n (“G strongly avoids f”).
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Weak 1-genericity is a variant in which one considers only total extension functions.
There one can take f to depend only on the length of the input and not on the
particular choice of input as below.

Property 1.2. A set G is weakly 1-generic relative to A if and only if for every
A-recursive function f : N → {0, 1}∗ there are numbers n and m such that n ≤ m
and f(n) = A(n)A(n+ 1) . . . A(m).

The notion of bases of randomness is linked with lowness. For example, a set A is low
for a property M if and only if the sets B that have the property M unrelativized are
precisely those that have the property M relative to A. The most famous example of
this type is that a set is low for Martin-Löf randomness if and only if it is a basis for
Martin-Löf randomness [2, 19, 20].

In the case of bases of Schnorr randomness, there are some parallels to this result if
one considers notions of bases of randomness with respect to truth-table reducibility
[4]. In the case of Turing reducibility, though, the class of the sets which are low
for Schnorr randomness forms a proper subclass of the class of the bases for Schnorr
randomness. However, one can obtain a connection to a notion of highness for Schnorr
randomness versus Martin-Löf randomness. This is the dual of lowness for a pair of
randomness notions. The concept of lowness for a pair of randomness notions was
introduced by Kjos-Hanssen, Nies and Stephan [9]. A set A is said to be low for
a notion M versus a notion N if and only if every set which has the property M
also has the property N relative to A. This notion has also been explicitly studied
by Downey, Nies, Weber and Yu [3], Nies [19], and Greenberg and Miller [6]. The
concept of highness for a pair of randomness notions is formalized as follows.

Definition 1.3. A set A is high for a notion M versus a notion N if and only if every
set which has the property M relative to A also has the property N unrelativized.

A is therefore high for Schnorr randomness versus Martin-Löf randomness if and only if
every set which is Schnorr random relative to A is also Martin-Löf random. Miller [17]
showed that a set A is high for Martin-Löf randomness versus strong randomness if and
only if there is no K-recursive function f such that f(x) 6= ϕAx (x) whenever the latter
is defined; that is, A is high for Martin-Löf randomness versus strong randomness if
and only if K does not compute a function that is diagonally nonrecursive relative
to A.

The main result of this paper is that this notion is antithetical to being a basis for
Schnorr randomness and characterizes the Turing degrees above the halting problem.
The following properties are shown to be equivalent to A ≥T K.

• A is not a basis for Schnorr randomness; that is, there is no R ≥T A such that
R is Schnorr random relative to A (Theorems 2.1 and 2.2).
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• A is high for Schnorr randomness versus Martin-Löf randomness; that is, every
set which is Schnorr random relative to A is also Martin-Löf random unrela-
tivized (Theorems 2.1 and 2.2).

• A is not a basis for weak 1-genericity; that is, there is no G ≥T A which is
weakly 1-generic relative to A (Theorem 3.1).

• A is high for weak 1-genericity versus 1-genericity; that is, every set which is
weakly 1-generic relative to A is also 1-generic unrelativized (Corollary 3.2).

• A is high for 1-genericity versus weak 2-genericity; that is, every set which is
1-generic relative to A is also weakly 2-generic unrelativized (Theorem 3.3).

Some results on recursive randomness are also presented. No set which is a basis for
recursive randomness has PA-complete Turing degree. Furthermore, if A ≤T K and
A does not compute a diagonally nonrecursive function, then A is a basis for recursive
randomness [7]. The following two partial characterizations of the sets which are high
for recursive randomness versus Martin-Löf randomness can be proven similarly.

• If A is PA-complete, then A is high for recursive randomness versus Martin-Löf
randomness.

• If A is high for recursive randomness versus Martin-Löf randomness, then there
is a Martin-Löf random set that is Turing reducible to A.

The question remains open for the sets that compute a Martin-Löf random set but
not a complete extension of Peano Arithmetic. The results for Kurtz randomness are
summarized in the following remark, as they are quite straightforward and mostly
known.

Remark 1.4. For every set A there is a A′-recursive sequence a0, a1, a2, . . . of numbers
such that R is Kurtz random whenever it is chosen outside the intervals In = {x :
2an ≤ x < 2an+1} such that betting according to the universal A-r.e. martingale will
not increase one’s capital, regardless of the values of R on the intervals In. Hence,
for all x ∈ In, one can define R(x) = A(n). As there are only finitely many m /∈
{a0, a1, a2, . . .} such that R is constant on the interval 2m ≤ x < 2m+1, one can
compute the positions of the In from R and then compute A(n). As R is Kurtz
random relative to A and Turing above A, A is a basis for Kurtz randomness [10].

Furthermore, the set R constructed here is neither Schnorr random nor weakly
1-generic. In the case of Schnorr randomness, this follows from the fact that R is
constant on all In. In the case of weak 1-genericity, this follows from the fact that R
is either random or constant on the intervals {x : 2m ≤ x < 2m+1} but does not meet
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any other extension requirement. It follows that there is no set A such that A is high
for Kurtz randomness versus Schnorr randomness, recursive randomness, Martin-Löf
randomness, weak 1-genericity, 1-genericity and weak 2-genericity.

Tables 1 and 2 contain a summary of this information. All of these results appear
in this paper except the characterization of high for Martin-Löf randomness versus
strongly randomness, which was proven by Miller [17].

Table 1: Highness for pairs of randomness notions
Kurtz Schnorr recursively Martin-Löf strongly

random random random random random
Kurtz random A ∅ ∅ ∅ ∅

Schnorr random A A K K K
recursively random A A A P ????
Martin-Löf random A A A A D

strongly random A A A A A

Table 2: Highness for pairs of genericity notions
Kurtz weakly 1-generic weakly 2-generic

random 1-generic 2-generic
Kurtz random A ∅ ∅ ∅ ∅

weakly 1-generic A A K K K′

1-generic A A A K K
weakly 2-generic A A A A H

2-generic A A A A A

In these two tables, the entry in row M and column N represents the class C of sets
A which are high for M versus N ; that is, C = {A : every set R satisfying M relative
to A also satisfies N}. The class C of sets is one of the following: the class A of
all sets, the class K of all A ≥T K, the class K′ of all A ≥T K ′, the class H of all
sets which are high (A′ ≥T K ′), the empty class ∅, the partially known class P or
the class D of all A such that there is no K-recursive function f which is diagonally
nonrecursive relative to A, that is, which satisfies ϕAe (e) 6= f(e) whenever ϕAe (e) is
defined. Although P is not completely determined, it is known that P contains every
PA-complete set and that every set A ∈ P is Turing above some Martin-Löf random
set; furthermore, not every Martin-Löf random set is in P . Note that A is the class
of all sets which are high for M versus N iff M implies N . For example, the entry
for recursively random versus Schnorr random is A as every recursively random set
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is also Schnorr random. If the entry for M versus N is ∅, then there is a very strong
form of nonimplication which cannot be bridged by relativizing M.

2 Schnorr Randomness

The proof of the following theorem is the basis for several of the results in this paper.

Theorem 2.1. For every set A 6≥T K and every set B, there is a set R such that
B ≤T R, R is not recursively random and R is Schnorr random relative to A.

Proof. First, define a recursive injective enumeration 〈am, bm〉 of all pairs such that
am > 0 and either bm = 0 or some element below am is enumerated into K at stage bm.
The enumeration is chosen such that bm ≤ m for all m. Therefore, for each n, there
are at most n+ 2 indices m with am = n. The largest of these m satisfies m ≥ cK(n),
where cK(n) = min{s ≥ n : ∀m ≤ n [Ks(m) = K(m)]} is the convergence module
of K. Divide the integers into intervals Im of length 3am + 1 such that min(I0) = 0
and min(Im+1) = max(Im) + 1 for every m. Let mg be a weighted sum of all total
A-recursive martingales. Note that mg itself is not A-recursive.

Let F (x) = max{m : am = x}. Note that F majorizes cK and F is K-recursive.
Let f0, f1, f2, . . . be a list of all A-recursive functions. Now let E = {x0, x1, x2, . . .},
where

xn = min{y : ∀m < n [xm < y ∧ fm(y) < F (y)]}.

Note that every xn can be defined, as otherwise F (y) ≤ f0(y) + f1(y) + . . . + fn(y)
for almost all y. This would contradict the fact that K 6≤T A. Using E, one can now
define the set R inductively on all intervals Im as follows.

• If there is k > m with am = ak or if am /∈ E, then choose R on Im such that R
is not 0 on all of the least 2am elements of Im and mg grows on Im by at most
the factor 4am/(4am − 1).

• Otherwise (that is, if there is no k > m with am = ak and if am ∈ E), choose
R(min(Im) + u) = 0 for u ∈ {0, 1, . . . , 2am − 1} and choose R(min(Im) + u) =
B(u− 2am) for u ∈ {2am, 2am + 1, . . . , 3am}.

Now it is shown that R has the desired properties.
B ≤T R: To compute B(n), search for the first interval Im such that am ≥ n + 1

and R(min(Im)+u) = 0 for all u ∈ {0, 1, . . . , am− 1}. As E contains a number larger
than n, the search will terminate. It can be seen that B(n) = R(min(Im) + 2am + n).

R is not recursively random: One can construct a recursive martingale mh that
succeeds on R as follows. The initial capital of mh is set as 2 and for each interval
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Im, mh invests 4−am , which is then bet on R being 0 for the first 2am members of
Im. If all bets are true, then mh doubles the invested capital 2am times and makes a
profit of 22am · 4−am − 4−am = 1 − 4−am . Otherwise, mh loses the invested 4−am . On
one hand, all potential losses can be bounded by

∑
m 4−am ≤

∑
n>0(n + 2) · 4−n =

3
4
+ 4

16
+ 5

64
+ 6

256
+ . . . < 2 and therefore the martingale never takes the value of 0. On

the other hand, there are infinitely many intervals Im such that R is 0 on the least
2am members, so the profit is at least 3/4 on these intervals and the value of mh goes
to infinity on R. Thus mh witnesses that R is not recursively random.

R is Schnorr random relative to A: To see this, consider the following function
r̃(n).

r̃(n) = n ·

(∏
m<n

223m+1

)
·

(∏
m>0

(
4m

4m − 1

)m+2
)

Note that an infinite product
∏

k qk such that qk > 1 satisfies
∏

k qk <∞ if and only
if
∑

k(qk − 1) < ∞. To adjust for the fact that some intervals Im are copies of each
other as described in the first component of the definition of R, let qk = 4m/(4m − 1)
as appropriate. Since 4m/(4m − 1) − 1 = 1/(4m − 1), this inequality can be applied
here. For each m, there are at most m + 2 values of k for which qk = 4m/(4m − 1).
Hence ∑

m>0

(m+ 2) · 1

4m − 1
≤
∑
m>0

2m+2

4m
≤
∑
m>0

22−m = 4

and (
∏

m>0 ( 4m

4m−1
)m+2) is a positive real number. Therefore, the function r̃ has a

recursive upper bound r such that r(n) ∈ N for all n.
Assume now that mgk is a total A-recursive martingale and fk is an A-recursive

bound function for r as in Property 1.1 such that, in addition, n < fk(n) < fk(n+ 1)
for all n. For almost all n,

mgk(R(0)R(1) . . . R(fk(n))) ≤ n ·mg(R(0)R(1) . . . R(fk(n))).

Now consider n > x0 + x1 + . . . + xk. Then for each u < n, there is at most one
interval Im such that m ≤ fk(n), am = u, F (am) = u and u ∈ E; for u ≥ n
there is no interval Im satisfying these conditions. On the intervals that satisfy these
conditions, the martingale mg can increase its capital by at most a factor of 23am+1;
on all other intervals Im below fk(n), mg can increase its capital by at most a factor
of 4am/(4am − 1). Hence, one has that

mg(R(0)R(1) . . . R(fk(n))) ≤ r(n)/n.

It can be seen from the two previous inequalities that for almost all n,

mgk(R(0)R(1) . . . R(fk(n))) ≤ r(n)
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and hence R is not Schnorr random relative to A by Property 1.1.

The next result is based on this construction. The equivalence of the first two con-
ditions solves an open problem of Miller and Nies for the special case of Schnorr
randomness [18, Question 5.2].

Theorem 2.2. The following conditions are equivalent for every set A.

• A 6≥T K.

• A is a basis for Schnorr randomness.

• A is not high for Schnorr randomness versus recursive randomness.

• A is not high for Schnorr randomness versus Martin-Löf randomness.

Proof. If A ≥T K, then every set which is Schnorr random relative to A is already
recursively random and Martin-Löf random unrelativized.

Furthermore, as A is above a low Martin-Löf random set R, there is no set which
is Martin-Löf random relative to R above R: As every set which is Schnorr random
relative to A is also Martin-Löf random relative to R, there is no set which is Schnorr
random relative to A above A.

If A 6≥T K, then by Theorem 2.1, there is a set which is above A, Schnorr random
relative to A and not recursively random. Clearly, it is not Martin-Löf random.

Remark 2.3. It should be noted that this characterization can be extended to strong
randomness: It holds that A ≥T K if and only if A is high for Schnorr randomness
versus strong randomness. In contrast to this, Miller [17] showed that A is high for
Martin-Löf randomness versus strong randomness if and only if there is a K-recursive
function which is diagonally non-recursive relative to A.

3 Genericity

The weakly 1-generic sets are a generalization of the 1-generic sets. Their behaviour
with respect to Turing degrees can be characterized easily: A Turing degree contains
a weakly 1-generic set if and only if it contains a hyperimmune set [13]. It is now
shown that the bases for weak 1-genericity also admit a nice characterization.

Theorem 3.1. A set A is a basis for weak 1-genericity if and only if A 6≥T K.

Proof. As mentioned in Property 1.2, it is sufficient to consider extension functions
that depend only on the length of the string extended. Let f0, f1, f2, . . . be a list of all
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total A-recursive functions from N to {0, 1}∗ and let cK be the convergence module
of K.

First, suppose that A 6≥T K. Define G via a sequence a0, a1, a2, . . . starting with
a0 = 0 inductively as follows:

• an+1 = an + 2 + cK(n);

• G(an) = K(n);

• G(an + 1) = A(n);

• G(an + 2)G(an + 3) . . . G(an+1 − 1) is fk(an + 2)0cK(n)−|fk(an+2)| for the first k
not used at previous stages such that |fk(an + 2)| ≤ cK(n).

As there are infinitely many k that map an + 2 to the empty string, a corresponding
extension can always be found and the process goes through all stages of the con-
struction.

The set G satisfies A ≤T G and K ≤T G, as one can compute A(n) and K(n)
inductively from G given an, then cK(n) from K(0)K(1) . . . K(n) and, finally, an+1

from an and cK(n).
Assume now for a contradiction that some fk is never used in this construction.

Let k be its index. Then, from some n onwards, no k′ < k is selected due to the
nature of the finite injury construction and hence k does not qualify as it could not
be such an index. In other words, for all n′ ≥ n, |fk(an′ + 2)| > cK(n′). As one can
approximate cK(n) by cK,s(n) = max{t ≤ s : ∃m ≤ n [t = 0 or m goes into K at stage
t]}, one can compute for n′ ≥ n the values

• cK(n′) as cK,fk(an′ )(n
′) and

• an′+1 as an′ + 2 + cK,fk(an′ )(n
′).

This gives K ≤T A, which produces a contradiction, so every fk will be built into the
construction of G eventually and G is weakly 1-generic relative to A. Therefore, there
is a G ≥T A such that G is weakly 1-generic relative to A and A is a basis for weak
1-genericity.

Second, suppose that A ≥T K. Every set G which is weakly 1-generic relative to
A is also 1-generic unrelativized. There is no 1-generic set above K, so A is not a
basis for weak 1-genericity.

The following corollary can be seen immediately.

Corollary 3.2. A set A is high for weak 1-genericity versus 1-genericity iff A ≥T K.
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The A such that every set which is 1-generic relative to A is also weakly 2-generic
unrelativized have the same characterization.

Theorem 3.3. A set A is high for 1-genericity versus weak 2-genericity iff A ≥T K.

Proof. If A ≥T K, then every set which is 1-generic relative to A is 2-generic, so
assume that A 6≥T K. For a given set G, define nextG(n) = min{m − n : m ≥ n ∧
m ∈ G}. This represents the distance to the next element of G after n. The basic idea
of the proof is to show that there is a 1-generic set G ≤T A′ such that nextG(n) ≤
cK(n) for all n. This set will not be weakly 2-generic since it does not meet the K-
recursive extension function f(n) = 0cK(n)+11. The A′-recursive algorithm to produce
G is the following. At stage 0, let e = 0, n = 0 and G(0) = 1. At each subsequent
stage, proceed as follows.

1. While there is no extension of G(0)G(1) . . . G(n) in WA
e , update e = e+ 1.

2. If there is σ ∈ {0, 1}∗ such that G(0)G(1) . . . G(n)σ ∈ WA
e and |σ| ≤ cK(n),

then take the length-lexicographic first such σ, let G(n+m+ 1) = σ(m) for all
m < |σ| and update n = n+ |σ| and e = e+ 1.

3. Let n = n+ 1 and G(n) = 1.

Note that there are infinitely many e with WA
e = {0, 1}∗, so the algorithm never loops

in the first step for an infinite time.
Note that the current value ẽ of the variable e is only abandoned if the correspond-

ing value ñ of n is such that either G(0)G(1) . . . G(ñ) has no extension in WA
ẽ or after

the first ñ bits, G takes the values of a selected string σ̃ such that G(0)G(1) . . . G(ñ)σ̃
is in WA

ẽ . Furthermore, there is no constant ẽ such that the variable e equals ẽ from
some point on, as that would mean that, for the corresponding value ñ, the extension
of G(0)G(1) . . . G(ñ)1m in WA

ẽ found first (relative to A) always has a length greater
than cK(ñ+m). This would imply that K ≤T A, contradicting the assumption on A.
Therefore, every possible value ẽ of e is eventually taken and eventually abandoned
and G is 1-generic relative to A. It can be seen from the construction that every σ̃
added after ñ has length at most cK(ñ) and is followed by a 1, so nextG(ñ) ≤ cK(ñ)
for all ñ. This completes the proof.

On one hand, if G is 1-generic relative to K, then G is already 2-generic. On the
other hand, if A 6≥T K, then the preceding result shows that there is a set G which
is 1-generic relative to A but not weakly 2-generic. Obviously, G is not 2-generic in
this case. Hence one obtains the following corollary.

Corollary 3.4. A set A is high for 1-genericity versus 2-genericity iff A ≥T K.
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Note that G is weakly 2-generic relative to A iff it is weakly 1-generic relative to A′.
Furthermore, G is 2-generic iff G is 1-generic relative to K. Hence one can relativize
Corollary 3.2 such that whenever A′ 6≥T K

′, there is a set G which is weakly 1-generic
relative to A′ but not 1-generic relative to K; it follows that G is weakly 2-generic
relative to A but not 2-generic. On the other hand, if A′ ≥T K ′, then every set
which is weakly 2-generic relative to A is also weakly 1-generic relative to A′, weakly
1-generic relative to K ′, weakly 3-generic and 2-generic. Hence one has the following
corollary.

Corollary 3.5. A set A is high for weak 2-genericity versus 2-genericity iff A is high;
that is, iff A′ ≥T K

′.

For the next result, assume that A is high for weak 1-genericity versus 2-genericity.
As every 2-generic set is 1-generic, A ≥T K by Corollary 3.2. Hence A ≡T B

′ for some
B by the Jump Inversion Theorem and the sets which are weakly 1-generic relative
to A are precisely those which are weakly 2-generic relative to B. It follows from
Corollary 3.5 that B′ ≥T K

′. Hence A ≥T K
′.

Conversely, consider any A ≥T K
′. Every set which is weakly 1-generic relative to

A is also weakly 3-generic unrelativized. Hence A is high for weak 1-genericity versus
2-genericity. This is summarized in the following corollary.

Corollary 3.6. A set A is high for weak 1-genericity versus 2-genericity iff A ≥T K
′.

4 Recursive Randomness

It has already been shown in Theorem 2.2 that a set A is high for Schnorr randomness
versus recursive randomness if and only if A ≥T K. Furthermore, if A is PA-complete,
then the universal r.e. martingale is majorized by a martingale which is recursive
relative to A. Thus, if R is recursively random relative to A, then this martingale is
not successful on R, so the first martingale does not succeed on R either and the set
R is Martin-Löf random. Thus one obtains the following well known result.

Property 4.1. If A is PA-complete, then A is high for recursive randomness versus
Martin-Löf randomness.

One might ask what is known about the other direction. Indeed, the above result is not
known to be a characterization and the Turing degrees of many Martin-Löf random
sets are not PA-complete. Hence, the next result is not a full characterization.

Theorem 4.2. If A is high for recursive randomness versus Martin-Löf randomness,
then there is a Martin-Löf random set R ≤T A.

11



Proof. Let A be a set that does not bound any Martin-Löf random set. It will
be shown that A is not high for Martin-Löf randomness versus recursive randomness.
This will be done by constructing a function F ≤T A

′ such that no Martin-Löf random
set is Turing reducible to A⊕F and A⊕F has high Turing degree relative to A. Then
there will be a set Q ≤T A ⊕ F which is recursively random relative to A [21]. As
Q is not Martin-Löf random, it follows automatically that A is not high for recursive
randomness versus Martin-Löf randomness.

In order to code highness in F , one considers an A′-recursive injective enumeration
e0, e1, e2, . . . of all indices of partial A-recursive functions such that for all k, there is an
x ≤ k with ϕAek

(x) undefined. Furthermore, mg denotes the universal r.e. martingale
and, for computations relative to a partial function ψ as an oracle, ϕψe (x) is undefined
whenever the computation asks for some value of ψ outside the domain of ψ.

The function F : N → N is defined by stepwise extensions, starting with σ0 = 000
and by building σn+1 = σnenτn,0τn,1 . . . τn,n where each string τn,m is chosen from
{en, en+1, en+2, . . .}∗ such that η = σnenτn,0τn,1 . . . τn,m satisfies one of the following
two conditions for all m ≤ n.

• mg(ρ) > n for some ρ � ϕA⊕ηm,|η|.

• There is x < |η| with ¬(ϕA⊕ηGm (x)↓∈ {0, 1}) for all G ∈ {en, en+1, en+2, . . .}∞.

To verify the construction, one first shows that the algorithm never terminates, so
there is always an extension. Let n and m be given, and let ϑ = σnenτn,0τn,1 . . . τn,m−1.
Given A, one can iteratively search the strings γ0, γ1, γ2, . . . ∈ {en, en + 1, en + 2, . . .}∗
such that

E(k) = ϕA⊕ϑγ0γ1γ2...γk
m (k)↓∈ {0, 1}

for each k where γk is found.
If this goes through for all k, then E ≤T A and E is not Martin-Löf random.

Therefore, there is a k such that mg(E(0)E(1)E(2) . . . E(k)) > n. Furthermore, one
can choose τn,m = γ0γ1γ2 . . . γk and satisfy the first condition in the definition of τn,m.

If this construction goes through up to some k but not beyond, it is impossible to
define E(k+1) with a value in {0, 1}. In this case, one can choose τn,m = γ0γ1γ2 . . . γk
for this k and satisfy the second condition in the definition of τn,m.

Second, one shows that the resulting F is such that F ⊕ A has a Turing degree
which is high relative to A. Given m, one can, relative to F , find the largest k such
that F (m) ≤ k in the limit. It follows from the construction that whenever there is
an n such that en = m, then n ≤ |σn| ≤ k. Hence one can check whether there is
an n ≤ k such that en = m relative to A in the limit. Then the overall algorithm is
recursive in F ′⊕A′ and thus A′′ ≤T (A⊕F )′. In other words, A⊕F has high Turing
degree relative to A.

Third, one shows that there is no Martin-Löf random set recursive in A ⊕ F .

12



To see this, consider any m such that ϕA⊕Fm is total and {0, 1}-valued. Furthermore,
consider the infinitely many n ≥ m satisfying ∀k > n [en < ek]. These n must exist, as
e0, e1, e2, . . . is a injective enumeration of an infinite set. Now the extension τn,m cannot
be selected as in the second item above, as then ϕA⊕Fm would either be partial or not
{0, 1}-valued. Therefore, the extension τn,m is chosen according to the first condition
and there is some ρ � ϕA⊕ηm such that mg(ρ) > n for η = σnenτn,0τn,1 . . . τn,m. As ρ
is a prefix of ϕA⊕Fm , it follows that mg succeeds on ϕA⊕Fm and ϕA⊕Fm is not Martin-Löf
random. This completes the proof.

The next result shows that the above result is not optimal.

Theorem 4.3. There is a Martin-Löf random set A which is not high for recursive
randomness versus Martin-Löf randomness.

Proof. Cholak, Greenberg and Miller [1] constructed an r.e. set B <T K and a
function f ≤T B such that for a subclass of {0, 1}∞ of measure 1, every function
recursive relative to a member of this class is dominated by f . Such a function f is
called “almost everywhere dominating”.

A recursive martingale can be given by a distribution function ϕe which computes
a rational number q between 0 and 2 on every input σ that says how to bet on the
next bit. In other words, the capital at σ1 is q times the old capital and the capital at
σ0 is (2−q) times the old capital. It is known that the notion of recursive randomness
(relative to some oracle) is the same whether one uses real-valued or rational-valued
martingales [25], so one can describe the martingales using the functions ϕe. In the
case of an oracle E, one considers the distribution function ϕEe .

Now one produces an B-recursive martingale mg (the superscript B is omitted
here and from now on in order to keep notation simple) which follows the following
strategy: For each oracle E and each index e, mgEe computes the capital mgEe (σ) using
the base case mgEe (σ) = 1 when |σ| ≤ e. If |σ| ≥ e and a ∈ {0, 1}, then one defines
mgEe inductively using the following formula:

mgEe (σa) =


q ·mgEe (σ) if a = 1 and q = ϕEe (σ) is in Q, 0 ≤ q ≤ 2

and q is computed with time and use f(|σ|);
(2− q) ·mgEe (σ) if a = 0 and q = ϕEe (σ) is in Q, 0 ≤ q ≤ 2

and q is computed with time and use f(|σ|);
mg(σ) otherwise.

The martingale mg is defined as

mg(σ) =
∑

e=0,1,2,...

2−e−1

∫
E

mgEe (σ)dE

13



and mg is B-recursive since mgEe (σ) can be computed from the first f(|σ|) bits of E
for each σ and E and, furthermore, mgEe (σ) can only differ from 1 when e ≤ |σ|.

One can now choose a B-recursive set R on which mg is not successful; mg does
not make any profit on this set and mg(B(0)B(1) . . . B(n)) ≤ 1 for all n. The set R
is not Martin-Löf random as B is r.e. and Turing incomplete [22, 23].

Now it is shown that R is recursively random relative to every member A of a
class of measure 1. Assume for a contradiction that this is not the case. Then there
must be a fixed martingale mh such that mhA is A-recursive and mhA succeeds on
R for a set of oracles A which does not have measure 0. Using arguments given by
Mihailović [16] as well as Franklin and Stephan [4], one can assume that mh has the
savings property and that mhA(στ) ≥ mhA(σ)− 2 for all σ, τ ∈ {0, 1}∗. The class

A = {A : mhA is total and ∀c∃n [mhA(R(0)R(1) . . . R(n)) > c]}

is measurable and hence has positive measure. Note that one can compute ϕAe from
mhA for all these A. Therefore, if f dominates all A-recursive functions, then there
is a constant rA such that mhA(σ) ≤ rA ·mgAe (σ) for all σ, as mgAe is computed using
the function ϕAe (σ) for almost all σ. Since one can require that rA ∈ N, there are only
countably many choices for each A and so there must be one fixed constant r and
some ε > 0 such that the class

B = {A ∈ A : ∀σ ∈ {0, 1}∗ [mhA(σ) ≤ r ·mgAe (σ)]}

has measure ε. Due to the savings property of mh, there is a function g such that the
measure of each class

Cn = {A ∈ B : mhA(R(0)R(1) . . . R(g(n))) > n+ 1}

is at least ε · n
n+1

: g(n) is simply the first m such that for sufficiently many members
of B, mg has already reached a value above n+ 3 after processing R(0)R(1) . . . R(m)
and, due to the savings property, is therefore still above n+1. It follows for all n that

mg(R(0)R(1) . . . R(g(n))) ≥ ε · n
n+1

· 2−e−1 · 1
r
· (n+ 1) = ε · 2−e−1 · 1

r
· n,

which contradicts the fact that mg does not succeed on R. Hence R is recursively
random relative to all members of a class of measure one. One of these A is also
Martin-Löf random. In other words, R witnesses that there is a Martin-Löf random
A which is not high for recursive randomness versus Martin-Löf randomness.
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