
DESCRIPTIVE SET THEORETICAL COMPLEXITY OF RANDOMNESS
NOTIONS

LIANG YU

Abstract. We study the descriptive set theoretical complexity of various randomness notions.

1. Introduction

The original motivation of this paper is to characterize weakly-2-random reals by the prefix-
free Kolmogorov complexity. Since Schnorr characterized Martin-Löf randomness by the prefix-
free Kolmogorov complexity, many people thought that every randomness notion should have a
characterization by the initial segment complexity. For example, Miller and others obtained a very
successful characterization of 2-randomness.

Theorem 1.1 (Miller [8] and [9]; Nies, Stephen and Terwijn [12]). A real x is 2-random if and only
if

∃c∀n∃m(C(x � m) ≥ m− c)
if and only if

∃c∀n∃m > n(K(x � m) ≥ m+K(m)− c).

Recently, Miller and Yu [10] obtained the following result.

Theorem 1.2 (Miller and Yu [10]). x⊕ y is random if and only if

∃c∀n(K(x � n) + C(y � n) ≥ 2n− c).

The theorem gives almost all the “relativizable” randomness notions stronger than Martin-Löf
randomness unrelativized Kolmogorov complexity characterizations. An important question re-
maining open is whether there is a Kolmogorov complexity characterization for weak-2-randomness.
This question has been tried by many ways. For example, one way is to ask whether there is
a sequence of functions {fn}n∈ω so that for every real x, x is weakly-2-random if and only if
∃n∀m∃k ≥ m(K(x � k) ≥ k + fn(k))? Most of these attempts turned to be some kind of Σ0

3-
characterizations for weak-2-randomness. But all of the ways (of course) failed. So people suspected
that the collection of weakly-2-random reals is not Σ0

3. We confirm the doubt.
Then we also study the descriptive set theoretical complexity of some other classical randomness

notions. Many results have been obtained in [5] by using Wade reductions. Given two sets of reals A
and B, A is Wade reducible to B, writing to A ≤W B, if there is a continuous functions f : 2ω → 2ω

so that for every x, x ∈ A if and only if f(x) ∈ B. They prove, for example, that the collection
of Schnorr random reals is Π0

3-complete (and so non-Σ0
3). Here we give another more direct way,

by using forcing argument, to prove our results. One may think that the results in [5] are stronger
since what they prove is that the collection of Schnorr random reals is Π0

3-complete. Actually it is
not by the following well known descriptive set theory result.
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Higher Education, No. 20070284043 and China-US (NSFC-NSF) collaboration grants. We thank Lemmp, Miller and
Ng for their helpful discussions and the University of Wisconsin-Madison for its hospitality.
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Theorem 1.3 (Folklore). For any ξ < ω1 and Σ0
ξ (or Π0

ξ) set A, if A is not Π0
ξ (or Σ0

ξ), then
every Σ0

ξ set is Wade reducible to A.

Theorem 1.3 is an immediate conclusion of Borel determinacy. Moreover, our technique results
are interesting independently. For example, we prove that the forcing notion of Π0

1-classes with
computable positive measures does not produce a Martin-Löf random real.

We also study the complexity of the collection of ∆1
1-random reals. Sacks essentially proves that

the collection of ∆1
1-random reals is Π0

3. Hjorth and Nies introduced Π1
1-Martin-Löf randomness in

[6], which is an analog to the classical Martin-Löf randomness in higher recursion theory. But it
was a very difficult question whether Π1

1-Martin-Löf randomness is different with ∆1
1-randomness.

The separation of Π1
1-Martin-Löf randomness from ∆1

1-randomness was given in [2]. The proof in
the paper is fairly involved. Only a sketch was presented there. Now we can give a full proof by a
simpler argument. Further more, we have a total characterization where ∆1

1-randomness is different
with Π1

1-Martin-Löf randomness.

We organize the paper as follows: In section 2, we give some basic definitions. In section 3,
we present some easy facts about the descriptive set theoretical complexity of various randomness
notions. Most of them are probably known; In section 4, we prove that the collection of weakly-2-
random reals is not Σ0

3; In section 5, we prove that the collection of Schnorr random reals is not
Σ0

3; In section 6, we prove that the collection of ∆1
1-random reals is not Σ0

3.

2. Preliminary

A real is Kurtz random if it does not belong to any Π0
1-null set. Since co-null open Σ0

1 set is
dense, every weakly 1-generic real is Kurtz random.

A Schnorr test is an uniformly c.e. sequence of open sets {Un}n∈ω so that µ(Un) = 2−n for every
n. A real x is Schnorr random if for every Schnorr test {Un}n∈ω, x 6∈

⋂
n∈ω Un. This is equivalent

to that x 6∈
⋂
n∈ω Un for any c.e. sequence of open sets {Un}n∈ω so that µ(Un) = 2−f(n) for every

n where f is a computable function from ω to [0, 1] such that limn→∞ f(n) = 0.
A Martin-Löf test is an uniformly c.e. sequence of open sets {Un}n∈ω so that µ(Un) < 2−n

for every n. A real x is Martin-Löf random (or 1-random) if for every Martin-Löf test {Un}n∈ω,
x 6∈

⋂
n∈ω Un. There exists a universal Martin-Löf test.

A generalized Martin-Löf test is an uniformly c.e. sequence of open sets {Un}n∈ω so that
limn→∞ µ(Un) = 0 for every n. A real x is weakly-2-random if for every generalized Martin-Löf test
{Un}n∈ω, x 6∈

⋂
n∈ω Un. There is no a universal Martin-Löf test. Hirschfedlt and Miller proved the

following nice result.

Theorem 2.1 (Hirschfeld and Miller [4]). A real x is weakly-2-random if and only if x is 1-random
and does not Turing-compute any non-computable ∆0

2-real.

For some information about higher randomness, please see [13], [6] and [2]. A real is ∆1
1-random

if and only if it does not belong to any ∆1
1-null set. It is essentially due to Sacks [13] that a real x is

∆1
1-random if and only if for any ∆1

1-sequence of ∆1
1 open sets {Un}n∈ω for which limn→∞ µ(Un) = 0,

x 6∈
⋂
n Un. So the collection of ∆1

1-random reals is Π0
3.

A Π1
1-Martin Löf test is a Π1

1-sequence of Π1
1-coded open sets {Un}n∈ω (i.e. the set {(n, σ) |

σ ∈ Un} is Π1
1) so that µ(Un) < 2−n for every n. Hjorth and Nies proved that there is a universal

Π1
1-Martin Löf test. A real is Π1

1-Martin-Löf random if it does not belong to any Π1
1-Martin-Löf

test. We have the following result.

Theorem 2.2 (Chong, Nies and Yu [2]). If ωx1 = ωCK
1 , then x is ∆1

1-random if and only if x is
Π1

1-Martin-Löf random.
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For an open set U , we also identify it as a set of finite strings. For any finite string σ ∈ 2<ω,
we use [σ] to denote the open set {x | x � σ}. For any tree T , we use [T ] to denote the closed set
{x | ∀n(x � n ∈ T )}.

For more information about randomness and computability theory, see [11] and [3].

3. Some basic facts

The following facts are immediate and probably known. Many of them can be found in [5]

Proposition 3.1. (1) The collection of Kurtz random reals is Π0
2 but not Π0

2;
(2) The collection of Schnorr random reals is Π0

3;
(3) The collection of 1-random reals is Σ0

2;
(4) The collection of weakly 2-random reals is Π0

3 but not Π0
3;

(5) The collection of ∆1
1-random reals is Π0

3.

Proof. (1) Obviously the collection of Kurtz random reals K is Π0
2. Suppose that K is Π0

2.
Then there is a recursive set R ⊆ ω×ω×2<ω so that x ∈ K if and only if ∀n∃mR(n, x � m).
For each n, let Kn = {x | ∃mR(n, x � m)}. Then Kn is Σ0

1, co-null and K ⊆ Kn for every
n. Then it would be easy to computably construct a sequence finite strings σ0 ≺ σ1... so
that [σn] ⊆ Kn for every n. Then the computable real x =

⋃
n∈ω σn ∈

⋂
n∈ωKn = K would

be Kurtz random, a contradiction.
(2) Obviously (see [5]).
(3) Obviously.
(4) Obviously the collection of weakly-2-random reals W is Π0

3. Suppose that K is Π0
3. Then

there is a computable set R ⊆ ω×ω×ω×2<ω so that x ∈W if and only if ∀n∃m∀jR(n,m, x �
j). For each n, let Wn = {x | ∃m∀jR(n,m, x � j)} and Wn,m = {x | ∀jR(n,m, x � j)}. Then
Kn is Σ0

2, co-null and W ⊆ Wn for every n. We ∅′-computably construct a sequence finite
strings σ0 ≺ σ1... and Π0

1 positive measure sets T0 ⊇ T1 ⊇ T2... so that σn ∈ Tn as follows:
σ0 = ∅ and W0 = 2ω. Given σn and Rn. Since Wn+1 is co-null, we may ∅′-computably find
the least m so that Tn ∩Wn,m ∩ [σn] = {x � σn | x ∈ [Tn] ∧ ∀jR(n,m, x � j)} has positive
measure. Let Tn+1 = Tn ∩ Wn,m ∩ [σn] and σn+1 be a finite string in Tn+1 extending
σn. Then the ∅′-computable real x =

⋃
n∈ω σn ∈

⋂
n∈ωWn = W is weakly-2-random, a

contradiction to Theorem 2.1.
(5) Obviously.

�

The results above about descriptive complexity of the collections of Kurtz random and 1-random
reals are rigid.

Proposition 3.2. (1) The collection of Kurtz random reals is not Σ0
2;

(2) The collection of 1-random reals is not Π0
2.

Proof. (1). Otherwise, there is a sequence closed sets {Pn}n∈ω such that
⋃
n Pn contains exactly all

the Kurtz random reals. Since all the generic reals are Kurtz random,
⋃
n Pn is comeager. Then

there must be some n so that Pn is not meager. Then Pn must contain an interval and so contain
a computable real, a contradiction.

(2). Otherwise, there is a sequence open sets {Un}n∈ω such that
⋂
n Un contains exactly all the

1-random reals. Then for every n, µ(Un) = 1. So every Un is dense. So every sufficient generic real
would belong to

⋂
n Un. But no 1-generic reals can be random, a contradiction to 2.1. �

The second result above can be found in [5].
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4. Weak 2-randomness

In this section, we prove that the collection of weakly 2-random reals is not Σ0
3. We apply a

forcing argument.

Definition 4.1. Define a forcing notion P = (P ,≤) as follows:
(1) P ∈ P if and only if P is a Π0

1-class with positive measure;
(2) For P,Q ∈ P , P ≤ Q if and only if P ⊆ Q.

Let {Fm}m∈ω be an increasing sequence Π0
1 sets so that

⋃
m∈ω Fm is of measure 1. Set C =⋃

m∈ω Fm. Let DC = {P | P ∈ P ∧ P ⊆ C}.

Lemma 4.2. DC is dense.

Proof. Suppose that {Fm}m∈ω be an increasing sequence Π0
1 sets so that

⋃
m∈ω Fm is of measure 1

and C =
⋃
m∈ω Fm. Let P ∈ P . Then there is some big enough m so that µ(Fm) > 1− µ(P )

2 . So

µ(Fm ∩ P ) = µ(Fm) + µ(P )− µ(Fm ∪ P ) > 1− µ(P )
2

+ µ(P ) + 1 =
µ(P )

2
.

Thus Fm ∩ P ∈ DC . �

The following lemma is a stronger version of Lemma 2.2 in [1].

Lemma 4.3. For every computable tree T , there is a generalized Martin-Löf test {Vn}n∈ω so that
for any σ, if [σ] ∩ [T ] is not empty, then [σ] ∩ [T ] ∩

⋂
n Vn is not empty.

Proof. The idea is to build a uniformly sequence c.e. open sets {Vn}n∈ω densely meeting [T ]. The
method is just like to build a null comeager set. But we may make some mistakes since there is no
effective way to predicate whether [σ]∩ [T ] is not empty. So, at every step, we need to “correct” the
construction of the previous steps. But the measure of mistakes will become very small whenever the
step is large enough. This is the reason we can make sure that {Vn}n∈ω is a generalized Martin-Löf
test.

Fix a computable tree T . So there a computable approximation of computable trees {Ts}s∈ω to
T so that

(1) T0 = T ;
(2) Ts+1 = {σ | σ ∈ T ∧ ∃τ ∈ 2s+1 ∩ T (τ is compatible with σ)};

Then for every s, Ts+1 ⊆ Ts.
Fix a computable enumeration {σi}i∈ω of 2<ω and an enumeration of finite string {σs+1

i }i≤2s+1

of 2s+1 for each s.
We construct Vn for every n step by step.
At step 0, we put λ into V0. So the open set V0 = 2ω.
At step s+ 1.
Substep 1: We correct {Vk}k≤s step by step.
Substep 1.0: Check whether there is a σ ∈ Ts+1 ∩ 2s+1. If so, then do nothing. Otherwise, stop

the construction.
Substep 1.k: Check whether there is some τ ∈ Vk so that there is no ν ∈ Ts+1 ∩ 2s+1 so that

ν � τ . If so, check whether there is some τ ′ � τ � k in 2|τ | so that there is a ν ∈ Ts+1 ∩ 2s+1 so that
ν � τ ′. If so, then put τ ′ into Vj for any j ≤ k. Otherwise, do nothing.

Substep 2: For every i, check whether there is some τ ∈ Ts+1 extending σs+1
i : If not, we go to

i+ 1; Otherwise, check whether there is some τ ∈ Vs so that τ � σs+1
i : if yes, then put τ into Vs+1;

Otherwise, check whether there is some very long τ � σs+1
i in Ts+1 so that is longer than any finite

strings mentioned before. If yes, pick up such a τ and put it into Vs+1. Otherwise, do nothing.
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Now for any k ≤ s, check whether there is some τ ′ ∈ Vk compatible with τ . If yes, do nothing;
Otherwise, put τ into Vk.

This finishes the construction.

By the construction, for any n, Vn+1 ⊆ Vn.
If σ ∈ T and [σ] ∩ [T ] 6= ∅, then there is some stage s0 ≥ |σ| at which we find some σ0 � σ so

that σ0 ∈ T and [σ0] ∩ [T ] 6= ∅ and put it into V|σ|. Then there is some larger stage s1 ≥ |σ0| at
which we find some σ1 � σ0 so that σ1 ∈ T and [σ1] ∩ [T ] 6= ∅ and put it into V|σ0|, etc. Since⋂
n∈ω =

⋂
i∈ω V|σi|, there real x =

⋃
i∈ω σi ∈ (

⋂
n∈ω Vn)∩T . In other words, [σ]∩ [T ]∩

⋂
n Vn is not

empty.
To see that {Vn}n∈ω is a generalized Martin-Löf test, it is sufficient to show limn→∞ µ(Vn) = 0.

For any i, there is a big enough s > i+ 1 so that the open set Es = {σ ∈ 2s | σ ∈ Ts} has measure
less than µ([T ]) + 2−i−1. Then from the step s of the construction, except the correction substep,
we only put a prefix free set of finite strings into Vs. Moreover, except those strings putting at
correction substep, for different strings in Vs, they have different lengths greater equal to s. But at
the correction substep, by the assumption of Es, we put at most 2−i−1 measure of finite strings into
Vs. So

µ(Vs) ≤
∑
t≥s

2−t + 2−i−1 = 2−s+1 + 2−i−1 ≤ 2−i−1 + 2−i−1 = 2−i.

Thus limn→∞ µ(Vn) = 0.
�

For any Π0
2 set G, let DG = {P | P ∈ P ∧ P ∩G = ∅}.

Lemma 4.4. If G is a Π0
2 only containing weakly-2-random reals, then the set DG = {P | P ∈

P ∧ P ∩G = ∅} is dense in P.

Proof. Suppose that G is Π0
2 only containing weakly-2-random reals. Let {Un}n∈ω be a sequence

open sets so that G =
⋂
n Un. Let P ∈ P . Without loss of generality, we may assume that for any

σ, if [σ] ∩ P 6= ∅, then µ([σ] ∩ P ) > 0 (since we may assume that P only contains 1-random reals).
Then we claim that there is some σ so that P ∩ [σ] ∩G = ∅ but P ∩ [σ] 6= ∅.

Suppose not. By Lemma 4.3, there is a generalized Martin-Löf test {Vn}n∈ω so that for any σ, if
[σ]∩P is not empty, then [σ]∩P ∩(

⋂
n Vn) is not empty. Then we build a sequence strings σ0 ≺ σ1...

as follows.
Let σ0 = ∅. Now suppose [σi] ∩ P 6= ∅. Let τ � σi so that [τ ] ∩ P 6= ∅ and [τ ] ∩ P ⊆ Vi.

By the property of {Vn}n, there exists such a τ . Then by the assumption, let σi+1 � τ so that
[σi+1] ∩ P ⊆ Ui.

Let x =
⋃
i∈ω σi. Then x ∈ P ∩ (

⋂
n∈ω Un) ∩ (

⋂
n∈ω Vn). Since x ∈

⋂
n∈ω Vn, x is not weakly

2-random which contradicts to that G only contains weakly 2-random reals.
So there is some σ so that P ∩ [σ] ∩G = ∅ but P ∩ [σ] 6= ∅. Let Q = P ∩ [σ]. Then Q ∈ P and

Q ≤ P . �

Theorem 4.5. The collection of weakly 2-random reals is not Σ0
3.

Proof. Suppose not. Then there is a countable sequence Π0
2 sets {Gn}n such that the set

⋃
nGn

contains exactly all the weakly-2-random reals. So Gn only contains weakly 2-random reals for every
n. Then by Lemma 4.4, for any sufficient generic real g over P, g 6∈ Gn for any n. By Lemma 4.2,
for any sufficient generic real g over P, g is weakly-2-random, a contradiction. �
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5. Schnorr randomness

In this section, we give another proof that the collection of Schnorr random reals is not Σ0
3. We

use a similar method to the previous section with some modifications.

Definition 5.1. Define a forcing notion Q = (Q,≤) as follows:
(1) Q ∈ Q if and only if Q is a Π0

1-class with some computable positive measure;
(2) For P,Q ∈ Q, P ≤ Q if and only if P ⊆ Q.

For any Schnorr test {Un}n∈ω with µ(Un) = 2−n for every n, set U =
⋂
n Un. Let DU = {P |

P ∈ Q ∧ P ∩ U = ∅}.

Lemma 5.2. DU is dense.

Proof. Suppose that {Un}n∈ω is a Schnorr test with µ(Un) = 2−n for every n, U =
⋂
n Un and

P ∈ Q. Then there is some big enough n so that µ(Un) < µ(P )
2 . Then the complement P0 = 2ω−Un

has measure greater or equal to 1 − µ(P )
2 . So P0 ∩ P has measure greater or equal to µ(P )

2 . We
show that µ(P0 ∩ P ) is a computable real. Both P and P0 can be represented by computable trees
T and T 0 respectively. Since both P and P0 belong to Q, for any i, we may computablely find
some big enough si such that µ((

⋃
σ∈Esi

[σ])− P ) < 2−i−1 and µ((
⋃
σ∈E0

si

[σ])− P0) < 2−i−1 where

Esi
= {σ ∈ 2si | σ ∈ T} and E0

si
= {σ ∈ 2si | σ ∈ T 0}. Then

µ((
⋃

σ∈Esi
∩E0

si

[σ])− (P ∩ P0)) = µ(((
⋃

σ∈Esi
∩E0

si

[σ])− P ) ∪ ((
⋃

σ∈Esi
∩E0

si

[σ])− P0)) ≤

µ((
⋃

σ∈Esi
∩E0

si

[σ])− P ) + µ((
⋃

σ∈Esi
∩E0

si

[σ])− P0) ≤ 2−i−1 + 2−i−1 = 2−i.

So
µ(

⋃
σ∈Esi

∩E0
si

[σ])− 2−i ≤ µ(P ∩ P0) ≤ µ(
⋃

σ∈Esi
∩E0

si

[σ]).

Thus µ(P ∩ P0) is computable. In other words, P ∩ P0 ∈ Q. �

Now we want to mimic the proof of Lemma 4.4. But there is a problem. In the proof of Lemma
4.4, we can make sure that, for any condition P ∈ P , µ([σ]∩P ) > 0 whenever [σ]∩P is not empty.
The reason is that we can make sure that P only contains 1-random reals. But every condition
Q ∈ Q contains a computable real. So we have to be more careful.

Lemma 5.3. For ever computable tree T for which µ([T ]) > 0 is computable, there is a Schnorr
test {Vn}n∈ω so that for any σ, if µ([σ] ∩ [T ]) > 0, then µ([σ] ∩ [T ] ∩ Vn) > 0 for each n.

Proof. Suppose that T is a computable tree such that µ([T ]) > 0 is computable. Then there is a
computable function f : ω → ω so that for every s, |Ef(s)|

2f(s) −µ(T ) < 2−s where Et = {σ ∈ 2t | σ ∈ T}.
Fix a computable enumeration {σi}i∈ω of 2<ω and an enumeration of finite string {σs+1

i }i≤2s+1 of
2s+1 for each s. We define U0 =

⋃
s U0[s] as follows:

At step 0, do nothing.
At step s+ 1. Select the lest index i such that
(1) There is no τ � σi belonging to U0[s];
(2) |[σi] ∩ Ef(s)| > 2f(s)−s+1.

Then pick up any 2f(s)−s+1 many finite strings in [σi] ∩ Ef(s) and put them into U0[s+ 1].
Then by the definition of f , U0[s + 1] ∩ [σi] ∩ [T ] 6= ∅. Obviously at any stage s + 1, µ(U0[s +

1] − U0[s]) < 2−s+2. So µ(U0) is computable. Moreover, for any σ, if µ([σ] ∩ [T ]) > 0, then
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µ([σ] ∩ [T ] ∩ U0) > 0. If not, pick up the least index i such that µ([σi] ∩ [T ]) > 0 but µ([σ] ∩
[T ] ∩ U0) = 0. Then there is a large enough stage s0 so that for each j < i, if µ([σj ] ∩ [T ]) > 0,
then µ([σj ] ∩ [T ] ∩ U0[s0]) > 0. Suppose that µ([σi] ∩ [T ]) > 2−k, then at any stage t > s0 + k,
|[σi]∩Ef(t)| > 2f(t)−k > 2f(t)−t+1. Then we pick up any 2f(t)−t+1 many finite strings in [σi]∩Ef(t)

and put them into U0[t]. Then µ([σi] ∩ [T ] ∩ U0[t]) > 2−t, a contradiction.
Generally, for each n, we define Un =

⋃
s Un[s] as follows:

At step 0, do nothing.
At step s+ 1. Select the lest index i such that
(1) There is no τ � σi belonging to U0[s];
(2) |[σi] ∩ Ef(s+n)| > 2f(s+n)−s−n+1.

Then pick up any 2f(s+n)−s−n+1 many finite strings in [σi]∩Ef(s+n) and put them into Un[s+1].
By the same argument above, for every s, µ(Un[s + 1] − Un[s]) < 2−s−n+2. So for any n,

µ(Un) < 2−n+3 is computable. Moreover, for any σ, if µ([σ] ∩ [T ]) > 0, then µ([σ] ∩ [T ] ∩ Un) > 0.
Now define Vn =

⋃
m≥n Um. Then µ(Vn) < 2−n+4 for each n. Then by an easy calculation,

{µ(Vn)}n∈ω is uniformly computable. Thus {Vn}n∈ω is a schnorr test. By the property of {Un}n∈ω,
for any σ and n, if µ([σ] ∩ [T ]) > 0, then µ([σ] ∩ [T ] ∩ Vn) > 0. �

For any Π0
2 set G, let DG = {P | P ∈ Q ∧ P ∩G = ∅}.

Lemma 5.4. If G is a Π0
2 only containing Schnorr random reals, then the set DG = {P | P ∈

P ∧ P ∩G = ∅} is dense in Q.

Proof. Suppose that G is Π0
2 only containing Schnorr random reals. Let {Un}n∈ω be a sequence

open sets so that G =
⋂
n Un. Let P ∈ Q. Then we claim that there is some σ so that P ∩[σ]∩G = ∅

but µ(P ∩ [σ]) > 0.
Suppose not. By Lemma 5.3, there is a Schnorr test {Vn}n∈ω so that for any σ, if µ([σ]∩P ) > 0,

then µ([σ] ∩ P ∩ Vn) > 0 for each n. Then we build a sequence strings σ0 ≺ σ1... as follows.
Let σ0 = ∅. Now suppose µ([σi] ∩ P ) > 0. Let τ � σi so that µ([τ ] ∩ P ) > 0 and [τ ] ∩ P ⊆ Vi.

By the property of {Vn}n, there exists such a τ . Then by the assumption, let σi+1 � τ so that
[σi+1] ∩ P ∩G 6= ∅. Since G only contains Schnorr random reals, µ([σi+1] ∩ P ∩ Ui) > 0. Then we
may assume that [σi+1] ∩ P ⊆ Ui and µ([σi+1 ∩ P ]) > 0.

Let x =
⋃
i∈ω σi. Then x ∈ P ∩ (

⋂
n∈ω Un) ∩ (

⋂
n∈ω Vn). Since x ∈

⋂
n∈ω Vn, x is not Schnorr

random which contradicts to that G only contains Schnorr random reals.
So there is some σ so that P ∩ [σ] ∩ G = ∅ but µ(P ∩ [σ]) > 0. Let Q = P ∩ [σ]. Then Q ∈ Q

and Q ≤ P . �

Theorem 5.5 (Hitchcock, Lutz and Terwijn [5]). The collection of Schnorr random reals is not
Σ0

3.

Proof. Suppose not. Then there is a countable sequence Π0
2 sets {Gn}n such that the set

⋃
nGn

contains exactly Schnorr random reals. Then by Lemma 5.2 and Lemma 5.4, for any sufficient
generic real g over Q, g is Schnorr random but g 6∈ Gn for any n, a contradiction. �

We want to point out that the forcing Q does not produce a 1-random real. To see this, fix a
universal Martin-Löf test {Un}n∈ω. For each n, let Dn = {P ∈ Q | P ⊆ Un}.

Corollary 5.6. For each n, Dn is dense.

Proof. Let P ∈ Q and G = 2ω − Un. Then G is a Π0
1 class only containing 1-random reals. Then

by Lemma 5.4, there is some Q ≤ P such that Q ∈ Dn. �

So if g is sufficient generic over Q, then g is Schnorr random but not 1-random.
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6. ∆1
1-randomness

In this section, we prove that the collection of ∆1
1-random reals is not Σ0

3. Some basic facts in
higher randomness theory can be found in [13], [6] and [2].

Definition 6.1. Define a forcing notion D = (D,≤) as follows:
(1) P ∈D if and only if P is a ∆1

1, closed set of reals with positive measure;
(2) For P,Q ∈D, P ≤ Q if and only if P ⊆ Q.

For any ∆1
1-sequence of ∆1

1-open sets {Un}n∈ω with limn→∞ µ(Un) = 0, set U =
⋂
n Un. Let

DU = {P | P ∈D ∧ P ∩ U = ∅}.

Lemma 6.2. DU is dense.

Proof. Suppose that {Un}n∈ω is a ∆1
1-sequence of ∆1

1-open sets with limn→∞ µ(Un) = 0, U =
⋂
n Un

and P ∈ D. Then there is some big enough n so that µ(Un) < µ(P )
2 . Then the complement

P0 = 2ω − Un has measure greater or equal to 1 − µ(P )
2 . So P0 ∩ P is a ∆1

1, closed set and has
measure greater or equal to µ(P )

2 . Thus P ∩ P0 ∈D. �

For any Π0
2 set G, let DG = {P | P ∈D ∧ P ∩G = ∅}.

Lemma 6.3. If G is a Π0
2 only containing ∆1

1-random reals, then the set DG = {P | P ∈D∧P∩G =
∅} is dense in D.

Proof. Suppose that G is Π0
2 only containing ∆1

1-random reals. Let {Un}n∈ω be a sequence open
sets so that G =

⋂
n Un. Let P ∈ D. Then there is a hyperaithmetic real x so that P is Π0

1(x).
Without loss of generality, we may assume that for any σ, if [σ]∩P 6= ∅, then µ([σ]∩P ) > 0 (since
we may assume that P only contains 1-x-random reals). Then we claim that there is some σ so that
P ∩ [σ] ∩G = ∅ but P ∩ [σ] 6= ∅.

Suppose not. By Lemma 4.3 relativizing to x, there is a generalized x-Martin-Löf test {Vn}n∈ω
so that for any σ, if [σ] ∩ P is not empty, then [σ] ∩ P ∩ (

⋂
n Vn) is not empty. Then we build a

sequence strings σ0 ≺ σ1... as follows.
Let σ0 = ∅. Now suppose [σi] ∩ P 6= ∅. Let τ � σi so that [τ ] ∩ P 6= ∅ and [τ ] ∩ P ⊆ Vi.

By the property of {Vn}n, there exists such a τ . Then by the assumption, let σi+1 � τ so that
[σi+1] ∩ P ⊆ Ui.

Let z =
⋃
i∈ω σi. Then z ∈ P ∩ (

⋂
n∈ω Un)∩ (

⋂
n∈ω Vn). Since z ∈

⋂
n∈ω Vn, z is not weakly 2-x-

random. But x is hyperarithmetic, z is not ∆1
1-random, which contradicts to that G only contains

∆1
1-random reals.
So there is some σ so that P ∩ [σ] ∩G = ∅ but P ∩ [σ] 6= ∅. Let Q = P ∩ [σ]. Then Q ∈ D and

Q ≤ P . �

So by the same proof as in the previous sections, we have the following result.

Proposition 6.4. The collection of ∆1
1-random reals is not a Σ0

3-set.

We give an application Proposition 6.4.
It was very difficult to separate Π1

1-Martin-Löf randomness from ∆1
1-random. The proof in [2] is

pretty involved and only contains a sketch. Now we may apply the previous results to give a simpler
proof (and even a stronger result).

An immediate conclusion of Proposition 6.4 is:

Corollary 6.5 (Chong, Nies and Yu [2]). There is a ∆1
1-random real z which is not Π1

1-Martin-Löf
random.
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By analyzing the proof of Proposition 6.4, we can have a total characterization whether they are
different.

Theorem 6.6. For each x ≥h O, there is a ∆1
1-random real z ≡h x which is not Π1

1-Martin-Löf
random.

Proof. The the collection of Π1
1-Martin-Löf random is a Σ0

2(O)-set. Moreover, there is a O-computably
enumeration of the conditions in D (see Sacks [13]). Then hyperarithmetically in O, by a finite
extension argument, it is not difficult to construct a ∆1

1(O)-perfect tree T so that every infinite
path in T is a ∆1

1-random but not Π1
1-Martin-Löf random. By Theorem 2.2, every real x ∈ [T ] is

hyperaithmetically above O. So for each x ≥h O, there is a ∆1
1-random real z ≡h x which is not

Π1
1-Martin-Löf random. �

We want to point out an observation there. In [13], Sacks does not use a forcing argument to
study measure theoretic uniformity. In stead of that, he uses a model M (ωCK

1 , x). The advantage
of his method is to show that M (ωCK

1 , x) satisfies ∆1
1 −CA (and so ωx1 = ωCK

1 ) for almost all reals
x. Now the reason that a forcing argument is avoided seems clear since the forcing notion with
∆1

1-sets with positive measures does not produce a generic real x with ωx1 = ωCK
1 .

7. Some remarks

We don’t know what’s the exact complexity of the collection of Π1
1-random reals. We conjecture

that it cannot be a Σ0
<ωCK

1
=

⋃
α<ωCK

1
Σ0
α.

For any cardinal κ and number n, we use κ−Σ0
n+1 to denote the class of the sets which can be

a union of less than κ-many Π0
n-sets. For example, ℵ1 −Σ0

n+1-class is exactly same as Σ0
n+1-class.

We also can define κ−Π0
n+1-class in the similar way. Then the following is true.

Theorem 7.1. Assuming ZFC+Martin’s axiom, then
(1) The collection of Kurtz random reals is not 2ℵ0 −Σ0

2;
(2) The collection of Schnorr random reals is not 2ℵ0 −Σ0

3;
(3) The collection of 1-random reals is not 2ℵ0 −Π0

2;
(4) The collection of weakly 2-random reals is not 2ℵ0 −Σ0

3;
(5) The collection of ∆1

1-random reals is not 2ℵ0 −Σ0
3.

Proof. All the negative results in the previous sections were proved by c.c.c. forcings except (1) and
(3). But it is a theorem under ZFC+Martin’s axiom that any set which is a union of less than 2ℵ0

many meager sets is meager (see [7]). So under ZFC+Martin’s axiom, (1)-(5) all are true. �

We don’t know whether the conclusions of Theorem 7.1 can be proved under ZFC. We don’t
either know whether the following question is known.

Question 7.2. Is it consistent with ZFC + ¬CH that every Π1
1-set is a union of ℵ1-many closed

sets?
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