Recursion Theory in the Constructible Universe

Liang Yu
Institute of Mathematical Science
Nanjing University

July 5, 2007
What is recursion theory?

A possible definition: A theory of studying algorithm and sets computable by an algorithm.

Wait a minute. What is algorithm? What does it mean "a set computable by an algorithm"?

A description: An algorithm is a procedure which can be executed by a machine step by step. An algorithm computable set say A is a set for which each statement "$x \in A$" can be decided by the algorithm during finite steps by inputting x.
What is recursion theory?

A possible definition:
A theory of studying algorithm and sets computable by an algorithm.
What is recursion theory?

A possible definition:
A theory of studying algorithm and sets computable by an algorithm.

Wait a minute.

What is algorithm? What does it mean “a set computable by an algorithm”?
What is recursion theory?

A possible definition:
A theory of studying algorithm and sets computable by an algorithm.
Wait a minute.
What is algorithm? What does it mean “a set computable by an algorithm”?

A description:
An algorithm is a procedure which can be executed by a *machine* step by step.
An algorithm computable set say \(A \) is a set for which there is an algorithm so that each statement “\(x \in A \)” can be decided by the algorithm during *finite steps* by inputting \(x \).
Two examples

1. On the set of natural numbers \(\mathbb{N} \). A machine is exactly a Turing machines. Then we have recursive sets of numbers.
Two examples

1. On the set of natural numbers \mathbb{N}. A machine is exactly a Turing machines. Then we have recursive sets of numbers.

2. On the general sets. A machine can be generated by Gödel operations. Then we have constructible sets.
Part I: Recursion theory.
Primitive recursive functions

A function f is primitive if it is directly obtainable from constant functions, successor functions and identity functions via the following procedure:

1. Composition;

2. Induction:
 \[f(0, x, y) = g(x, \overline{y}); \quad f(z + 1) = h(z, f(z, x, \overline{y}), x, \overline{y}). \]
A function \(f \) is primitive if it is directly obtainable from constant functions, successor functions and identity functions via the following procedure:

1. Composition;
2. Induction:
 \[
 f(0, x, y) = g(x, \overline{y}); \quad f(z + 1) = h(z, f(z, x, \overline{y}), x, \overline{y}).
 \]
Recursive functions

Unfortunately, there are intuitively computable functions which are not primitive recursive.
Unfortunately, there are intuitively computable functions which are not primitive recursive.

We introduce an operator μ, i.e. a minimalization operator.

A partial recursive function p is a function which can be written as $p(\vec{x}) = y \iff g(\mu z f(\vec{x}, z) = 1) = y$ where both f and g are recursive.

Some one may feel uncomfortable about the μ-operator.

However:
Unfortunately, there are intuitively computable functions which are not primitive recursive.
We introduce an operator μ, i.e. a minimalization operator. A partial recursive function p is a function which can be written as $p(\overrightarrow{x}) = y \iff g(\mu z f(\overrightarrow{x}, z) = 1) = y$ where both f and g are recursive.
Some one may feel uncomfortable about the μ-operator.
However:
Partial Turing computable = partial recursive.
Unfortunately, there are intuitively computable functions which are not primitive recursive.
We introduce an operator μ, i.e. a minimalization operator.
A partial recursive function p is a function which can be written as $p(\vec{x}) = y \Leftrightarrow g(\mu z f(\vec{x}, z) = 1) = y$ where both f and g are recursive.
Some one may feel uncomfortable about the μ-operator.
However:
Partial Turing computable = partial recursive.
A set A is recursive if there is a total recursive function f so that $f(n) = 0 \Leftrightarrow n \in A$.
A set A is recursively enumerable if there is a partial recursive function p so that $p(n) = 0 \Leftrightarrow n \in A$
Relativization

There is an effective way to code binary strings into natural numbers.
A partial function \(p(\sigma, n) \) is consistent if for all \(\sigma \preceq \tau \),
\(p(\sigma, n) \simeq p(\tau, n) \).
A partial \(p^A(n) \) is \(A \)-partial recursive if there is a partial recursive consistent function \(p(\sigma, n) \) so that \(p^A(n) = m \) if and only if there is a \(\sigma \prec A \) so that \(p(\sigma, n) = m \).

There is a universal partial recursive consistent function
\(p(\sigma, e, n) \) in the sense that for every set \(A \) and \(A \)-partial recursive function \(p^A \), there is an index \(e \) so that \(p^A_e(n) = m \) if and only if there is some \(\sigma \prec A \) so that \(p(\sigma, e, n) = m \).

In this sense, we have a uniformly enumeration for all \(A \)-partial recursive functions, i.e. \(\{ \Phi^A_e \}_e \).
So we have a uniform enumeration \(\{ W^A_e \}_e \) of \(A \)-r.e. sets.
An \(A \)-recursive set can be defined by an obvious way.
A \leq_T B \text{ if } A \text{ is } B-\text{recursive.}

For a set A, the Turing degree \(a = \{ B \mid A \equiv_T B \} \).

The Turing jump of A, written to \(A' \), is the Turing degree of the \(A \)-halting problem \(K^A = \{ e \mid \Phi^A_e(e) \downarrow \} \).

Theorem (Kleene, Post)

There are two set \(A, B \leq_T \emptyset' \) so that \(A \not\leq_T B \) and \(B \not\leq_T A \).
Natural Turing degrees

Are there natural Turing degrees between \emptyset and \emptyset'? Which can be formalized as following:

- Positive conjecture:
 - Conjecture (Sacks): There is an index e so that 1^e for all set A, $A < T^W_A < 2^e < T^A'$;
 - If $A \equiv_T B$, then $W^A_e \equiv_T W^B_e$ (degree invariant).

Sacks' conjecture essentially says that there is a natural way to find a degree between \emptyset and \emptyset'.
Are there natural Turing degrees between \emptyset and \emptyset'? Which can be formalized as following:
Positive conjecture:

Conjecture (Sacks)

There is an index e so that

1. for all set A, $A <_T W^A_e <_T A'$;
2. if $A \equiv_T B$, then $W^A_e \equiv_T W^B_e$ (degree invariant).

Sacks’ conjecture essentially says that there is a natural way to find a degree between \emptyset and \emptyset'.
Martin’s conjecture

Negative conjecture:

Conjecture (Martin)

Assume $ZF + AD + DC$.

1. If f is degree invariant and $f(X) \not\geq_T X$ on a cone (i.e. on some $\{Y \mid Y \geq_T Z\}$), then f is a constant on a cone.

2. For those f’s which are degree invariant and $f(X) \geq_T X$ on a cone, $\leq_m = \{(f, g) \mid \exists Z \forall X \geq_T Z(f(X) \leq_T g(X))\}$ is a prewellordering on these functions so that the successor operator $S(f(X))$ is $(f(X))'$ for all X.
To generalize recursiveness from sets of numbers to sets of reals. A relation \(P(f, n) \subseteq \omega^\omega \times \omega \) is partial recursive if there is an index \(e \) so that \(\forall f \forall n (R(f, n) \iff \Phi^f_e(n) = 0) \).

It also can be written as \(\exists m R(f, m, n) \) for some primitive recursive relation \(R \) which means there is a index \(e \) so that for every \(f \) and \(m, n \), \(\Phi^f_e(m, n) \) convergent.
To generalize recursiveness from sets of numbers to sets of reals. A relation $P(f, n) \subseteq \omega^\omega \times \omega$ is partial recursive if there is an index e so that $\forall f \forall n (R(f, n) \iff \Phi^f_e(n) = 0)$. It also can be written as $\exists m R(f, m, n)$ for some primitive recursive relation R which means there is a index e so that for every f and m, n, $\Phi^f_e(m, n)$ convergent.

To give more intuition, just fixing $n = 0$. Then a partial recursive set of reals is exactly an open set with an effective enumeration.
A hierarchy of sets

A relation $P(f, m)$ is Σ_1^0 if it is partial recursive;
$P(f, m)$ is Π_n^0 if its complement is Σ_n^0;
$P(f, m)$ is Σ_{n+1}^0 if there is a Π_n^0 relation $R(f, m, k)$ so that
$P(f, n) \iff \exists k R(f, m, k)$;
$P(f, m)$ is Σ_1^1 if there is a Π_1^1 relation $R(f, g, m)$ so that
$P(f, m) \iff \exists g R(f, g, m)$;
$P(f, m)$ is Π_n^1 if its complement is Σ_n^1;
$P(f, m)$ is Σ_{n+1}^1 if there is a Π_n^1 relation $R(f, g, m)$ so that
$P(f, n) \iff \exists g R(f, g, m)$.
A Π^1_1 complete set

Let $V_e = \{ \sigma \mid \exists n < |\sigma| (\Phi_e(\sigma, n)[|\sigma|] \downarrow) \}$. Note that $\omega^{<\omega} \setminus V_e$ is a tree T_e.
Define $e \in WF_0$ iff $\forall f \exists n = \langle n_0, n_1 \rangle (\Phi_e(f \upharpoonright n_0, n_1) \downarrow)$. In other words, $[T_e] = \{ f \mid \forall n (f \upharpoonright n \in T_e) \}$ is an empty set. Or $e \in WF_0$ if and only if T_e is a well founded tree.

Theorem

Every Π^1_1 set of numbers is 1-1 reducible to WF_0.
Proof.
Fix a Π^1_1 set $U_e = \{ m \mid \forall f (\Phi_f(e)(m) = 0) \}$. There is a 1-1 recursive function h_e with $\Phi_f(e)(m) = 0$ $\iff \exists n (\Phi_f(h_e)(m)(n) \downarrow)$.
A Π^1_1 complete set

Let $V_e = \{\sigma \mid \exists n < |\sigma| (\Phi_e(\sigma, n)[|\sigma|) \downarrow)\}$. Note that $\omega^\omega - V_e$ is a tree T_e.

Define $e \in WF_0$ iff $\forall f \exists n = \langle n_0, n_1 \rangle (\Phi_e(f \upharpoonright n_0, n_1) \downarrow)$. In other words, $[T_e] = \{f \mid \forall n (f \upharpoonright n \in T_e)\}$ is an empty set. Or $e \in WF_0$ if and only if T_e is a well founded tree.

Theorem

Every Π^1_1 set of numbers is 1-1 reducible to WF_0.

Proof.

Fix a Π^1_1 set $U_e = \{m \mid \forall f (\Phi^f_e(m) = 0)\}$. There is a 1-1 recursive function h_e with $\Phi^f_e(m) = 0 \iff \exists n (\Phi^f_{h_e(m)}(n) \downarrow)$. \qed
Given $\sigma, \tau \in \omega^{<\omega}$, $\sigma <_{KB} \tau$ iff $\sigma \succ \tau$ or there exists n so that $\sigma(n) < \tau(n)$ but $\sigma \upharpoonright n = \tau \upharpoonright n$.

Define $e \in WO_0$ iff $<_{KB}$ is a well ordering on V_e.

$e \in WO_0$ if and only if $e \in WF_0$.
Definition

A well-ordering $<_o$ on ω is defined by transfinite induction as follows:

- $0 <_o 1$;
- $(\forall n) n <_o 2^n$;
- $(\forall n) \Phi_e(n) <_o \Phi_e(n + 1) \implies (\forall n) \Phi_e(n) <_o 3 \cdot 5^e$.

O is the field of $<_o$.

An ordinal α is constructive if it is isomorphic to $O \upharpoonright n = \{ m | m <_o n \}$ for some $n \in O$.
Kleene’s \mathcal{O} II

\mathcal{O} is constructed in a very uniform way.

Proposition

There are two recursive functions p and q so that for all $n \in \mathcal{O}$,

1. $W_{p(n)} = \{ m \mid m <_\mathcal{O} n \};$
2. $W_{q(n)} = \{ \langle i, j \rangle \mid i <_\mathcal{O} j <_\mathcal{O} n \}.$
Theorem (Kleene)

Every Π^1_1 set of numbers is 1-1 reducible to O.

Proof.

We do an effective transfinite induction to reduce WF_0 to O. If $\sigma \in V_e$ and we have already $f_e(\sigma^-) \in O$, then we intend to define $f_e(\sigma)$ to be “the sum of $f(\tau)$ for $\tau \prec \sigma$”. The point is that we can do this by recursion theorem.

Then we can define $g(e)$ to be “the sum of f_e”.

Argue $e \in WF_0$ iff $g(e) \in O$. \square
Σ_1^1-boundedness

Theorem (Kleene)

If A is Σ_1^1 and many-1 reducible to \mathcal{O} via f, then there is a notation $n \in \mathcal{O}$ so that $f(A) \subseteq \mathcal{O}_n = \{m \mid m \in \mathcal{O} \wedge |m| < |n|\}$.

Proof.

Otherwise, \mathcal{O} would be Σ_1^1.

As a conclusion, every Δ_1^1 set is 1-1 reducible to some \mathcal{O}_n. In other words, every Δ_1^1 set can be totally enumerated at some constructive ordinal stage.
Recursive ordinals

Let ω_1^{CK} be the least ordinal which cannot be an order type of a recursive well ordering.

By Kleene’s theorem, $\omega_1^{CK} = |\mathcal{O}|$, i.e. the length of \mathcal{O} under $\prec_{\mathcal{O}}$.

ω_1^{CK} is the least ordinal which is inaccessible by a recursive procedure.
We can define transfinite jumps along \mathcal{O}.

Definition

An H-set is a set H_n for some $n \in \mathcal{O}$ as following.

\[
H_1 = \emptyset,
\]

\[
H_{2n} = (H_n)',
\]

\[
H_{3.5^e} = \{\langle m, n \rangle | m \in H_{\Phi_e(n)}\}.
\]
Π^0_2-singletons

Theorem

There exists a Π^0_2 predicate $H(n, x)$ so that

$$\forall n \in \mathcal{O}(\exists!x H(n, x) \land H(n, H_n)).$$

Proof.

If A is a Π^0_2 singleton, too is A'. Moreover, the index of A' can be found uniformly.

Then by a usual effective transfinite induction. \(\square\)
Theorem

There exists a Π^0_2 predicate $H(n, x)$ so that

$$\forall n \in \mathcal{O} (\exists! x H(n, x) \land H(n, H_n)).$$

Proof.

If A is a Π^0_2 singleton, too is A'. Moreover, the index of A' can be found uniformly.
Then by a usual effective transfinite induction.

It can be shown that for different $m, n \in \mathcal{O}$, if $|m| = |n|$, then $H_n \equiv_T H_m$.
So for $\alpha < \omega_1^{CK}$, we just simply use \emptyset^α to denote α-th jump.
A set A of numbers is hyperarithmetic if $A \leq_T \emptyset^\alpha$ for some $\alpha < \omega_1^{CK}$.
The set $\{A \mid A \in \Delta^1_1\}$ is Π^1_1.

Theorem (Kleene)

A is hyperarithmetic iff A is Δ^1_1.

Proof.

“\Rightarrow”: By the closure property of arithmetical operators.
“\Leftarrow”: Every Δ^1_1 set can be 1-1 reduced to \mathcal{O} with a bound.
Relativization

One also can relativize definitions before. For every set A, we can define the least non A-recursive ordinal to be ω_1^A. We use $A^{(\alpha)}$ to denote the α-th jump for $\alpha < \omega_1^A$. We also have a $\Pi^1_1(A)$ set O^A to which every $\Pi^1_1(A)$ set is 1-1 reducible.

We say that A is hyperarithmetic reducible to B, written to $A \leq_h B$, if there is a B-recursive ordinal so that $A \leq_T B^\alpha$. Relativizing Kleene’s result, we have that $A \leq_h B$ iff A is $\Delta^1_1(B)$ definable. Moreover $A \leq_h B$ is a Π^1_1 relation.
One also can study sets of reals along this way. Define $WF_1 = \{f \mid \forall g \exists n \Phi_{f(0)}^{f^-(n)}(n)\} \downarrow$ where $f^-(n) = f(n + 1)$ for all $n \in \mathbb{N}$. In other words, $f \in WF_1$ iff f codes a f-recursive well founded tree.

A relativization to the proof shows that for every Π_1^1 set A of reals, there is a recursive function f so that $x \in A \iff f(x) \in WF_1$.
Theorem (Spector, Gandy)

A set A is Π^1_1 iff there is an arithmetical relation R so that $n \in A \iff \exists Y (Y \in \Delta^1_1 \land R(Y, n))$.

Proof.

“\Leftarrow”: Since \mathcal{O} is Π^1_1-complete, then by Δ^1_1-boundedness.

“\Rightarrow”:

$e \in \text{WO}_0 \iff \exists X (X \in \Delta^1_1 \land \sigma <_{\text{KB}} \tau \implies ((X)_{\sigma})' \leq (X)_{\tau})$. \qed
Spector-Gandy Theorem

Theorem (Spector, Gandy)

A set A is Π^1_1 iff there is an arithmetical relation R so that $n \in A \iff \exists Y (Y \in \Delta^1_1 \land R(Y, n))$.

Proof.

“\Leftarrow”: Since \mathcal{O} is Π^1_1-complete, then by Δ^1_1-boundedness.

“\Rightarrow”:

$e \in WO_0 \iff \exists X (X \in \Delta^1_1 \land \sigma <_{KB} \tau \implies ((X)_{\sigma})' \leq (X)_{\tau})$.

A relativization of Spector-Gandy Theorem says that a set $A \subseteq 2^\omega \times \omega$ is Π^1_1 if and only if there is an arithmetical relation R so that $(X, n) \in A \iff \exists Y (Y \leq_h X \land R(X, Y, n))$.

Fix $n = 0$, we have a characterization of Π^1_1 sets of reals which says that for every Π^1_1 set A, $X \in A$ can be witnessed by some $Y \leq_h X$.
Theorem (Feferman and Spector)

There exists a Π^1_1 path through \mathcal{O}.

Proof.

Define a nonstandard \mathcal{O}, \mathcal{O}^* to be
$$\bigcap \{ X \in \Delta^1_1 \mid X \text{ satisfies (1)-(3) of } \mathcal{O} \}.$$ \mathcal{O}^* is Σ^1_1. So \mathcal{O}^* is a proper end extension of $\supset \mathcal{O}$.

Fix a number $e \in \mathcal{O}^* - \mathcal{O}$. Let $\mathcal{O}_1 = \{ n \mid n <_{\mathcal{O}^*} e \land n \in \mathcal{O} \}$.

Using $\mathcal{O}_n = \{ m \mid m \in \mathcal{O} \land |m| < |n| \}$ is Δ^1_1 to argue that \mathcal{O}_1 is the length of ω^CK_1.

Note that $n \in \mathcal{O}_1 \iff n \in W_{p(e)} \land p \in \mathcal{O}$.

This path provides a uniform way to construct hyperarithmetic sets by effective transfinite induction.
To be continued