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Abstract. We prove that every degree a bounding some non-GL2 de-
gree is recursively enumerable in and above (r.e.a.) some 1-generic de-
gree.

1. Introduction

A way to classify Turing degrees according to complexity is to calculate
their iterated Turing jumps.

Definition 1.1. (1) For n ≥ 0, Ln = {a ≤ 0′|a(n) = 0(n)} (where
x(0) = x) is the class of lown degrees and Hn = {a ≤ 0′|a(n) =
0(n+1)} is the class of highn degrees.

(2) Similarly, GLn = {a|a(n) = (a ∨ 0′)(n−1)} is the class of general-
ized lown degrees and GHn = {a|a(n) = (a ∨ 0′)(n)} is the class of
generalized highn degrees

Intuitively a degree in Ln or GLn realizes the least n-th jump and thus
is supposed to be less complicated, while a degree in Hn or GHn realizes
the greatest n-th jump and thus is considered to be more complicated. A
class of special interests in the generalized high/low hierarchies is the class
GH1 of the generalized high1 degrees. Martin’s characterization of sets of
degrees in H1 provides great technical convenience for working with GH1.

Definition 1.2. Given two functions f, g : ω → ω, f dominates g if there
exists some x such that f(y) > g(y) for all y > x.

Theorem 1.3 (Martin [8]). If Y ≤T X, then Y ′′ ≤T X ′ if and only if there
exists a function f ≤T X dominating all functions recursive in Y .

As for any a,

a 6∈ GL2 ⇔ a′′ > (a ∨ 0′)′ ⇔ a ∨ 0′ 6∈ GH1(a),
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the following non-domination property of non-generalized-low2 degrees fol-
lows easily.

Corollary 1.4. If A ∈ a 6∈ GL2, then for any function f ≤T A ⊕ ∅′ there
exists a function g ≤T A such that ∃∞x(g(x) > f(x)).

We shall refer to both Theorem 1.3 and Corollary 1.4 as Martin’s Dom-
ination Theorem. Corollary 1.4 turns out to be very useful in studying
non-GL2 degrees, especially for properties that involve ∆2 predicates. For
instance some strong results on the structure of the principal ideals D(a) of
the non-GL2 degrees a have been obtained this way. In particular, Jockusch
and Posner [4] have shown that every non-GL2 degree a bounds a 1-generic
degree (in fact can be split into two 1-generic degrees). For more details, see
e.g. Chapter IV of Lerman’s monograph [7] where also a proof of Jockusch
and Posner’s result can be found (see Theorem IV.3.5).

In this article, we shall prove the following extension of Jockusch and
Posner’s theorem.

Theorem 1.5 (Main Theorem). If a ≥ b 6∈ GL2 then a is recursively
enumerable in and above (r.e.a.) some 1-generic degree.

This may be regarded as a degree theoretic summarization of many in-
teresting phenomena of non-GL2 degrees (e.g. poset or lattice embeddings
below a non-GL2 degree) which were previously proved from Martin’s Dom-
ination Theorem.

Also note that neither being non-GL2 nor beeing r.e.a. is upward closed
(see Lerman [7], Theorem IV.1.11 and Kumabe [6], respectively). So far we
did not know any upper cone with a base incomparable with 0′ consisting of
r.e.a. degrees. Our Main Theorem gives us as many as possible upper cones
of r.e.a. degrees.

We organize this paper as follows. We conclude this section by introducing
some notation and the concepts used in our Main Theorem. In Section 2 we
shall apply a result on recursive linear orderings to prove that each non-L2

degree below 0′ is r.e.a. some 1-generic degree. In Section 3 we shall first
prove a jump inversion theorem for a ∨ 0′ with a 6∈ GL2. With this and
the main result in Section 2 we will deduce that non-GL2 degrees are r.e.a.
1-generics. Then we shall prove the Main Theorem, applying a join theorem
by Jockusch and Posner. Finally, in Section 4 we will close this paper with
some open questions.

Our notation is standard. For unexplained notation see Lerman [7]. As
usual we identify a set of natural numbers, A ⊆ ω, with its characteristic
sequence. Finite binary sequences are denoted by lower case Greek letters;
|σ| denotes the length of σ, σ ≺ τ denotes that τ properly extends σ; and,
similarly, σ ≺ A denotes that σ is an initial segment of (the characteristic
sequence of) A. If σ is an initial segment of a subset of A then we write
σ ⊂ A.
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We write Φx(σ; y) ↓ if x, y < |σ| and Φx(σ; y) is defined in ≤ |σ| many
steps; and we write Φx(σ; y) ↑ otherwise. Note that, for given x, y and σ,
it is decidable whether Φx(σ; y) ↓ holds, and if so, Φx(A; y) = Φx(σ; y) for
any set A with σ ≺ A.

We introduce the 1-generic sets as those sets which force their jump. (For
the equivalence with the original definition, see e.g. Lerman [7], Lemma
IV.2.2.)

Definition 1.6. (1) Let σ ∈ 2<ω and x, y < ω. Then σ 
 Φx(G; y) ↓ if
Φx(σ; y) ↓ and σ 
 Φx(G; y) ↑ if ∀τ � σ(Φx(τ ; y) ↑). Correspond-
ingly, σ 
 e ∈ G′ if σ 
 Φe(G; e) ↓, and σ 
 e 6∈ G′ if σ 
 Φe(G; e) ↑.

(2) G is 1-generic if, for each e,

∃σ ≺ G(σ 
 e ∈ G′ or σ 
 e 6∈ G′).
(3) A degree a is 1-generic if it contains a 1-generic set.

Note that σ 
 e ∈ G′ implies that e ∈ X ′ for any set X such that σ ≺ X.
Similarly, σ 
 e 6∈ G′ implies that e 6∈ X ′ for any set X such that σ ≺ X.

Finally, we review the concept of recursive enumerability in and above.

Definition 1.7. (1) A degree a is recursively enumerable in b if there
are sets A ∈ a and B ∈ b such that A = WB for some recursively
enumerable operator W .

(2) A degree a is recursively enumerable in and above (or r.e.a. for
short) b if a > b and a is recursively enumerable in b.

(3) A degree a is r.e.a. if a is r.e.a. some degree.

2. Non-L2 Degrees

In this section we prove the special case of our main theorem for degrees
below 0′.

Theorem 2.1. Every non-L2 degree a below 0′ is r.e.a. some 1-generic
degree.

We first give the main ideas of the proof. Let a ≤ 0′ be a non-L2 degree.
We have to show that there is a degree g such that

(i) g is 1-generic,
(ii) g < a, and
(iii) a is r.e. in g.

In fact, since a is non-L2 by assumption and since any 1-generic degree
is GL1 (hence any 1-generic degree below 0′ is low1; see e.g. Lerman [7],
Lemma IV.2.3), (i) will imply that a 6= g. So we may replace (ii) by the
weaker requirement

(ii’) g ≤ a.
Moreover, if a is recursively enumerable then a is recursively enumerable in
all degrees b < a whence in this case Theorem 2.1 follows from Jockusch
and Posner’s result that any non-GL2 degree bounds a 1-generic degree. So
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in the following, w.l.o.g. we may assume that a does not contain any r.e.
set.

Now in order to get the desired 1-generic degree g we exploit some results
on recursive linear orderings. A linear ordering <L is recursive if ω is the
domain of <L and the relation x <L y is recursive. Here we will consider
orderings <L of order type ω+ω∗ where ω∗ is the order type of the negative
integers, i.e., ω + ω∗ = 0, 1, 2, . . . ,−3,−2,−1. In the following we let UL

denote the ω-part of <L. Correspondingly, UL = ω−UL will be the ω∗ part
of <L.

Note that for a recursive linear ordering <L of order type ω + ω∗, any
infinite subset of the ω-part UL is cofinal in UL (with respect to <L). This
implies that UL is recursively enumerable in any infinite S ⊆ UL since

x ∈ UL ⇔ ∃ y ∈ S (x <L y).

So, for our proof, it suffices to give a recursive linear ordering <L of
order type ω + ω∗ and a 1-generic set G such that UL ∈ a, G ⊆ UL and
G ≤T UL. Then, for g = deg(G), (i) holds by 1-genericity of G, (ii’) holds
by G ≤T UL ∈ a, and (iii) holds by G ⊆ UL.

In order to obtain the required sets UL and G we use the following two
lemmas. The former lemma guarantees that there is some recursive linear
ordering <L of order type ω + ω∗ such that the ω-part UL has degree a.
The second lemma implies that the ω-part UL of any such ordering contains
a 1-generic set; in fact it allows the construction of 1-generic subsets G of
UL by any finite extension argument. In the actual proof we give such a
construction which in addition will ensure that the constructed 1-generic
set G is recursive in a.

Lemma 2.2 (Harizanov). Let a ≤ 0′. There is a recursive linear ordering
<L of order type ω + ω∗ such that the ω-part UL has degree a.

For a proof see Harizanov [1, Proposition 3.1].

Lemma 2.3 (Hirschfeldt and Shore). Suppose <L is a recursive linear or-
dering of order type ω+ω∗ such that there is no recursive infinite descending
sequence of <L. Then, for any string σ ⊂ UL and for any number e < ω,
there is a string τ such that σ ≺ τ ⊂ UL and either τ 
 e ∈ G′ or τ 
 e 6∈ G′.

Proof. We follow the last paragraph in the proof of [2, Theorem 3.4].
For a contradiction assume that the claim fails. Then we may fix σ ⊂ UL

and e ≥ 0 such that

∀ τ (σ ≺ τ ⊂ UL ⇒ [τ 6
 e ∈ G′ & τ 6
 e 6∈ G′],
i.e.,

(1) ∀ τ (σ ≺ τ ⊂ UL ⇒ [Φe(τ ; e) ↑ & ∃ τ ′ � τ (Φe(τ ′; e) ↓)]).
Note that, for τ and τ ′ as in (1), τ ′ 6⊂ UL.

Now, contrary to assumption, we will inductively define a recursive de-
scending sequence 〈xn : n ≥ 0〉 of <L, x0 >L x1 >L x2 . . . , where in addition
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we will ensure that x0 < x1 < x2 < . . . and that xn is in the ω∗ part UL of
>L (for all n ≥ 0).

Let x0 be any element of UL such that x0 > |σ|. For the inductive step,
given numbers x0, x1, . . . xn in UL such that |σ| < x0 < x1 < · · · < xn and
xn <L xn−1 <L · · · <L x0, it suffices to effectively find xn+1 ∈ UL such that
xn < xn+1 and xn+1 <L xn.

This is achieved as follows. For k ≥ 0 let τk be the extension σ0k of
σ. Note that, by σ ⊂ UL, τk ⊂ UL too. So, by (1), there will be an
extension τ ′k of τk such that Φe(τ ′k; e) ↓. Moreover, we can find the least
such extension τ ′k effectively, and, as observed above, τ ′k 6⊂ UL. So there
is a number yk ≥ |τk| ≥ k such that τ ′k(yk) = 1 and yk ∈ UL. Moreover,
since the elements of UL <L-precede the elements of UL, we can effectively
find such a number yk by letting yk be the <L-greatest number y such that
|τk| ≤ y < |τ ′k| and τ ′k(y) = 1. Hence we can effectively enumerate the set
Y = {yk : k ≥ 0} in order and, by yk ≥ k and yk ∈ UL, Y is an infinite
subset of UL. So, since there are only finitely many numbers y such that
xn ≤L y (since xn is in the ω∗-part of <L) or y ≤ xn, we obtain the desired
number xn+1 by letting xn+1 = yk for the least k such that yk <L xn and
yk > xn. �

Note that for a recursive linear ordering <L of order type ω + ω∗ such
that the degree of UL is not r.e., the hypothesis of Lemma 2.3 is satisfied.
Namely, for any infinite <L-descending sequence x0 >L x1 >L x2 . . . , all
members of the sequence have to be in the ω∗-part and the sequence is
cofinal in this part, whence

x ∈ UL ⇔ ∃ n (xn <L x).

So if this sequence were recursive then UL were r.e., hence deg(UL) =
deg(UL) were r.e. too.

Having explained the basic format of the proof of Theorem 2.1, we now
turn to the actual construction.

Proof. Let a ≤ 0′ be non-L2 where w.l.o.g. a is not r.e. By Lemma 2.2 fix
a recursive linear ordering <L of order type ω+ω∗ such that the ω-part UL

has degree a. As pointed out above, it suffices to define a 1-generic set G
such that G ≤T UL and G ⊆ UL.

We will define G by a finite extension argument, where the initial segment
γs of G of length s is defined at stage s of the construction. Then G ⊆ UL

is ensured by guaranteeing γs ⊂ UL and G ≤T UL is ensured by making the
construction effective in UL (i.e., in a). Finally, 1-genericity of G is obtained
by meeting the requirements

Re : ∃s (γs 
 e ∈ G′ or γs 
 e 6∈ G′)
for all numbers e ≥ 0.

The strategy for meeting the genericity requirements is based on Lemma
2.3. As pointed out above, a not being r.e. implies that the hypothesis of
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the lemma is satisfied. So, for P = {σ : σ ⊂ UL} and for any σ ∈ P and
e ≥ 0,

(2) ∃ τ ∈ P [σ ≺ τ & (τ 
 e ∈ G′ or τ 
 e 6∈ G′)].

So, if we let τ(σ, e) be the least (i.e. shortest and leftmost) string τ witnessing
(2), i.e.,

τ(σ, e) = µτ [σ ≺ τ ∈ P & (τ 
 e ∈ G′ or τ 
 e 6∈ G′)],

then the function τ : P × ω → P is total. Moreover, τ ≤T ∅′ since P ≤T ∅′
(note that P ≤T UL and UL ∈ a ≤ 0′) and since the questions whether
τ 
 e ∈ G′ (i.e., Φe(τ ; e) ↓) and τ 
 e 6∈ G′ (i.e., Φe(τ ′; e) ↑ for all τ ′ � τ)
hold can be respectively answered effectively relative to ∅′.

Now if - in place of G ≤T UL - we only had to ensure G ≤T ∅′ then - based
on the function τ - we could easily define the desired 1-generic set G ⊆ UL

by a straightforward finite extension argument as follows. Given a finite
initial segment γs of G and the first requirement Re not yet met we meet Re

by extending γs to τ(γs, e), i.e., by letting γs′ = τ(γs, e) for s′ = |τ(γs, e)|.
In the actual construction, using UL ∈ a (in place of ∅′) as an oracle we will

work with some a-approximations τ(σ, e, s) of τ(σ, e), called e-targets below,
and we will argue that, by Martin’s Domination Theorem, we will eventually
get some correct e-target. (The argument resembles the proof of Jockusch
and Posner’s Theorem on bounding 1-generic degrees given in Lerman [7,
Theorem IV.3.5]. Our argument is somewhat more subtle, however, since
here we also have to approximate the Π0

1-property τ 
 e 6∈ G′ while there it
sufficed to deal with the Σ0

1-property τ 
 e ∈ G′.)
We first define functions f and m where f(s) bounds the size of the strings

τ(σ, e) for strings σ ∈ P of length ≤ s and for e ≤ s, while m(s) bounds, for
any string τ of length ≤ f(s) and for any number e ≤ s such that τ 6
 e 6∈ G′,
the length of the least string ρ witnessing this fact.

f(s) = max{|τ(σ, e)| : σ ∈ P ∩ 2≤s & e ≤ s}

m(s) = max{|ρ(τ, e)| : τ ∈ 2≤f(s) & e ≤ s}
where

ρ(τ, e) =

{
µρ(τ ≺ ρ 
 e ∈ G′) if τ 6
 e 6∈ G′

τ otherwise.

Note that f and m are total, nondecreasing, and recursive in ∅′. Moreover,
s ≤ f(s) ≤ m(s) and, for any τ ∈ 2≤f(s),

(3) τ 
 e 6∈ G′ ⇔ ¬∃τ ′ � τ (|τ ′| ≤ m(s) & τ ′ 
 e ∈ G′).

So τ 
 e 6∈ G′ can be decided recursively in m.
Finally, by Martin’s Domination Theorem, fix a strictly increasing func-

tion g ≤T UL such that ∃∞s(g(s) > m(s)).
Before proceeding to the formal construction we give some more intuition

by explaining the strategy for meeting a single requirement Re. At stage



BOUNDING NON-GL2 AND R.E.A. 7

s + 1, given the previously defined finite initial segment γs ∈ P ∩ 2s of G,
we search in 2<g(s) for a string τ with γs ≺ τ ∈ P such that

either τ 
 e ∈ G′ or ∀ρ ∈ 2<g(s)(τ � ρ⇒ ρ 6
 e ∈ G′)

holds. We let τ(γs, e, s) be the least such string τ (if there is no such τ
then we let τ(γs, e, s) = γs) and we call τ(γs, e, s) the e-target at stage s.
Note that |τ(γs, e, s)| ≤ f(s) as τ(γs, e) ∈ 2≤f(s) has the described property
with the possible exception of τ(γs, e) 6∈ 2≤g(s). Moreover, τ(γs, e, s) can be
computed relative to a.

Now if τ(γs, e, s) 
 e ∈ G′ then we will meet requirement Re by extending
G along τ(γs, e, s), i.e., by letting γt = τ(γs, e, s) � t + 1 for s < t ≤
|τ(γs, e, s)|. If τ(γs, e, s) 6
 e ∈ G′ then we guess that τ(γs, e, s) 
 e 6∈ G′.
Again, we extend G along τ(γs, e, s). If our guess is correct, this will ensure
that Re is met. If our guess is not correct then there will be a stage t > s
at which this becomes apparent by a string τ ′ of length ≤ g(t) such that
τ(γs, e, s) ≺ τ ′ and τ ′ 
 e ∈ G′. At the first such stage t the target τ(γs, e, s)
is called t-incorrect for e and a new target is appointed at stage t.

It is crucial that this process has to be repeated at most finitely often.
Namely, by choice of g, there will be a least stage t ≥ s such that m(t) < g(t)
(hence m(s) < g(t)). Now, if τ(γs, e, s) is t-correct for e, then, by (3),
τ(γs, e, s) 
 e 6∈ G′ and τ(γs, e, s) is correct for e at all stages ≥ s. So Re is
met and no new e-target will be considered. On the other hand, if τ(γs, e, s)
is t-incorrect for e then at stage t the e-target is replaced by τ(γt, e, t) and,
by m(t) < g(t) and (3), this target will never become incorrect for e. So
again, Re is met and the action for Re is finite.

In the actual construction, there might be conflicts among the require-
ments which are resolved by giving priority to requirements with lesser in-
dex. If a requirement is injured its target is cancelled and a new attempt
for meeting the requirement based on a new target will be started later.

Now we describe the construction formally. For s = 0 we let γ0 be the
empty string.

At stage s+ 1, we let t(e, s) be the least stage t ≤ s such that τ(γt, e, t) is
s-correct for e and τ(γt, e, t) is comparable with γs; and we let t(e, s) = s+1
if no such stage t ≤ s exists. We say that Re requires attention if e < s+ 1
and

(a) t(e, s) ≤ s and γs ≺ τ(γt(e,s), e, t(e, s)) or
(b) t(e, s) = s+ 1.

If no requirement Re requires attention then let γs+1 = γs0. Otherwise, fix e
minimal such that Re requires attention and let γs+1 = τ(γt(s,e), e, t(s, e)) �
s + 1. This completes the construction. Note that the construction is re-
cursive in a and γs ∈ P for all s ≥ 0. So G ≤T UL and G ⊆ UL. Finally,
1-genericity of G follows from the following claim.

Claim. Every requirement Re is met and requires attention at most finitely
often.
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The Claim is established by induction on e. Fix e and, by inductive
hypothesis, assume that no requirement Re′ , e′ < e requires attention after
stage se. Moreover, choose s + 1 > e, se such that g(s) > m(s). Then, for
t = t(e, s) as in the construction, τ(γt, e, t) is comparable with γs. Moreover,
by g(s) > m(s) and by (3), τ(γt, e, t) 
 e ∈ G′ or τ(γt, e, t) 
 e 6∈ G′, and,
by s > se, e, G is extended along τ(γt, e, t). So Re is met and Re will not
require attention after stage |τ(γt, e, t)|.

This completes the proof. �

The proof of Theorem 2.1 gives the following improvement of Hirschfeldt
and Shore [2, Theorem 2.11] when UL is non-L2.

Corollary 2.4. Every X-recursive linear order <L of type ω + ω∗ with the
ω part UL non-L2 in X has an infinite ascending or descending sequence A
which is recursive in UL and low in X.

Proof. Assume that there is no X-recursive infinite descending sequence of
the order <L. Then, by relativizing the proof of Theorem 2.1, we get G ⊆ UL

1-generic in X and recursive in UL. From G ⊕ X we compute an infinite
ascending sequence A in UL. A is low in X as so is G⊕X. �

Readers may also note that an improvement of Jockusch’s observation [2,
Corollary 2.14] follows easily from Hirschfeldt-Shore’s density lemma 2.3.

Corollary 2.5. Every a ≤ 0′ is r.e. in a 1-generic degree g < 0′.

3. Bounding Non-GL2 Degrees

Posner proved (see Lerman [7, Theorem IV.4.8]) that every GH1 degree is
r.e.a. some degree. Readers familiar with the following theorem of Jockusch
and Posner may find that Posner’s result can be extended to non-GL2 de-
grees with the help of Theorem 2.1.

Theorem 3.1 (Jockusch and Posner [4], Theorem 2). If a 6∈ GL2, c ≥ a∨0′

and c is r.e. in a, then there is b ≤ a such that b′ = c.

Then the improvement of Posner’s result follows.

Proposition 3.2. For every non-GL2 degree a there is a degree d < a such
that a is r.e. and non-L2 over d.

Proof. Let a be a non-GL2 degree. By Theorem 3.1, there is b ≤ a such
that b′ = a ∨ 0′. Then as a is non-GL2 we have a′′ > (a ∨ 0′)′ = b′′, i.e. a
is non-L2 over b. Now relativize Theorem 2.1 to produce d between b and
a such that a is r.e. over d and d is low over b. Hence a is also non-L2 over
d. �

Actually we can make d above to be 1-generic, like in Theorem 2.1. To
this end, we first improve Theorem 3.1 when c = a ∨ 0′ to yield a 1-generic
b.
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Proposition 3.3. If a 6∈ GL2 then there is a 1-generic degree g ≤ a such
that g′ = a ∨ 0′.

Proof. Just as the proof of Theorem 2.1, the proof is based on the proof
of Jockusch and Posner’s Theorem on bounding 1-generic degrees given in
Lerman [7, Theorem IV.3.5].

Fix A ∈ a. Since 1-generic sets are GL1, it suffices to construct a 1-generic
set G such that G ≤T A and A ≤T G′.

We will define G by a finite extension argument, where the initial segment
γs of G of length s is defined at stage s of the construction. 1-genericity of
G is guaranteed by meeting the requirements

Re : ∃s (γs 
 e ∈ G′ or γs 
 e 6∈ G′)

for all numbers e ≥ 0. G ≤T A is ensured by making the construction
effective in A. Finally, A ≤T G′ is ensured by coding A into G in a way such
that G′ can detect the coding locations. I.e., for any number n there will be
a stage s(n) such that γs(n)+1 = γs(n)A(n) and s(n) can be computed from
G′.

The strategy for meeting the 1-genericity requirements is based on the
following functions. Define

f(s) = µt ≥ s[∀σ ∈ 2s∀e < s(σ 
 e 6∈ G′ or ∃τ ∈ 2≤t(σ ≺ τ 
 e ∈ G′))].

Clearly f is total and recursive in ∅′. Hence by Martin’s Domination The-
orem there is a total function g ≤T A such that ∃∞s(g(s) > f(s)) where
w.l.o.g. g(s) > s and g is strictly increasing.

Then requirement Re can be met as follows. Given a stage s at which Re

is not yet satisfied we search for a string τ of length ≤ g(s) which extends
γs and forces e ∈ G′. If there is such a string then we pick the least such
string τ and extend G along τ thereby ensuring that γt 
 e ∈ G′ for t = |τ |.
(In the actual construction, while extending G along τ , τ will be called the
e-target at stage s′ and will be denoted by δs′ , s ≤ s′ ≤ |τ |.) If we do not
find such a string then we repeat our search at the next stage s+ 1 (and so
on). Now if we never find an extension τ as above then we may argue that
γs′ 
 e 6∈ G′ for some s′ ≥ s. Namely, by choice of g there will be s′ ≥ s
with g(s′) ≥ f(s′) and, by definition of f and the failure of the existence of
a string τ as above, γs′ 
 e 6∈ G′.

The coding of A into G will be as follows. Let e0 < e1 < e2 . . . be the
sequence of all numbers e such that e ∈ G′. Note that, by 1-genericity of G,

∀ n ≥ 0 ∀∞ s (γs 
 en ∈ G′).

So we may inductively define s(0) < s(1) < s(2) . . . by

s(0) = µs(s > e0 & γs 
 e0 ∈ G′)

and
s(n+ 1) = µs(s > max(en+1, s(n)) & γs 
 en+1 ∈ G′).
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Clearly, en and s(n) are computable from G and G′ (hence from G′). So we
achieve A ≤T G′ by ensuring

γs(n)+1 = γs(n)A(n).

In the construction we will guess whether s = s(n) for some n and, if so,
set γs+1 = γsA(n). Roughly speaking, this is done as follows. If requirement
Re becomes satisfied at stage s then we guess that e = en and s = sn if the
requirements Re0 , . . . , Ren−1 , e0 < e1 < . . . en−1 < e have been previously
satisfied. Correspondingly we set G(s) = A(n). Now this guess may turn
out to be incorrect since for some e′ < e the fact that e′ ∈ G′ can be forced
only by some γs′ with s′ > s. In this case we say that Re is injured at stage
s′ and we make a new attempt for meeting the requirement later. Then we
will argue that for the final attempt the guess will be correct. We let ce(s)
denote the least number n which has not been previously coded by satisfying
a requirement Re′ where e′ < e and the coding had not been injured by the
end of stage s.

We next formally describe the construction.
At stage s = 0 we let γ0 = ∅. No requirement is active at stage 0, δ0 is

not defined, and ce(0) = 0 for all e ≥ 0.
Stage s+ 1 of the construction is as follows.
Requirement Re requires attention at stage s + 1 if e ≤ s and Re is not

satisfied at stage s and

(i) δs is an e-target or
(ii) there is a string τ ∈ 2≤g(s) such that γs � τ 
 e ∈ G′.

If no requirement requires attention then let γs+1 = γs0. Otherwise, fix e
minimal such that Re requires attention. Declare that Re is active at stage
s+ 1 and do the following.

• If (i) holds let η = δs. Otherwise let η be the least string τ as in (ii).
Distinguish the following two cases.
• If γs ≺ η then let γs+1 = η � s+ 1, appoint δs+1 = η as e-target, and

let ce′(s+ 1) = ce′(s) for all e′ ≥ 0.
• If γs = η then let γs+1 = γsA(ce(s)), declare Re to become satisfied

and all requirements Re′ with e′ > e to be injured at stage s + 1,
and let ce′(s + 1) = ce′(s) for e′ ≤ e and ce′(s + 1) = ce(s) + 1 for
e′ > e. (In this case δs+1 is not defined.)

We call Re′ satisfied at stage s + 1 if Re′ became satisfied at a stage t ≤ s
and Re′ was not injured at any stage t′ with t < t′ ≤ s+ 1.

This completes the construction.
Note that the construction is effective in A, hence G ≤T A. So the cor-

rectness of the construction can be established by the following two claims.

Claim 1. Every requirement Re is met and requires attention at most
finitely often.
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The proof of Claim 1 is by induction on e. Given e, by inductive hypoth-
esis, fix a stage te ≥ e such that no requirement Re′ with e′ < e requires
attention at any stage t ≥ te. Then Re will not be injured after stage te. So
if Re is satisfied at some stage s+ 1 > te then Re will not require attention
after stage s+ 1 and Re will be met since γs+1 
 e ∈ G′ by construction.

So, for the remainder of the argument, we may assume that Re is never
satisfied after stage te.

First we show that Re does not require attention after stage te. For a
contradiction assume that Re requires attention at stage s + 1 > te. Then
either Re is satisfied at stage s + 1 or an e-target δs+1 will be appointed
at stage s + 1, Re will continue to be active at the successive stages, and
eventually be statisfied at stage s′ + 1 for s′ = |δs+1|. In either case this
contradicts our assumption that Re will not be satisfied after stage te.

Finally, in order to show that Re is met, we argue that, for some s > te,
γs 
 e 6∈ G′. Fix s > te such that g(s) ≥ f(s). Then, by definition of f ,
either γs 
 e 6∈ G′ or there is a string τ ∈ 2≤f(s) such that γs � τ 
 e ∈ G′.
The latter, however, cannot happen since otherwise Re will require attention
at stage s ≥ te.

Claim 2. For n ≥ 0, γs(n)+1 = γs(n)A(n).

Note that, for a requirement Re which becomes satisfied at some stage
s+1, γs 
 e ∈ G′ hence e ∈ G′. Conversely, if e ∈ G′ then, by Re being met,
γs 
 e ∈ G′ for all sufficiently large s. So, by Claim 1, Re will eventually
become satisfied. In fact, there will be a last stage t such that Re becomes
satisfied at stage t+ 1 and Re will not be injured later. So, in particular, for
n ≥ 0, we may let t(n) + 1 be the last stage at which Ren becomes satisfied.
We will show that

(4) t(n) = s(n) & ∀t ≥ t(n) (cen(t) = n).

This will imply Claim 2, since by (4) and by construction,

γs(n)+1 = γt(n)+1 = γt(n)A(cen(t(n))) = γs(n)A(n).

The proof of (4) is by induction on n.
Let n = 0. Since no Re with e < e0 will ever become satisfied, none

of these requirements will ever become active. So Re0 will become active
whenever Re0 requires attention, Re0 is never injured, and ce0(s) = 0 for all
stages s ≥ 0. So t(0) + 1 is the unique stage at which Re0 becomes satisfied
and ce0(t) = 0 for all stage t ≥ t(0). To show that t(0) = s(0), note that
by definition of s(0) and by construction, Re0 will not be satisfied by stage
s(0) and Re0 will become active at stage s(0) + 1 since γs(0) 
 e0 ∈ G′. So,
for η as described in the construction, η = γs(0) or η = δs(0) where δs(0) is
appointed as e0-target at stage s0. Since, as one can easily check, an e-target
δs is the least string τ with γs � τ 
 e ∈ G′, in either case η = γs(0) and
Re0 becomes satisfied at stage s(0) + 1.
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For the inductiv step fix n and assume that (4) holds. We have to show
that t(n + 1) = s(n + 1) and cen+1(t) = n + 1 for all t ≥ t(n + 1). Note
that by choice of t(n) and by (4), A(n) is coded into G at stage t(n) + 1 by
Ren becoming satisfied. So, since Ren will not be injured at any later stage,
cen+1(t) = n+ 1 holds for all t > t(n) hence for all t ≥ t(n+ 1). Finally, the
argument that t(n+ 1) = s(n+ 1) resembles the proof of the corresponding
claim for 0 in place of n+ 1. Since Ren+1 is injured at stage t(n) + 1 it easily
follows from the inductive hypothesis that, after stage t(n) + 1 = s(n) + 1,
Ren+1 will become active whenever it requires attention and it will not be
injured anymore. So t(n + 1) will be the first stage > s(n) + 1 at which
Ren+1 becomes satisfied. But then, as in case of n = 0, we can easily argue
that t(n+ 1) = s(n+ 1).

This completes the proof of Claim 2 and of Proposition 3.3. �

The following proposition allows us to relativize Theorem 2.1.

Proposition 3.4 (Yu [12], Proposition 2.2). G0 ⊕ G1 is 1-generic if and
only if G0 is 1-generic and G1 is 1-generic in G0.

Theorem 3.5. For every non-GL2 degree a there is a 1-generic degree
g < a such that a is r.e.a. g and g′ = a ∨ 0′. Hence a 6∈ L2(g).

Proof. By Proposition 3.3, choose a 1-generic g0 ≤ a such that g′0 = a ∨ 0′.
Then a is non-L2 above g0. Now relativize Theorem 2.1 to get g1 < a such
that a is r.e.a. g = g0 ∨ g1 and g1 is 1-generic in g0. By Proposition 3.4, g
is also 1-generic.

As 1-generic degrees are GL1,

g′ = g ∨ 0′ = g0 ∨ g1 ∨ 0′ = g1 ∨ g′0 = g1 ∨ a ∨ 0′ = a ∨ 0′.

Hence a′′ > (a ∨ 0′)′ = g′′ and a 6∈ L2(g). �

As Sasso [10] proved the existence of proper GL2 minimal degrees, The-
orem 3.5 is optimal in terms of the generalized high/low hierarchies.

With Theorem 3.5 we can improve Theorem 3.1.

Corollary 3.6. If a 6∈ GL2 and c ≥ a ∨ 0′ is r.e. in a, then there is an
r.e.a. degree b < a with b′ = c.

Proof. By Theorem 3.5, fix g < a such that a is r.e.a. g and g′ = a ∨ 0′.
Now the desired b is given by Robinson’s Jump Interpolation Theorem ([9,
Theorem 2]). �

Jockusch and Posner proved the following result.

Theorem 3.7 (Jockusch and Posner [4], Corollary 7). If a ≥ b 6∈ GL2 then
there is a 1-generic g < a such that a = b ∨ g.

Now we can prove the Main Theorem with the help of their result.
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Proof of the Main Theorem. By Theorem 3.5, choose a 1-generic g0 < b
such that b is r.e.a. g0 and b 6∈ L2(g). Then relativize Theorem 3.7 to yield
g1 such that g1 is 1-generic in g0, g0 ∨ g1 < a and a = b ∨ g0 ∨ g1. Hence
a is r.e.a. g = g0 ∨ g1 and g is 1-generic by Proposition 3.4 again. �

Corollary 3.8. There are continuum many mutually incomparable upper
cones which are incomparable with [0′,∞) and which consist of degrees r.e.a.
1-generics.

Proof. We may fix A ∈ a 6∈ GL2 with a incomparable with 0′. Then we
may build an A-pointed perfect tree T such that all branches of T are ≤T-
incomparable with ∅′ and mutually ≤T-incomparable. Thus the upper cones
determined by the degrees of branches of T are as desired. �

4. Remarks

One may find that degrees proved r.e.a. in this paper are always r.e.a.
1-generics. Proposition 3.4 plays an important role here by allowing rela-
tivization arguments over 1-generics. Actually there are many interesting
connections between r.e.a. and 1-generic degrees. For example, Jockusch
[3] proved that each 1-generic degree is r.e.a., Kumabe [5] improved this
by showing that n-generics are always r.e.a. other n-generics, and, in some
unpublished notes, Liang Yu showed that every r.e.a. degree is a join of two
1-generics.

One more closed relation between r.e.a. and 1-generic degrees is demon-
strated below.

Proposition 4.1. If a is r.e.a. then it is r.e. in some 1-generic g.

Proof. If a is r.e.a. b, then by combining a trick of Shore (see [11, VI.3.9])
and the coding strategy in the proof of Proposition 3.3, we may find a 1-
generic g0 < a such that g′0 = a ∨ 0′.

Now relativized Corollary 2.5 to get a r.e. in g0 ∨ g1 with g1 1-generic in
g0. By Proposition 3.4, g = g0 ∨ g1 is 1-generic. �

These facts together lead to the following question.

Question 4.2. Is every r.e.a. degree r.e.a. some 1-generic?

On the other hand, it follows from Sacks Density Theorem for r.e. degrees
that there are no minimal r.e.a. degrees. Now let

B = {b|∀a ≥ b(a is r.e.a.)}.
Question 4.3. Does B have minimal elements?

Finally Slaman in discussions with Wang and Yu proposed that 2-generic
degrees are also bases of upper cones of r.e.a. degrees. So one may wonder
what B is.

Question 4.4. Characterize the degrees in B.
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