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Abstract. We introduce a Π1
1-uniformization principle and establish its equiva-

lence with the set-theoretic hypothesis (ω1)L = ω1. This principle is then applied
to derive the equivalence, to suitable set-theoretic hypotheses, of the existence of
Π1

1 maximal chains and thin maximal antichains in the Turing degrees. We also
use the Π1

1-uniformization principle to study Martin’s conjecture on cones of Tur-
ing degrees, and show that under V = L the conjecture fails for uniformly degree
invariant Π1

1 functions.

1. Introduction

A binary relation P(x, y) on reals x and y is Π1
1 if it is expressible or equivalent,

over second order arithmetic, to a formula that begins with a universal set or function
quantifier followed by an arithmetic relation on x and y. The Kondo-Addison Uni-
formization Theorem states that given a Π1

1 relation P(x, y), there is a Π1
1 relation P∗

such that for all x, if there is a y satisfying P(x, y), then there is a unique y satisfying
P∗(x, y). Conversely, for any x, y, if P∗(x, y) then P(x, y). Thus P∗ is a Π1

1 function
that uniformizes P. The purpose of this paper is to study an inductively defined
Π1

1-uniformization principle for a specific Π1
1 relation on the hyperdegrees of reals. If

Q : 22ω → 22ω
is a function, with the additional property that Q(∅) ∈ 2ω, then it is

progressive (Sacks [15]) if Q(X) ⊇ X for all X ⊆ 2ω. Q is monotonic if Q(X) ⊆ Q(Y )
whenever X ⊆ Y . Given an ordinal β, let Q0 = Q(∅), Qβ+1 = Q(Qβ) ∪ Qβ, and,
for a limit ordinal λ > 0, Qλ =

⋃
β<λQ

β. Kleene’s O is perhaps the penultimate

example of a Π1
1 inductively defined real. In addition, Kleene’s recursion theory of

higher types was developed using inductive definitions and the latter’s importance
for the study of relations on reals or sets of reals was emphasized by Gandy. Π1

1-
monotonic relations have been studied by various authors, including Spector [18],
Aczel and Richter [1] as well as Cenzer [4]. The main interest was in identifying
the “ordinal of Q”, i.e. the least ordinal β where Qβ+1 = Qβ. However, the study
of specific inductively defined relations has seen less activity. Notwithstanding this,
there are Π1

1-progressive relations with very useful properties which may be applied
to derive Π1

1-uniformization principles. Such principles may in turn be used to study
interesting problems in recursion theory. In the work reported here we present an
example to illustrate this point.

In [5] and [6], the authors investigated the problem of the existence of maximal Π1
1

chains and thin (i.e. without a perfect subset) antichains in the Turing degrees, and
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proved the equivalence of the existence of these sets with respective set theoretic hy-
potheses on ω1 and 2ω. Underlying the constructions were similar techniques and in-
tuitions that pointed to a general principle applicable to different situations, perhaps
at a deeper level. Our investigation leads to the introduction of a Π1

1-uniformization
principle, denoted I, discussed below.

Let A be the set of reals x such that x ∈ Lωx
1
, where as usual ωx

1 is the least
admissible ordinal not recursive in x. It is well known that A is Π1

1 and that every
Π1

1 set of reals contains an element of A (Sacks [15]). Elements of A enjoy special
features that are not available to those in the complement of A. For example, if x is
a master code in the sense of Jensen’s fine structure theory [10] (or equivalently an
“arithmetical copy” in the sense of Boolos and Putnam [3]), then x ∈ A. In [5] and
[6], the Π1

1 maximaluniformization]]== chain and thin antichain were constructed
exploiting this fact, so that each element of these sets was chosen to be in A with
specific properties, including requiring it to have double Turing jump that is Turing
equivalent to a master code. However, the double jump, while sufficient for the
constructions of the sets in [5] and [6], is probably too restrictive and not necessary
for a deeper understanding of the “Π1

1 phenomenon”, and the use of fine structure
theory as well as Borel determinacy, while interesting and revealing, might also be
avoided when viewed in a different light. This is the intuition behind our search
for a general principle. The motivation is that the principle should not only prove
theorems obtained in [5] and [6], but also be useful for studying other problems. The
test problem we consider is Martin’s conjecture on cones of Turing degrees for degree
invariant functions. Since this is known to be false under AC,

and the conjecture is posed under the assumption of the Axiom of Determinacy
AD and known to hold for uniformly degree invariant functions under this assump-
tion (Slaman and Steel [16]), we focus our attention on definable degree invariant
functions—in this case Π1

1—to learn how far AC and the conjecture can co-exist in
a model of set theory without full AD.

The organization of this paper is as follows. In §2 we recall some standard no-
tions, definitions and results in hyperarithmetic theory, highlighting in particular the
Spector-Gandy Theorem which characterizes Π1

1 sets of reals. In §3 we introduce a
Π1

1-progressive relation and use it to define the Π1
1-uniformization principle I. We

show the validity of this principle under the set-theoretic hypothesis (ω1)
L = ω1,

and demonstrate that I and the hypothesis are equivalent. In §4 we show that the
existence of a Π1

1 maximal chain and a thin Π1
1 maximal antichain is a consequence

of, and equivalent to, I under appropriate set-theoretic axioms. In §5 we apply the
uniformization principle to study Martin’s conjecture, and show that it fails with
Π1

1 degree invariant functions under V = L. In particular, we exhibit Π1
1 uniform

degree invariant functions f on the reals such that f(x) ≡T x on cofinally (in the
sense of Turing reducibility) many x’s but f(x) is not Turing equivalent to x on any
cone of Turing degrees. Our final result states that <M , the partial ordering defined
on degree invariant functions (see §5), is not a prewellordering on Π1

1 uniform degree
invariant functions. Thus both parts of Martin’s conjecture do not hold for uniformly
degree invariant functions definable at a low level of the analytic hierarchy.
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2. preliminaries

We adopt set-theoretic notations throughout this paper. In particular, small Ro-
man letters x, y, z, . . . refer to reals, while Greek letters α, β, . . . denote ordinals. The
collection of paths of a perfect tree T is denoted [T ], and 〈〉 is a recursive bijection
from ω × ω to ω. Finally, <L denotes the ∆1

2 well ordering of the reals in Gödel’s
constructible universe L.

The reader is assumed to be familiar with hyperarithmetic theory as presented in
Sacks [15] which is used as the standard reference in this paper. Here we recall some
notions that may be considered to be at the intersection of set theory and recursion
theory and which are needed throughout the paper.

For each real x, ωx
1 denotes the least ordinal which is not an order type of an

x-recursive well ordering of ω (the least x-admissible ordinal). Kleene constructed
a Π1

1(x) complete set Ox with a Π1
1(x) well founded relation <Ox on Ox. Ox is the

hyperjump of x and if x ∈ L then Ox ∈ A, where A is the set defined in §1, and
ωO

x

1 is the least admissible ordinal after ωx
1 . The height of the ordering <Ox on Ox is

exactly ωx
1 (see [15]). Furthermore, Kleene’s construction of Ox is uniform. In other

words, the relation {(x,Ox) | x ∈ 2ω} is Π1
1. A fact that will be used implicitly is

that given reals x and y, x is hyperarithmetic in y (written x ≤h y) if and only if x
is ∆1

1 in y, and this is in turn equivalent to x ∈ Lωy
1
[y].

A result of central importance to this paper, due to Spector and Gandy, is an
application of Kleene’s theory in the characterization of Π1

1 sets of reals. This states
that A ⊆ 2ω is Π1

1 if and only if there is an arithmetical relation R(x, y) such that

x ∈ A⇔ ∃y ≤h x(R(x, y)).

Boolos and Putnam [3] also studied the relationship between Kleene’s theory and
Gödel’s constructible universe L. They proved that hyperarithmetic reals are exactly
the reals in LωCK

1
. Moreover ωx

1 is the least ordinal α > ω such that Lα[x] is admissible

(see [2] and [15]). By their result, the Spector-Gandy Theorem may be restated as
follows:

Theorem 2.1 (Spector, Gandy). A set A of reals is Π1
1 if and only if there is a

Σ0-formula ϕ (in the language of ZF set theory) such that

y ∈ A⇔ (∃x ∈ Lωy
1
[y])(Lωy

1
[y] |= ϕ(x, y)).

Recall that A = {x|x ∈ Lωx
1
}. Every Π1

1 set contains an element in A ([15] III.
Lemma 9.3). A relativized version of this result, whose proof is a straightforward
adaptation of the original proof, is the following:

Proposition 2.2. If A is Π1
1(x) for some real x, then there is a y ∈ A such that

y ∈ Lωy⊕x
1

[x].

A particularly useful characterization of Π1
1 sets of reals is due to Mansfield and

Solovay ([15] III. Theorem 9.5, Mansfield [11], Solovay [17]):

Theorem 2.3. (Mansfield and Solovay). Let A be a Π1
1 set of reals. The following

are equivalent:
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(i) A contains a constructibly coded perfect subset;
(ii) There is an x ∈ A such that x /∈ A.

3. A Π1
1-Uniformization principle

Definition 3.1. A binary relation P(x, y) on 2ω × 2ω is cofinally progressive if for
every real x, the set {y|P (x, y)} is cofinal in the hyperdegrees, i.e. for each z, there
is a real y ≥h z such that P(x, y) holds.

Lemma 3.2. Assume (2ω)L = 2ω. If P is cofinally progressive, then for every real x
and z there is a real y ≥h z such that y ∈ A and P(x, y).

Proof. Suppose (2ω)L = 2ω and P is cofinally progressive. Then for any reals x, z,
the set A = {y | x ⊕ z ∈ Lωy

1
∧ P(x, y)} is a non-empty Π1

1(x ⊕ z) set. Thus, by
Proposition 2.2 , there is a real y ∈ A for which y ∈ Lωx⊕z⊕y

1
[x⊕z]. Since x⊕z ∈ Lωy

1
,

we have y ∈ Lωx⊕z⊕y
1

[x⊕ z] = Lωy
1

and P(x, y). �

Given a countable set A and a real x, we say that x codes A if {(x)n|n ∈ ω} = A
where (x)n = {m|m ∈ ω ∧ 〈n,m〉 ∈ x}.

A cofinally progressive relation is progressive in the sense defined in §1. This, to
be verified inductively and to be shown in Theorem 3.3, consists of two steps: (i)
P(∅, y) holds for some y ∈ A, and (ii) for all x, if x codes a set of reals in A such
that any two elements w <L z in x satisfy P(w, z), then there is a y ∈ A such that
x ∈ Lωy

1
and P(x, y). As in the case of transfinite induction, one then argues that the

following Π1
1-uniformization principle I holds:

Π1
1-uniformization principle I. If a binary relation P(x, y) is Π1

1 and cofinally
progressive, then there is a Π1

1 set A ⊆ 2ω such that:

(i) | ≤L� A|, the height of ≤L on A, is ω1;
(ii) ∀x(x ∈ A =⇒ x ∈ A);
(iii) ∀y(y ∈ A =⇒ ∃x(x ∈ Lωy

1
∧ x codes the set {z | z ∈ A∧ z <L y} ∧P(x, y)));

Theorem 3.3. V = L implies I.

Proof. Suppose V = L, and P is Π1
1 and cofinally progressive. Note that for each

constructibly countable β, there is an α > β such that (Lα+1 \ Lα) ∩ 2ω 6= ∅. For a
given ordinal α and X ⊆ α × ω, denote by X[β] the real {n ∈ ω|(β, n) ∈ X}. We
may regard X as a sequence of reals of length α.

Since P is Π1
1, by the Spector-Gandy Theorem there is a Σ0 formula ψ(x, y, s) such

that
P(x, y) ⇔ L

ω
(x,y)
1

[x, y] |= ∃sψ(x, y, s)

Assuming V = L, we define a function F on ω1 ×
⋃

α<ω1
2α×ω as follows:

For each α < ω1 and set X ⊆ α×ω with α < ω1, we define F (α,X) to be the real
z such that L

ω
(X,z)
1

[X, z] satisfies the following properties:

(1) There is a β ≥ α so that z ∈ Lβ+1 \ Lβ;
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(2) There is a real x ∈ L
ω

(X,z)
1

coding X;

(3) There is a limit ordinal γ and an element s ∈ Lγ so that Lγ[X, z] |= ψ(x, z, s);

(4) If (t, y, µ) <L (s, z, γ), then Lµ[X, y] |= ψ(x, y, t) =⇒ ω
(X,y)
1 < β;

(5) If (t, y, µ) <L (s, z, γ) and Lµ[X, y] |= ψ(x, y, t), then either no real r ∈ L
ω

(X,y)
1

codes X or y 6∈ L
ω

(X,y)
1

.

Since L
ω

(X,z)
1

[X, z] = L
ω

(X,z)
1

, <L is uniformly ∆1 in L
ω

(X,z)
1

[X, z]. Hence (1)—(5)

are uniformly ∆1 in L
ω

(X,z)
1

[X, z] (see [8]).

We show that F (α,X) is defined for each α < ω1 if X is countable.
Fix (α,X). Since V = L, there is a γ′ > α with a real x ∈ Lγ′ coding X. Since

V = L and P is cofinally progressive, by Lemma 3.2, there is a β > γ′ so that
(Lβ+1 \Lβ)∩ 2ω 6= ∅ and a real z ∈ Lβ+1 \Lβ so that x⊕ z ∈ Lωz

1
and Lγ |= ψ(x, z, s)

for some limit ordinal γ < ωz
1 and s ∈ Lγ. Note that Lωz

1
= L

ω
(X,z)
1

[X, z]. So (1)—(3)

are satisfied. Obviously we can assume that (s, z, γ) is the <L-least satisfying these
properties. So (4)—(5) are satisfied. By the absoluteness of <L, one concludes that
F is a well-defined function defined on each (α,X) where α < ω1 and X is countable.

Observe that (1)—(4) are Σ1 statements. By (4), one verifies that (5) is a ∆1-
statement. Hence there is a Σ0 formula ϕ(α,X, z, s) such that F (α,X) = z if and
only if L

ω
(X,z)
1

[X, z] |= (∃s)ϕ(α,X, z, s).

Thus we can perform transfinite induction on α in the construction. However, the
uniform construction, in general, yields a set of reals that is Σ1 over Lω1 , i.e. Σ1

2 but
not necessarily Π1

1 over second order arithmetic. To ensure that Π1
1-ness is achieved,

we refine the construction as follows.
Define G(α) = z if and only if α < ωz

1 and there is a function f : α + 1 → 2ω

with f ∈ Lωz
1
[z] so that for all β ≤ α, f(β) = F (β, {(γ, n)|n ∈ f(γ) ∧ γ < β}) and

f(α) = z. Since Lωz
1
[z] is admissible, {f(γ)|γ ≤ α} ∈ Lωz

1
[z]. So G(α) = z if and

only if there is a function f : α+ 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |= ((∀β ≤ α)(∃s)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, s, f(β))) ∧ f(α) = z.

Since Lωz
1
[z] is admissible, G is Σ1-definable. In other words, G(α) = z if and only

if there is a function f : α+ 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |= ((∃t)(∀β ≤ α)(∃s ∈ t)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, s, f(β))) ∧ f(α) = z.

Define the range of G to be A. Then z ∈ A if and only if there exists an ordinal
α < ωy

1 and a function f : α+ 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |= ((∃t)(∀β ≤ α)(∃s ∈ t)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, s, f(β))) ∧ f(α) = z.

So A is Π1
1.

All that remains is to show that G is a well-defined total function on ω1. This
can be done using the same argument as that for showing the recursion theorem over
admissible structures (see Barwise [2]). The only non-trivial part is to argue, as was
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done earlier, that the function f defined above exists. We leave the details to the
reader.

Since P is cofinally progressive, (i) in I is true. By (1) and (2) of the construction,
(x, z) ∈ Lγ and Lγ ∈ Lωz

1
. So (ii) is also true.

For (iii): If y ∈ A then y = G(α) for some α < ω1. By the construction, there is a
real x ∈ L

ω
G(α)
1

such that x codes the set {G(β) | β < α} and P(x,G(α)) holds. But

obviously β < α if and only if G(β) <L G(α). Hence (iii) holds. �

It turns out that the Π1
1-uniformization principle I is equivalent to the set-theoretic

assumption (ω1)
L = ω1, as we now show.

Theorem 3.4. (ω1)
L = ω1 if and only if the Π1

1-uniformization principle I is true.

Proof. The “if” direction is immediate: Choose P(x, y) to express x ≤T y (x is Turing
reducible to y). Then P is cofinally progressive. Let A be a Π1

1 set satisfying (i)—(iii)
of I for P, of <L-height ω1. Thus (ω1)

L = ω1.
For the other direction, suppose P is Π1

1 and cofinally progressive. Then for any
pair of reals x, z ∈ L, the set Ux,z = {y | y ≥h z ∧ P(x, y)} is a nonempty Π1

1(x⊕ z)
set. So there must be some y ∈ Ux,z ∩ L. Then by the absoluteness of Π1

1 relations,

L |= P is cofinally progressive.

By Theorem 3.3, there is a Π1
1 set A so that (A)L witnesses the correctness of the

uniformization principle in L.
Since (ω1)

L = ω1, (i) in the uniformization principle is true in V .
Since the statement “x ∈ Lωx

1
” is Π1

1 and

L |= ∀x(x ∈ A =⇒ x ∈ Lωx
1
),

by the absoluteness of Π1
2 statements, V |= ∀x(x ∈ A =⇒ x ∈ Lωx

1
). Hence (ii) is

also true.
Choose any y ∈ A. Since A ⊆ L, y ∈ L. Then there exists a real x ∈ Lωy

1
so that

L |= x codes the set {z | z ∈ A ∧ z <L y} ∧ P(x, y).

Since A ⊂ L, x codes the set {z | z ∈ A ∧ z <L y}. Since the relation P is Π1
1 and

x, y ∈ L, by the absoluteness of Π1
1 relations, P(x, y) holds. Hence (iii) follows.

Thus the Π1
1-uniformization principle I holds. �

One may relativize the Π1
1-uniformization principle to admit real parameters to

obtain the boldface version of I. Then Theorem 3.4 may be generalized to state:
Boldface Π1

1-uniformization principle I fails if and only if there is no real x so that
(ω1)

L[x] = ω1. This leads to the following result:

Corollary 3.5. The statement “ZFC + Π1
1-uniformization principle I is false” is

consistent if and only if “ZFC+ there exists an inaccessible cardinal” is consistent.
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Proof. If I fails, then (ω1)
L[x] < ω1 for all x, so that the latter is inaccessible in L.

Conversely, suppose ZFC+“There is an inaccessible cardinal” is consistent. Then,
by Levy collapse, ZFC+“ω1 is inaccessible in L” is consistent. Now in a model say
M with such a property, ω1 > (ω1)

L[x] for all x. So Π1
1-uniformization principle fails

in M. �

4. Maximal chains and thin maximal antichains in the Turing degrees

In this section, we apply the uniformization principle I to solve the existence
problem of Π1

1 maximal chains and thin Π1
1 maximal antichains in the Turing degrees.

These problems were studied in [5] and [6] using direct constructions involving fine
structure theory. Here we derive the results from the principle I.

Theorem 4.1 (Chong and Yu [5]). Assume (ω1)
L = ω1. There is a Π1

1 maximal
chain in the Turing degrees.

Proof. Define a binary relation P as follows:

P(x, y) ⇔ y is a minial cover of {(x)n | n ∈ ω}.
It was shown in [5] that P is a ∆1

1 a cofinally progressive relation (in the language
of the current paper). Hence by Theorem 3.4, there is a Π1

1 set A as prescribed. I(iii)
implies that A is a maximal chain. �

In the case of a maximal antichain, a diagonal argument shows that under ZFC
there is a thin maximal antichain in the Turing degrees. Hence the definability of
a thin set with such a property becomes particularly interesting. Since every set of
reals whose degrees form a maximal antichain has size 2ℵ0 , it cannot be Σ1

1 (else it
would contain a perfect subset). The next level of definability is then Π1

1. We apply
Theorem 3.4 to construct a thin Π1

1 maximal antichain in the Turing degrees.

Theorem 4.2. Assume (2ω)L = 2ω. There exists a Π1
1 thin maximal antichain in the

Turing degrees.

Proof. Define a binary relation P(x, y) as follows:

(1) {(x)n|n ∈ ω}1 is not an antichain or;
(2) {(x)n|n ∈ ω} ∪ {y} is an antichain and

(2a) x⊕ (y)0 ∈ Lωy
1
;

(2b) {(x)n|n ∈ ω} ∪ {(y)0} is an antichain;
(2c) for every z <L (y)0, {(x)n|n ∈ ω} ∪ {z} is not an antichain.

As shown in [6], P is a cofinally progressive relation. Note that (2c) is equivalent
to

L
ω

(x,y)
1

[x, y] |= ∃β(y0 ∈ Lβ ∧ ∀z ∈ Lβ(z <L y =⇒ ∃n((x)n ≥T y ∨ y ≥T (x)n))).

1To rule out trivial cases: if there exist m 6= n such that (x)m = (x)n, then we assume (x)m and
(x)n are the same set.
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Thus P is Π1
1. Hence by Theorem 3.4, there is a Π1

1 set A with the prescribed
properties. Using I(iii), we show by induction on <L that A is an antichain.

Suppose x ∈ A and {y|y ∈ A ∧ y <L x} is an antichain. By I(iii), there is a z
coding {y|y ∈ A ∧ y <L x} so that P(z, y) holds. Then by (2), {(z)n|n ∈ ω} ∪ {y} is
an antichain. So A is an antichain. Note that A ⊂ A.

By I(ii) and Theorem 2.3, A is a thin set. By (2b) above, A is maximal. �

Note that despite the use of an uniformization principle, the proofs of the above
theorems still appeal to metamathematical assumptions to establish the results. One
may wonder if this approach is at all avoidable. It turns out that this is a necessary
route:

Theorem 4.3. (ZFC)

(i) There is a thin Π1
1 maximal antichain of Turing degrees if and only if (2ω)L =

2ω.
(ii) There is a thin Π1

1 (boldface) maximal antichain of Turing degrees if and only
if (2ω)L[x] = 2ω for some real x.

Proof. (i): Suppose A is a thin Π1
1 maximal antichain. Then by Theorem 2.3,

A ⊂ L. Now let x be a real. By a theorem of Cooper [7], there is a real y of
minimal degree such that x ≤T y

′. Since A is a maximal antichain, there is a
real z ∈ A with z ≥T y. So x ≤T z

′. Hence x ∈ L.
Conversely, suppose (2ω)L = 2ω. Fix a Π1

1 set G as in Lemma 4.2. Since
the statement “G is an antichain in the Turing degrees” is Π1

2 and

L |= “G is an antichain in the Turing degrees”,

G is an antichain in the Turing degrees in V by absoluteness. Fix a real x.
Since (2ω)L = 2ω, x ∈ L. The statement T (x) :“there exists y ∈ G so that y
is Turing comparable with x” is Σ1

2(x) and L |= T (x). It follows that T (x) is
true. Thus G is a maximal antichain.

(ii): Relativize the proof of (i).
�

A direct proof of Theorem 4.3 may be found in [6]. It follows that to construct a
model in which there is no thin Π1

1 maximal antichain of Turing degrees, one only
needs to refute CH in the model.

Theorem 3.4 explains why additional hypothesis is required to show Theorem 4.2,
even with help from the uniformization principle I, since the assumption (ω1)

L = ω1

is not sufficient to construct a Π1
1 thin maximal antichain. Nevertheless, the following

theorem still holds:

Proposition 4.4. If (ω1)
L = ω1, then there is a Π1

1 thin antichain of size ℵ1 in the
Turing degrees.

Proof. Define a binary relation P(x, y):

(1) ({(x)n|n ∈ ω} is not an antichain, or
(2) {(x)n|n ∈ ω} ∪ {y} is an antichain.
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Obviously P(x, y) is ∆1
1 and cofinally progressive. By Theorem 3.4, there is a Π1

1 set
A as described in the uniformization principle. One verifies that A is an antichain of
size ℵ1. �

It should be pointed out that a number of results concerning Π1
1-ness—for example

those considered in [13]—may be derived from Theorem 3.4. On the other hand,
the existence of Π1

1 maximal chains and antichains does not extend to all notions
of reducibility. For example, there is no Π1

1 set of reals whose hyperdegrees form
a maximal chain. To see this, suppose that A is such a set. Then A does not
contain a perfect subset since otherwise there will be two paths having incomparable
hyperdegrees. By Theorem 2.3 of Mansfield and Solovay, this implies that A ⊂ A. Let
α be countable admissible that is also a limit of an increasing sequence of admissible
ordinals {αxn

n |n < ω} with xn ∈ A. Then there is a real x such that ωx
1 = α [14]. By

the choice of α, x /∈ A and therefore x /∈ A. However, xn <h x for all n and x may
be chosen to be in Lωy

1
for any y in A that is an upper bound (in the hyperdegrees)

of {xn}. Then x <h y for any such y. Since A is maximal, this is a contradiction.
Observe also that there is no thin Π1

1 set of reals whose hyperdegrees form an
antichain. Indeed, if A is such a set, then as above A ⊂ A. But then A is not an
antichain.

5. Martin’s conjecture and I

In this section, we apply Theorem 3.4 to study Martin’s conjecture under the
assumption V = L. We begin by recalling some definitions.

Let f : 2ω → 2ω.

Definition 5.1. (1) f is degree invariant if and only if ∀x∀y(x ≡T y =⇒
f(x) ≡T f(y)).

(2) f is uniformly degree invariant if and only if there is a function t : ω → ω
such that for all i, j < ω and reals x and y, x = Φy

i ∧ y = Φx
j =⇒ f(x) =

Φ
f(y)
(t(〈i,j〉))0 ∧ f(y) = Φ

f(x)
(t(〈i,j〉)1.

(3) f is increasing on a cone if and only if there is a real y such that for all
x ≥T y, x ≤T f(x).

(4) f is order preserving on a cone if and only if there is a real y such that for
all x, z ≥T y, x ≤T z =⇒ f(x) ≤T f(z).

(5) f is constant on a cone if and only if there are reals y and y0 such that for
all x ≥T y, f(x) ≡T y0.

Given degree invariant functions f and g, write f ≥M g if f(x) ≥T g(x) on a
cone. Martin’s conjecture states that assuming ZF together with AD and Axiom of
Dependent Choice (DC),

(I) Every degree invariant function f that is not increasing on a cone is constant
on a cone; and

(II) <M is a prewellordering on degree invariant functions which are increasing
on a cone. If f has <M -rank α in the prewellordering, then f ′ has <M -rank
α+ 1, where f ′(x) = (f(x))′ by definition (′ denotes Turing jump).
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(II) implies that if f is degree invariant and f(x) ≡T x cofinally (i.e. for every z,
there is a real x ≥T z such that f(x) ≡T x), then f(x) ≡T x on a cone. Slaman and
Steel [16] proved that this is true if f is, in addition, an increasing function on a cone.

In general, since Borel determinacy is a theorem of ZF +DC [12], Slaman-Steel’s
result remains true for all ∆1

1 (and hence Σ1
1) functions. We prove that this fails at

the Π1
1 level under the assumption V = L.

Theorem 5.2. 2 Assume V = L. There is a Π1
1 uniformly degree invariant function

g that is increasing and order preserving on a cone such that for all y, there are two
reals x0, x1 ≥T y satisfying g(x0) ≡T x0 and g(x1) ≥T Ox1.

Proof. Assume V = L. Define P(x, y) as

y ∈ Lωy
1
∧ OOx

= (y)0 ∧ (y)1 = x ∧
(y)2 is the <L -least real so that (y)2 6≤T (y)0.

Since “OOx
= (y)0” is Π1

1 (see [15]), P is a Π1
1 cofinally progressive relation. By

Theorem 3.4, there is a Π1
1 set A satisfying the prescribed properties in I.

By the definition of P, every real is Turing below some real in A. Moreover, P
ensures that <T is a wellordering and consistent with <L on A.

Define f(x) = y if

(a) y ∈ A; and
(b) x ≤T y; and
(c) x >T ∅ =⇒ ∀n(x 6≤T ((y)1)n).

Roughly speaking, y is the <T-least real in A such that x ≤T y.
By (c) and the property of A, f is well-defined. Furthermore, f is a Π1

1 increasing,
order persevering, and uniformly degree invariant function (x ≡T y implies f(x) =
f(y)). Moreover, since f(x) = x for every x ∈ A, we have f(x) ≡T x cofinally.

For every real s, take a real x ∈ A with x ≥T s. Then for the <T least real
y ∈ A, there is a real z coding {x|x <L y ∧ x ∈ A} = {x|x <T y ∧ x ∈ A} so that
P(z, y) holds. Obviously x′ ≤T z

′ ≤T Oz (where x′ is the Turing jump of x). By the
definition of P,

Ox′ ≤T OOz ≤T y,

and (y)1 = z. Thus

{((y)1)n|n ∈ ω} = {r|r ≤T x ∧ r ∈ A}.
Since x′ 6≤T r for all r ∈ A with r ≤T x, we have x′ 6≤T ((y)1)n for all n ∈ ω. Hence

f(x′) = y.
In other words, f(x′) ≥T Ox′ . �

Slaman and Steel [16] proved that assuming AD, if f is uniformly degree invariant
and not increasing on a cone, then f is constant on a cone. We show that this also
fails for Π1

1 functions under the Axiom of Constructibility.

2Also proved independently by Slaman using a different argument.



A Π1
1-UNIFORMIZATION PRINCIPLE FOR REALS 11

Proposition 5.3. Assume V = L. There is a uniform degree invariant, non-
increasing Π1

1 function f such that f(x)|Tx on a cone. In particular, f is not constant
on a cone.

Proof. Let A be the Π1
1 set as constructed in Theorem 5.2. Define f(x) = y if and

only if there is a real z ≡T y
′ so that

(a) z ∈ A; and
(b) y has a minimal degree; and
(c) y = Φz

e for some e so that for all i < e, if Φz
i has a minimal degree then

(Φz
i )

′ 6≡T z; and
(d) x >T ∅ =⇒ ∀n(x 6≤T ((z)1)n).

We leave it to the reader to verify that f is the desired counterexample. �

As a final application of I, we show that (II) of Martin’s conjecture fails at the Π1
1

level, again under the assumption V = L.

Theorem 5.4. Assume V = L. There is a sequence of uniform degree invariant,
increasing, Π1

1 functions {fn}n such that fn+1 <M fn for all n ∈ ω. Thus <M is not
a prewellordering.

Proof. Assume V = L. Define P(x, y) by

y ∈ Lωy
1
∧ (y)0 = x∧

(y)1 is <L -least such that (y)1 6≤T (y)0 ∧ y ≡T ((y)0 ⊕ (y)1 ⊕ (y)2)
′.

Obviously P(x, y) is a Π1
1 cofinally progressive relation. By Theorem 3.4, there is

a Π1
1 set with the prescribed properties.

By the definition of P, every real is Turing below some real in A. Moreover, by the
definition of P, <T is a wellordering and consistent with <L on A.

It is not difficult to see that there is an arithmetical set W = {(m,n, z)|m,n ∈
ω ∧ z ∈ 2ω} such that for each real z, {W z

n}n∈ω = {{m|(m,n, z) ∈ W}}n∈ω is a
sequence of z-r.e. sets so that for all n, z <T W

z
n+1 <T W

z
n .

Define a function fn(x) = y if there exists a real z <T y such that

(a) z ∈ A;
(b) z ≥T x;
(c) y = W z

n+1;
(d) x >T ∅ =⇒ ∀m(x 6≤T ((z)0)m).

Roughly speaking, y is the W z
n+1 for the <T-least real z in A with z ≥T x.

Obviously {fn}n is a sequence of Π1
1 functions. Note that for any x <T y in A,

x′ ≤T y. So for every n, fn is degree invariant and increasing.
By (d) and the property of A, f is well-defined.
By the choice of {W z

n}n∈ω, {fn}n∈ω is a <M -descending sequence. �

We end this paper with an open question:
Results in this section for Π1

1-uniform degree invariant functions were proved under
V = L. It means that Slaman-Steel’s results in [16] may not hold even for Π1

1 functions
assuming a hypothesis different from AD (or Π1

1-determinacy). One may then wish
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to identify the consistency strength of (I) and (II) in Martin’s conjecture. Thus, is
the consistency of (I) and (II) (for uniform degree invariant functions, say) in the Π1

1

case equivalent to a large cardinal hypothesis? Since Π1
1-determinacy, which implies

the Slaman-Steel results, is equivconsistent with the existence of 0] [9], and the latter
is stronger than a simple assumption of the existence of an inaccessible cardinal, the
consistency strength of (I) and (II) for Π1

1-uniform degree invariant functions becomes
particularly interesting.
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(Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966), pages 58–73. Springer, New
York, 1969.

[18] Clifford Spector. Recursive well-orderings. J. Symb. Logic, 20:151–163, 1955.

Department of Mathematics, Faculty of Science, National University of Singa-
pore, Lower Kent Ridge Road, Singapore 117543

E-mail address: chongct@math.nus.eud.sg

Institute of Mathematical Sciences, Nanjing University, Nanjing, Jiangsu Province
210093, P. R. of China

E-mail address: yuliang.nju@gmail.com


